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This work presents further analysis of the three– and four–neutron systems in the low energy
regime using adiabatic hyperspherical methods. In our previous Phys. Rev. Lett. article [1], the
low–energy behavior of these neutron systems was treated in the adiabatic approximation, neglecting
the off–diagonal non–adiabatic couplings. A thorough analysis of the density of states through a
multi–channel treatment of the three–and four–neutron scattering near the scattering continuum
threshold is performed, showing no evidence of a 4n resonance at low energy. A detailed analysis
of the long–range behavior of the lowest few adiabatic hyperspherical potentials shows there is an
attractive ρ−3 universal behavior which dominates in the low–energy regime of the multi–channel
scattering. This long–range behavior leads to a divergent behavior of the density of state for E → 0
that could account for the low–energy signal observed in the 2016 experiment by Kisamori et al. [2].

I. INTRODUCTION

Few neutron systems have been the subject of inter-
est over the past couple decades due to the possibility
of forming low-energy bound states or temporary bound
states through a long–lived resonance in the scattering
continuum. The interest in these systems arose from
experimental evidence of a possible low–energy tetra-
neutron (4n) state, most notably from experiments per-
formed by Marqus et al. in 2002 [3] in the reaction
14
4Be → 10

4Be + 4n and in a more recent experiment
by Kisamori et al. in 2016 [2] in the nuclear reaction
4
2He + 8

2He→ 8
4Be + 4n. The interpretation of the results

in these experiments sparked numerous theoretical stud-
ies into whether four interacting neutrons can bind or
produce a resonance with current nuclear models [4–18].

The experiment by Marqus et al. in 2002 lead to a
number of theoretical investigations into whether a 4n
state could exist [4–8]. These theoretical studies have
shown that with current nuclear models, a 4n bound
state could not exist. Only with a modification to the
nuclear Hamiltonian, either via an additional four–body
interaction [4] or other unrealistic enhancement of the
nucleon–nucleon (NN) two–body interactions could a 4n
bound state exist. Changes made to the well established
nuclear Hamiltonians, such as the AV18/IL2 model in
[5], results to over binding in many light nuclei and even
leads to a dineutron bound state.
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Most theoretical studies that came out as a result of
this 2002 experiment concluded that a 4n bound state
or resonance could not exist with current nuclear theory.
However, a more recent experiment by Kisamori et al.
in 2016 shows evidence of a possible 4n resonance mea-
sured at an energy of 0.83± 0.65(stat.)± 1.25(sys.) MeV
[2] above the 4–body continuum. This most recent ex-
periment sparked a renewed theoretical interest into this
question [9–18]. Some of these more recent theoretical
studies agree with the earlier studies that a 4n bound
or resonant state is unsupported by current theoretical
models [12–18], while other studies confirm the possible
existence of a 4n state as depicted in the 2016 experiment
[9–11]. This disagreement in whether a 4n state exists
warrants further study of the low–energy scattering of
few neutrons in the continuum, thus providing motiva-
tion for our most recent work published in Phys. Rev.
Lett. [1].

In this recently published work, we solve the trineu-
tron (3n) and tetraneutron (4n) systems using the adia-
batic hyperspherical framework, which has been success-
ful at predicting resonances in few–body atomic systems
in both a qualitative manner through the structure of the
adiabatic potentials and quantitatively through an analy-
sis of the phaseshift [19, 20]. These few neutron systems
were studied primarily in the adiabatic approximation,
neglecting non–adiabatic couplings to the excited states.
The lowest adiabatic potential in both 3n and 4n systems
are purely repulsive and qualitatively show no features
to support a bound or resonant state above the scatter-
ing continuum. In addition, an elastic phaseshift analysis
was performed for the lowest adiabatic potential with the
second–derivative diagonal non–adiabatic correction that
showed no features of a resonance at low energy, only an
enhancement of the density of states caused largely by
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an attractive ρ−3 long–range feature in the potential as
it approaches the non–interacting limit. We attribute the
low energy signal seen in the Kisamori et al. experiment
to this enhancement, and not to a resonant 4n state [1].
The purpose of this article is to expand on this previous
work to investigate the effects of non–adiabatic couplings
to the excited states on this low–energy behavior in a
more comprehensive multi–channel scattering treatment
of these systems.

The rest of this article is organized in the following
way. Section II provides details on the adiabatic hyper-
spherical approach, including the numerical techniques
used to compute the non–adiabatic couplings. The low-
est few adiabatic hyperspherical potential curves for both
3n and 4n systems are reported in Sec. III, showing the
repulsive nature of few interacting neutrons, with an em-
phasis on the lowest potential in both systems. In Sec.
IV, the non–adiabatic couplings are shown for the low-
est few channels to provide qualitative and some quan-
titative features of the long–range behavior. Section V
gives a detailed analysis of the long–range behavior of
the lowest few adiabatic potentials, specifically provid-
ing the scattering length dependence of the ρ−3 coeffi-
cient in these potentials at long–range. With knowledge
of the long–range behavior of the adiabatic potentials
and non–adiabatic couplings, a multi–channel treatment
of the scattering of few neutron systems above the con-
tinuum is performed in Sec. VI and compared with the
adiabatic treatment. Lastly, Sec. VII presents our con-
clusions.

II. ADIABATIC HYPERSPHERICAL
APPROACH

The 3n and 4n nuclear systems are explored in the
framework of the hyperspherical representation. The
main advantage of using this representation to study
these few–body systems is that all of the dynamical
features of the inter–particle interactions and reaction
pathways at different length scales can be described
both qualitatively and quantitatively on an equal footing
through an adiabatic parameter denoted the hyperradius.
Another key advantage of using the hyperspherical repre-
sentation comes from its success in predicting resonances
in few–body atomic systems. For example, photodetach-
ment resonance in the positronium negative ion above the
n = 2 threshold was predicted by Botero and Greene in
1986 [19] and confirmed by experiment in 2016 [21], and
shape resonances in the e−H system by C.D.Lin in 1975
[20] and confirmed by experiment in 1977 [22]. In both
of these theoretical studies, the resonance features were
observed both qualitatively in the structure of the adia-
batic potential curves as well as quantitatively through
an analysis of the elastic phaseshifts.

A. Theoretical Formulation

Within the adiabatic hyperspherical approach the 3n
and 4n systems are solved using both an explicitly cor-
related Gaussian [23–26] (CGHS) basis and the hy-
perspherical harmonic (HH) basis ([24] and references
therein). The Hamiltonian for most systems can separate
the center of mass coordinates with the relative coordi-
nates, Ĥ = ĤCM + Ĥrel.. The center of mass Hamilto-
nian contains the kinetic energy operator of the center of
mass. The Hamiltonian of the relative motion contains
the relative hyperradial and hyperangular kinetic energy
operators, as well as the potential energy.

The hyperangular kinetic energy and potential energy
operators make up the adiabatic Hamiltonian, with the
hyperradius treated initially as an adiabatic parameter.
The generalized N–body adiabatic eigenvalue equation in
hyperspherical coordinates to be solved is:

Had(ρ,Ω)Φν(ρ,Ω) = Uν(ρ)Φν(ρ,Ω) (1)

where ρ is the hyperradius, Ω is a set of hyperangles, ν
is an index that labels the eigenstates of Had(ρ,Ω), and

Had(ρ,Ω) =
~2

2µρ2

[
Λ2 +

(3N − 4)(3N − 6)

4

]
+ Vint.(ρ,Ω) (2)

where µ is the hyperradial reduced mass, which can be ar-
bitrarily defined with an appropriate re-scaling of the hy-
perradius and taken here to be m/2, where m is the neu-
tron mass. The operator Λ represents the hyperangular
grand–angular momentum of the system and Vint.(ρ,Ω) is
the potential operator between the nucleons, containing
two-body and three-body interaction terms.

The CGHS basis is used to diagonalize the adiabatic
Hamiltonian given by Eq. (2) which includes all par-
ticle interactions. The HH basis forms a complete ba-
sis that are eigenfunctions of the hyperangular grand–
angular momentum squared operator Λ2 labeled by an
angular–momentum quantum number (see Appendix B
of [24] and references therein), denoted here as K. The
state label ν in Eq. (1) corresponds to an eigenstate of
the adiabatic Hamiltonian, as stated above. In the non–
interacting limit, this label ν is equivalent to K for the
HH basis, with ν = 1 corresponding to the lowest HH
compatible with symmetry, spin and angular momentum

having K = 1 in the 3n case (for Jπ = 3
2

−
) and K = 2 for

the 4n (for Jπ = 0+). In addition, it should be noted that
the non–interacting eigenstates of Had(R,Ω) are in one-
to-one correspondence with the states of a d-dimensional
isotropic harmonic oscillator, which are known to have a
very high degeneracy that increases rapidly with dimen-
sionality (for an example in the case of non–interacting
fermions, see [27]).

The full N–body wavefunction in the relative coordi-
nates is expanded in the eigenstates of Eq. (1), giving
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the ansatz,

ΨE(ρ,Ω) = ρ−
3N−4

2

∑
ν

FE,ν(ρ)Φν(ρ,Ω). (3)

The factor (3N − 4)(3N − 6)/4 in Eq. (2) comes from
the multiplying factor of ρ in Eq. (3), which eliminates
the first derivative in the hyperradial kinetic energy. Ap-
plying Ĥrel. to Eq. (3), projecting from the left with
Φν′ (ρ,Ω), and integrating over the hyperanglular coordi-
nates and tracing over spin degrees of freedom leads to
the following coupled hyperradial Schrödinger equations,

(
− ~2

2µ

∂2

∂ρ2
+Wν(ρ)− E

)
FE,ν (ρ)

− ~2

2µ

∑
ν′ 6=ν

(
2Pνν′(ρ)

∂

∂ρ
+Qνν′(ρ)

)
FE,ν′(ρ) = 0 (4)

where Pνν′ (ρ) and Qνν′ (ρ) are first and second derivative
non–adiabatic coupling matrix elements and Wν(ρ) =

Uν(ρ)− ~2

2µQνν(ρ) is the νth effective adiabatic potential

[28–30].
Once Eq. (1) is solved for Uν(ρ) and normalized fixed–

ρ eigenfunction Φν(ρ,Ω), the next step is to calculate the
first and second derivative non-adiabatic coupling matrix
elements defined as [28]:

Pµν(ρ) =

〈
Φµ

∣∣∣∣∂Φν
∂ρ

〉
(5)

Qµν(ρ) =

〈
Φµ

∣∣∣∣∂2Φν
∂ρ2

〉
(6)

where the integrals are over the hyperangles. Symme-
try properties of the P matrix elements can be derived
from manipulating Eq. (5). By differentiating the over-
lap 〈Φµ|Φν〉 with respect to ρ, it can be shown through
Eq. (5) that Pµν(ρ) = −Pνµ(ρ) and Pνν(ρ) = 0. The di-
agonal second derivative coupling term added to the low-
est adiabatic potential, W1(ρ), provides an upper bound
to the ground-state, thus is important to include.

B. Non–Adiabatic Coupling: Numerical Approach

The diagonal second derivative couplings can be re-
written as Qνν(ρ) = −〈∂Φν

∂ρ |
∂Φν
∂ρ 〉, thus one needs to only

compute ∂Φν
∂ρ . One standard way to compute this deriva-

tive is to use finite-difference methods, however, we use
a different approach that involves solving a matrix equa-
tion. The idea is to multiply Eq. (1) by ρ2 then dif-
ferentiate with respect to ρ. This leads to the following
matrix equation [28, 31],

ρ2[Uν(ρ)−Had(ρ,Ω)]χν(ρ,Ω) =

[
∂

∂ρ
(ρ2Had(ρ,Ω))− ∂

∂ρ
(ρ2Uν(ρ))]Φν(ρ,Ω) (7)

where,

χν(ρ,Ω) =
∂

∂ρ
Φν(ρ,Ω) + cΦν(ρ,Ω) (8)

and c is solved for in an iterative process until the deriva-
tive only changes by a small amount, using the fact that
Pνν(ρ) = 0.

Once the derivative of the channel functions are de-
termined, the first–derivative coupling elements can be
computed easily from Eq. (5). In general, the second–
derivative of the channel functions are required to com-
pute the second–derivative matrix elements, as indicated
by Eq. (6). To avoid computing the second–derivative
of the channel functions, the second–derivative couplings
can be expressed in terms of the derivatives of the
first–derivative matrix elements and channel functions
through the relation [28],

Qµν(ρ) =
∂

∂ρ
Pµν(ρ)−

〈
∂Φµ
∂ρ

∣∣∣∣∂Φν
∂ρ

〉
. (9)

However, it has been shown that when solving the cou-
pled hyperradial equations in Eq. (4) by R–matrix
propagation with the slow–variable discretization (SVD)

method that only the component −〈∂Φµ
∂ρ |

∂Φν
∂ρ 〉 of Qµν(ρ)

is needed (see Appendix B of [28]). Therefore, through-
out the rest of this article, any further mention of second–
derivative couplings refer to this component.

III. ADIABATIC POTENTIALS

The adiabatic hyperspherical potentials were obtained
using two different basis expansions, the HH basis and the
CGHS basis along with different nuclear models for the
two–body interactions. The primary calculations were
performed using the AV18 and AV8′ [23, 32] two–body
nuclear potentials. Other nuclear interaction models are
used with the HH basis to show a comparison of the adi-
abatic potentials among the various theories. The other
NN interactions include the local NN potential model
NVIa for the 3n system and models NVIa and NVIb for
the 4n system, derived within the chiral effective field
theory approach [33, 34]. The potentials were obtained

for symmetries Jπ = 0+ and 3
2

−
for the 4n and 3n sys-

tems, respectively, providing the most attraction between
the neutrons. The lowest few potentials, including the
second–derivative non–adiabatic coupling term, for both
3n and 4n systems are shown in Figure 1 using the AV8′

interaction.
The lowest potential in both systems exhibit impor-

tant features that aid in our understanding of the in-
teraction between multiple neutrons. It is most evident
from the potentials shown in Fig. 1 that no bound or res-
onant states are supported for either the 3n or 4n system.
There is no potential minimum or potential barrier that
can support a bound or even temporarily bound resonant
state that would indicate the existence of a trineutron or
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Figure 1. The lowest few adiabatic potentials for the 3n
(a) and 4n (b) systems using the AV8′ two–body interac-
tion are presented with the ordering of states from bottom
to top, with the lowest curve representing ν=1. The diago-
nal second–derivative non–adiabatic couplings are included.
The non–interacting potentials (dashed lines) are shown to
provide a qualitative picture of the amount of attraction in
these systems. Also, the adiabatic potentials are compared to
a single–Gaussian model (open circles) with L = 0 and L = 1
natural parity states for the 4n and 3n systems, respectively.

tetraneutron state. In fact, over the entire range of hy-
perradii, the potentials are purely repulsive due in part
to the large Pauli repulsion in these fermionic systems.
However, there is still significant attraction in these sys-
tems, which can be seen from a comparison with the
non–interacting potential (dashed curves) in Fig. 1. The
lowest few adiabatic potentials lie well below the non–
interacting potentials over a large range in the hyperra-
dius, with the greatest attraction evident in the lowest
potentials for both systems.

The long–range behavior of the adiabatic potentials
plays an important role in determining the low–energy
behavior of the scattering phaseshift. From Fig. 1, the
lowest few adiabatic potentials in both neutron systems

approach the non–interacting potentials as ρ−3. It is
found that the asymptotic form of the lowest few po-
tentials take the form,

Wν(ρ)→ ~2

2µ

(
leff(leff + 1)

ρ2
+
C3,ν

ρ3

)
(10)

where leff is the effective angular momentum quantum
number, and where C3,ν = Cνa, with a being the s–
wave scattering length, and Cν is a dimensionless con-
stant that depends on system size, symmetry and eigen-
state. For the lowest adiabatic potential, the ρ−3 behav-
ior is emphasised through a plot, shown in Figure 2, of
C(ρ) = (ρ/a)((2µ/~2)W1(ρ)− leff.(leff.+1)) with leff. = 5
for the lowest potential of the 4n system and leff. = 5/2
for the lowest 3n potential. These have been re-scaled by
the spin–singlet s–wave scattering length. Figure 2 shows
a comparison of C(ρ) for both neutron systems obtained
for different nuclear interaction models and basis sets.
In particular, these figures show the slow convergence of
the HH basis at large values of the hyperradius compared
to calculations performed using the CGHS basis, which
provides the best converged results beyond 30–50 fm. At
small hyperradii, both basis sets are well converged and
the potential curves computed with different nuclear in-
teraction models are nearly indistinguishable. Only at
large hyperradii is there a clear difference in the lowest
potential, which is largely due to the slow convergence of
the HH basis.

Universal behavior is observed in these few–neutron
systems, as shown by the remarkable agreement between
the adiabatic potentials in Fig. 1 using both the accu-
rate and well established AV8′ nuclear interaction and a
single Gaussian potential, whose parameters are given in
Table I. This agreement resulting from two qualitatively
different interactions demonstrates that interacting neu-
trons exhibit long–range universal physics, further sup-
ported by similarities in the elastic phaseshifts [1]. This
can be understood due to the large ratio of the singlet
s–wave scattering length to the range of the nuclear in-
teraction, which is approximately |as/r0| ≈ 10. The
connection between short–range interactions with large
scattering lengths to universal physics has been exten-
sively studied in various contexts relating to not only the
Efimov effect in atomic and nuclear three–body systems
[24, 35–44], but also in connection to BCS–BEC crossover
in few–fermion atomic systems [24, 45, 46]. Furthermore,
the 3n and 4n adiabatic potentials using different and
well established nucleon–nucleon interactions are univer-
sal at moderately small hyperradii (from 5–30 fm), with
qualitative differences in the range 0 < ρ < 5 fm, as
seen in Fig. 2. This universal behavior in these neutron
few–body systems is explored further in Sec. V, analyz-
ing the long–range behavior of these adiabatic potentials
at different scattering lengths up to unitarity.

One key interest concerning the neutron–neutron in-
teraction is the role of tensor and spin–orbit interactions
for systems of few neutrons. In nucleon–nucleon inter-
actions, the tensor and spin–orbit interactions are im-
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Figure 2. Plots of the dimensionless function Cν(ρ) ≡
(ρ/a)[ρ2W1(ρ)2µ/~2 − leff(leff + 1)] for the 3n (a) and 4n (b)
systems with ν = 1. According to Eq. (10), we should ob-
tain Cν(ρ → ∞) = Cν , where Cν is the coefficient listed in
Table II. We observe the slow convergence for large ρ of the
adiabatic potentials calculated using the HH basis, with in-
creasing values of Kmax indicated as higher curves for each
nuclear model that tends towards the most converged CGHS
calculation. However, it has to be noted that where the con-
vergence is achieved, the functions Cν(ρ) obtained for the
different interactions used in this work almost collapse onto
a single curve. Noticeably, this happens already for fairly
small values of rho, showing that the adiabatic potentials are
already universal at moderate values of the hyperradius. In
fact, the limit Cν(ρ) = Cν is reached only for ρ > 500 fm.

portant for binding the neutron and proton in the spin–
triplet and isospin–singlet state [32]. For neutron systems
on the other hand, the tensor and spin–orbit interactions
do not lead to binding of two neutrons. However, these
interactions do provide extra attraction at short–range
(0 < ρ < 4 fm). This is best illustrated in Fig. 3 for the
4n system, showing the difference in the lowest few adi-
abatic potentials for L = 0 states with and without the
tensor and spin–orbit interactions using the AV8′ nuclear
interaction model.
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Figure 3. Difference in the lowest few 4n hyperradial po-
tentials for L = 0 states (ν = 1 − 4) with and without the
spin–orbit and tensor interactions. The differences suggest
that the tensor and spin–orbit interactions provide attraction
to the system at hyperradii around 0 < ρ < 5 fm.

In many nuclear systems, the 3N force play a signif-
icant role in determining the correct binding energy of
light nuclei [47–51]. Thus, a logical question would be
whether or not the 3N force plays a significant role in
binding of few–neutron systems. To address this ques-
tion, the 3n and 4n systems were studied using the AV18
two–body potential with the Illinois 7 (IL7) model of the
3–body force. A comparison between the lowest poten-
tial in both 3n and 4n systems with and without the IL7
3N term is shown in Fig. 4. As shown in Fig. 4, the low-
est re–scaled potentials for these systems is represented
by the quantity, (2µ/~2)ρ2U(ρ), which approaches 30 at
large ρ for the 4n system and 8.75 for the 3n system.
From the comparison of this potential with and without
the IL7 3N force, there is only a significant difference
for ρ < 5 fm, with the 3N force adding slight attraction
to the 4n system and slight repulsion in the 3n system.
At large values of ρ, which governs the low–energy scat-
tering of the system, the potentials are nearly identical.
Thus, it is concluded the 3N force plays little role in the
low–energy regime for 3n and 4n scattering with provid-
ing not enough attraction to lead to a bound or even
resonant bound state.

IV. NON-ADIABATIC COUPLING MATRIX
ELEMENTS

Before considering the full treatment of the coupled
hyperradial Schrödinger equation, the first– and second–
derivative non–adiabatic coupling matrix elements need
to be computed at each hyperradius. The non–adiabatic
matrices, defined in Eqs. (5) and (6), are computed us-
ing the methods described in section II B. The long–range
behavior of these matrix elements are analyzed with an
emphasis on the non–adiabatic couplings for the 3n sys-
tem, noting the asymptotic behavior is equivalent in the
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Figure 4. A comparison of the lowest adiabatic potential
using the AV18 two–body interaction with and without the
IL7 3N force for the 3n (a) and 4n (b) systems. There is only
a significant difference for ρ < 5 fm.

4n system. Through this study, it is determined that
the second–derivative coupling matrix elements fall off
faster than ρ−3, which do not contribute to the long–
range potential given in Eq. (10). The non–adiabatic
couplings between the lowest channel and lowest 6 chan-
nels are shown in Figures 5 and 6 for the first– and
second–derivative elements, respectively.

The first– and second–derivative couplings for the 3n
and 4n systems only have a significant impact on the
adiabatic potentials over a range of the hyperradius from
0 ≤ ρ ≤ 5 fm, beyond which they rapidly decrease to
zero. The long–range behavior of these non–adiabatic
matrix elements can be seen by multiplying Pµν(ρ) by
ρ2 and Qµν(ρ) by ρ4, which is shown in figures 7 and
8 for the first– and second–derivative matrix elements
for the 3n system, respectively. From these figures, it is
evident the second–derivative matrix elements are short–
range, falling off faster than ρ−3, in–fact falling off as
ρ−4. The first–derivative matrix elements exhibit long–
range behavior, falling off like ρ−2 at large hyperradii.
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Figure 5. The first–derivative coupling matrix elements
P1ν(ρ) in the lowest channel for the 3n (a) and 4n (b) systems
with ν = 2− 6 (from Eq. (5) P11(ρ) = 0).

Likewise, this long–range behavior in the non–adiabatic
couplings is also observed in the 4n system.

This analysis of the long–range behavior of the non–
adiabatic matrix elements indicates that the diagonal
second–derivative matrix elements do not impact the
long–range behavior of the adiabatic potentials, although
the short–range behavior is affected. As a result, when
solving the coupled hyperradial equation, the couplings
only have significant influence on the collision eigen-
phaseshifts at high scattering energies, while the low–
energy behavior is only slightly modified due to the long–
range behavior of the first–derivative couplings. Sec-
tion VI discusses the affect of the non–adiabatic coupling
terms on the energy–dependent eigenphaseshifts.

V. LONG-RANGE BEHAVIOR OF THE
ADIABATIC POTENTIALS

In these few neutron systems, it is observed that the
lowest few adiabatic potentials take the form of Eq.
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Figure 6. The second–derivative coupling matrix elements
Q1ν in the lowest channel for the 3n (a) and 4n (b) systems
with ν = 1 − 6. The coupling matrix elements are scaled by
~2/2µ.

(10), in which the the potentials deviate from the non–
interacting limit by a ρ−3 dependence that scales linearly
in the two–body s–wave scattering length. This depen-
dence of the asymptotic form on the two–body s–wave
scattering length has been shown for hyperspherical po-
tentials associated with the many particle continuum, for
systems with short–range interactions having a two–body
scattering length larger than the range of the interaction
[52, 53]. The asymptotic form is valid with and without
the diagonal second derivative coupling term since the
coupling terms fall off as ρ−4, as was shown in Sec. IV.

To study the long–range behavior of the potentials, a
single Gaussian model for the two–body interaction is
used of the form,

V (r) = V0exp

(
− r2

r2
0

)
. (11)

For a fixed range r0, the strength V0 is tuned to give a
different s–wave scattering length, while maintaining the
condition that there is no two–body bound state. The
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Figure 7. The first–derivative non–adiabatic matrix elements
for the lowest few 3n channels are shown multiplied by ρ2 to
emphasize the long–range behavior. The solid lines are the
coupling matrices to the first channel and the dashed lines
are coupling matrices to the second channel (i.e. P1ν and P2ν

with ν = 1, .., 6).
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Figure 8. The second–derivative non–adiabatic matrix el-
ements for the lowest few 3n channels are shown multiplied
by ρ4 to emphasize the long–range behavior. The solid lines
are the coupling matrices to the first channel and the dashed
lines are coupling matrices to the second channel (i.e. Q1ν

and Q2ν with ν = 1, .., 6).

values of V0 are chosen to give scattering lengths ranging
from zero to infinity, coinciding with the non–interacting
case to the unitarity regime. To represent the nn inter-
action, the values of V0 and r0 are chosen to reproduce
the dominant low energy s–wave and p–wave properties
produced by the spin–singlet and triplet components of
the central term in the AV8′ interaction. The parame-
ters used in the single–Gaussian calculations in Section
III are given in Table I, along with the strength asso-
ciated with the unitarity limit for the spin–singlet state
denoted by Vu. To extract the expected value of C3,ν

for the few neutron systems, the strength of the spin–
singlet state is tuned from 0 < V0 < Vu with r0 fixed
to the value given in the first row of Table I. The lowest
few adiabatic potentials for this study are shown in Fig-
ures 9 and 10 for the 3n and 4n systems, respectively.
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Table I. Single Gaussian parameters used for singlet and
triplet two–body interactions. The parameters were extracted
from fits to the central component of the AV8′ potential. The
parameter Vu is the strength at unitarity.

State V0(MeV) Vu(MeV) r0(fm)
1S −31.7674 −35.1265 1.7801
3P 95.7280 −646.625 0.8809
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Figure 9. The lowest 7 adiabatic potentials (ν=1–7) for the

3n system for the Jπ = 3
2

−
symmetry with L = 1 using a

single–Gaussian potential with r0 = 1.78 fm. The strength
V0 is tuned to give different scattering lengths from 0 to in-
finity with no two–body bound state. Each set of potentials
represent a different s–wave scattering length in this range
with limits shown by the horizontal dashed lines representing
the non–interacting limit (upper–dashed) and unitarity limit
(lower–dashed). The unitarity limits are given in Table II.
The set of potentials labeled by ν=1, 2, 3 and 5 represent
the potentials with the ρ−3 behavior as they approach the
non–interacting limit and the curves labeled by ν=4, 6 and 7
represent those that fall off faster than ρ−3.

These figures show the lowest few potentials for 20 scat-
tering lengths ranging from 0 to unitarity for r0 = 1.7801
fm, plotted as (2µ/~2)ρ2U(ρ) versus ρ. Each curve ap-
proaches the value leff(leff + 1) at large ρ where, in the
non–interacting limit, leff = 5/2 for the ground–state of

the 3n Jπ = 3
2

−
system and leff = 5 for the ground–

state of the 4n Jπ = 0+ system. The lowest of each set
of curves is the unitarity potential where the strength
of the interaction is tuned to give an infinite scatter-
ing length. The unitarity values for leff describing the
long–range potential are given in Table II and labeled
as leff,u. One general and universal property of every N-
particle system with finite range interactions is that the
long-range hyperradial potential curves associated with
the N-body continuum can often (but not necessarily al-
ways) converge to a different asymptotic coefficient of
1/ρ2 at unitarity (a → ∞) than for finite or vanishing
scattering length. This can be viewed as a generalized
consequence of Efimov physics [24, 35–37]. It is appar-
ent from these figures that the lowest few potentials in
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Figure 10. The lowest 5 adiabatic potentials (ν=1–5) for the
4n system for the Jπ = 0+ symmetry with L = 0 using a
single–Gaussian potential with r0 = 1.78 fm. The strength
V0 is tuned to give different scattering lengths from 0 to in-
finity with no two–body bound state. Each set of potentials
represent a different s–wave scattering length in this range.

each system asymptotically approach the corresponding
non–interacting potentials as ρ−3, where a is finite.

The scattering length dependence of C3,ν is extracted
from fitting the lowest adiabatic potentials to an in-
verse power–law expansion to O(1/ρ8) for each scatter-
ing length from 10 fm < ρ < 1500 fm. The results of
C3,ν for the 3n and 4n systems are shown in Figure 11.
The figures show the scattering length dependence of
C3,ν , re-scaled by r0, for the few lowest potentials us-
ing a single–Gaussian model for the two–body interac-
tions with r0 = 1.78 fm. There is clear evidence that
the C3,ν coefficient depends linearly on the s–wave scat-
tering length for values of the re–scaled s–wave scatter-
ing length |as/r0| > 10, demonstrating universal physics
at these scattering lengths. The re–scaled s–wave scat-
tering length for the nn interaction is approximately,
|as/r0| ≈ 10.63. The numerical values of C3,ν are given in
Table II. The deviation from the linear fits (near as/r0

of -30) are due to errors in the extraction on the C3,ν

coefficient, which were estimated by performing the fits
over varying ranges of |as/r0|. As the scattering length
increases, the ρ−3 behavior begins to dominate at larger
and larger hyperradii, as seen in Figs. 9 and 10. In order
to improve the accuracy of the value of C3,ν , the poten-
tials would need to be computed out to larger values of ρ
and better converged. Substituting the s–wave scatter-
ing length for the nn two–body interaction in the spin–
singlet state (as = −18.92 fm for the AV8′ interaction)
into the C3,ν coefficients in Table II yields the expected
long–range behavior for the lowest few adiabatic poten-
tials that are relevant to understanding the low–energy
behavior of the eigenphaseshifts, discussed in Sec. VI.
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Figure 11. The scattering length dependence of the 3–body
and 4–body C3,ν coefficient scaled by the range of the po-
tential, r0 for the lowest few potentials. In (a), the re-scaled

C3,ν coefficient is shown for the 3–body case for the (1 1
2
) 3

2

−

symmetry. The circle, square, diamond and triangle symbols
represent the channels v = 1, 2, 3, and 5, respectively. The
data for ν = 2 is multiplied by a factor of 2, denoted by
the label (×2), in order to differentiate between the data for
ν = 1 and ν = 2. In (b), the re-scaled C3,ν coefficient is
shown for the 4–body case for the (00)0+ symmetry. The
circle, square, diamond, upright triangle, and downward tri-
angle symbols represent the channels v = 1, 2, 3, 4, and 5, re-
spectively. The dashed lines are linear fits performed over the
range −36 < as/r0 < −10.

VI. WIGNER-SMITH TIME DELAY

Starting from this understanding of the long–range be-
havior of the adiabatic potentials demonstrated in Sec. V,
a full treatment of the energy–dependence scattering
above the 3–body and 4–body continuum is now de-
veloped. To understand the 2016 experimental obser-
vation of a low–energy 4n signal by Kisamori et al., a
detailed analysis of the low–energy density of states is
carried out. A simple way of quantifying the density
of states is through a calculation of the Wigner–Smith
time delay matrix, which for a single–channel calcula-

Table II. Long–range (ρ → ∞) Cν coefficients of the low-
est few adiabatic potential for the 3n and 4n systems (see
Eq.(10)). Also provided is the effective angular momentum
leff,u at unitarity. Unitarity values from other references are

presented as l
(ref)
eff,u for comparison. The error estimates in Cν

and leff,u are obtained from fitting the potentials over different
ranges in the hyperradius.

N (LS)Jπ ν leff Cν leff,u l
(ref)
eff,u

3 (1 1
2
) 3

2

−
1 5/2 15.1(3) 1.275(5) 1.2727(1)a, 1.2727c

2 9/2 15.2(3) 3.861(5) 3.868b, 3.8582c

3 13/2 77.7(3) 5.219(5) 5.229b, 5.2164c

5 17/2 108(3) 7.555(5) 7.553c

4 (00)0+ 1 5 86.7(3) 2.017(5) 2.0091(4)a

2 7 156(3) 4.455(5) 4.444(3)d

3 7 61.1(3) 5.071(5) 5.029(3)d

4 9 209(3) 6.974(5) 6.863(3)d

5 9 87.8(3) 7.258(5) 7.121(3)d

a Values extracted from Table III of [54]; The ground–state
energies of two–component Fermi gases at unitarity are
extracted in the zero–range limit.

b Values extracted from Table I of [55]; Energies of a trapped
two–component Fermi gas are computed using hyperspherical
techniques and given for a Gaussian interaction with a range of
0.05 oscillator units.

c Value extracted from the transcendental equation represented
by Eq. (7) in [56] for equal–mass fermions.

d Values extracted from Table II of [57]; Long–range coefficients
extracted from hyperspherical potential curves for a
four–fermion system using a Gaussian two–body interaction at
unitarity.

tion represents the amount of time incoming probabil-
ity flux remains confined by the presence of a potential
before escaping [58]. The Hermitian time delay matrix
is defined in terms of the scattering matrix and its en-
ergy derivative as Q(E) = i~SdS†/dE, which reduces to
Q(E) = 2~dδ(E)/dE for a single–channel calculation. It
has been shown there is a direct relation between the to-
tal Wigner–Smith time delay and the density of states
[59, 60]. A peak in the time delay results from a rapid
increase in the phaseshift, usually over a small energy
range. This occurs when the probability flux gets tem-
porarily trapped for an extended period of time, inter-
preted usually as a resonance if there is an increase in
phase of more than 2 radians.

In studying the elastic phaseshift of the 3n and 4n
systems, a comparison can be made between the phase-
shift with and without the inclusion of the second deriva-
tive coupling term. Since the lowest adiabatic potential
with the inclusion of the non–adiabatic diagonal second
derivative term provides a rigorous upper–limit to the
actual lowest potential, it would be intuitive to study
how important this term is to the low–energy behavior.
Also, a direct comparison will shed some light on the ac-
curacy of treating the problem in the adiabatic approxi-
mation, without including any non–adiabatic couplings.
This comparison for both 3n and 4n systems is shown in
Figure 12.

The single–channel elastic phaseshift is shown for the
3n (lower curve) and 4n (upper curve) systems. These
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calculations were performed with and without the sec-
ond derivative non–adiabatic coupling, being represented
by the dashed and solid curves, respectively. There
is surprising little change in the energy–dependence of
the elastic phaseshift in the energy range shown from
0 < E < 9 MeV, with a noticeable difference start-
ing around 2 MeV. There is a smooth rise in the elastic
phaseshift for both the 3n and 4n systems with no peak
in the energy–derivative as one would expect for a true
resonance. Instead, there is a low energy enhancement
of the density of states due to the divergent 1/

√
E be-

havior. The enhancement by 1/
√
E is a result of the

long–range ρ−3 term in the potential. In accordance
with the Wigner threshold law, the phase shift scales
proportionally to the wave number k, leading to the en-
hancement in the energy–derivative. In fact, it can be
shown from the Born approximation that a potential of
the form C/ρ3 leads to a phaseshift in the lth partial wave
of δl(k) ≈ −kC/[2l(l + 1)].
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Figure 12. The elastic phaseshift(inset) and re–scaled
Wigner–Smith time delay in the lowest adiabatic potential
for the 3n and 4n systems with and without the diagonal
second–derivative coupling term shown as dashed and solid
lines, respectively. The upper curves are for the 4n system
and the lower curves are for the 3n system.

From Fig. 12, there is little change in the energy be-
havior of the elastic phaseshift and time delay for these
few–neutron systems when excluding the non–adiabatic
couplings, treating the problem in a purely adiabatic
sense. In fact, only at large scattering energies (E >
1.5 MeV) is there any noticeable deviation in the energy
dependence. The difference is due to the fact that the
non–adiabatic second derivative couplings for both sys-
tems are only appreciable at small ρ, corresponding to
large energy, as seen in the previous section. A more thor-
ough investigation into the affects of the non–adiabatic
couplings is done by performing a multi–channel calcula-
tion, including a few excited channels in solving Eq. (4)
for scattering solutions.

Multichannel scattering calculations were performed
for both neutron systems. Equation (4) was solved for
the inclusion of a few coupled channels to compare the

largest eigenphaseshifts, which are shown in Figs. 13 and
14 for up to 2 and 6 channels for the 3n and 4n systems,
respectively using the HH basis and a single Gaussian
nuclear interaction. It is clear from these figures that
the largest eigenphaseshift shows little to no change in
energy dependence at low–energies with increased num-
ber of included channels. The largest eigenphaseshift us-
ing the AV8′ nuclear interaction and the CGHS basis is
shown for up to 3 channels in Fig. 15. From these cal-
culations with the realistic AV8′ interaction, the largest
eigenphaseshift does not change significantly at low ener-
gies with the inclusion of more channels. This negligible
change is a result of the relatively weak and short–range
behavior of the non–adiabatic coupling terms. From sec-
tion IV, it is shown the first–derivative couplings fall off
as ρ−2 and second–derivative couplings fall off as ρ−4 at
large hyperradii.
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Figure 13. The largest 3n eigenphaseshift (left) and time delay
(right) with the inclusion of 1 and 2 channels from a multi–
channel calculation to show the effects on the low–energy be-
havior from non–adiabatic coupling. These results use a single
Gaussian model for the nn two–body interaction with the HH
basis.
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calculation to show the effects on the low–energy behavior
from channel coupling. These results use a single Gaussian
model for the nn two–body interaction with the HH basis.
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Figure 15. Largest eigenphaseshift for the 3n and 4n systems
for the inclusion of up to 3 channels using the AV8′ interac-
tion with the CGHS basis. The lowest curve is the single–
channel results while the second lowest and highest curves
are the resultant eigenphaseshifts from a mutichannel calcu-
lation for 2 and 3 channels, respectively. The eigenphaseshift
is only slightly modified for energies less than 1 MeV, provid-
ing further support the adiabatic approximation is sufficient
in describing the low–energy behavior.

VII. CONCLUSIONS

This article addresses a fundamental problem in few–
body neutron interactions, whether a bound or resonant
4n state exists. The answer to this question is crucial for
addressing the interpretation of a recent experiment by
Kisamori et al. in 2016, which suggested evidence of a 4n
resonance observed in the nuclear reaction 4He + 8He→
4n + 8Be at an energy of 1.25 MeV above the 4–neutron
continuum [2]. This problem has been treated here using
the adiabatic hyperspherical approach with realistic NN
and 3N interactions with an emphasis on the the AV8′

nuclear interaction with a CGHS basis and the AV18
interaction with a HH basis.

The 3n and 4n adiabatic hyperspherical potential
curves were computed for the Jπ states that provide the

most attraction in each system, 3
2

−
for the 3n system

and 0+ for the 4n system. A comparison was made be-
tween the adiabatic potentials computed in both basis
sets, which show that the CGHS basis yields better con-
verged potentials at large hyperradii. The lowest hy-
perspherical potential in each of these systems shows no
qualitative feature that indicates the possible existence
of a resonance. In fact, while these few neutron systems
exhibit significant attraction, the potentials are still re-
pulsive at all hyperradii due to strong Pauli repulsion.

The non-resonant behavior of these few neutron sys-
tems is further substantiated by a multi–channel scatter-

ing treatment in the 3–body and 4–body continua with
an analysis of the eigenphaseshifts and Wigner–Smith
time delay or density of states. It has been shown that
the long–range behavior of the adiabatic potentials devi-
ates from the non–interacting ρ−2 by an attractive ρ−3

behavior proportional to the s–wave scattering length.
This attractive long–range term greatly influences the
low–energy behavior of the eigenphaseshifts and in–turn,
leading to a 1/

√
E enhancement of dependence of the

density of states at low energy. This enhancement of
the density of states could suggest an explanation for the
low–energy signature observed in the Kisamori et al. ex-
periment in 2016 [2], despite the fact that there is no
peak in the density of states and no rapid increase in
the eigenphaseshift of the type associated with a reso-
nance. A multichannel treatment of few–neutron scat-
tering was performed to include non–adiabatic coupling
to excited states. This treatment showed little change in
the energy–dependent phaseshift in the energy region of
interest, which demonstrates that these systems can be
accurately treated in a non–adiabatic picture.

Universal physics has also been studied and shown to
be relevant for understanding these few neutrons systems
due to the large size of the s–wave scattering length rel-
ative to the range of the nn interaction. The fact that
the adiabatic potentials computed using a simple Gaus-
sian interaction agree accurately with those using the full
AV8′ potential provides strong evidence that these sys-
tems exhibit universal physics. Furthermore, the 3n and
4n systems have also been treated with different realis-
tic nucleon–nucleon interactions from chiral effective field
theory using the HH basis. The potentials using these
interaction models all show qualitative agreement in the
region of hyperradii where the HH basis is well converged.
The universal behavior in these systems has been eluci-
dated by studying the scattering length dependence of
the long–range behavior of the lowest few adiabatic po-
tentials using a Gaussian two–body interaction. At large
ratios of the s–wave scattering length to the range of the
potential (|as/r0| ≥ 10), the long–range ρ−3 coefficient
depends linearly on the scattering length, consistent with
what is expected with a delta–function contact potential.
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