This is the accepted manuscript made available via CHORUS. The article has been published as:

Ground-state and decay properties of neutron-rich math xmlns="http://www.w3.org/1998/Math/MathML">mmultiscri pts $>\mathrm{mi}>\mathrm{Nb} / \mathrm{mi}>$ mprescripts>/mprescripts>none>/none> mn>106/mn>/mmultiscripts>/math $>$
A. J. Mitchell, R. Orford, G. J. Lane, C. J. Lister, P. Copp, J. A. Clark, G. Savard, J. M. Allmond,
A. D. Ayangeakaa, S. Bottoni, M. P. Carpenter, P. Chowdhury, D. A. Gorelov, R. V. F. Janssens, F. G. Kondev, U. Patel, D. Seweryniak, M. L. Smith, Y. Y. Zhong, and S. Zhu Phys. Rev. C 103, 024323 - Published 24 February 2021

DOI: 10.1103/PhysRevC.103.024323

A. J. Mitchell, ${ }^{1, ~ a}$ R. Orford, ${ }^{2,3, b}$ G. J. Lane, ${ }^{1}$ C. J. Lister, ${ }^{4}$ P. Copp,,${ }^{4, c}$ J. A. Clark, ${ }^{3}$ G. Savard, ${ }^{3,5}$
J. M. Allmond, ${ }^{6}$ A. D. Ayangeakaa, ${ }^{7,8}$ S. Bottoni, ${ }^{3},{ }^{\text {d }}$ M. P. Carpenter, ${ }^{3}$ P. Chowdhury, ${ }^{4}$ D. A. Gorelov, ${ }^{3,9}$
R. V. F. Janssens, ${ }^{7,8}$ F. G. Kondev, ${ }^{3}$ U. Patel,,${ }^{1, e}$ D. Seweryniak, ${ }^{3}$ M. L. Smith,,${ }^{1, f}$ Y. Y. Zhong, ${ }^{1}$ and S. Zhu ${ }^{3, g}$
${ }^{1}$ Department of Nuclear Physics, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
${ }^{2}$ Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada
${ }^{3}$ Physics Division, Argonne National Laboratory, Argonne, IL 60439
${ }^{4}$ Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA 01854
${ }^{5}$ Department of Physics, University of Chicago, Chicago, IL 60637
${ }^{6}$ Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830
${ }^{7}$ Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3255
${ }^{8}$ Triangle Universities Nuclear Laboratory, Duke University, Durham, North Carolina 27708-2308
${ }^{9}$ Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
(Dated: February 4, 2021)

Abstract

The ground-state properties of neutron-rich ${ }^{106} \mathrm{Nb}$ and its β decay into ${ }^{106} \mathrm{Mo}$ have been studied using the CARIBU radioactive-ion-beam facility at Argonne National Laboratory. Niobium-106 ions were extracted from a ${ }^{252} \mathrm{Cf}$ fission source and mass separated before being delivered as low-energy beams to the Canadian Penning Trap, as well as the X-Array and SATURN β-decay-spectroscopy station. The measured ${ }^{106} \mathrm{Nb}$ ground-state mass excess of $-66202.0(13) \mathrm{keV}$ is consistent with a recent measurement but has three times better precision; this work also rules out the existence of a second long-lived, β-decaying state in ${ }^{106} \mathrm{Nb}$ above 5 keV in excitation energy. The decay half-life of ${ }^{106} \mathrm{Nb}$ was measured to be $1.097(21) \mathrm{s}$, which is 8% longer than the adopted value. The level scheme of the decay progeny, ${ }^{106} \mathrm{Mo}$, has been expanded up to $\approx 4 \mathrm{MeV}$. The distribution of decay strength and considerable population of excited states in ${ }^{106} \mathrm{Mo}$ of $J \geq 3$ emphasises the need to revise the adopted $J^{\pi}=1^{-}$ground-state spin-parity assignment of ${ }^{106} \mathrm{Nb}$; it is more likely to be $J \geq 3$.

for the nuclear energy sector [2].

[^0] Argonne, IL 60439 Durham, North Carolina 27701 11973

Atomic nuclei that bridge the chart of nuclides between the so-called 'valley of stability' and 'neutron drip-line' play diverse roles in nuclear science. As well as providing mportant tests of fundamental nuclear-structure theory, quantitative measurements of their ground-state and decay properties provide highly valued constraints of stellar nucleosynthesis models [1] and decay-heat calculations

The flow of r-process nucleosynthesis across the neutron-rich landscape is largely dictated by the nearparabolic shape of the valley of stability. Variations in binding energy per nucleon along isobaric chains determine both the extreme limit of the neutron drip-line and
b Present address: Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
${ }^{\text {c }}$ Present address: Physics Division, Argonne National Laboratory,
d Present address: Universita' degli Studi di Milano, Instituto Nazionale di Fisica Nucleare, Milano 20133, Italy
e Present address: Department of Physics, Duke University,
${ }^{f}$ Present address: Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
g Present address: Brookhaven National Laboratory, Upton, NY

I. INTRODUCTION

PACS numbers: 23.40.-s, 21.60.Fw, 23.20.Lv
Keywords: nuclear mass, β decay, γ decay, radiation detection, neutron-rich nuclei
each nuclide's Q-value for β decay back towards stability, thereby modulating the timescale of the entire process. To a large extent, this parabolic shape is a result of the bulk properties of nuclear matter and is captured by even the simplest liquid drop models. However, when inspected in detail, nuclear structure plays a significant role in modulating r-process isotope production [3].
The most prominent structure effects are the major shell closures at $N=50,82$, and 126 , which cause bottlenecks in the r-process flow and enhanced abundance of elements produced at these locations [4]. Beyond that, smaller effects, like shell-driven areas of large deformation, shape coexistence, nuclear isomers, and anomalously slow β decays (caused by large spin differences, or poor overlap of parent and daughter wave functions) result in more modest modulations in the final r-process stable-isotope production. The exact locus of the r process is still not accurately known, and most nuclei on the expected path are yet to be produced and measured. Experimental study of these nuclei is a major goal of new, 'next-generation' radioactive-beam facilities currently under construction. Many important cases are refractory elements, whose production is suppressed with current Isotope Separation On-Line (ISOL) techniques. However, a growing number of recent results have yielded a wealth of nuclear-structure information and considerable progress is being made in pushing into this neutronrich region with existing infrastructure, motivated by
so both astrophysical and nuclear-structure reasons.
61 62 63

II. EXPERIMENT DETAILS

This work was performed at the CAlifornium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne National Laboratory. Here, neutron-rich radioactive nuclei produced in the spontaneous fission of ${ }^{252} \mathrm{Cf}$ are extracted and thermalised in the CARIBU gas catcher. The species of interest is mass-selected by an isobar separator, bunched, and delivered to the required experimental area. Details relevant to the reported experiments are -

A. CANADIAN PENNING TRAP

A mass measurement was performed using the Cana dian Penning Trap (CPT) [7] to confirm the accuracy of 1 the reported ${ }^{106} \mathrm{Nb}$ ground-state mass [8]. At CARIBU, ${ }^{106} \mathrm{Nb}$ ions were extracted from the gas catcher in a $2^{+}{ }_{14}$ charge state, and a bunched beam was produced at a ${ }_{14}$ repetition rate of 10 Hz . To remove unwanted contami- ${ }^{15}$ nant ions from the beam, the new Multi-Reflection Time- ${ }^{15}$ Of-Flight (MR-TOF) mass separator [9] was employed. 1 Ion bunches were captured in the MR-TOF and allowed to isochronously cycle between the two ion mirrors for a duration of 10 ms , wherein a mass resolving power of $R=m / \Delta m>50,000$ was achieved. A Bradbury- ${ }^{15}$ Nielsen Gate [10] at the MR-TOF exit was used to se- ${ }^{15}$ lectively transfer ${ }^{106} \mathrm{Nb}^{2+}$ ions to the low-energy experimental area, while suppressing other $A=106$ isobars by 1 several orders of magnitude.

The resulting ion bunches were collected in a cryogenic linear RFQ trap, where they were cooled and re-bunched ${ }_{16}$ for injection into the Penning trap. The mass mea- ${ }^{16}$

112 surement was conducted using the Phase-Imaging
${ }_{113}$ Ion-Cyclotron-Resonance (PI-ICR) technique [11]. In 14 this method, a position-sensitive micro-channel plate is 15 used to infer the phase of the orbital motion of trapped ions at some given time. The cyclotron frequency $\left(\nu_{c}\right)$ is determined by measuring the change in phase during a period of excitation-free accumulation $\left(t_{a c c}\right)$. After time $t_{a c c}$ in the Penning trap, the ions are ejected and the position of the ions at the detector plane is measured. Ions acquire a mass-dependent phase during the accumulation time and form clusters (or spots) at some radius from the projected trap centre. The angle between these spots and a mass-independent reference spot is measured $\left(\phi_{c}\right)$ and the cyclotron frequency is given by:

$$
\begin{equation*}
\nu_{c}=\frac{\phi_{c}+2 \pi N}{2 \pi t_{a c c}} \tag{1}
\end{equation*}
$$

128 where N is the integer number of revolutions during the 129 time $t_{\text {acc }}$. The technique provides high sensitivity and ${ }^{130}$ resolution, and is therefore also well-suited to search for ${ }_{31}$ low-lying or weakly produced isomers. A 1-s accumula${ }_{32}$ tion time results in a mass resolution of $R \approx 1.5 \times 10^{7}$. 33 Details of the implementation of this measurement tech34 nique at the CPT are introduced in Refs. [12, 13].

B. X-ARRAY AND SATURN DECAY-SPECTROSCOPY STATION

The β-decay properties of ${ }^{106} \mathrm{Nb}$ were investigated us${ }_{138}$ ing the X-Array and SATURN decay-spectroscopy sta139 tion [14]. The decay-spectroscopy station consists of up 140 to five high-efficiency High-Purity Germanium (HPGe) 141 clover-style γ-ray detectors, and a plastic scintillator of-
142 fering almost complete solid-angle coverage. The system ${ }_{143}$ has been demonstrated to be a powerful spectroscopy 144 device with low-intensity, radioactive-ion beams [15]. A 45 low-energy beam of mass-separated ${ }^{106} \mathrm{Nb}$ ions, bunched 146 and delivered at $100-\mathrm{ms}$ intervals, was deposited on a
147 movable aluminized-mylar tape located in the geometric
148 centre of the array at a rate of 100-200 ions/second. The 9 X-Array configuration described in Ref. [14] was modified so slightly for this experiment. The clover detector located 51 on the left-hand-side of the X-Array, as observed by the 52 oncoming beam particles, was removed and replaced with ${ }_{53}$ five unshielded LaBr_{3} scintillators. The purpose here was 54 to test the capacity of the modified X-Array to measure 55 excited-state lifetimes. Unfortunately, due to the high 6 level of room-background, no useful information was ex57 tracted from the LaBr_{3} detector data, and so these are s not discussed any further here.

Despite the MR-TOF described above not being avail160 able at the time, the beam delivered for this experi1 ment consisted primarily of mass-selected ${ }^{106} \mathrm{Nb}$ ions. 2 Small contributions from neighbouring isobars, ${ }^{106} \mathrm{Zr}$ and ${ }^{106} \mathrm{Mo}$, may be expected due to the small mass differences
and the maximum achievable mass resolution of the isobar separator at the time of this experiment. However, the presence of ${ }^{106} \mathrm{Zr}$ is effectively suppressed due to the relative proportion of its spontaneous fission branch and the low intensity of the radioactive-ion beam. There are no known γ rays associated with ${ }^{106} \mathrm{Zr} \rightarrow{ }^{106} \mathrm{Nb} \beta$ decay for identification. Six ${ }^{106} \mathrm{Nb} \gamma$-ray transitions with relative intensities > 10% are known from prompt-fission spectroscopy [16]; these were undetectable in both the γ-ray singles and coincidence data. Any beam contamination leading directly to ${ }^{106} \mathrm{Mo} \rightarrow{ }^{106} \mathrm{Tc}$ decay would be suppressed along with the other long-lived isobaric contamination by the repeating beam cycle, described below, that was applied throughout the experiment.

Data were collected in two modes of repeating tapemovement cycles: one lasted for 14.0 s ; the other for 7.5 s . The growth-and-decay collection cycle of alternating 'beam on' and 'beam off' periods was achieved by switching an electrostatic beam deflector with the SATURN logic control system. The implantation tape was moved at the end of each cycle to suppress accumulation of activity from long-lived decay products at the collection site. The longer cycle was used to measure the ${ }^{106} \mathrm{Nb}$ decay half-life; this technique was successfully demonstrated in the earlier work of Ref. [17]. The shorter cycle was adopted to maximise the collection rate for ${ }^{106} \mathrm{Nb}$ decay. While isobaric contamination of the γ-ray spectra was suppressed by the moving tape cycle, the relatively short half-lives involved meant that some level of contamination was unavoidable. Over time, activity build-up on the tape led to contribution of isobaric β decay from ${ }^{106} \mathrm{Mo} \rightarrow{ }^{106} \mathrm{Tc}\left(\mathrm{T}_{1 / 2}=8.73(12) \mathrm{s}\right)$ and ${ }^{106} \mathrm{Tc} \rightarrow{ }^{106} \mathrm{Ru}\left(\mathrm{T}_{1 / 2}=35.6(6) \mathrm{s}\right)$. Since the half-life of ${ }^{106} \mathrm{Ru}$ is $\mathrm{T}_{1 / 2}=371.8(18)$ days [16], this was effectively the end of the decay chain over the days-long timescale of this experiment. The photopeak of the most-intense γ ray transition observed in ${ }^{106} \mathrm{Mo}$ is five-to-six times larger than the corresponding transitions in ${ }^{106} \mathrm{Tc}$ and ${ }^{106} \mathrm{Ru}$. In many cases, it was possible to confirm assignments of new γ rays to the appropriate isobar by measuring the associated β-decay half-life.

Standard γ-ray sources of ${ }^{243} \mathrm{Am},{ }^{56} \mathrm{Co},{ }^{152} \mathrm{Eu}$, and ${ }^{182}$ Ta were used to calibrate the detection efficiency of the X-Array up to $\approx 3.5 \mathrm{MeV}$. Well-known, room-background γ rays were also used to obtain an energy calibration exceeding the range of interest for this experiment (which was $\mathrm{E}_{\gamma} \approx 3 \mathrm{MeV}$). In particular, high-energy γ rays produced from (n, γ) reactions, a consequence of the high neutron flux emitted from the CARIBU ${ }^{252} \mathrm{Cf}$ source, were used to confirm the appropriate use of a linear calibration. Photopeaks of these γ rays appear in the γ ray singles data, but are removed by applying a β - or γ-coincidence condition in offline data sorting. System7 atic uncertainty of the energy calibration was found to be $\lesssim 0.1 \mathrm{keV}$. The uncertainties of measured γ-ray energies quoted in this work include the systematic uncertainty, ${ }^{237}$ as well as the statistical uncertainty associated with the ${ }_{238}$ fitting routines of the $g f 3$ software package [18]. The ${ }^{23}$

FIG. 1. Example CPT spectra acquired using the PIICR technique with $t_{a c c}=190 \mathrm{~ms}$. (a) Ions acquire a mass-dependent phase, forming characteristic 'spots', during the collection time in the trap; the ${ }^{106} \mathrm{Nb}^{2+}$ and molecular ${ }^{104} \mathrm{MoH}_{2}{ }^{2+}$ are identified. (b) Corresponding phase projection of ${ }^{106} \mathrm{Nb}^{2+}$ and the ${ }^{104} \mathrm{MoH}_{2}{ }^{2+}$ contaminant.

222 measured energy resolution of the X-Array in this work 23 was 2.5 keV at $1000 \mathrm{keV}, 3.7 \mathrm{keV}$ at 2000 keV and 4.2 keV 22 at 3000 keV .

Data were collected using a digital acquisition system (DAQ) that applied a free-running trigger. Signals from the individual clover crystals and tape-cycle reset trigger were input directly in the DAQ. The outputs of three 229 Hammamatsu PMTs associated with the BC-408 plastic${ }_{30}$ scintillator detector in SATURN were coupled together ${ }_{231}$ and amplified before being delivered to the DAQ. Data ${ }_{232}$ were sorted offline into a combination of singles spectra 233 and coincidence matrices that were used in the subse${ }_{234}$ quent analyses discussed below. CARIBU and has a precisely known mass [8]. To re-

FIG. 2. Mass resolving power and resolvable mass differences with the PI-ICR technique (black line) as a function of accumulation time, $t_{a c c}$. For comparison, the achievable resolving power with the Time-of-Flight Ion-Cyclotron-Resonance (TOF-ICR) technique (red line) is also shown.

FIG. 3. (a) Illustration of the 14 -s beam cycle used in the experiment. The data are gated on the $172-\mathrm{keV}\left(2_{1}^{+} \rightarrow 0_{1}^{+}\right)$, 351$\mathrm{keV}\left(4_{1}^{+} \rightarrow 2_{1}^{+}\right)$, and $539-\mathrm{keV}\left(2_{2}^{+} \rightarrow 2_{1}^{+}\right)$transitions in ${ }^{106} \mathrm{Mo}$. Different stages of the time cycle are indicated at the top of the figure: (I) Room background; (II) Beam-on collection; (III) Beam-off collection; (IV) Mylar tape movement; and (V) Room background. Exponential functions fit to the 'beamoff' period are shown for each individual γ-ray transition. (b) The measured half-lives are provided along with the updated evaluation of Ref. (Singh 2015: [20]) and recent measurement of Ref. (Ha 2020: [5]). The weighted mean (solid line) $\pm 1 \sigma$ (dashed lines) of the three individual measurements from this work gives a value of $\mathrm{T}_{1 / 2}=1.097(21) \mathrm{s}$, which is consistent with the work of Ha et al. [5] (1.10(5) s) but is $\approx 8 \%$ larger than the adopted value (1.02(5) s).

B. β-DECAY HALF-LIFE

The most-recent NNDC evaluation of ${ }^{106} \mathrm{Nb}$ [20] reports a β-decay half-life of $\left.\mathrm{T}_{1 / 2}\right)=1.02(5) \mathrm{s}$. This is the value reported in Ref. [21] from decay curves for the 5 172- and $351-\mathrm{keV}$ transition; other values ranging from

FIG. 4. Accumulation of the apparent β-feeding strength of ${ }^{106} \mathrm{Nb}$ as a function of excitation energy of the decay progeny, ${ }^{33}$ ${ }^{106} \mathrm{Mo}$, from this work (red), Ha et al. (Ha 2020: [5]) (purple) ${ }_{33}$ and derived from γ-ray intensities given in the most-recent ${ }_{3}$ data evaluation (De Frenne 2008: [16]) (black). A β-delayed neutron branch of $4.5(3) \%$ for ${ }^{106} \mathrm{Nb}$ is assumed [16].
$0.90(2) \mathrm{s}$ to $1.240(21) \mathrm{s}$ from the references stated therein are excluded by the evaluator. Application of a repeating on and off data-collection cycle, in phase with beam delivery to the spectroscopy station, allowed the β-decay half-life of ${ }^{106} \mathrm{Nb}$ to be measured in this work with greater precision. Data were sorted into a two-dimensional matrix of HPGe γ-ray time relative to the beginning of the data-collection cycle versus the measured energy of that γ ray. Exponential decay curves were obtained by applying a cut on individual γ-ray energies and projecting the data onto the timing axis. The decay half-life was obtained by fitting an exponential function with a constant background to the beam-off portion of the cycle (indicated in Fig. 3). This process is presented for three γ-ray transitions that depopulate low-lying excited states in ${ }^{106} \mathrm{Mo}$, namely the $172-\mathrm{keV}\left(2_{1}^{+} \rightarrow 0_{1}^{+}\right)$, 351$\mathrm{keV}\left(4_{1}^{+} \rightarrow 2_{1}^{+}\right)$, and $539-\mathrm{keV}\left(2_{2}^{+} \rightarrow 2_{1}^{+}\right)$transitions. A weighted mean of these values suggests that the β-decay half-life of ${ }^{106} \mathrm{Nb}$ is $\mathrm{T}_{1 / 2}=1.097(21) \mathrm{s}$. The larger uncertainties of the data points for $\mathrm{E}_{\gamma}=351,539 \mathrm{keV}$ are reflective of lower statistics. This result is consistent with recent measurement of Ha et al [5], which has a larger uncertainty $\left(\mathrm{T}_{1 / 2}=1.10(5) \mathrm{s}\right)$. The improved precision points to a discrepancy of $\approx 8 \%$ with the current adopted value of $1.02(5) \mathrm{s}[20]$.

369 surprising to find that at least half of the observed β
370 feeding was to known states of $\operatorname{spin} J=3-5$. This
371 distribution of apparent β-feeding strength appears to 372 rule out a $J^{\pi}=1^{-}$assignment for the ${ }^{106} \mathrm{Nb}$ ground 373 state, and is discussed in further detail below.

FIG. 5. Background-subtracted, β-gated, γ - γ-coincidence matrix, gated on the well-known $172-\mathrm{keV}\left(2_{1}^{+} \rightarrow 0_{1}^{+}\right)$transition in ${ }^{106} \mathrm{Mo}$, from (top) 0 keV to 1500 keV , and (bottom) 1500 keV to 3000 keV . The γ rays from transitions in ${ }^{106} \mathrm{Mo}$ are labelled with their energies. Note the change of y -axis scale at 750 keV in the top panel.

IV. OBSERVED γ DECAY OF ${ }^{106} \mathrm{MO}$

Observed γ rays were assigned to ${ }^{106} \mathrm{Mo}$ through inspection of $\gamma-\gamma$ coincidence relationships and β-decay half-life measurements. Placement of γ rays in the ${ }^{106} \mathrm{Mo}$ decay scheme was achieved through gating on known transitions that strongly depopulate low-lying excited states. Examples of background-subtracted projections of the $\gamma-\gamma$ coincidence matrix used in this work, gated on transitions that depopulate the established $172-\mathrm{keV}$ $\left(J^{\pi}=2_{1}^{+}\right), 351-\mathrm{keV}\left(J^{\pi}=4_{1}^{+}\right), 710-\mathrm{keV}\left(J^{\pi}=2_{2}^{+}\right), 885-$ $\mathrm{keV}\left(J^{\pi}=3_{1}^{+}\right)$, and $1435-\mathrm{keV}\left(J^{\pi}=4_{2}^{+}\right)$levels are presented in Figs. 5, 6, and 7, respectively. Where possible, the locations of excited states, and transitions that connect them, were confirmed by applying γ-ray coincidence gates to transitions lying higher in the level scheme. The same techniques were applied to confirm the identification of isobaric contamination in the data.

Most relative γ-ray intensities, I_{γ}, were determined by gating on a transition that depopulates the level to which

393

FIG. 6. Background-subtracted, β-gated, $\gamma-\gamma$-coincidence matrix, gated on the well-known 351 -keV $\left(4_{1}^{+} \rightarrow 22_{1}^{+}\right)$transition in ${ }^{106} \mathrm{Mo}$, from (top) 0 keV to 1500 keV , and (bottom) 1500 keV to 3000 keV . The γ rays from transitions in ${ }^{106} \mathrm{Mo}$ are labelled with their energies. Note the change of y -axis scale at 250 keV in the top panel.
transition normalised to 100 units.

A. EXCITED STATES OF ${ }^{106} \mathrm{Mo}$

 ${ }_{428} J^{\pi}=2_{1}^{+}, J^{\pi}=4_{1}^{+}$and $J^{\pi}=6_{1}^{+}$states, and identified ${ }_{429}$ candidates for the $J^{\pi}=2_{2}^{+}, J^{\pi}=3_{1}^{+}$and $J^{\pi}=0_{2}^{+}$lev-430 els, while the work of Ha et al [5] extended the level ${ }_{431}$ scheme up to $\approx 3 \mathrm{MeV}$. Here, we confirm the locations of 43226 previously known excited states and 41γ-ray transi${ }_{433}$ tions [5, 21], and further expand the level scheme up to ${ }_{434} \approx 4 \mathrm{MeV}$ with an additional 16 excited states and 26γ-ray ${ }_{435}$ transitions. In this manuscript, transitions and levels re${ }_{436}$ ferred to as "new" are in relation to both Ref. [16] and the ${ }_{437}$ recent observations reported in Ref. [5]. The proposed ${ }_{438}$ expansion of the level scheme is provided in Fig. 9. Four${ }_{439}$ teen of these excited states are associated with rotational${ }_{440}$ band structures identified in prompt spectroscopy of ac441 tinide fission fragments [16]. A summary of the excited 442 states observed in this work is provided in Table I, in443 cluding level energies and spin-parity assignments, en444 ergies and branching ratios of depopulating transitions, 445 and apparent β-feeding intensities. Where possible, γ 446 decay branching ratios for transitions depopulating each 447 level have also been obtained by gating on a strong tran${ }_{448}$ sition that feeds the level under inspection. Transition ${ }_{449}$ intensities reported in Ref. [5] are provided for reference

FIG. 7. Background-subtracted, β-gated, $\gamma-\gamma$-coincidence matrix, gated on the established (a) 539-keV $\left(2_{2}^{+} \rightarrow 2_{1}^{+}\right)$, (b) $710-\mathrm{keV}\left(2_{2}^{+} \rightarrow 0_{1}^{+}\right)$, (c) $714-\mathrm{keV}\left(3_{1}^{+} \rightarrow 2_{1}^{+}\right)$, and (d) $724-\mathrm{keV}$ $\left(4_{2}^{+} \rightarrow 2_{2}^{+}\right)$transitions in ${ }^{106} \mathrm{Mo}$, from 0 keV to 2500 keV . The γ rays from transitions in ${ }^{106} \mathrm{Mo}$ are labelled with their energies. A * indicates contamination from the energy gates overlapping nearby γ rays.
where they are available.
While the decay scheme has been extended extensively 52 from Refs. [5, 21], the highest-lying level at $\approx 4 \mathrm{MeV}$
is still $\approx 3 \mathrm{MeV}$ below the neutron separation energy of 6.869 MeV [16]. Therefore, it is likely that a 'Pandemonium' [25] of direct β feeding occurs to a high-density region of weakly populated states within this energy range.
Such states are known to be beyond the sensitivity of discrete-line spectroscopy, and so further measurement of this nucleus adopting a technique such as 'total absorption gamma-ray spectroscopy' will be required. For this reason, limits are quoted for the apparent β-feeding intensities.
In this study, we confirm the locations of most excited states and transitions presented in Ref. [5]. Four γ rays were not observed: the $188-\mathrm{keV}\left(2_{2}^{+} \rightarrow 4_{1}^{+}\right), 175-\mathrm{keV}$ $\left(3_{1}^{+} \rightarrow 2_{2}^{+}\right), 223-\mathrm{keV}\left(J^{\pi} \rightarrow 5^{-}\right)$, and $1624-\mathrm{keV}\left(5^{-} \rightarrow 4^{+}\right)$ transitions. Examples of gated spectra in which the lowenergy transitions would be expected are presented in Fig. 8. The $1624-\mathrm{keV} \gamma$ ray would be observed in the $351-$ keV gate of Fig. 6. With the proposed $188-\mathrm{keV}, 223-\mathrm{keV}$, and $1624-\mathrm{keV}$ transitions, we do not observe a significant

FIG. 8. Background-subtracted projection of the β-gated, γ -γ-coincidence matrix, gated on the (a) $351-\mathrm{keV}\left(4^{+} \rightarrow 2^{+}\right)$, (b) $539-\mathrm{keV}\left(2^{+} \rightarrow 2^{+}\right)$, and (c) $517-\mathrm{keV}\left(\mathrm{J}^{\pi} \rightarrow 5_{(1)}^{+}\right)$transitions in ${ }^{106} \mathrm{Mo}$, from 100 keV to 300 keV . Expected locations of the unobserved γ rays from Ref. [5] are indicated by the red arrows and discussed in the text.

472 rise above fluctuations in the background at these ener473 gies. The $175-\mathrm{keV}$ transition, if present, may be obscured 474 by the dominant $172-\mathrm{keV}$ transition. Reference [5] lists a 475 1930-keV $(2815 \rightarrow 885)$ transition; in this work, we only 476 observe that γ ray in coincidence with the $172-\mathrm{keV}$ one 477 and therefore, suggest a different placement in the level 478 scheme with a new level at 2102 keV .

We note two discrepancies with the low-lying states 480 observed by Shizuma et al [21]: namely, the $957-\mathrm{keV}$ ${ }_{481}\left(J^{\pi}=\left(0_{2}^{+}\right)\right)$level and the $1280-\mathrm{keV}$ one of unknown spin 482 and parity. Tentative placement of the $957-\mathrm{keV}$ level was ${ }_{483}$ based on the observation of a $785-\mathrm{keV} \gamma$ ray in coincidence 484 with the $172-\mathrm{keV}$ transition. The non-observation of a $485957-\mathrm{keV} \gamma$ ray connecting this level to the ground state ${ }^{486}$ was suggested as evidence for this being the $J^{\pi}=0_{2}^{+}$ ${ }_{487}$ level. Two γ rays with similar energies (784 keV and ${ }_{488} 785 \mathrm{keV}$) depopulating the $2090-\mathrm{keV}$ and $1307-\mathrm{keV}$ lev${ }_{489}$ els, respectively, were identified in prompt-fission studies. 490 Coincidence relationships observed in the current work 491 are consistent with this decay pattern, and confirmed by ${ }^{492}$ Ref. [5].

FIG. 9. Proposed level scheme of ${ }^{106}$ Mo following the β decay of ${ }^{106} \mathrm{Nb}$. New excited states and γ-ray transitions are in red. Spins and parities, and the β-delayed neutron emission value are adopted from Ref. [16].

TABLE I: The γ-ray transitions and excited states in ${ }^{106}$ Mo observed in this work following the β decay of ${ }^{106} \mathrm{Nb}$. Initial-level $\left(\mathrm{E}_{\mathrm{i}}\right)$, final-level (E_{f}) and γ-ray (E_{γ}) energies are given in keV ; uncertainties are discussed in the text. Spins and parities are from Ref. [16] or proposed from the current work $\left({ }^{a}\right)$. Transition intensities (I_{γ}) are normalized to the $172-\mathrm{keV}$ transition (100(2) units). Transition intensities ($\mathrm{I}_{\gamma}^{\text {lit }}$) and β-feeding intensities ($\mathrm{I}_{\beta}^{\text {lit }}$) presented in Ref. [5] are included here for comparison. Limitations of the apparent β-feeding intensities $\left(\mathrm{I}_{\beta^{-}}\right)$from this work are discussed in the text. For absolute intensity per 100 parent decays multiply I_{γ} by $0.71(8)$.

$\begin{aligned} & \mathrm{E}_{\mathrm{i}} \\ & (\mathrm{keV}) \end{aligned}$	J_{i}^{π}	$\begin{gathered} \mathrm{E}_{\gamma} \\ (\mathrm{keV}) \end{gathered}$	$\begin{gathered} \mathrm{E}_{\mathrm{f}} \\ (\mathrm{keV}) \end{gathered}$	$J_{\text {f }}^{\pi}$	$\begin{gathered} \mathrm{I}_{\gamma} \\ (\%) \end{gathered}$	$\begin{aligned} & \mathrm{I}_{\gamma}^{\text {lit }} \\ & (\%) \end{aligned}$	I_{β} - (\%)	$\begin{aligned} & \mathrm{I}_{\beta-}^{\mathrm{lit}} \\ & (\%) \end{aligned}$
0	0^{+}	-	-	-	-	-	0	<8.4
171.49(9)	2^{+}	171.5(1)	0	0^{+}	100(2)	100.0(5)	10(3)	7.3(8)
522.08(11)	4^{+}	350.6(1)	171.49(9)	2^{+}	38.6(7)	43.8(5)	12.1(8)	9.1(14)
710.36(11)	2^{+}	538.9(2)	171.49(9)	2^{+}	13.6(4)	15.6(3)	6.8(8)	2.8(6)
		710.3(2)	0	0^{+}	15.7(4)	15.2(3)		
885.07(12)	3^{+}	363.0(4)	522.08(11)	4^{+}	1.0(1)	0.7(2)	12.0(7)	8.7(7)
		713.6(1)	171.49(9)	2^{+}	29.2(6)	31.9(4)		
1033.08(23)	6^{+}	511.0(2)	522.08(11)	4^{+}	$2.5(2)$	8.2(15)	1.6(1)	5.5(11)
1067.50(12)	4^{+}	357.2(1)	710.36(11)	2^{+}	1.7(2)	2.1(2)	6.1(4)	7.9(5)
		545.4(2)	522.08(11)	4^{+}	$4.9(2)$	7.6(2)		
		896.0(2)	171.49(9)	2^{+}	5.8(2)	6.1(2)		
1149.80(9)	$\left(2^{+}\right)$	628.0(4)	522.08(11)	4^{+}	0.7(1)		$2.4(3)$	1.6(2)
		978.2(2)	171.49(9)	2^{+}	2.1(2)	2.3(2)		
		1149.8(1)	0	0^{+}	1.9(2)			
1306.60(19)	5^{+}	421.5(2)	885.07(12)	3^{+}	1.9(1)	3.5(2)	$3.9(2)$	5.4(8)
		784.7(5)	522.08(11)	4^{+}	3.6(2)	$5.5(7)$		
1434.78(12)	4^{+}	549.8(2)	885.07(12)	3^{+}	4.2(2)	6.9(2)	$5.7(6)$	7.0(5)
		724.4(1)	710.36(11)	2^{+}	12.1(6)	14.0(3)		
		912.7(1)	522.08(11)	4^{+}	0.6(1)			
		1263.2(4)	171.49(9)	2^{+}	1.5(1)	1.4(2)		
1536.1(3)	$\left(4^{+}\right)$	386.1(5)	1149.80(9)	$\left(2^{+}\right)$	1.4(4)		2.0(3)	1.0(2)
		1014.1(3)		4^{+}		1.5(3)		
1634.70(22)		1463.2(2)	171.49(9)	2^{+}	0.4(1)		0.3(1)	
1657.59(24)	5^{+}	590.0(3)	1067.50(12)	4^{+}	0.9(2)		1.4(2)	1.0(1)
		772.6(3)	885.07(12)	3^{+}	1.1(1)	$1.4(2)$		
1663.10(22)		1491.6(2)	171.49(9)	2^{+}	0.4(1)		0.3(1)	
1719.75(16)		652.4(2)	1067.50(12)	4^{+}	0.7(2)	1.3(2)	1.7(2)	0.9(1)
		1009.2(2)	710.36(11)	2^{+}	1.2(2)			
		1548.3(3)	171.49(9)	2^{+}	0.5(1)			
1770.6(4)		1599.1(4)	171.49(9)	2^{+}	0.4(1)		0.3(1)	
1817.26(23)	$\left(3^{-}\right)$	932.2(3)	885.07(12)	3^{+}	1.5(2)	2.0(2)	$2.4(3)$	4.9(4)
		1106.9(4)	710.36(11)	2^{+}	3.8(4)	7.4(3)		

TABLE I - continued

E_{i} (keV)	J_{i}^{π}	$\begin{gathered} \mathrm{E}_{\gamma} \\ (\mathrm{keV}) \end{gathered}$	$\begin{gathered} \mathrm{E}_{\mathrm{f}} \\ (\mathrm{keV}) \end{gathered}$	$J_{\text {f }}^{\pi}$	$\begin{gathered} \mathrm{I}_{\gamma} \\ (\%) \end{gathered}$	$\begin{aligned} & \mathrm{I}_{\gamma}^{\mathrm{Iit}} \\ & (\%) \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\beta-} \\ & (\%) \end{aligned}$	$I_{\beta-}^{\text {lit }}$ (\%)
1882.15(21)		1359.7(5)	522.08(11)	4^{+}	1.9(2)	2.9(2)	1.9(1)	2.0(2)
		1710.7(2)	171.49(9)	2^{+}	0.8(1)			
1923.60(22)		1752.1(2)	171.49(9)	2^{+}	1.0(1)	$1.6(2)$	0.7(1)	1.1(2)
1936.79(18)	$\left(4^{-}\right)$	869.5(3)	1067.50(12)	4^{+}	1.5(3)	2.0(2)	2.0(3)	3.5(3)
		1051.6(2)	885.07(12)	3^{+}	2.3(2)	3.1(2)		
		1414.5(4)	522.08(11)	4^{+}	0.5(1)			
1952.18(23)	$\left(5^{-}\right)$	517.4(2)	1434.78(12)	4^{+}	3.8(3)	4.6(2)	$2.7(2)$	2.3(2)
1979.90(22)		1808.4(2)	171.49(9)	2^{+}	0.7(1)		0.5(1)	
2021.1(3)	$(3,4)^{a}$	1849.5(4)	171.49(9)	2^{+}	3.2(2)	4.1(3)	1.9(2)	2.9(3)
2090.11(20)	$\left(5^{-}\right)$	783.5(2)	1306.60(19)	5^{+}	0.2(1)	1.3(7)	0.6(1)	2.7(5)
		1022.6(2)	1067.50(12)	4^{+}	0.6(2)	2.5(2)		
2100.1(4)		1928.6(4)	171.49(9)	2^{+}	1.2(3)	2.7(2)	0.9(2)	
2102.4(4)		1930.9(4)	171.49(9)	2^{+}	1.4(3)		1.0(2)	
2138.7(4)	$(4,5)^{a}$	1616.6(3)	522.08(11)	4^{+}	1.4(1)		1.0(1)	
2146.7(8)	$\left(5^{-}\right)$	1113.6(7)	1033.08(23)	6^{+}	0.3(1)	0.3(2)	0.18(5)	0.5(2)
2184.78(20)	$(3,4)^{a}$	1299.9(3)	885.07(12)	3^{+}	0.4(1)		0.5(2)	0.9(1)
		1474.4(3)	710.36(11)	2^{+}	0.9(3)	1.3(2)		
2198.9(4)	$(4,5)^{a}$	1676.8(3)	522.08(11)	4^{+}	1.3(1)	2.2(2)	0.9(1)	1.5(2)
2296.4(6)	$(4,5)^{a}$	1774.3(5)	522.08(11)	4^{+}	0.9(1)		0.6(1)	
2303.3(4)	$\left(5^{+}\right)$	1781.2(3)	522.08(11)	4^{+}	0.7(1)	1.4(2)	0.5(1)	1.0(1)
2416.2(4)	$(4,5)^{a}$	1894.1(3)	522.08(11)	4^{+}	0.5(1)		0.4(1)	
2513.9(4)	$(4,5)^{a}$	1079.1(3)	1434.78(12)	4^{+}	0.5(1)		0.4(1)	
2798.70(19)	$\left(4^{-}\right)^{a}$	614.0(2)	2184.78(20)	$(3,4)^{a}$	0.6(1)		4.1(3)	5.2(3)
		777.5(4)	2021.1(3)	$(3,4)^{a}$	0.6(1)			
		981.1(5)	1817.26(23)	$\left(3^{-}\right)$	0.5(1)			
		1363.9(3)	1434.78(12)	4^{+}	3.1(3)	5.9(2)		
		1913.6(3)	885.07(12)	3^{+}	0.9(2)	1.5(1)		
2815.5(3)		878.6(3)	1936.79(18)	$\left(4^{-}\right)$	1.4(2)		2.0(3)	3.5(2)
		998.5(4)	1817.26(23)	$\left(3^{-}\right)$	1.4(3)	2.3(1)		
2898.3(5)		2013.2(4)	885.07(12)	3^{+}	0.5(1)		0.4(1)	
2906.0(6)	$(4,5)^{a}$	1471.2(5)	1434.78(12)	4^{+}	1.4(2)	1.7(2)	1.0(1)	1.2(2)
3004.2(4)		2832.7(4)	171.49(9)	2^{+}	1.2(2)		0.8(1)	
3157.4(5)		2272.3(4)	885.07(12)	3^{+}	0.5(1)		0.4(1)	
3237.1(7)	$(4,5)^{a}$	1802.3(7)	1434.78(12)	4^{+}	0.4(1)		0.3(1)	

TABLE I - continued

E_{i} (keV)	$\mathrm{J}_{\mathrm{i}}^{\pi}$	E_{γ} (keV)	E_{f} (keV)	$\mathrm{J}_{\mathrm{f}}^{\pi}$	I_{γ} $(\%)$	$\mathrm{I}_{\gamma}^{\text {lit }}$ $(\%)$	$\mathrm{I}_{\beta^{-}}$ $(\%)$
$3814.8(6)$	$(4,5)^{a}$	$2380.0(5)$	$1434.78(12)$	4^{+}	$0.4(2)$	$\mathrm{I}_{\beta-}^{\text {lit }}$ $(\%)$	
$3823.9(5)$	$(4,5)^{a}$	$2389.1(4)$	$1434.78(12)$	4^{+}	$0.8(2)$	$0.3(1)$	

While the location of the $J^{\pi}=0_{2}^{+}$state is certainly 538 transitions that may occur fall below the level of sensinot at 957 keV , several candidates are described below. ${ }_{\text {s39 }}$ tivity, $I_{\gamma} \geq 0.02 \times I_{172}$, of the present measurement.
However, further experiments are necessary to confirm the location and nature of these levels. Similarly, the $1280-\mathrm{keV}$ level was suggested on the basis of an $1108-\mathrm{keV}$ γ-ray transition also found to be in coincidence with the $172-\mathrm{keV}$ one. Our analysis instead supports the placement of the $1108-\mathrm{keV}$ transition as connecting the $\left(3^{-}\right)$ state at 1817 keV to the 2^{+}state at 710 keV . The repositioning of this γ-ray transition is also noted in Ref. [5], so there is no excited state at 1280 keV .

The $2_{g}^{+}, 4_{g}^{+}$, and 6_{g}^{+}members of the yrast rotational band built on a prolate-deformed 0^{+}ground state (g) have been identified. While the locations of the 8_{g}^{+}and 10_{g}^{+}members are known [16], they are not fed by β-decay. The band built on the $K^{\pi}=2^{+}(\gamma$ band $), 710-\mathrm{keV}$ level is observed up to the 5_{γ}^{+}member at 1307 keV .

Intra-band, $\Delta J=2$ transitions $\left(4_{\gamma}^{+} \rightarrow 2_{\gamma}^{+}\right.$and $\left.5_{\gamma}^{+} \rightarrow 3_{\gamma}^{+}\right)$ were identified, however there was no evidence for $\Delta J=1$ transitions between the band levels. Known interband transitions between the γ and ground-state bands were observed, with the exception of the spin-increasing $5_{\gamma}^{+} \rightarrow 6_{g}^{+}$one. Branching ratios measured in the current work indicate that the $2_{\gamma}^{+} \rightarrow 0_{g}^{+}$decay path is slightly enhanced with respect to the $2_{\gamma}^{+} \rightarrow 2_{g}^{+}$transition.

The strongest γ ray observed to feed the $K^{\pi}=2^{+}$ bandhead is the $724-\mathrm{keV}$ transition from the $K=4,1435$ keV level. Guessous et al identified this as a candidate double-phonon γ-vibrational state [31]. The known 5^{+} member of this band is also identified in the current work, 56 although the $223-\mathrm{keV}$ transition between these two levels was not observed. Three levels corresponding to a $K^{\pi}=3^{-}$, negative-parity band, suggested to arise from a $\nu \frac{3}{2}[411] \otimes \nu \frac{3}{2}[532]$ configuration [16], have been identified in this work. The γ rays connecting each of the levels in this sequence to the γ-vibrational band were observed. Two levels associated with a proposed $K^{\pi}=\left(2^{+}\right)$ band were also identified at 1150 keV and 1536 keV . Bandheads of the three other two-quasiparticle structures listed in the adopted levels have been observed: the $\left(5^{-}\right)$ $1952-\mathrm{keV}$ level $\left(\nu \frac{5}{2}[413] \otimes \nu \frac{5}{2}[532]\right)$; the (5^{-}), $2147-\mathrm{keV}$ state $\left(\pi \frac{7}{2}[413] \otimes \pi \frac{3}{2}[301]\right)$; and the $\left(5^{+}\right), 2302-\mathrm{keV}$ level ($\left.\pi \frac{1}{2}[420] \otimes \pi \frac{9}{2}[404]\right)$. A single γ ray was observed to de-

2. Identification of new states

Seventeen previously unobserved excited states have 542 been added in this work: ten decay directly by single 543 transitions to levels within the yrast band, three are con544 nected to the γ band, and four are connected to the 545 proposed harmonic, two-phonon γ-vibrational state [31]. 546 While it is not possible to assign firm spins and parities 547 to these new levels with the current data, it was possible 548 to place spin constraints on some from the observed de549 cay pattern. Where available, these are described in the 550 text. Spin-parity assignments listed in Table I without 551 parentheses are taken from the literature [16].
552 Nine excited states are each observed to have a sin553 gle γ-decay branch that connects it to one of the lev554 els with a firm 4^{+}assignment. The weak apparent β 555 feeding intensities and lack of γ-decay branches to 2^{+}or
${ }_{556} 3^{+}$states suggest these are of moderate spin, and so a
${ }_{557} J=(4)$ or (5) assignment is suggested for these lev-
558 els. The excited state at 2799 keV is unusual in that the
559 apparent β-feeding intensity is larger than that of any
560 other state observed above $2-\mathrm{MeV}$ excitation energy, and
561 multiple γ-decay pathways from the state were identified.
562 Strong feeding to the $1435-\mathrm{keV}, 4^{+}$level and two $J=3$
563 levels and relatively low log- $f t$ value of $6.07(1)$ suggest
564 a tentative $J^{\pi}=\left(4^{-}\right)$assignment is appropriate for this 565 level.

V. DISCUSSION AND CONCLUSIONS

The neutron-rich nuclei at $A \approx 100$ have proven to be 568 technically challenging from both experimental and the569 oretical points of view. Ground-state charge-radii mea570 surements point to a rapid spherical-to-prolate-deformed 571 shape transition between $N=58$ and $N=60$ [32] sim572 ilar to the well-established phenomenon observed be${ }_{573}$ tween stable $N=88$ and $N=90$ rare-earth nuclei 574 [33]. This phenomenon appears to be strongest in zir575 conium $(Z=40)$ [34], persists in neighbouring strontium ${ }_{576}(Z=38)[35]$ and weakens in molybdenum $(Z=42)$ [36], 577 an effect attributed to the triaxial nature of the latter iso578 topes. This is supported by local trends in $E\left(2_{1}^{+}\right)$and 579 $B\left(E 2 ; 0_{2}^{+} \rightarrow 2_{1}^{+}\right)$values [37].

580 581

Coulomb-excitation measurements with radioactive- ${ }^{637}$ this assignment would violate the Gallagher-Moszkowski
ion beams [38, 39] indicate that shape coexistence is 638 prevalent in the region [40], whereby deformed $J^{\pi}=0_{2}^{+}$ states at $N<60$ migrate to become the ground states 640 at $N \geq 60$. Quantum phase transitions have been at- ${ }^{64}$ tributed as the driving force behind this rapid evolution ${ }_{642}$ of the nuclear shape [41, 42]. Beyond $N=60$, there ${ }_{64}$ is increasing evidence that the deformation softens to- ${ }_{644}$ wards the neutron drip-line and that the triaxial degree ${ }_{64}$ of freedom plays in an important role in the behaviour of 64 neutron-rich molybdenum isotopes [43-49].

The picture becomes more complex in the adjacent, 64 odd- Z niobium $(Z=41)$ isotopes. In the case of ${ }^{106} \mathrm{Nb}{ }^{649}$ $(N=65)$, only a single investigation into the level 650 scheme exists in the literature from prompt-fission spec- ${ }^{65}$ troscopy [50]; direct observation of the β-decay prop- ${ }^{65}$ erties of this nuclide are similarly rare. Initial obser- ${ }^{65}$ vation of strong β-decay feeding to $J=4,5$ excited ${ }^{654}$ states in ${ }^{106}$ Mo prompted further investigation. Lighter- ${ }^{65}$ mass, odd-odd Nb isotopes exhibit an alternating pattern ${ }^{656}$ of low-spin/high-spin β-decaying ground states and iso- ${ }^{657}$ mers. At ${ }^{106} \mathrm{Nb}$, the traditional $N=64$ neutron sub-shell closure is crossed, exposing a new valence space. While 65 it is unlikely that the pattern of β-decaying isomers (see 660 above) continues into ${ }^{106} \mathrm{Nb}$, it could explain the observed 66 pattern in the γ-decay measurement.
As discussed above, the new results indicate that the ground-state spin-parity assignment to ${ }^{106} \mathrm{Nb}$ should be revised. The adopted assignment, $J^{\pi}=\left(1^{-}\right)$, of Ref. [16] is based upon potential-energy surface (PES) and projected shell-model (PSM) calculations presented 6 in Ref. [50]. They predict a triaxial $\pi \frac{3}{2}^{-}[301] \otimes \nu \frac{5}{2}^{+}[413]$ ground state with $(\beta, \gamma)=\left(0.35,15^{\circ}\right)$ deformation parameters. At $(Z, N)=(41,65),{ }^{106} \mathrm{Nb}$ lies a long way from the single stable isotope, ${ }^{93} \mathrm{Nb}$. Naively, one might predict the ground-state configuration to be dominated by a two-quasiparticle coupling of the odd proton and neutron outside the $Z=40$ and $N=64$ sub-shell closures, respectively. The works of Kurpeta et al. [51] and Urban et al. [52] provide the most-recent considerations of the neighbouring isotope, ${ }^{107} \mathrm{Nb}$, and its isobar, ${ }^{107}$ Mo. They suggest $\left(5 / 2^{+}\right)$and $1 / 2^{+}$ground states, respectively, for these nuclides from a combination of β-decay feeding and assessment of systematic trends. A prolate $\pi \frac{5}{2}^{+}[422] \otimes \nu \frac{1}{2}^{+}$[411] configuration with $(\beta, \gamma)=(0.32,0)$ was predicted for ${ }^{106} \mathrm{Nb}$ in the PES calculations of Ref. [50], however the excitation energy is 597 keV . With maximal spin coupling, as per the Gallagher-Moszkowski coupling rule [53], a favoured 3^{+} assignment would be expected. A 3^{+}ground state could explain most of the β-decay feeding pattern observed in this work; the feeding to $3^{ \pm}$, and $4^{ \pm}$states would then be accessible from allowed and first-forbidden β decays.

The observed feeding to $5^{ \pm}$states would favour a $J^{\pi}=\left(4^{ \pm}\right)$assignment. Maximal spin coupling of the $\pi \frac{3}{2}^{-}[301] \otimes \nu \frac{5}{2}^{+}[413]$ configuration from Ref. [50] discussed above would result in a $J^{\pi}=4^{-}$ground state;

rule [53]. The requirement of such highly forbidden β decays to explain the observed feeding from a supposed 1^{-}ground state cannot be ignored. In light of our decay study, non-observation of a β-decaying isomer from our mass measurement, and the recent work of Ha et al [5], it is clear that the assumption of a $J^{\pi}=1^{-}$ground state is incorrect and the spin assignments of all excited states in ${ }^{106} \mathrm{Nb}$ are in need of a full reappraisal.

If the ${ }^{106} \mathrm{Nb}$ ground-state spin and parity were $J=3^{+}$, ${ }^{47}$ any β decay to the ${ }^{106} \mathrm{Mo}$ ground state is $\Delta J=3$, $\Delta \pi=0$. This would be a unique, second-forbidden decay. In nature, 12 such cases are documented [54], with o the minimum log-ft being 13.9. With our new mass and decay half-life measurements, this would correspond to a branch of $<10^{-6} \%$ - far below the experimental sensitivity and sufficiently close to zero to not influence the calculated distribution of strength or normalization. If the spin and parity of ${ }^{106} \mathrm{Nb}$ is $J=4^{-}$, the ground-state - β decay is unique, third forbidden. The only documented example of such a decay in the periodic table has a log- $f t$ value of 21 , implying that the branch is $<10^{-11} \%$.

While the interpretation of ${ }^{106} \mathrm{Nb}$ is uncertain, the picture is much clearer for ${ }^{106} \mathrm{Mo}$. Several theoretical studies [55-59] point to an emergence of triaxial softness in the 662 neutron-rich molybdenum isotopes beyond $N=60$. In з each case, triaxiality is essential to reproduce experimen4 tal observations. This undoubtedly contributes to the evolution of collectivity across the isotopic chain.

The distribution of excited states in ${ }^{106}$ Mo directly fed by the β decay of ${ }^{106} \mathrm{Nb}$ has been mapped up to $668 \approx 4 \mathrm{MeV}$. A gradual, somewhat linear, increase in cumu-
with intensities of $\approx 0.2 \%$ relative to the $172-\mathrm{keV}$ tran- ${ }_{73}$ sition. While the possibility of weak ground-state feed- ${ }_{734}$ ing or branches to other states below this level of sensi- 735 tivity cannot be ruled out, determining the true nature 736 and location of any $J^{\pi}=0^{+}$levels will require dedicated experimental searches. A search for mono-energetic $E 0{ }_{73}$ electrons from the direct decay of the $J^{\pi}=0_{2}^{+}$level to ${ }_{739}$ the ground state might be productive; this would be the 740 preferred decay mode if the co-existence is strong and the 74 $J^{\pi}=0_{2}^{+}$state lies only tens of keV above the $J^{\pi}=2_{1}^{+}{ }^{74}$ level.
In the $A \approx 100$ neutron-rich nuclei, despite very large 74 deformation, K-isomers have not been found, possibly 74 due to the fragility of the shell-stabilised shapes. In this 746 specific case, the combination of a high Q-value for ${ }^{106} \mathrm{Nb}$ β decay and soft shapes in the decay product leads to unusually large fragmentation, both in β-decay strength 74 and the subsequent γ-decay cascade. This, then, appears to be a situation where 'Pandemonium' must occur, and so inferring the population of individual states from the observed γ intensity balance becomes problematic. Inferring log- $f t$ values, and thus spin assignments and structure information, from these β-decay branches, as suggested by Ha et al [5], may be optimistic.

In summary, ground-state and β-decay properties of the very-neutron-rich nuclide ${ }^{106} \mathrm{Nb}$ have been studied at the CARIBU facility at Argonne National Laboratory. The ground-state mass of ${ }^{106} \mathrm{Nb}$ was measured to be $-66202.0(13) \mathrm{keV}$ with the Canadian Penning Trap, which is consistent with the 2016 Atomic Mass Evaluation. This work ruled out the existence of a long-lived, high-spin, β-decaying isomer above $\approx 5 \mathrm{keV}$ excitation in ${ }^{106} \mathrm{Nb}$. Detailed β-delayed γ-ray spectroscopy of the progeny, ${ }^{106} \mathrm{Mo}$, was performed with the X-Array and SATURN low-energy decay-spectroscopy station. The β decay half-life was found to be $\mathrm{T}_{1 / 2}=1.097(21) \mathrm{s}$. The decay scheme of ${ }^{106} \mathrm{Mo}$ has been extended up to $\approx 4 \mathrm{MeV}$. The combination of enhanced apparent β-feeding inten- 76
\qquad

3 sity to $J=3-5$ states in ${ }^{106} \mathrm{Mo}$, and non-observation 4 of a β-decaying isomer, leads to the conclusion that the ground-state spin-parity assignment for ${ }^{106} \mathrm{Nb}$, and those 36 of excited states in this nuclide, should be reassessed.

In future measurements with the X-Array, the addition of the MR-TOF separator to the CARIBU low-energy beam line and development of a new low-background, low-energy experimental hall will greatly improve the beam purity and sensitivity of decay-spectroscopy 72 experiments. This work highlights the pressing need ${ }_{43}$ for considerable theoretical effort to enable accurate 4 interpretation of spectroscopic data obtained for very5 neutron-rich exotic niobium isotopes.
746
 of the Physics Support group of the ATLAS Facility at Argonne National Laboratory. This material is based upon work supported by the Australian Research Council Discovery Project 120104176 (ANU), 753 the U.S. Department of Energy, Office of Science, 54 Office of Nuclear Physics under Grants No. DE-FG025 94ER40848 (UML), No. DEFG02-97ER41041 (UNC), 5 94ER40848 (UML), No. DEFG02-97ER41041 (UNC), 757 tract No. DE-AC02-06CH11357 (ANL), the National 758 Nuclear Security Administration, Office of Defense ${ }_{59}$ Nuclear Nonproliferation R\&D (NA-22) and NSERC (Canada) under Contract No. SAPPJ-2015-00034. 761 This research used resources of ANL's ATLAS facil762 ity, which is a DOE Office of Science User Facility. ${ }_{763}$ Fig. 9 in this article has been created using the Lev64 elScheme scientific figure preparation system [M. A. 764 elScheme scientific figure preparation system [M. A.
765 Caprio, Comput. Phys. Commun. 171, 107 (2005), 766 http://scidraw.nd.edu/levelscheme].

VI. ACKNOWLEDGEMENTS

The authors wish to acknowledge the excellent work
[1] E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and 786 F. Hoyle, Reviews of Modern Physics 29, 547 (1957). 787
[2] "Assessment of Fission Product Decay Data for Decay 788 Heat Calculations, Nuclear Science, NEA/WPEC-25, In- 789 ternational Evaluation Co-operation," A report by the 790 Working Party on International Evaluation Co-operation 791 of the NEA Nuclear Science Committee.
[3] M. R. Mumpower, R. Surman, G. C. McLaughlin, and 793 A. Aprahamian, Progress in Particle and Nuclear Physics 794 86, 86 (2016).
[4] K. Langanke and G. Martínez-Pinedo, Rev. Mod. Phys. 796 75, 819 (2003).
[5] J. Ha, T Sumikama F Browne, N Hinohara A M Bruce, S. Choi, I. Nishizuka, S. Nishimura, P. Door- 799 nenbal, G. Lorusso, P.-A. Söderström, H. Watanabe, soo R. Daido, Z. Patel, S. Rice, L. Sinclair, J. Wu, Z. Y. 801 Xu, A. Yagi, H. Baba, N. Chiga, R. Carroll, F. Didier- 802 jean, Y. Fang, N. Fukuda, G. Gey, E. Ideguchi, N. Inabe,
T. Isobe, D. Kameda, I. Kojouharov, N. Kurz, T. Kubo, S. Lalkovski, Z. Li, R. Lozeva, H. Nishibata, A. Odahara, Z. Podolyák, P. H. Regan, O. J. Roberts, H. Sakurai, H. Schaffner, G. S. Simpson, H. Suzuki, H. Takeda, M. Tanaka, J. Taprogge, V. Werner, and O. Wieland, Phys. Rev. C 101, 044311 (2020).
[6] G. Savard, S. Baker, C. Davids, A. F. Levand, E. F. Moore, R. C. Pardo, R. Vondrasek, B. J. Zabransky, and G. Zinkann, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 266, 4086 (2008).
[7] J. Van Schelt, D. Lascar, G. Savard, J. A. Clark, P. F. Bertone, S. Caldwell, A. Chaudhuri, A. F. Levand, G. Li, G. E. Morgan, R. Orford, R. E. Segel, K. S. Sharma, and M. G. Sternberg, Phys. Rev. Lett. 111, 061102 (2013).
[8] M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X. Xu, Chinese Physics C 41, 030003 (2017).
[9] T. Y. Hirsh, N. Paul, M. Burkey, A. Aprahamian, 867 F. Buchinger, S. Caldwell, J. A. Clark, A. F. Levand, 868 L. L. Ying, S. T. Marley, G. E. Morgan, A. Nystrom, 869 R. Orford, A. P. GalvÃąn, J. Rohrer, G. Savard, K. S. ${ }_{870}$ Sharma, and K. Siegl, Nuclear Instruments and Methods 871 in Physics Research Section B: Beam Interactions with 872 Materials and Atoms 376, 229 (2016), proceedings of the 873 XVIIth International Conference on Electromagnetic Iso- 874 tope Separators and Related Topics (EMIS2015), Grand 875 Rapids, MI, U.S.A., 11-15 May 2015.
[10] N. E. Bradbury and R. A. Nielsen, Phys. Rev. 49, 388 (1936).
[11] S. Eliseev, K. Blaum, M. Block, C. Droese, M. Gon- 879 charov, E. Minaya Ramirez, D. A. Nesterenko, Y. N. s80 Novikov, and L. Schweikhard, Phys. Rev. Lett. 110, 881 082501 (2013).
[12] R. Orford, N. Vassh, J. A. Clark, G. C. McLaughlin, 883 M. R. Mumpower, G. Savard, R. Surman, A. Apra- 884 hamian, F. Buchinger, M. T. Burkey, D. A. Gorelov, 885 T. Y. Hirsh, J. W. Klimes, G. E. Morgan, A. Nystrom, 886 and K. S. Sharma, Phys. Rev. Lett. 120, 262702 (2018). 887
[13] R. Orford, J. A. Clark, G. Savard, A. Aprahamian, 888 F. Buchinger, M. T. Burkey, D. A. Gorelov, J. W. sвя Klimes, G. E. Morgan, A. Nystrom, W. S. Porter, D. Ray, sя0 and K. S. Sharma, Nuclear Instruments and Methods in 891 Physics Research Section B: Beam Interactions with Ma- 892 terials and Atoms 463, 491 (2020).
14] A. J. Mitchell, P. F. Bertone, B. DiGiovine, C. J. 894 Lister, M. P. Carpenter, P. Chowdhury, J. A. Clark, 895 N. D'Olympia, A. Y. Deo, F. G. Kondev, E. A. Mc- ${ }_{896}$ Cutchan, J. Rohrer, G. Savard, D. Seweryniak, and 897 S. Zhu, Nuclear Instruments and Methods in Physics Re- 898 search Section A: Accelerators, Spectrometers, Detectors 899 and Associated Equipment 763, 232 (2014).
[15] A. J. Mitchell, C. J. Lister, E. A. McCutchan, M. Al- 901 bers, A. D. Ayangeakaa, P. F. Bertone, M. P. Carpen- 902 ter, C. J. Chiara, P. Chowdhury, J. A. Clark, P. Copp, 903 H. M. David, A. Y. Deo, B. DiGiovine, N. D'Olympia, 904 R. Dungan, R. D. Harding, J. Harker, S. S. Hota, R. V. F. 905 Janssens, F. G. Kondev, S. H. Liu, A. V. Ramayya, 906 J. Rissanen, G. Savard, D. Seweryniak, R. Shearman, 907 A. A. Sonzogni, S. L. Tabor, W. B. Walters, E. Wang, 908 and S. Zhu, Physical Review C 93, 014306 (2016).
[16] D. De Frenne and A. Negret, Nuclear Data Sheets 109, 943 (2008).
[17] K. Siegl, K. Kolos, N. D. Scielzo, A Aprahamian G. Savard, M. T. Burkey M. P. Carpenter, P. Chowdhury, J. A. Clark, P. Copp, G. J. Lane, C. J. Lister, S. T. ${ }_{914}$ Marley, E. A. McCutchan, A. J. Mitchell, J. Rohrer, 915 M. L. Smith, and S. Zhu, Phys. Rev. C 98, 054307916 (2018).
[18] D. Radford, "gf3 program," https://radware.phy. ornl.gov/main.html, accessed: 2020-07-14.
[19] U. Hager, A. Jokinen, V. V. Elomaa, T. Eronen, 920 J. Hakala, A. Kankainen, S. Rahaman, J. Rissanen, I. D. 921 Moore, S. Rinta-Antila, A. Saastamoinen, T. Sonoda, 922 and J. Äystö, Nuclear Physics A 793, 20 (2007).
[20] B. Singh, Evaluated Nuclear Structure Data Files (2015). 924
[21] K. Shizuma, H. Lawin, and K. Sistemich, Zeitschrift für 925 Physik A Atoms and Nuclei 311, 71 (1983).
[22] M. B. Gómez-Hornillos, J. Rissanen, J. L. Taín, A. Al- 927 gora, K. L. Kratz, G. Lhersonneau, B. Pfeiffer, J. Agra- 928 munt, D. Cano-Ott, V. Gorlychev, R. Caballero-Folch, 929 T. Martínez, L. Achouri, F. Calvino, G. Cortés, T. Ero- 930
nen, A. García, M. Parlog, Z. Podolyak, C. Pretel, and E. Valencia, Hyperfine Interactions 223, 185 (2014).
[23] J. Pereira, S. Hennrich, A. Aprahamian, O. Arndt, A. Becerril, T. Elliot, A. Estrade, D. Galaviz, R. Kessler, K.-L. Kratz, G. Lorusso, P. F. Mantica, M. Matos, P. Möller, F. Montes, B. Pfeiffer, H. Schatz, F. Schertz, L. Schnorrenberger, E. Smith, A. Stolz, M. Quinn, W. B. Walters, and A. Wöhr, Phys. Rev. C 79, 035806 (2009).
[24] S. Lalkovski, J. Timar, and Z. Elekes, Nuclear Data Sheets 161-162, 1 (2019).
[25] J. C. Hardy, L. C. Carraz, B. Jonson, and P. G. Hansen, Physics Letters B 71, 307 (1977).
[26] "National Nuclear Data Centre LOG-FT program," http://www.nndc.bnl.gov/logft, accessed: 2020-07-14.
[27] T. Kibédi, T. W. Burrows, M. B. Trzhaskovskaya, P. M. Davidson, and C. W. Nestor Jr., Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 589, 202 (2008).
[28] H. Hua, C. Y. Wu, D. Cline, A. B. Hayes, R. Teng, R. M. Clark, P. Fallon, A. Goergen, A. O. Macchiavelli, and K. Vetter, Physical Review C 69, 014317 (2004).
[29] E. F. Jones, P. M. Gore, S. J. Zhu, J. H. Hamilton, A. V. Ramayya, J. K. Hwang, R. Q. Xu, L. M. Yang, K. Li, Z. Jiang, Z. Zhang, S. D. Xiao, X. Q. Zhang, W. C. Ma, J. D. Cole, M. W. Drigert, I. Y. Lee, J. O. Rasmussen, Y. X. Luo, and M. A. Stoyer, Physics of Atomic Nuclei 69, 1198 (2006).
[30] X. Rui-Qing, Z. Sheng-Jiang, J. H. Hamilton, A. V. Ramayya, J. K. Hwang, X. Q. Zhang, L. Ke, Y. Li-Ming, Z. Ling-Yan, G. Cui-Yun, Z. Zheng, J. Zhuo, X. ShuDong, W. C. Ma, J. Kormicki, E. F. Jones, J. D. Cole, R. Aryaeinejad, M. W. Drigert, I. Y. Lee, J. O. Rasmussen, M. A. Stoyer, G. M. Ter-Akopian, and A. V. Daniel, Chinese Physics Letters 19, 180 (2002).
[31] A. Guessous, N. Schulz, W. R. Phillips, I. Ahmad, M. Bentaleb, J. L. Durell, M. A. Jones, M. Leddy, E. Lubkiewicz, L. R. Morss, R. Piepenbring, A. G. Smith, W. Urban, and B. J. Varley, Physical Review Letters 75, 2280 (1995).
[32] R. RodrÃnguez-GuzmÃąn, P. Sarriguren, L. M. Robledo, and S. Perez-Martin, Physics Letters B 691, 202 (2010).
[33] R. F. Casten, Nature Physics 2, 811 (2006).
[34] P. Campbell, H. L. Thayer, J. Billowes, P. Dendooven, K. T. Flanagan, D. H. Forest, J. A. R. Griffith, J. Huikari, A. Jokinen, R. Moore, A. Nieminen, G. Tungate, S. Zemlyanoi, and J. Äystö, Phys. Rev. Lett. 89, 082501 (2002).
[35] F. Buchinger, E. B. Ramsay, E. Arnold, W. Neu, R. Neugart, K. Wendt, R. E. Silverans, P. Lievens, L. Vermeeren, D. Berdichevsky, R. Fleming, D. W. L. Sprung, and G. Ulm, Phys. Rev. C 41, 2883 (1990).
[36] F. C. Charlwood, K. Baczynska, J. Billowes, P. Campbell, B. Cheal, T. Eronen, D. H. Forest, A. Jokinen, T. Kessler, I. D. Moore, H. Penttilä, R. Powis, M. Rüffer, A. Saastamoinen, G. Tungate, and J. Äystö, Physics Letters B 674, 23 (2009).
[37] B. Pritychenko, M. Birch, B. Singh, and M. Horoi, Atomic Data and Nuclear Data Tables 107, 1 (2016).
[38] A. Görgen and W. Korten, Journal of Physics G: Nuclear and Particle Physics 43, 024002 (2016).
[39] E. Clément, M. Zielińska, A. Görgen, W. Korten, S. Péru, J. Libert, H. Goutte, S. Hilaire, B. Bastin, C. Bauer, A. Blazhev, N. Bree, B. Bruyneel, P. A. Butler, J. But-
terworth, P. Delahaye, A. Dijon, D. T. Doherty, A. Ek- 987 ström, C. Fitzpatrick, C. Fransen, G. Georgiev, R. Gern- 988 häuser, H. Hess, J. Iwanicki, D. G. Jenkins, A. C. 989 Larsen, J. Ljungvall, R. Lutter, P. Marley, K. Moschner, 990 P. J. Napiorkowski, J. Pakarinen, A. Petts, P. Reiter, 991 T. Renstrøm, M. Seidlitz, B. Siebeck, S. Siem, C. Sotty, 992 J. Srebrny, I. Stefanescu, G. M. Tveten, J. Van de 993 Walle, M. Vermeulen, D. Voulot, N. Warr, F. Wenan- 994 der, A. Wiens, H. De Witte, and K. Wrzosek-Lipska, 995 Physical Review Letters 116, 022701 (2016).
[40] K. Heyde and J. L. Wood, Rev. Mod. Phys. 83, 1467997 (2011).
[41] T. Togashi, Y. Tsunoda, T. Otsuka, and N. Shimizu, 999 Physical Review Letters 117, 172502 (2016). 1000
[42] C. Kremer, S. Aslanidou, S. Bassauer, M. Hilcker, 1001 A. Krugmann, P. von Neumann-Cosel, T. Otsuka, 1002 N. Pietralla, V. Y. Ponomarev, N. Shimizu, M. Singer, 1003 G. Steinhilber, T. Togashi, Y. Tsunoda, V. Werner, and 1004 M. Zweidinger, Physical Review Letters 117, 1725031005 (2016).
[43] W. Urban, T. Rząca-Urban, J. L. Durell, W. R. Phillips, 1007 A. G. Smith, B. J. Varley, I. Ahmad, and N. Schulz, The 1008 European Physical Journal A - Hadrons and Nuclei 20,1009 381 (2004).
[44] A. G. Smith, D. Patel, G. S. Simpson, R. M. Wall, J. F. 1011 Smith, O. J. Onakanmi, I. Ahmad, J. P. Greene, M. P. 1012 Carpenter, T. Lauritsen, C. J. Lister, R. V. F. Janssens, 1013 F. G. Kondev, D. Seweryniak, B. J. P. Gall, O. Dorvaux, 1014 and B. Roux, Physics Letters B 591, 55 (2004).
[45] D. Huai-Bo, Z. Sheng-Jiang, J. H. Hamilton, A. V. Ra-1016 mayya, J. K. Hwang, Y. X. Luo, J. O. Rasmussen, 1017 I. Lee, C. Xing-Lai, W. Jian-Guo, and X. Qiang, Chinese 1018 Physics Letters 24, 1517 (2007).

1019
[46] H. Watanabe, K. Yamaguchi, A. Odahara, T. Sumikama, 1020 S. Nishimura, K. Yoshinaga, Z. Li, Y. Miyashita, K. Sato, 1021 L. Prachniak, H. Baba, J. S. Berryman, N. Blasi, 1022 A. Bracco, F. Camera, J. Chiba, P. Doornenbal, S. Go, 1023 T. Hashimoto, S. Hayakawa, C. Hinke, N. Hinohara, 1024 E. Ideguchi, T. Isobe, Y. Ito, D. G. Jenkins, Y. Kawada, 1025 N. Kobayashi, Y. Kondo, R. Kracken, S. Kubono, $\mathbf{1 0 2 6}$ G. Lorusso, T. Nakano, T. Nakatsukasa, M. Kurata-1027 Nishimura, H. J. Ong, S. Ota, Z. Podolyak, H. Saku-1028 rai, H. Scheit, K. Steiger, D. Steppenbeck, K. Sugi-1029 moto, K. Tajiri, S. Takano, A. Takashima, T. Teranishi, 1030 Y. Wakabayashi, P. M. Walker, O. Wieland, and H. Ya- 1031 maguchi, Physics Letters B 704, 270 (2011).
47] A. G. Smith, J. L. Durell, W. R. Phillips, W Urban P. Sarriguren, and I. Ahmad, Phys. Rev. C 86, 0143211034 (2012).
[48] J. B. Snyder, W. Reviol, D. G. Sarantites, A. V. Afanas- 1036 jev, R. V. F. Janssens, H. Abusara, M. P. Carpenter, 1037 X. Chen, C. J. Chiara, J. P. Greene, T. Lauritsen, E. A. 1038 McCutchan, D. Seweryniak, and S. Zhu, Physics Letters 1039 B 723, 61 (2013).
[49] D. Ralet, S. Pietri, T. Rodríguez, M. Alaqeel, T. Alexander, N. Alkhomashi, F. Ameil, T. Arici, A. Ataç,
R. Avigo, T. Bäck, D. Bazzacco, B. Birkenbach, P. Boutachkov, B. Bruyneel, A. M. Bruce, F. Camera, B. Cederwall, S. Ceruti, E. Clément, M. L. Cortés, D. Curien, G. De Angelis, P. Désesquelles, M. Dewald, F. Didierjean, C. Domingo-Pardo, M. Doncel, G. Duchêne, J. Eberth, A. Gadea, J. Gerl, F. Ghazi Moradi, H. Geissel, T. Goigoux, N. Goel, P. Golubev, V. González, M. Górska, A. Gottardo, E. Gregor, G. Guastalla, A. Givechev, T. Habermann, M. Hackstein, L. Harkness-Brennan, G. Henning, H. Hess, T. Hüyük, J. Jolie, D. S. Judson, A. Jungclaus, R. Knoebel, I. Kojouharov, A. Korichi, W. Korten, N. Kurz, M. Labiche, N. Lalović, C. Louchart-Henning, D. Mengoni, E. Merchán, B. Million, A. I. Morales, D. Napoli, F. Naqvi, J. Nyberg, N. Pietralla, Z. Podolyák, A. Pullia, A. Prochazka, B. Quintana, G. Rainovski, M. Reese, F. Recchia, P. Reiter, D. Rudolph, M. D. Salsac, E. Sanchis, L. G. Sarmiento, H. Schaffner, C. Scheidenberger, L. Sengele, B. S. N. Singh, P. P. Singh, C. Stahl, O. Stezowski, P. Thoele, J. J. Valiente Dobon, H. Weick, A. Wendt, O. Wieland, J. S. Winfield, H. J. Wollersheim, and M. Zielinska (for the PreSPEC and PreSPEC and AGATA Collaborations), Phys. Rev. C 95, 034320 (2017).
[50] Y. X. Luo, J. O. Rasmussen, J. H. Hamilton, A. V. Ramayya, E. Wang, Y. X. Liu, C. F. Jiao, W. Y. Liang, F. R. Xu, Y. Sun, S. Frauendorf, J. K. Hwang, S. H. Liu, S. J. Zhu, N. T. Brewer, I. Y. Lee, G. M. Ter-Akopian, Y. Oganessian, R. Donangelo, and W. C. Ma, Phys. Rev. C 89, 044326 (2014).
[51] J. Kurpeta, A. Płochocki, W. Urban, A. Abramuk, L. Canete, T. Eronen, A. Fijałkowska, S. Geldhof, K. Gotowicka, A. Jokinen, A. Kankainen, I. D. Moore, D. Nesterenko, H. Penttilä, I. Pohjalainen, M. Pomorski, M. Reponen, S. Rinta-Antila, A. de Roubin, T. RzącaUrban, M. Vilén, and J. Wiśniewski, Phys. Rev. C 100, 034316 (2019).
[52] W. Urban, T. Rząca-Urban, J. Wiśniewski, J. Kurpeta, A. Płochocki, J. P. Greene, A. G. Smith, and G. S. Simpson, Phys. Rev. C 102, 024318 (2020).
[53] C. J. Gallagher and S. A. Moszkowski, Phys. Rev. 111, 1282 (1958).
[54] B. Singh, J. Rodriguez, S. Wong, and J. Tuli, Nuclear Data Sheets 84, 487 (1998).
[55] J. Skalski, S. Mizutori, and W. Nazarewicz, Nuclear Physics A 617, 282 (1997).
[56] C. L. Zhang, G. H. Bhat, W. Nazarewicz, J. A. Sheikh, and Y. Shi, Phys. Rev. C 92, 034307 (2015).
[57] J. Xiang, J. M. Yao, Y. Fu, Z. H. Wang, Z. P. Li, and W. H. Long, Phys. Rev. C 93, 054324 (2016).
[58] H. Abusara, S. Ahmad, and S. Othman, Phys. Rev. C 95, 054302 (2017).
[59] K. Nomura, R. Rodríguez-Guzmán, and L. M. Robledo, Phys. Rev. C 94, 044314 (2016).

[^0]: ${ }^{\text {a }}$ Email: aj.mitchell@anu.edu.au

