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We introduce a two-particle, two-hole mixed configuration scheme to fit E2 strengths for the
0 ↔ 2, 2 ↔ 4, and 4 ↔ 6 transitions in 194Pt. The interaction includes two sets of pairing
operators, {S±(t), S0(t)} (t = s, d). Solutions within this framework are used to analyze energy
spectra, E2 transitions, and band-mixing features of the model. The results confirm that mixing is
small and similar for J = 2, 4, and 6, with the calculated energies and transition matrix elements
in excellent agreement with experimental data.

I. INTRODUCTION

Nuclear structure studies that include band mixing at
low energies have attracted much attention from both ex-
perimental and theoretical perspectives. In this regard,
one of the more successful models is the interacting boson
model (IBM) [1–4]. Specifically, within the IBM frame-
work one finds strong evidence for band mixing [4–7] in-
volving multi-particle-hole excitations [2, 8]. From a the-
oretical perspective, a commonly used model for investi-
gating quantum phase transitions is the Interacting Bo-
son Model (IBM) [1], with three dynamical symmetries;
namely, a vibrational [U(5)] mode, a γ-soft [O(6)] mode,
and a rotational [SU(3)] mode [9–12]. One can consider
band mixing configurations due to multiparticle-hole ex-
citations, which is confirmed to be useful in describing
intruder states near closed-shell nuclei, typically those
around proton numbers Z∼50 and Z∼82 [2, 8].

Accordingly, numerous configurations with roughly the
same excitation energies can exist [1, 6, 13, 14]. More
precisely, the lowest-lying 0+ and 2+ states can become
strongly mixed such that it is very tricky to allocate a
configuration label to them. Recently, configuration mix-
ing in the O(6) and U(5) limits were proposed [15, 16].
We have offered and developed SU(1,1) coherent states
to describe band mixing [15, 16]. Fortune in Refs. [17–
21] has described the band mixing between the ground
and excited states of K=0 and/or K=2 bands in 72Ge,
74−78Kr, 106,108Pd, 154Gd, and 182,184Hg. Likewise, there
are many publications involving the band-mixed config-
urations in medium and heavy mass nuclei [15, 16, 22].
It is not uncommon to find partial energy spectra and
transition rates that are consistent with one or more con-
figuration mixing schemes.

The existence of shape coexistence phenomena is as-
sociated with particle-hole (np-nh) excitations across the
shell closure. It has been shown that IBM with higher-
order interactions is a highly successful phenomenological
model in the description of both collective valence shell
and multi-particle-hole excitations in nuclei for which
there is clear evidence for the presence of mixing of
particle-hole configurations and eventual mixing of two
co-existing collective states. Various workers have esti-

mated the mechanism of the Jπ = 0+, 2+, 4+, 6+ (K=0+

bands) and Jπ = 2+, 3+, 4+, ... (K=2+ bands) ground-
gamma or gamma-beta band-mixing. Coexistence and
mixing between K=0+ and K=2+ bands can be preva-
lent at low energy [23–26]. The configuration mixing
scheme based on the multi-particle-hole excitations is
common in understanding shape coexistence configura-
tion and nuclear structure by taking different symmetry
limits of the IBM. Several regions are of great interest
with different shapes. When passing from light to heavy
isotopes, the Pt region is characterized by variation from
the U(5)-SU(3) axis to the γ-soft U(5)-O(6) axis [27–30].
It is a widely acknowledged interpretation that 194Pt in-
volves coexistence and mixing. Providing two approaches
U(5)-O(6) and γ-soft rotor Hamiltonians to explain co-
existing structures and shape changes, the question is
which is most appropriate to 194Pt. Nuclear structure in
Pt isotopes, including triaxiality, has been studied with
γsoftness playing a prominent role. The nuclear structure
in 194Pt can be understood in terms of various observ-
ables. The selected observables to be analyzed herein are
energies and E2 transitions. In our previous work [22], we
presented an exact solution of the U(5)-O(6) transitional
description in the IBM with two-particle and two-hole
configuration mixing based on the Bethe ansatz formal-
ism to determine the normal and intruder states and E2
transition rates. In the present paper, we report the as-
signment of additional information, such as band mixing,
not presented in our previous publication [22].

In nuclear structure theory, it is very important to get
the energy spectra and transition rates correct. Here, we
employ a relatively simple solvable pairing model that
includes two-particle and two-hole configuration mixing
based on the affine SU(1,1) Lie algebra [31–34]. The
associated Hamiltonian we use generates two-particle,
two-hole mixing to calculate partial low-lying level en-
ergies and B(E2) rates. It is within this framework
that we show this configuration mixing scheme is an ef-
fective model for systematically exploring band mixing
in ground and excited states. The main goals of this
study involve two aspects. Firstly, to find shape coex-
istence or quantum phase transitions based on a simpli-
fied configuration-mixing scheme. Secondly, it is demon-
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strated that the simple two-state model seems necessary
to describe the band mixing in 194Pt. It is further shown
that deformation can be well described by quadrupole-
quadrupole interaction in the standard coherent state of
the IBM-1. Using the γ-soft rotor Hamiltonian, we can
describe the deformation based on coherent state config-
uration.

II. CALCULATIONS AND RESULTS

Here, we present the pairing Hamiltonian of config-
uration mixing scheme for transitional nuclei. Refs.
[15, 16, 22] are the best reviews of studies with the con-
figuration mixing scheme. Also, we make use of quasi-
spin algebras, which have been explained in detail in
Refs. [31, 34, 35]. By using this relation as generators of
SU(1,1) algebra for ρ = s and d boson we have S+(ρ) =
1
2ρ

†.ρ† for creation operator of bosons, S−(ρ) = 1
2 ρ̃.ρ̃

for annihilation operator and S0(ρ) = 1
2 (ρ

†.ρ̃+ 2ρ+1
2 ) for

number-conserving operator with ρ = 0 for s boson and
ρ = 2 for d boson [31].
We use the theory of affine SU(1,1) algebraic technique

[31], which determines the properties of energy spectra,
mixing of states, and electric transition rates. By employ-
ing the generators of SU(1,1) algebra in terms of ρ-boson
operators, the solvable Hamiltonian is constructed for the
transitional region between normal U(5) and the intruder
O(6) configurations. The Hamiltonian can be written as

Ĥ = S+
0 S−

0 + S0
ρ by adding the second Casimir opera-

tor, where ρ† is the creation operator of ρ bosons and
ρ̃ν = (−1)νρ−ν .
The Hamiltonian, which describes the interaction be-

tween the normal and deformed bands, is formed by two-
boson creation and annihilation with 2p2h excitations.
For the sake of band mixing, we have the combination
of two terms in the Hamiltonian as H = HIBM +HMix.
So the Hamiltonian to describe the band mixing may be
written as [15, 16]

Ĥ = PN (Ĥ
(1)
IBM ) PN+PN+2(Ĥ

(2)
IBM ) PN+2+P (ĤMix) P,

(1)
where PN and P are projection operators, which projects
to the N -boson subspace, while P project to the subspace
with N and N + 2 bosons,

Ĥ
(i)
IBM = a(i)s S0

s + a
(i)
d S0

d + g(i)S+S−, (2)

for i=1 and 2 are the U(5)-O(6) transitional Hamiltoni-
ans [31], and for two-configuration mixing we have

ĤMix =gs(s
† × s† + s× s) + gd(d

† × d† + d̃× d̃) =

gs(S
+
s + S−

s ) + gd(S
+
d + S−

d ). (3)

We have the SU(1,1) algebra, which satisfies the com-
mutation relations

[S0
ρ′ , S±

ρ] = ±δρ′ρS
±
ρ, [S+

ρ′ , S−
ρ] = −2δρ′ρS

0
ρ.

(4)

Basis vectors |N ; τνsνdηLM〉 can also be expressed
as those SU(1,1) algebra with two sets of operators
{S±

ρ, S
0
ρ} for d and s bosons,

|N, τνsνdηLM >= (−1)τN(S+
s )

N−νd−νs
2 −τ

(S+
d )

τ |νs; νdηLM >,
(5)

in which nd = 2τ + νd and τ = 0, 1, 2, ..., 12 (N − νd − νs)
with νs=0, 1. Here N, v, L are the total number of
bosons, seniority numbers, and angular momentum quan-
tum number, respectively with the third component of
the angular momentum M . To distinguish different
states with the same L, we need an additional quantum
number η.
In order to get the Bethe ansatz approach, the eigen-

state of (1) can be written as

|τνs; νdηLM >=
(

ατ
νs,νd,η,L

k
∏

ρ=1

S+(x(τ)
ρ ) + βτ

νs,νd,η,L

k+1
∏

ρ=1

S+(y(τ)ρ )

)

|νs; νdηLM >,

(6)

where ανs,νd,η,L and βνs,νd,η,L in general, are complex
numbers to be determined, τ labels the τ -th set of the
solution

(

xτ
1 , ...x

τ
k, y

τ
1 , ...y

τ
k+1

)

with the k numbers of pair-

ing. The explicit form of the functional S+(x) is similar
to the format used in [35]

S+(x) = xS+(s) + S+(d), (7)

where x is the spectral parameter to be determined.
Gaudin first introduced an equivalent form of S+(x) as an
ansatz in determining the exact solutions of a spin-spin
interaction scheme [36], which is now applied to be a con-
sistent operator form in designing the Bethe ansatz wave-
function (6) for the configuration mixing scheme in IBM.
By using the commutation relation and act of Hamilto-
nian to the Bethe ansatz wavefunction (6) and diagonal-

ization, Ĥ |τνs; νdηLM >= Eτ
νs,νd,L

|τνs; νdηLM >, we

can get the eigenvalues similar to the form used in [35].
It has been shown that the Platinum isotopes are suit-

able candidates within the U(5)-O(6) transitional area.
As illustrated in the earlier study [37, 38], the vibra-
tional feature in 172−194Pt isotopes is not insignificant,
mainly in A ≤190. U(5) and O(6) limits are pertinent
to the normal and intruder states, respectively [39, 40].
It means that Pt isotopes as collective nuclei with mul-
tiphonon excitations of particle-hole configuration lead
us to the shape coexistence between normal U(5) and
intruder SO(6) configuration. For this reason, however,
the existence of intruder states in 182−184Pt isotopes is
much more obvious, so that the present model based on
the configuration mixing scheme is only appropriate to
explain 194Pt, which is closest to the O(6)-limit in the
Casten triangle [37, 38]. Using the band mixing Hamil-
tonian (1) with Bethe Ansatz approach, we can explain
most aspects of the ground and excited states of 194Pt
up to 2.5 MeV. The Bethe Ansatz approach has been
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FIG. 1. Some low-lying energy levels for (a) experimental and (b) theoretical result in 194Pt. Available experimental data were
taken from [41].

explained in detail in Refs. [15, 16, 22]. Energy spectra
can be constructed based on the diagonalization in the
N ⊕ (N + 2)-boson subspace, of which the complete ba-
sis vectors in each configuration can be taken as those of
U(6)⊃ U(5)⊃ O(5)⊃ O(3) with |N, νsνdηLM >. In the
diagonalization, the Hamiltonian (1) is applied to obtain
a low-lying spectrum of 194Pt with N = 2τ + νs + νd,
for which the term ĤL = L.L is added to (1) to lift the
degeneracy of the levels with the same seniority to form
the angular momentum sequences with different angular
momentum quantum numbers. One note to mention is
that in the Hamiltonian, if g(1) = g(2)=0, the system is
in the O(6)-limit without configuration mixing. With the
variation of g values, the mixing occurs. Energy spectra
of low-lying states related to band mixing in 194Pt are
plotted and compared in Fig. 1.

The model parameters are taken as a
(1)
s =0, a

(1)
d =1.05

MeV, g(1)=-1 keV, a
(2)
s =150 keV, a

(2)
d =1.17 MeV, g(2)=-

72 keV, gs=200 keV and, gd=150 keV. It can be ob-
served that the ground and some partial excited states
below 2.5 MeV, which belong to the band mixing, are in-
cluded. Moreover, the energy spectra with odd-spin and
parity assignments (J−) are also not included. In addi-
tion, some excited states higher than 2.42 MeV, such as
7+1 , 10

+
2 , and so on, are not considered due to the pair-

broken state with major components of proton-holes in
1h11/2-orbit and neutron-holes in i13/2-orbit. Also, We
have plotted energies vs J(J + 1) for band 1, 2, k=2
and other in Fig. 2. Theoretical calculations can be ver-
ified against the experimental energy spectra shown in
[41] that most ground and excited states are fitted quite
well. The root mean square deviation, σ = 174.89keV
is claculated between the calculated energy spectra and
experimental counterparts.

Only levels of normal states with (N = 2τ+νd+νd, ν ≤
3), and intruder levels are shown in the figures. In Fig.
1 we see that the first set of levels with τ=1 are the
same as those generated from the model without config-

FIG. 2. Plot of excitation energy vs. J(J + 1) for first three
bands in 194Pt.

uration mixing (g=0), the second set of levels with τ=2
are built on the intruder 0+4 level to the normal ground
level, and so on. Each set of the levels with τ ≥ 2 is a
reproduction of those with τ=1 generated from the orig-
inal intruder O(6)-limit. Also, we know from Fig. 2 that
all the known positive-parity states below 1.65 MeV are
plotted, but only high-J above that energy. Two tenta-
tive (5+) states are included. Band 1 is the ground band,
band 2 is the beginning of a band based on the excited 0+

state. Placements of states within bands were guided by
energies and E2 strengths. Both the energy and E2 be-
havior indicate that the second 2+ state is not associated
with the second 0+ state. That distinction belongs to the
third or fourth 2+. All other states below 1.65 MeV are
indicated as ”other”. Odd-J states with positive parity
are placed in the K=2 band.
Excited states with leading Jπ = 2+, 3+, 4+ (K=2+

bands) components are allocated to the γ-band, while
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the β-band includes states defined by dominant Jπ =
0+, 2+, 4+, 6+ (K=0+ bands) components. The mix-
ing configuration calculation reproduces the experimen-
tal values, in particular, it predicts that the first excited
band-head 0+2 has the lowest excitation energy in quasi-
β band groups with respect to β deformation, while the
first excited band-head 2+2 has the lowest excitation en-
ergy in quasi-γ band groups. Excited energies are also in
quantitative agreement with experimental data. It must
be pointed out that the 0+2 , 2+3 , and 4+3 levels are al-
located to the quasi-β bands. Similarly, as one can see
in Fig. 1, the calculated 3+1 and the 4+2 levels in 194Pt
are allocated to the quasi-γ bands lying on top of the 2+2
state. In the next step by the simple model, we have a
mixing of the states (K=0+ bands) and (K=2+ bands),
assigned to the ground and γ bands, respectively.

Pairing model with a configuration mixing scheme is
applied to describe the energy spectra and E2 transition
rates in which the configuration mixing scheme keeps the
lower part of the γ-unstable spectrum unchanged and
generates the intruder states through the mixing term.
Describing the shape coexistence pattern can be achieved
by mixing the normal U(5) and the intruder O(6) configu-
rations. The observed intruder states in even-even Pt iso-
topes are well-known in the Casten triangle [28, 42, 43].
Their presence in even-even nuclei can be explained with
an intruder O(6)-limit Hamiltonian. Also, there are still

many experimental signatures [44, 45] revealing the pres-
ence of γ-soft O(6) nuclei in Pt isotopes. That’s why we
have selected the O(6)-limit Hamiltonian in our work.
We should also consider that Pt isotopes with configura-
tion mixing exist in a region of the nuclear chart, around
the proton shell closure Z=82, characterized by different
deformations [46]. Furthermore, the O(6) quadrupole-
quadrupole interaction in connection with the shape co-
existence phenomenon within a coherent state requires
the presence of states with very different deformations.
One might try to use this property to establish a coherent
theory of triaxiality in the IBM framework. It is proved
[47] that the coherent state procedure is acceptable be-
tween quantum parameters and geometrical parameters.
The classical equilibrium shapes and their evolution of a
nucleus described by IBM have been studied [48, 49] to
show the potential shape of (8) in the classical limit. The
most general Hamiltonian is of the form

ĤO = ζQ̂.Q̂+ ξL̂2 + φT3 + χT4, (8)

where ζ, ξ, φ, and χ are adjustable parameters and T3 =√
30
6 (L̂ × Q̂ × L̂)(0) and T4 = − 5

√
3

18 [(L̂ × Q̂)(1) × (L̂ ×
Q̂)(1)](0) are the operators with quadrupole-quadrupole
interaction terms. To obtain a more intuitive insight into
the problem of triaxial shapes and validate our work, we
use the standard coherent state defined as [50]

|N, β, γ〉 = (N !(1 + β2)N )−(1/2)(s† + βcosγd†0 +
1√
2
βsinγ(d†2 + d†−2)

N | 0〉, (9)

As it can be seen, there are quasi-β and quasi-γ bands
from the ground band up to 8+1 . The authors of Ref.
[37] investigated the Pt isotopes in the IBM framework
by using the extended consistent-Q framework, in which
intruder configuration was not taken into account. It has
been shown in [37] and [38], that some partial energy
spectra below 1.5 MeV in 194Pt were included. It can
be said that the energy of 5+1 state in both the IBM and
the extended consistent-Q framework displayed in [38] is
0.5-0.7 MeV higher than the corresponding experimental
value. Actually, there are 4+, 5+, 6+, and 8+ states with
excitation energy ∼ 2.0 MeV. One could assume that the
energy spectra of other excited states with higher angu-
lar momentum quantum numbers provided from both the
IBM and the extended consistent-Q framework calcula-
tions would also be much higher than the corresponding
experimental values. Now we can get the expectation
value in the coherent state with 〈N, β, γ|ĤO|N, β, γ〉 in
Fig. 3.

When we are moved higher than the critical area, the
minimal region becomes a global minimum point around
β=1.4 and γ=60 (deg), indicating that an oblate phase
appears. In addition, γ varies from 0 to 60 in the equilib-

rium valley at the critical area, which indicates a γ-soft
shape [1].
Based on the above points, let us turn to the band

mixing in some ground and excited states. The existence
of intruder states leads to the band mixing, which is un-
avoidable, especially to explain the B(E2) values. Also,
a simple two-state model can work well when we have
intruder states involved in the band mixing. Typically,
band mixings are associated with the normal ground and
excited intruder states. The simple two-state model has
been used to describe the band mixing in connection with
the intruder states. At this point, it is worthwhile to
determine the band mixing in 194Pt. It has been found
that coexistence configurations is described by mixing be-
tween the normal U(5) and the intruder O(6) configura-
tion in Pt isotope. On the other hand, this configuration
can make a condition where the normal configuration ap-
proaches the U(5) limit while the intruder configuration
is closer to the O(6) limit. Suppose the normal states (N
bosons) with vibration limit and the intruder states (N+2
bosons) with rotational limit coexist, they can interact
and mix. In that case, the total lowest weight | lw >
wave function can be A |lwN 〉(g) + B |lwN+2〉(e), where
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FIG. 3. The potential-energy surface in 194Pt. The expecta-
tion value in the coherent state used with the configuration
mixing calculations. We observe that the parameter χ taken
to be 0 is always better as far as the level energies are con-
cerned. The other parameters used are ζ = -3.3 keV, ξ= 2.8
keV, and φ= -3.5 keV, for the 0+2 level energy.

the subscripts g and e refer to the ground and excited
bands, respectively and | lw〉 ≡ N,nd, ν, n∆, L,M .
If all the matrix elements M(E2) are known, then the

mixing analysis for 0 ↔ 2, 2 ↔ 4 and 4 ↔ 6, for example,
can be done separately. Here, we could not apply the
band mixing for 0 ↔ 2. It doesn’t apply in the present
case because the second 2+ state is not connected to the
second 0+ state. We have applied the simple two-state
mixing to the transitions 2 ↔ 4 and 4 ↔ 6.
We introduce two bands as the Refs. [17–21], g and e,

with 2+, 4+ and 6+ basis-state wave functions 2g, 2e; 4g,
4e; and 6g, 6e, respectively. We have:

|lw〉(2+
1
) (

194Pt) = A |lw〉(g) +B |lw〉(e) ,
|lw〉(2+

2
) (

194Pt) = B |lw〉(g) −A |lw〉(e) , (10)

for 2+1 and 2+2 states,

|lw〉(4+
1
) (

194Pt) = C |lw〉(g) +D |lw〉(e) ,
|lw〉(4+

2
) (

194Pt) = D |lw〉(g) − C |lw〉(e) , (11)

for 4+1 and 4+2 or higher states,

|lw〉(6+
1
) (

194Pt) = E |lw〉(g) + F |lw〉(e) ,
|lw〉(6+

2
) (

194Pt) = F |lw〉(g) − E |lw〉(e) , (12)

for 6+1 and 6+2 or higher states, where the coefficients of
A, B, C, D, E, and F are the mixing amplitudes.
There is a unique determination for the two-state

model based on the Refs. [17–21]. But here we de-
velop an exact solution based on the configuration mix-
ing scheme. Details about exact solutions have been

FIG. 4. E2 transition rates for lowest J → J-2 transitions
in 194Pt. Available experimental data with error bars were
taken from [41].

presented in Refs. [15, 16, 22, 31]. For various multi-
particle-hole configurations, we need the effective boson
charge to calculate the E2 transitions [8, 13, 14, 51]. The
E2 operator is written as

T (E2)
µ =

qe2P̂N [(s† × d̃+ d† × s̃)(2)µ ]P̂N + q′e2P̂ [(s† × d̃+ d† × s̃)(2)µ ]P̂ ,

(13)

where P̂N is the projection operator onto the configura-
tion mixing without multiparticle-hole excitations. And
B(E2) is given by

B(E2;αiLi → αfLf ) =
|〈αfLf ||TE2||αiLi〉|2

2Li + 1
, (14)

where the reduced matrix element is defined in terms of
the Clebsch-Gordan coefficients and 〈αfLf ||Î||αiLi〉 =

δαf ,αi
δLf ,Li

with unit identity operator Î.
For projection operator we have

P̂ |N ′, nd, ν, n∆, L,M〉 =
{

|N ′, nd, ν, n∆, L,M〉 if N ′ ≥ N
0 otherwise

,

(15)
which keeps the operator effective only within the boson
subspace by [N ]⊕ [N +2]⊕ [N+4]⊕ ... mixed configura-
tions. As those shown in [15, 16], the band mixing from
the ground up to the excited states in the normal and
intruder bands 2+, 4+ and 6+ of 194Pt deduced in [41]
are considered. The best global fit produces the model
parameters for E2 transitions to the experimental data.
The fitted partial B(E2) transitions are shown in Fig.
(4), in which the corresponding results of the 2n-particle
and 2n-hole configuration mixing are also provided. The
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reduced matrix elements of T (E2) based on the config-
uration mixing obtained in this work agree to the corre-
sponding experimental results.
Furthermore, most transition matrix elements calcu-

lated in this work agree with the experimental data. Each
value is very close to the corresponding result calculated
from the configuration mixing scheme. Based on the ex-
perimental E2 transition matrix elements, for the M0

label, we have 0.749 eb, and for the M1 label, we have
0.0069 eb. So, B(E2, 2+1 → 4+1 ) is 108 times larger than
B(E2, 2+2 → 4+1 ), furthermore B(E2, 6+1 → 4+1 ) is 18
times larger than the corresponding experimental value
of B(E2, 4+2 → 6+1 ). Similar to the B (E2; Ji → Jf )
result we have the same pattern for M (E2; Ji → Jf )
results.
Here, we define the matrix elements Mg and Me for

connecting 2+ and 4+ states and also M ′
g and M ′

e for

connecting 4+ and 6+ states

Mg = 〈2g |E2| 4g〉 Me = 〈2e |E2| 4e〉 (16)

and

M ′
g = 〈4g |E2| 6g〉 M ′

e = 〈4e |E2| 6e〉 (17)

Furthermore, we assume that for the band mixing of the
ground and excited states, the g states are not connected
to the e states by the E2 operator. We select eight tran-
sitions, connecting 0 ↔ 2 from M0 − M7 in Tables I.

TABLE I. E2 transition matrix elements (eb) for 0 ↔ 2 tran-
sitions in 194Pt.

M(E2) M(E2)

Label i f Exp.a This work

M0 2+1 0+1 2.45 2.73

M1 2+2 0+1 0.66 0.89

M2 2+3 0+2 unknown 1.70

M3 2+3 0+1 unknown 0.93

M4 0+2 2+1 0.26 0.29

M5 0+2 2+2 0.48 0.88

M6 0+4 2+1 0.55 0.60

M7 0+4 2+2 0.55 0.26

a) Used M(E2) from [53].

Experimental result of
∑7

i=0 M
2
i , connecting 0 ↔ 2

from M0 − M7, is 7.33 e2b2. The theoretical result

TABLE II. E2 strengths and transition matrix elements for
2 ↔ 4 transitions in 194Pt.

B(E2)(e2b2) M(E2)(eb)

Label i f Exp.a Exp. C Exp.b This work

M0 2+1 4+1 0.749+0.016
−0.010 1.935+0.021

−0.013 1.935+0.021
−0.013 1.935

M1 2+2 4+1 0.0069+0.0100
−0.0029 0.186+0.135

−0.039 0.25+0.14
−0.06 0.0

M2 2+1 4+2 0.0027(4) 0.116(9) 0.220(9) 0.11

M3 2+2 4+2 0.26(5) 1.14(11) 1.784+0.045
−0.029 1.43

a) Used M(E2) from [52], b) from [53].

TABLE III. E2 transition matrix elements for 4 ↔ 6 transi-
tions in 194Pt from Coulomb excitation.

M(E2) M(E2)

Label i f C Exp.a This work

M ′0 6+1 4+1 2.90+0.10
−0.04 2.310

M ′1 4+2 6+1 0.16+0.06
−0.16 0.0

M ′2 6+1 4+2 0.224+0.017
−0.019 0.217

M ′3 6+2 4+2 2.09+0.11
−0.07 1.87

a) Used M(E2) from [53].

of
∑7

i=0 M
2
i without considering unknown transitions,

connecting 0 ↔ 2 from M0 − M7, is 9.51 e2b2. We
have similar magnitudes for

∑

i M
2
i connecting 2 ↔ 4

and 4 ↔ 6. Here, M (E2; Ji → Jf ), is defined as
M 2(E2; Ji → Jf ) = (2Ji + 1)B(E2; Ji → Jf ).
Also, We select eight transitions, including the four

E2 transitions, connecting 2 ↔ 4 from M0 − M3, and
four E2 transitions, connecting 4 ↔ 6 from M ′0 − M ′3
in 194Pt. These transition matrix elements are listed in
Tables II and III.
Based on the experimental data and pairing model,

the corresponding results obtained from the configuration
mixing scheme for the 2 ↔ 4 and 4 ↔ 6 fits are shown in
Tables IV and V for comparison in 194Pt.
Good agreement between experiment and model is ob-

vious from theM ’s. Based on the fitting for experimental
data and model calculations, we have compared the ra-
tios of basis-state matrix elements in Table VI.
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TABLE IV. Results of fitting 2 ↔ 4 and 4 ↔ 6 matrix ele-
ments in 194Pt.

2 ↔ 4 4 ↔ 6

Fit (1)a Fit (2)b

Quantity Value Value Quantity Value

B 0.191 0.540 D 0.213

D 0.169 0.523 F 0.226

Mg(eb) 1.96 2.03 M ′
g 2.94

Me(eb) 1.07 1.69 M ′
e 2.05

a) Used M3 = 1.14(11) eb obtained by combining 4+
2

lifetime and

branching ratio [52] and b) Used M3 = 1.784+0.045
−0.029eb from

Coulomb excitation [53].

TABLE V. Results of fitting pairing model 2 ↔ 4 and 4 ↔ 6
matrix elements in 194Pt.

2 ↔ 4 4 ↔ 6

Fit (1)a Fit (2)b

Quantity Value Value Quantity Value

B 0.091 0.201 D 0.202

D 0.123 0.202 F 0.252

Mg(eb) 1.94 1.96 M ′
g 2.34

Me(eb) 1.42 1.41 M ′
e 1.85

a) Using results from last column of Tables II and b) Using
M1 = 0.107eb, rather than 0, to get agreement for D.

Mixing is found to be small and similar for J=2, 4,
and 6 by the fitting values of wave-function amplitudes.
For Mg, Me, M

′
g, and M ′

e, it is shown that M ′
g > Mg and

M ′
e > Me. The ratiosM

′
g/Mg andM ′

e/Me are larger than
both the rotational and vibrational limits. Also we have
seen that the experimental B (E2; 61 → 41 ) is larger
than the value from the pairing model calculation. These
patterns are the same as [17–21] in the band mixing.
We have obtained some partial transition matrix el-

ements for mixing band by fitting procedure. Tran-
sition matrix elements for M (E2; 2+1 → 4+1 ) and
M ′ (E2; 6+1 → 4+1 ) have very strong strength for 2 ↔ 4
and 4 ↔ 6. Based on the Coulomb excitation data, the
value of M (E2; 2+1 → 4+1 ) is 7.74 times larger than

TABLE VI. Ratios of (6 → 4)/(4 → 2) basis-state matrix
elements from fitting and from various models.

Ratio Fit to Exp. Model ratio Fit to Model Calcs.

M ′
g/M

′
g 1.5 - 1.2

M ′
e/M

′
e 1.9 - 1.3

Vibrational - 1.47 -

Rotational K = 2 - 1.69 -

Rotational K = 0 - 1.26 -

the value of M (E2; 2+2 → 4+1 ), while, the value of
M ′ (E2; 6+1 → 4+1 ) is 18.12 times larger than the value
of M ′ (E2; 4+2 → 6+1 ) in configuration mixing scheme.
It means that the lower basis-state band is slightly more
collective than the excited states. Of course, the 4+ mix-
ing in the 2 ↔ 4 and 4 ↔ 6 analyses should be the
same. Usually, the two results are not exactly equal, but
usually, they can be made to be equal by making minor
changes in one or more of the M’s. In the present case,
D from Fit 2 is nowhere near D from the 4 ↔ 6 fit. For
Fit 1, the value of D is quite close to the value from the
4 ↔ 6 analysis, and equality is easily achieved by a mi-
nor adjustment to any of the input matrix elements. This
demonstrates that Fit 2 is invalid. The large difference
between the two experimental values of M3 [52, 53] re-
mains a minor mystery, but the present analysis indicates
a strong preference for the smaller value.

For particular evidence and justification, the experi-
mental sum of M2 and M ′2 for connecting 2 ↔ 4 and
4 ↔ 6 is proportional to the sum of configuration mixing
model. The experimental sum of transition matrix ele-
ments, M2 and M ′2, for connecting 2 ↔ 4 and 4 ↔ 6 is
4.99 and 12.85 (e2b2), respectively. In contrast, the the-
oretical sum of transition matrix elements, M2 and M ′2,
for connecting 2 ↔ 4 and 4 ↔ 6 is 5.79 and 8.96 (e2b2),
respectively. The theoretical calculations are somewhat
less collective than the experimental sum of transition
matrix elements. Of course, in the two-state mixing pro-
cedure, the sums of M2 and M ′2 are conserved

In the extraction procedure for results of fitting experi-
mental, 2 ↔ 4 transitions, the values of transition matrix
elements for the g and e band are about 1.96 and 1.07
eb, with a ratio of 1.83. Moreover, we have the same pro-
cedure for connecting the 4 ↔ 6 transitions. The values
of transition matrix elements for the g and e band are
about 2.94 and 2.05 eb, with a ratio of 1.43. Results of
fitting in pairing model calculation, connecting the 2 ↔ 4
transitions, the values of transition matrix elements for
the g and e band are about 1.94 and 1.42 eb, with a ratio
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of 1.36. For connecting the 4 ↔ 6 transitions, the values
of transition matrix elements in pairing model calcula-
tion for the g and e band are about 2.34 and 1.85 eb,
with a ratio of 1.26. Recent studies have shown the in-
teresting results for the R = Me/Mg and R′ = M ′

e/M
′
g

ratios. The ratio of transition matrix elements for con-
necting 2 ↔ 4 is compatible to the 4 ↔ 6 transitions in
our model. Our results suggest that basis-state transition
matrix elements for g bands are stronger than e bands.

We have shown energy levels and relevant transition
matrix elements from the fits for the pairing model with
a configuration mixing scheme. A detailed similarity of
most of the ground excited states up to 2.5 MeV with
known electric quadrupole transition rates obtained in
this work to the experimental results [41, 53] have been
presented in the figures. It can be found from figures
and tables that the explanations of the band mixing for
connecting the 2 ↔ 4 and 4 ↔ 6 transitions in 194Pt val-
ues are quite excellent. Not only the energy spectra and
even the transition rates, but also the positions of the
ground and excited states of 2+, 4+, and 6+ are correctly
reproduced, indicating that a lower basis-state is some-
what more collective than the second one. Finally, exact
solution of the vibrational to γ-soft transitional region
proposed in this work may also be valuable in diagonaliz-
ing a more comprehensive pattern dependent consistent-
Q formalism in the same configuration mixing scheme,
though only a solvable procedure is possible in even-even

172−196Pt, which will be considered in our future work.

III. SUMMARY AND CONCLUSION

This work explains energy spectra and transition rates
of γ-soft nuclei such as 194Pt. A solvable model in
transitional Hamiltonian of the interacting boson model
with two-particle and two-hole configuration mixing is
proposed. By adding the configuration mixing Hamil-
tonian (Hmix) in pairing model, we have achieved the
band mixing in the ground and excited states. Diag-
onalization method was made with configuration mix-
ing scheme, which is designed for energy spectra and
electric quadrupole transition rates. Configuration mix-
ing scheme has been applied to members of some lowest
ground and excited states of 2+, 4+ and 6+ bands in
194Pt. Results indicate that the lower basis-state band is
slightly more collective than the excited-state band.
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