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The historic first detection of the binary neutron star merger GW170817 by the LIGO-Virgo
collaboration has set a limit on the gravitational deformability of neutron stars. In contrast, radio
observations of PSR J0740+6620 find a very massive neutron star. Tension between the small
deformability and the large maximum mass may suggest that the pressure rises rapidly with density
and thus the speed of sound in dense matter is likely a large fraction of the speed of light. We use
these observations and simple constant sound-speed model equations of state to set a lower bound
on the maximum speed of sound in neutron stars. If the tidal deformability of a 1.4M� neutron
star is less than 600, as is suggested by subsequent analyses of GW170817, we find that the sound
speed in the cores of neutron stars is likely larger than the conformal limit of c/

√
3. Implications

of this for our understanding of both hadronic and quark-gluon descriptions of dense matter are
discussed.

I. INTRODUCTION

The historic gravitational wave observations of the
binary neutron star (BNS) merger GW170817 impose
significant constraints on the equation of state (EOS)
of dense matter and limit the tidal polarizability Λ.
The tidal polarizability (or deformability) is an intrin-
sic neutron-star (NS) property highly sensitive to the
stellar compactness [1–6] that describes the tendency of
a NS to develop a mass quadrupole as a response to
the tidal field induced by its companion [7, 8]. The di-
mensionless tidal polarizability Λ is defined as follows:
Λ = 2

3k2(c2R/GM)5 where k2 is the second Love num-
ber [9, 10], and M and R are the neutron star mass and
radius, respectively. A great virtue of the tidal polariz-
ability is its high sensitivity to the NS radius (Λ ∼R5)
a quantity that has been notoriously difficult to con-
strain [11–21].

Pictorially, a “fluffy” neutron star having a large radius
is much easier to polarize than the corresponding com-
pact star with the same mass but a smaller radius. This
can be achieved by having an EOS with low pressure at
densities near twice nuclear (energy) density, 2ρ0. There-
fore, if the EOS has too high a pressure, neutron stars will
be too extended and polarizable to be consistent with the
gravitational wave data. Remarkably, the tidal polariz-
ability determined from the first BNS merger is already
stringent enough to rule out a significant number of previ-
ously viable EOSs [22] for this very reason. Furthermore
this limit on the deformability has been made even more
stringent by requiring both NS to have the same EOS
[23, 24], see also [25].

In contrast, radio observations [26, 27] have set an im-
portant lower bound on the maximum mass of a neutron
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star. In 2010 Demorest et al. found a nearly two solar
mass neutron star [26] and more recently, measurement
of Shapiro delay determined that the millisecond pulsar
PSR J0740+6620 has a mass of 2.14+0.10

−0.09M� [27]. This
large mass NS is supported by an EOS with high pres-
sure at high densities above 2ρ0. Its observation rules
out all EOSs with too low a pressure at these densities to
prevent collapse of the star to a black hole.

The deformability is most sensitive to the pressure near
twice nuclear density ρ0 while the maximum mass de-
pends on the pressure at higher densities. Therefore a
small deformability and a large maximum mass can be si-
multaneously obtained with an EOS that has a relatively
low pressure near 2ρ0 and then has a rapidly increasing
pressure at higher densities. The tension between small
deformability and large maximum mass is manifest in a
possible rapid increase in the pressure p with density ρ,
implying a large speed of sound cs =

√
dp/dρ, in units

of the speed of light c.

Bedaque and Steiner [28] and Moustakidis et al. [29]
have previously discussed the speed of sound in dense
matter although these works were done before the de-
formability observations from GW170817. Alford, Han,
and Prakash found that the sound speed likely lies above
the conformal limit of cs = 1/

√
3 when investigating

generic hybrid stars’ EOS, suggesting that quark mat-
ter at these densities may be strongly interacting [30].
Tews et al. [31] as well as Chamel et al. [32] also find
that the speed of sound in dense matter may be large
by considering the maximum mass and radius of a NS.
However, X-ray observations of NS radii may be more
model dependent than gravitational wave observations
of Λ. More recently, Margaritis et al. claim that the
sound speed likely exceeds the conformal limit by study-
ing maximally rotating neutron stars [33].

In this paper, we explore a possible tension between
the upper limit on the deformability, which favors a soft
(low pressure) EOS, and the large limit on the maximum
mass, which favors a stiff (high pressure) EOS. This ten-
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sion may be resolved by considering a large sound speed
in the dense matter EOS of a neutron star. In Sec. II,
we calculate several EOS by modifying twelve represen-
tative EOSs to include a sharp phase transition at high
density with a constant sound speed. Han and Steiner
have shown that such a transition is effective at reducing
the deformability [34]. In Sec. III, we present our calcu-
lations of Λ and the sound speed and determine a range
of sound speeds which are consistent with the deforma-
bility constraints from GW170817. Finally, we discuss
the implications of our findings in Sec. IV and conclude
in Sec. V.

II. MODIFIED EQUATIONS OF STATE

A. Constant Sound Speed EOS

We illustrate tensions between the maximum mass of
neutron stars and Λ by modifying some model EOSs in a
simple way to reduce the deformability while maintaining
a large maximum mass. We consider various relativistic
and non-relativistic model EOSs at low densities ρ < ρ1,

p(ρ < ρ1) = pmodel(ρ) . (1)

In general we choose ρ1 = ρ0 = 150 MeV/fm3 to be
equal to nuclear density. This may be the lowest density
where significant changes in the EOS are still possible
without modifying known nuclear structure results. For
example the PREX, PREX II, and CREX experiments,
that measure the neutron skin thickness of 208Pb and
48Ca, constrain the pressure near 0.66ρ0 [35–38].

At higher densities ρ > ρ1, we assume a first order
phase transition where the pressure becomes,

p(ρ > ρ1) = pmodel(ρ1) + (ρ− ρ2)C2
sΘ(ρ− ρ2) . (2)

Here ρ2, and C2
s are constants. We choose C2

s so that
the maximum mass of a NS is 2.1M� (consistent with
the PSR J0740+6620 observations) and Θ(ρ− ρ2) is the
Heaviside step function. The high density phase has den-
sity ρ2 and a sound speed squared of C2

s in units of c2.
This forces our EOS at high densities ρ > ρ2 to have
a constant speed of sound equal to cs =

√
C2
s . Some

examples of our EOSs are plotted in Fig. 1 using the
relativistic IUFSU [39] model for pmodel(ρ) . We list all
model EOSs used in Table I.

We do not necessarily expect the speed of sound to
be constant (independent of density) in the core of a
NS. However our choice of a constant sound speed may
provide a conservative lower estimate for the maximum
speed of sound in dense matter. This constant sound
speed model has been a very powerful choice EOS for ex-
amining neutron star properties with a generic EOS [e.g.
30, 34, 40]. If the speed of sound is smaller for some
densities, it may be necessary for the speed of sound to
be even larger at other densities in order to support the
same maximum mass. Our assumption of a sharp first

FIG. 1: (Color on line) Equation of state — pressure p versus
energy density ρ. A model EOS, in this case the IUFSU
relativistic mean field EOS is shown as the solid black line
while the dotted red line shows Eq. 2 with ρ2 = 240 MeV/fm3

and C2
s = 0.365. Finally the dashed blue line shows Eq. 2

with ρ2 = 572 MeV/fm3 and C2
s = 1.

order phase transition with dp/dρ = 0 (for ρ1 < ρ < ρ2)
is a convenient way to decrease the deformability signif-
icantly [34]. If instead of a phase transition, one has
a density region where dp/dρ is small, we expect qual-
itatively similar results although with somewhat larger
values of Λ.

B. Tidal Deformability Calculation

After one solves the Tolman-Oppenheimer-Volkoff
(TOV) equations for the structure of a NS, we then only
need to calculate the second Love number k2 in the cal-
culation of Λ. The second Love number is calculated via:

k2 =
1

20
ξ5(1− ξ)2

[
(2− yR) + (yR − 1)ξ

]
×{[

(6− 3yR) +
3

2
(5yR − 8)ξ

]
ξ+

1

2

[
(13− 11yR +

1

2
(3yR − 2)ξ +

1

2
(1 + yR)ξ2

]
ξ2+

3
[
(2− yR) + (yR − 1)ξ

]
(1− ξ)2 ln(1− ξ)

}−1
(3)

Here ξ is the stellar compactness defined as ξ =
2GM/c2R and yR = y(R) is a dimensionless quantity
which is calculated by solving the following nonlinear dif-
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ferential equation:

r
dy

dr
+ y2 + F (r)y + r2Q(r) = 0 (4)

with the initial condition y(0) = 2. The functions F (r)
and Q(r) are given from:

F (r) =
r − 4πGr3(ρ(r)− p(r))

r − 2GM(r)
(5)

Q(r) =
4πr

r − 2GM(r)

[
G
(

5ρ(r) + 9p(r) +
ρ(r) + p(r)

c2s(r)

)
− 6

4πr2

]
− 4
[G(M(r) + 4πr3p(r))

r(r − 2GM(r))

]2
(6)

in units where c = 1 [1, 41].
Normally one would simply use the results from solving

the TOV equations to then integrate Eq. 4 outward to
the surface of the star and then solve for k2 with Eq. 3.
However, it should be noted that due to the phase tran-
sition in the EOS we have implemented, there is a point
in which there is a discontinuity in the sound speed when
the density sharply goes from ρ2 → ρ1. Because of this,
one must treat this point with special care in the calcu-
lation of y(r) as found in refs. [4, 34]. This discontinuity
in y(r) can be alleviated by taking the Taylor expansion
of y(r) around the radius where the discontinuity takes
place, rd. Explicitly this is done via:

lim
h→0

y(rd + h) = y(rd − h)− 3
ρ2 − ρ1

ρ̄
(7)

where ρ̄ is 3M(rd)
4πr3d

, the average density of the core at rd.

For more details see ref. [4].
To summarize, we generate new EOSs using Eqs. 1

and 2 by picking a model EOS at low density and fixing
ρ1 = 150 MeV/fm3. Next, a value for ρ2 is chosen and C2

s

adjusted so that the maximum NS mass is 2.1M�. All
of our EOSs have this maximum mass. The defomability
of a 1.4M� NS (Λ1.4) is calculated as in refs. [4, 42].
This procedure is repeated for increasing ρ2 values until
C2
s = 1.

III. RESULTS

The resulting values of sound speed squared C2
s and

the deformability Λ1.4 are shown in Fig. 2. We find
that our C2

s values depend only slightly on the choice of
model low density EOS. Thus, we have a narrow band
of C2

s values as seen in Fig. 2. We expect the actual
maximum value of the speed of sound, for realistic EOSs
with varying sound speeds, to be above this band.

The C2
s band rapidly increases as Λ1.4 decreases. This

means, for example, if future GW observations deter-
mine Λ1.4 to be ≈ 190 (the central value of the LIGO
GW170817 observations, Λ1.4 = 190+390

−120) then Fig. 2

suggests C2
s > 0.55. Thus the maximum value of the

FIG. 2: Square of the speed of sound C2
s versus deformabil-

ity Λ1.4 of a 1.4 M� neutron star. The shaded region rep-
resents the range of sound speeds from the EOSs shown in
Table I. The red and blue curves correspond to the Λ1.4-
C2

s relations with ρ1 = 225 MeV/fm3 (dashed) and with
ρ1 = 300 MeV/fm3 (dash-dot). The choice of using the EOSs
GNH3 and WFF2 here is to represent the upper and lower-
most bounds on sound speed. Also shown by the vertical
dotted lines are the LIGO observation Λ1.4 = 190+390

−120 from
GW170817 [23]. The solid horizontal line represents where
C2

s = 1/3.

speed of sound in a neutron star exceeds 0.74c. We con-
clude from Fig. 2 that the maximum speed of sound in
a NS is likely large (assuming Λ1.4 is indeed small). Fur-
thermore, this conclusion is greatly strengthened if future
observations further limit Λ1.4.

We also partially explore the possibility of a phase
transition at densities ρ1 greater than ρ0 in Fig. 2. We
find that C2

s increases for larger ρ1 as there is more of
the nuclear EOS core that makes up the structure of the
star. However, the model dependence is larger than in
choosing ρ1 = ρ0, thus the constraints on C2

s are larger
and broader. Additionally, we vary the maximum mass
constraint to coincide with the 2σ errors on the mass
of PSR J0740+6620. Our result that the sound speed is
likely large does not change, but the exact bound changes
slightly depending on the maximum mass.

Figure 3 shows C2
s versus the radius of a 1.4M� NS

(R1.4). Like Fig. 2 this shows that C2
s is large if R1.4

is small. However now there is more dependence on the
model low density EOS. One way to think about this ex-
tra model dependence is if an extra low density region is
added to a NS. This could increase R1.4 without chang-
ing Λ1.4 very much. Thus R1.4 may be more sensitive to
exactly how the crust is treated than Λ1.4 [43].
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FIG. 3: Square of the speed of sound C2
s , in units of c2,

versus radius R1.4 of a 1.4 M� neutron star. Like in Fig.
2, the shaded region represents the full extent of our EOSs.
The dashed and dot-dash lines indicate EOSs where ρ1 = 225
MeV/fm3 and ρ1 = 300 MeV/fm3 respectively.

Figure 2 reveals a minimum value for Λ1.4 that occurs
when C2

s = 1. If an EOS supports a 2.1M� NS, and the
EOS does not differ widely from nuclear physics expec-
tations at low densities, then causality requires Λ1.4 to
be larger than this limit. These minimum deformabilities
are provided in Table I. For all of the EOSs in Table I
our absolute lower limit on deformability is Λ1.4 ≥ 77.35.
This (mostly) EOS independent lower bound on Λ1.4 may
help distinguish neutron stars from black holes.

IV. DISCUSSION AND IMPLICATIONS

We will now discuss several implications of a large
sound speed for the nature of dense matter. The speed of
sound for massless weakly interacting quarks and gluons
is ≈ 3−1/2c. Asymptotic freedom in QCD implies that
this should be the sound speed in the limit of extremely
high densities where the interactions between quarks and
gluons are expected to be weak. Our finding that cs likely
exceeds 3−1/2c suggests that QCD matter at NS densities
is not asymptotically free, but instead strong interactions
may be present that increase cs.

Zel’dovich showed that interactions from the exchange
of massive vector particles can increase cs from 3−1/2c to
c [44]. Walecka [45] and others, see for example [46–48],
developed relativistic meson baryon field theory models
to describe dense matter. Here nucleons interact via the
exchange of scalar (sigma), vector (omega), and possibly

other mesons. Omega exchange naturally leads to these
models predicting cs → c at high densities. Therefore,
these models typically predict a high cs for the dense mat-
ter in neutron stars and may easily satisfy our bounds.

Alternatively, a more traditional picture of nuclear
matter has non-relativistic nucleons interacting via two
and three nucleon potentials [49]. Here the two nucleon
potential is thought to have a repulsive core at short dis-
tances that causes the s-wave phase shifts to become neg-
ative at high energies. In a one-boson exchange picture
[50] this hard core has important contributions from the
exchange of omega mesons. Thus the traditional nucleon
hard core is likely closely related to the massive vector
exchange of relativistic models.

One might expect the nucleon hard cores to give very
repulsive contributions and a large sound speed when
the cores start to strongly overlap. Interestingly, nu-
clear matter saturation has proven to be somewhat subtle
and likely involves important contributions from three or
more body forces [51, 52]. Many traditional calculations
with only two nucleon forces saturate nuclear matter at
too high a density (perhaps twice nuclear density). This
suggests that the hard cores may be somewhat smaller
than the distance between nucleons at normal nuclear
density and that the hard cores may not overlap strongly
until higher densities. If this is the case, then there may
be a higher density, perhaps a few times nuclear density,
where the hard cores do interact strongly and this likely
would cause a large sound speed. For example, the non-
relativistic EOS of Akmal, Pandharipande, and Raven-
hall (APR) [53] has a very high sound speed that even
exceeds c at very high densities. This acausal behavior
shows that the non-relativistic formalism is incomplete.
Nevertheless, the large sound speed may be qualitatively
correct.

More recently, chiral effective field theory (CEFT) pro-
vides a very useful framework to describe neutron rich
matter at low densities, see for example [54]. Here inter-
actions are expanded in powers of momentum transfer
over a chiral scale [55–57]. Long range pion exchanges
between nucleons are treated explicitly. However, any
shorter range contributions from the exchange of heav-
ier mesons such as omegas are not calculated explicitly.
Instead their contributions are included with a series of
contact terms. These contact terms may not cleanly re-
solve the size of any possible nucleon hard cores and thus
CEFT may not be able to accurately predict the density
where the hard cores first start to strongly overlap. In-
deed the chiral expansion is only expected to converge at
low densities. We concluded that the high sound speed in
neutron stars may occur at high densities beyond where
CEFT converges. Nevertheless, the high sound speed
observed in neutron stars may provide insight into how
the chiral expansion breaks down. The high sound speed
suggests it breaks down in such a way that a series of
higher order terms all contribute coherently to enhance
the sound speed.

Hadronic descriptions, be they relativistic models with
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EOS C2
s R1.4 ρ2 Λmin

[km] [MeV/fm3]
IUFSU [39] 0.588 10.58 382.98 79.48

FSUGarnet[58] 0.589 10.60 384.36 79.87
FSUGold 2 [59] 0.609 11.05 400.08 82.64

FSUGold 2H [60] 0.590 10.53 384.29 79.47
FSUGold 2R [60] 0.586 10.56 382.70 78.74

NL3 [61] 0.613 11.08 403.31 83.81
GNH3 [62] 0.646 10.71 419.72 89.30
BSk21 [63] 0.583 10.41 380.09 79.29
WFF2 [64] 0.576 10.36 374.56 77.35
MPA1 [65] 0.607 10.28 393.16 82.78
SLy [66] 0.596 10.36 387.54 80.88
FPS [67] 0.581 10.34 378.23 78.46

TABLE I: Comprehensive list of the EOSs used in the text.
We report here the values of the square of the sound speed in
units of c, ρ2 in MeV/fm3, and the radius in km of a 1.4M�
NS at a fixed Λ1.4 = 190, the central value given from the
LIGO observation of GW170817 [23]. We also show the min-
imum deformabilities of each EOS, determined from where
C2

s = 1. We have chosen C2
s so that all EOSs have a maxi-

mum NS mass of 2.1M�.

vector exchange, non-relativistic models with hard cores,
or CEFT raise a fundamental question. At NS densi-
ties, can one still describe matter in hadronic (meson and
baryon) degrees of freedom or must one describe it with
quarks and gluons? Our result of a large sound speed
is consistent with meson and baryon degrees of freedom
still being applicable at NS densities. It is not consistent
with asymptotically free quarks and gluons.

However, one may be able to describe NS matter with
quark and gluon degrees of freedom, provided one in-
cludes strong interactions between the quarks [68]. Thus
cold dense matter in a NS may be a strongly interact-
ing quark gluon plasma just as hot dense matter in rel-
ativistic heavy ion collisions at RHIC or the LHC is ob-
served to form a strongly interacting quark gluon plasma
[69, 70]. Here strong interactions reduce the quark and
gluon mean free paths and lead to a small shear viscosity.

One example of a quark model with strong interactions
and a high sound speed is Quarkyonic Matter [71]. Al-
ternatively, strongly interacting quark matter could look
very much like strongly interacting hadronic matter, see
for example [72].

V. CONCLUSION

In conclusion, gravitational wave observations of the
neutron star merger GW170817 limit the deformabil-
ity of neutron stars and favor low pressure equations of
state (EOS). In contrast, radio observations of the very
massive millisecond pulsar PSR J0740+6620 favor high
pressure EOS. Tension between these two observations
suggest that the pressure rises rapidly with density and
therefore the speed of sound in dense matter may be large
— a significant fraction of the speed of light. Given these
observations, we have used simple model EOSs to place
a lower limit on the speed of sound in dense matter. The
speed of sound must be above the green band in Fig. 2.
Our bound becomes even more stringent if future gravi-
tational wave observations further reduce the upper limit
on Λ1.4. This lower limit on sound speed has important
implications for many different hadronic and quark gluon
descriptions of dense matter.
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