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We report benchmark calculations of the energy per particle of pure neutron matter as a function
of the baryon density using three independent many-body methods: Brueckner–Bethe–Goldstone,
Fermi hypernetted chain/single-operator chain, and auxiliary-field diffusion Monte Carlo. Significant
technical improvements are implemented in the latter two methods. The calculations are made for
two distinct families of realistic coordinate-space nucleon-nucleon potentials fit to scattering data,
including the standard Argonne v18 interaction and two of its simplified versions, and four of the
new Norfolk ∆-full chiral effective field theory potentials. Primarily because of the advancements in
the auxiliary-field diffusion Monte Carlo, we observe good agreement among the three many-body
techniques up to nuclear saturation density – the maximum difference in the energy per particle is
within 1.5 MeV for all the potentials we consider. At higher densities, the divergences become more
important, and are mainly driven by the Fermi hypernetted chain/single-operator calculations. We
also study the connection between nucleon-nucleon scattering data and the energy per particle of
pure neutron matter. Our results suggest that fitting to higher-energy nucleon-nucleon scattering
helps reduce the spread of energies among the models.

I. INTRODUCTION

The quest for understanding static and dynamic prop-
erties of nuclear systems in terms of nucleon-nucleon
(NN) and three-nucleon (3N) forces, and consistent elec-
troweak currents has long been considered one of the
most challenging efforts of nuclear theory. Over the
past twenty years, establishing this microscopic approach
to nuclear physics has undergone substantial progress,
driven by two major factors. First, since the advent of
chiral effective field theory (χEFT), originally proposed
by Weinberg in the early 1990’s [1, 2], we can now sys-
tematically develop nuclear many-body interactions [3–6]
and consistent electroweak currents [7–13] that are rooted
in the fundamental symmetries exhibited by the underly-
ing theory of quantum chromodynamics. Second, present
computational resources allow us to employ these interac-
tions and currents in sophisticated many-body methods
to compute a variety of nuclear systems with controlled
approximations [14–20]. The chief challenge for this mi-
croscopic approach is to accurately describe atomic nu-
clei – including their spectra, form factors, transitions,
low-energy scattering, and response – while simultane-
ously predicting properties of infinite matter, e.g., pure
neutron matter (PNM), relevant to the structure and in-
ternal composition of neutron stars.

The last few years has marked the birth of the multi-
messenger astronomy era [21], which has opened new
windows to probe the constituents of matter and their
interactions under extreme conditions that cannot be
reproduced in terrestrial laboratories. The first direct
detection of gravitational-waves from coalescing neutron
stars by the LIGO-Virgo interferometer network [22, 23],

followed by a short burst of γ rays and later optical and
infrared signals – the event GW170817 [21, 24] – effec-
tively constrains their masses, spins and tidal deforma-
bility [25–27]. In addition, the multiple measurements
of two-solar masses neutron stars [28–32] are posing in-
triguing questions about how dense matter can support
such large masses against gravitational collapse.

The equation of state (EoS) of strongly interacting
matter is a thermodynamic relation between the en-
ergy (pressure), the baryon density, and the tempera-
ture. Whilst the description of core-collapse supernovae
and the formation and cooling of proton-neutron stars re-
quires the finite-temperature EoS, already a few minutes
after its birth, neutron star properties can be safely de-
scribed using the EoS of cold (zero temperature) neutron-
rich matter [33]. In the region between the inner crust
and the outer core (∼ 0.5 − 2ρ0, with ρ0 = 0.16 fm−3

being the nuclear saturation density), neutron stars are
mainly comprised of neutrons, in β equilibrium with a
small fraction of protons, electrons and muons. Different
scenarios have been suggested to model the high-density
regime, from nucleon degrees of freedom only but with
many-nucleon forces and relativistic effects [34–44], to
including the formation of heavier baryons containing
strange quarks [45–49], to quark matter [50–53], or other
more exotic condensates [54–56]. While the determina-
tion of the maximum mass of a neutron star requires
knowing the EoS up to several times nuclear saturation
density, it is the region up to ∼ 2ρ0 that effectively con-
trols their radii. In this density regime, the PNM EoS
can play an important role for testing the microscopic
model Hamiltonians fit to NN scattering data and few-
body observables against astrophysical constraints. On
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the other hand, microscopic calculations of the EoS with
reliable error estimates up to 2ρ0 provide useful insights
on how measurements of the tidal polarizabilities from bi-
nary neutron-star mergers can unravel properties of mat-
ter at supra-nuclear densities [26].

In addition to the uncertainties arising from mod-
eling the nuclear Hamiltonian, which can in principle
be assessed by testing the order-by-order convergence
of the chiral expansion [57], microscopic calculations
of the EoS are also affected by the approximations in-
herent to the method used for solving the many-body
Schrödinger equation. To gauge them, we perform bench-
mark calculations of the energy per particle of pure neu-
tron matter as a function of the baryon density using
three independent many-body methods: the Brueckner–
Bethe–Goldstone (BBG) [15, 58], the Fermi hypernetted
chain/single-operator chain (FHNC/SOC) [59, 60], and
the auxiliary-field diffusion Monte Carlo (AFDMC) [61].
In our analysis, we consider the widely-used Argonne
v18 (AV18) NN potential [62] – and its simplified ver-
sions AV8′ and AV6′ [63] – and the recently derived Nor-
folk NV2 χEFT NN forces [64, 65], which explicitly in-
clude the ∆ isobar intermediate state. Whilst the BBG
method is not limited to interactions that are local in co-
ordinate space, the latter are simpler to treat in contin-
uum quantum Monte Carlo (QMC) methods because the
two-body propagator is essentially positive definite [66].
FHNC/SOC is also ideally suited to deal with local po-
tentials, as non-localities introduce high-order derivatives
that are non-trivial to account for in the hypernetted
chain equations.

The scope of this work is not to achieve a realistic
description of the EoS of PNM, which would require
the inclusion of many-nucleon forces, as for instance in
Refs. [34–36, 43, 44]. We are rather mostly interested
in quantitatively assessing the systematic error of the
different many-body approaches and how this error de-
pends upon the nuclear interaction of choice. The au-
thors of Ref. [67] argued that the discrepancies among
the methods are particularly susceptible to the spin-orbit
components of the NN force. To identify and reduce
these differences, we implement two major advancements
in the AFDMC algorithm, both in the sampling proce-
dure and in the way the fermion sign problem is con-
trolled, in a similar fashion as recently done for atomic
nuclei [68, 69]. The FHNC/SOC approach is also made
more accurate by including classes of elementary dia-
grams that have been disregarded in earlier applications
of the method. As compared to the FHNC/SOC results
reported in Ref. [67], here we also include spin-orbit cor-
relations, which turns out to be the numerically more
important difference.

Recently, the scale dependence of both AV18 and the
local χEFT interactions of Refs. [70, 71] has been in-
vestigated analyzing their predictions for NN scattering
data and deuteron properties [72]. The main conclusion
of that work is that phenomenological potentials appear
to be best suited to study the high-density region of the

EoS. Here, we extend this analysis comparing the energy
per particle of PNM as obtained from both the Argonne
and Norfolk NN interactions, relating their predictive
power in describing the EoS at ρ > ρ0 to their capability
of reproducing NN scattering data as a function of the
laboratory energy.

The plan of this paper is as follows. The Argonne and
Norfolk Hamiltonians are described in Sec. II, where we
also show the phase shifts predicted by the various NN
potentials. The many-body methods employed for calcu-
lating the EoS of PNM are reviewed in Sec. III, along with
a detailed discussions of their technical improvements.
The results obtained within the BBG, FHNC/SOC, and
AFDMC approaches for the different Hamiltonians are
benchmarked in Sec. IV. Finally, in Sec. V we summa-
rize our findings and draw our conclusions.

II. NUCLEAR INTERACTIONS

In recent years local, configuration-space chiral inter-
actions, well suited for use in QMC calculations of light-
nuclei spectra and neutron-matter properties, have been
derived by two groups [43, 70, 71, 73–76]. In this paper,
we will base our calculations on high-quality local po-
tentials derived from a χEFT that explicitly includes—
in addition to nucleons and virtual pions—virtual ∆’s
as degrees of freedom [64, 65, 76, 77]. The two-nucleon
part (NN) of such local interactions is written as the
sum of an electromagnetic interaction component, vEM

ij ,
(as in Ref. [62]), and a strong-interaction component,
vij , characterized by long- and short-range parts [65],
respectively vLij and vSij . The vLij part includes one-pion-
exchange (OPE) and two-pion-exchange (TPE) terms up
to next-to-next-to-leading order (N2LO) in the chiral ex-
pansion [64], derived in the static limit from leading and
sub-leading πN and πN∆ chiral Lagrangians. The radial
functions involved in the definition of vLij are explicitly
given in Appendix A of Ref. [64]. They are singular at
the origin (they behave as 1/rnij with rij = |ri − rj | and
n taking on values up to n = 6), and each is regularized
by a cutoff of the form

CRL
(rij) = 1− 1

(rij/RL)6 e(rij−RL)/aL + 1
, (1)

where three values for the radius RL = (0.8, 1.0, 1.2) fm
are considered with the diffuseness fixed at aL = RL/2
in each case.

The vS12 part, however, is described by contact terms
up to next-to-next-to-next-to-leading order (N3LO) [65],
characterized by 26 low-energy constants (LECs). These
interactions have been recently constrained to a large
set of NN -scattering data, as assembled by the Granada
group [78], including the deuteron ground-state energy
and two-neutron scattering length. The radial functions
entering the vS12 component are the same as those listed
in Appendix B of Ref. [64], and involve a local regulator
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(to replace the δ functions) taken as

CRS
(rij) =

1

π3/2R3
S

e−(rij/RS)
2

, (2)

where we consider, in combination with RL =
(0.8, 1.0, 1.2) fm, RS = (0.6, 0.7, 0.8) fm, corresponding
to typical momentum-space cutoffs ΛS = 2~c/RS rang-
ing from about 660 MeV down to 500 MeV.

We constructed two classes of NN interactions, which
only differ in the range of laboratory energy over which
the fits were carried out, either 0–125 MeV in class I or 0–
200 MeV in class II. For each class, three different sets of
cutoff radii (RS, RL) were considered (RS, RL) = (0.8, 1.2)
fm in set a, (0.7,1.0) fm in set b, and (0.6,0.8) fm in set
c. We are referring to these high-quality NN interactions
generically as the Norfolk (NV2) potentials, and denote
those in class I as NV2-Ia, NV2-Ib, and NV2-Ic, and
those in class II as NV2-IIa, NV2-IIb, and NV2-IIc.

For the purpose of this paper, we will focus our at-
tention on calculations of the EoS of neutron matter in-
volving the NV2 local chiral NN interactions described
above and leave the inclusion of the corresponding three-
nucleon force [13, 76, 77] to future study. Comparison
will be made with the phenomenological AV18 poten-
tial [62]. Both the Argonne and Norfolk interactions are
defined in coordinate space as

vij =

N∑
p=1

vp(rij)O
p
ij (3)

with rij = |ri − rj |. For the Argonne potential N = 18
– hence the name Argonne v18 or AV18 – while the NV2
potentials have N = 16. The bulk of the NN interaction
is encoded in the first eight operators

Op=1−8
ij = [1, σij , Sij ,L · S]⊗ [1, τij ] , (4)

which are the same for both AV18 and the NV2s. In the
above equation we introduced σij = σi·σj and τij = τi·τj
with σi and τi being the Pauli matrices acting in the spin
and isospin space. The tensor operator is given by

Sij =
3

r2ij
(σi · rij)(σj · rij)− σij , (5)

while the spin-orbit contribution is expressed in terms of
the relative angular momentum L = 1

2i (ri − rj)× (∇i −
∇j) and the total spin S = 1

2 (σi + σj) of the pair. For
AV18 there are six additional charge-independent oper-
ators corresponding to p = 9 − 14 that are quadratic in
L, while the p = 15− 18 are charge-independence break-
ing terms. In contrast, the NV2 potentials have three
charge-independent operators quadratic in L, and five
charge-independence breaking terms.

It is useful to define simpler versions of the AV18 and
NV2 potentials with fewer operators: a v′8 with the eight
operators of Eq. (4) and a v′6 without the L · S ⊗ [1, τij ]
terms [63, 79]. The v′8 is a reprojection (rather than

a simple truncation) of the strong-interaction potential
that reproduces the charge-independent average of 1S0,
3S1-3D1, 1P1, 3P0, 3P1, and (almost) 3P2 phase shifts by
construction, while overbinding the deuteron by 18 keV
due to the omission of electromagnetic terms. The v′6
is (mostly) a truncation of v′8 which reproduces 1S0 and
1P1 partial waves, makes a slight adjustment to (almost)
match the v′8 deuteron and 3S1-3D1 partial waves, but
will no longer split the 3PJ partial waves properly. We
will refer to these variations of the Argonne potential as
AV8′ and AV6′.

In strongly degenerate systems of fermions, such as the
low-temperature nucleonic matter forming the interior of
neutron stars, collisions primarily involve nucleons occu-
pying states close to the Fermi surface. As a consequence,
in the case of head-on scattering, a relation can be easily
established between the kinetic energy of the beam par-
ticle in the lab frame, Elab, and the Fermi energy EF ,
which in turn is simply related to the baryon density ρ.
The resulting expression in PNM is

Elab = 2Ecm = 4EF =
2~2

m
(3π2ρ)2/3 (6)

In Ref. [72] the above expression has been utilized to
gauge the predictive power of NN potential models in
describing the high-density regime of PNM. Along the
same line, Fig. 1 illustrates the energy dependence of the
proton-neutron scattering phase shifts in the 1S0, 3P0,
3P1, 3P2, ε2, and 1D2 partial waves comparing the AV6′,
AV8′, and AV18 potentials with the analysis of Ref. [80].
In Fig. 2 we show the predictions for the same quantities
obtained from the set of NV2 ∆-full local χEFT inter-
actions discussed above. The density of PNM obtained
from Eq. (6) with Elab = 2Ecm is reported on the top axis
of the figures in units of the nuclear saturation density
ρ0 = 0.16 fm−3. The AV18 interaction provides an accu-
rate description of the scattering data up to Elab ' 600
MeV and appears to be applicable to describe properties
of PNM at least up to ρ ' 4ρ0. The greatest discrepancy
appears in the 1D2 channel, where inelasticity becomes
important at higher energy.

As opposed to the AV18 potential, χEFT models,
which are based on low momentum expansion, are intrin-
sically limited in describing dense systems, in which NN
interactions involve high energies. In addition, chiral po-
tentials depend on regulator function that smoothly cuts
off one- and two-pion exchange interactions at short dis-
tances, and the choice of such cutoff, here defined as RS ,
plays a crucial role in describing short-range dynamics.
In Fig. 2, we notice that the chiral model NV2-IIb, which
is fitted at higher energies (Elab = 200 MeV) with a hard
cutoff (∼ 600 MeV in momentum-space) achieves a bet-
ter description of the S- and P - phase shifts up to ∼ 600
MeV. Such a model performs very like the AV18, which
has been fitted up to the pion production threshold (Elab

= 350 MeV) with a very hard cutoff (∼ 1 GeV).
It has to be noted that the ability of reproducing NN

scattering data at relatively large Elab ' 600 has to
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FIG. 1. Neutron-proton scattering phase shifts in the 1S0,
3P0, 3P1, and 3P2, ε2, and 1D2

channels, as a function of kinetic energy of the beam particle
in the laboratory frame (bottom axis). The corresponding

densities of PNM – in units of ρ0 – are given in the top axis.
The long-dashed-dotted, the dashed- and the solid lines

represent the AV6′, AV8′, and AV18 predictions, while the
solid dots are from the SM16 solution of Ref. [80].

be considered a necessary, rather than sufficient, con-
dition to accurately describe neutron matter properties
at supra-nuclear densities. It is always possible to per-
form a unitary transformation of the two-body potential
that leaves the phase-shifts unchanged [81]. In general,
the transformed interaction would behave very differently
from the bare one in the infinite medium, and one needs
to account for the induced many-body interactions to re-
cover the original results.

III. MANY-BODY METHODS

In this section we review the many-body methods em-
ployed for calculating the EoS of PNM and provide a
detailed discussions of their technical improvements. In
all approaches the two-body interaction vij is the only
physical input for the numerical calculations. We note
that while AFDMC and FHNC/SOC techniques are lim-
ited to semi-local interactions, the BBG method can also
treat potentials not formulated in coordinate space.
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FIG. 2. Same as Fig. 1, but for the NV2 ∆-full local χEFT
interactions. The dashed- and short-dashed-dotted lines rep-
resent the predictions for the NV2-Ia and NV2-IIa models,
having RS = 0.8 fm and, respectively, constrained to NN -
scattering data up to 125 and 200 MeV laboratory energy.
The long-dashed-dotted and the solid lines show results for
the NV2-Ib and NV2-IIb models, having RS = 0.7 fm and,
respectively, constrained to NN -scattering data up to 125 and
200 MeV laboratory energy. The solid dots are from the SM16
solution of Ref. [80].

A. Brueckner–Bethe–Goldstone many-body theory

The Brueckner–Bethe–Goldstone many-body theory
(see e.g., [15, 58]) is based on a linked cluster expan-
sion (the so-called hole-line expansion) of the energy per
nucleon E/A of nuclear matter. The various terms of the
expansion can be represented by Goldstone diagrams [82]
grouped according to the number of independent hole-
lines (i.e., lines representing empty single particle states
in the Fermi sea). The basic ingredient in this approach is
the Brueckner reaction matrix G [83, 84] which sums, in
a closed form, the infinite series of the so-called ladder di-
agrams and allows treatment of the short-range strongly
repulsive part of the nucleon-nucleon interaction. The G-
matrix can be obtained by solving the Bethe–Goldstone
equation [85]

G(ω) = V + V
∑
ka,kb

| ka,kb〉Q 〈ka,kb |
ω − ε(ka)− ε(kb) + iη

G(ω) , (7)

where V is the bare NN interaction, ε is the single-
particle energy, and the quantity ω is the so-called
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starting energy. In the present work we consider spin-
unpolarized neutron matter, thus in Eq.(7) and in the
following equations we drop the spin indices to sim-
plify the mathematical notation. The Pauli operator
| ka,kb〉Q〈ka,kb | projects on intermediate scattering
states in which the momenta ka and kb of the two in-
teracting neutrons are above their Fermi momentum kF
because single particle states with momenta smaller than
this value are occupied by the neutrons of the nuclear
medium. Thus the Bethe–Goldstone equation describes
the scattering of two nucleons (two neutrons in our case)
in the presence of other nucleons, and the Brueckner G-
matrix represents the effective interaction between two
nucleons in the nuclear medium and properly takes into
account the short-range correlations arising from the
strongly repulsive core in the bare NN interaction.

The ε(k) of a neutron with momentum k, appearing in
the energy denominator of the Bethe–Goldstone equation
(7), is given by

ε(k) =
~2k2

2m
+ U(k) , (8)

where U(k) is a single-particle potential which represents
the mean field felt by a neutron due to its interaction with
the other neutrons of the medium. In the Brueckner–
Hartree–Fock (BHF) approximation of the BBG theory,
U(k) is calculated through the real part of the G-matrix
[86, 87] and is given by

U(k) =
∑
k′≤kF

Re 〈k,k′ | G(ω∗) | k,k′〉A , (9)

where the sum runs over all neutron occupied states,
the starting energy is ω = ω∗ ≡ ε(k) + ε(k′) (i.e., the
G-matrix is calculated on-the-energy-shell) and the ma-
trix elements are properly antisymmetrized. We make
use of the so-called continuous choice [88–91] for the
single-particle potential U(k) when solving the Bethe–
Goldstone equation. As it has been shown in Refs. [92–
94], the contribution of the three-hole-line diagrams to
the energy per nucleon E/A is minimized in this pre-
scription for the single-particle potential and a faster con-
vergence of the hole-line expansion for E/A is achieved
compared to the so-called gap choice for U(k).

In this scheme Eqs. (7)–(9) have to be solved self-
consistently using an iterative numerical procedure.
Once a self-consistent solution is achieved, the energy
per nucleon of the system can be evaluated in the BHF
approximation of the BBG hole line-expansion and it is
given by

E

A
=

1

A

∑
k<kF

(
~2k2

2m
+

1

2
U(k)

)
. (10)

Making the usual angular average of the Pauli opera-
tor and of the energy denominator [89, 91], the Bethe–
Goldstone equation (7) can be expanded in partial waves.
In all the calculations performed in this work, we have

considered partial wave contributions up to a total two-
body angular momentum Jmax = 11. We have verified
that the inclusion of partial waves with Jmax > 11 does
not appreciably change our results.

B. Fermi hypernetted chain / single-operator chain
method

In absence of interactions, a uniform system of A non-
interacting neutrons can be described as a Fermi gas at
zero temperature, and its ground state wave function re-
duces to the Slater determinant of orbitals associated
with the single-particle states belonging to the Fermi sea

Φ(X) = A[φn1(x1) . . . φnA(xA) ] . (11)

In the above equation X = {x1, . . . , xA}, where the gen-
eralized coordinate xi ≡ {ri, si} represents both the po-
sition R = r1, . . . , rA and the spin S = s1, . . . , sA, vari-
ables of the i-th nucleon while ni denotes the set of quan-
tum numbers specifying the single particle state. Trans-
lational invariance imposes that the single-particle wave
functions be plane waves

φni(xi) =
1√
Ω

eiki·riχσi(si) (12)

In the above equations, Ω is the normalization volume,
χσi(si) is the spinor of the neutron and |ki| < kF =
(3π2ρ)1/3. Here kF is the Fermi momentum and ρ the
density of the system.

The variational ansatz of the Fermi hypernetted chain
(FHNC) and single-operator chain (SOC) formalism
emerges as a generalization of the Jastrow theory of
Fermi liquids [60, 95]

|ΨT 〉 =
F |Φ〉

〈Φ|F †F |Φ〉1/2
. (13)

where |Φ〉 is the Slater determinant of Eq. (11) and

F (x1, . . . , xA) = S

 A∏
j>i=1

Fij

 (14)

is the correlation operator. The spin-isospin structure
of Fij reflects that of the nucleon-nucleon potential of
Eq. (3)

Fij =

8∑
p=1

fp(rij)O
p
ij . (15)

Since, in general, [Opij , O
q
ik] 6= 0, the symmetrization op-

erator S is needed to fulfill the requirement of antisym-
metrization of the wave-function. The fp(rij) are finite-
ranged functions, with the conditions

fp(r ≥ dp) = δp1 ,
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dfp(r)

dr

∣∣∣
r=dp

= 0 . (16)

where the dp are “healing distances”. Consequently, the
correlation operator of Eq. (14) respects the cluster prop-
erty: if the system is split in two (or more) subsets of
particles that are moved far away from each other, the
F factorizes into a product of two factors in such a way
that only particles belonging to the same subset are cor-
related. For instance, consider two subsets, say i1, ...iM
and iM+1, ...iA. The cluster property implies

F (x1, . . . , xA) = F (xi1 , . . . , xiM )F (xiM+1
, . . . , xA) (17)

The radial functions fp(rij) are determined by mini-
mizing the energy expectation value

EV = 〈ΨT |H|ΨT 〉 ≥ E0 , (18)

which provides an upper bound to the true ground state
energy E0. The cluster property allows one to expand
the expectation value of the Hamiltonian – and of other
many-body operators – between correlated states in a
sum of cluster contributions involving an increasing num-
ber of particles.

The energy expectation value in matter is evaluated
using a diagrammatic cluster expansion and a set of 29
coupled integral equations, which effectively make partial
summations to infinite order – the FHNC/SOC approxi-
mation [60]. This is a generalization of the original hyper-
netted chain (HNC) method for Bose systems developed
by van Leeuwen, Groeneveld, and de Boer [96], which
requires the solution of a single integral equation, and
the corresponding extension for spin-isospin independent
Fermi systems by Fantoni and Rosati [59], which requires
four coupled integral equations. The integral equations
are used to generate two- and three-body distribution
functions g2(rij) ≡ gij and g3(rij , rik) ≡ gijk, which can
then be used to evaluate the energy or other operators.

For the pure Jastrow case, we evaluate the
Pandharipande–Bethe [97] expression for the energy:

EPB = TF +W +WF + U + UF , (19)

where TF is the Fermi gas kinetic energy. The only terms
for a Bose system are

W =
ρ

2

∫ (
vij −

~2

m

∇2Fij
Fij

)
gijd

3rij ,

U = − ~2

2m

ρ2

4

∫ (∇iFij · ∇iFik
FijFik

)
gijkd

3rijd
3rik , (20)

while WF , UF are additional two- and three-body kinetic
energy terms present due to the Slater determinant. Al-
ternately we use the Jackson–Feenberg [98] energy ex-
pression

EJF = TF +WB +Wφ + Uφ , (21)

WB =
ρ

2

∫ [
vij −

~2

2m

(∇2fij
fij

− (∇ifij)2

f2ij

)]
, (22)

where WB is the boson term and Wφ and Uφ are kinetic
energy terms involving the Slater determinant. In prin-
ciple, these energies should be equivalent, but in practice
there are differences due to the FHNC/SOC approxima-
tion to the distribution functions. We take the average
EV = (EPB + EJF )/2 as our energy expectation value
and the difference δEV = |EPB −EJF |/2 as an estimate
of the error in the calculation.

The FHNC two-body distribution function can be writ-
ten as:

gij = f2
[
(1 +Gde + Ede)2 +Gee + Eee

− ν(Gcc + Ecc − `/ν)2
]

exp(Gdd + Edd) . (23)

where the chain functions Gxy are sums of nodal dia-
grams, with direct (d), exchange (e) or circular exchange
(c) end points, Exy are elementary diagrams, ` ≡ `(kF r)
is the Slater function, and ν is the degeneracy. An ex-
ample of the structure of the integral equations is:

Gdd,ij = ρ

∫
d3rk [(Xdd,ik +Xde,ik)Sdd,kj

+Xdd,ijSde,kj ] , (24)

where Sdd = f2 exp(Gdd +Edd)− 1 is a two-point super-
bond and Xdd = Sdd −Gdd is a link function.

The introduction of spin-isospin correlations with op-
erators that do not commute complicates the calcula-
tion. Fortunately, the first six operators p = 1, 6 form
a closed spin-isospin algebra, allowing single continuous
chains of operator links – the SOCs – to be evaluated.
These involve five chain functions Gpxy for each of the
five operators p = 2 − 6, with xy = dd, de, ee, ca, cb in
addition to the four Jastow chain functions in Eq.(23),
making the total of 29 coupled integral equations to be
solved. There are significant contributions from unlinked
diagrams in the SOC cluster expansion, but these can be
accommodated by means of “vertex” corrections, as dis-
cussed in Ref. [60]. Additional higher-order corrections
coming from (parallel) multiple operator chains and rings
are also calculated, as discussed in Ref. [35].

As opposed to the FHNC/SOC calculations reported
in Ref. [67], in this work we include spin-orbit correla-
tions, corresponding to the p = 7, 8 terms in Eq. (15).
Because of the presence of a derivative operator, these
correlations cannot be “chained” so they are treated ex-
plicitly only at the two- and three-body cluster level. It
has to be noted that while the two-body cluster contri-
bution is evaluated exactly, following the prescription of
Ref. [35] only a limited number of three-body terms in
the cluster expansion are kept.

In standard FHNC calculations, the elementary di-
agrams of Eq. (23) are generally neglected. Inclusion
of the leading four-body elementary diagram leads to
the FHNC/4 approximation [99], while additional con-
tributions have been studied in liquid atomic helium sys-
tems [100]. In the present work we include many central
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(p = 1) Exy diagrams, beyond the FHNC/4 approxima-
tion, by introducing three-point superbonds Sxyz, such
as

Sddd,123 = ρ

∫
d3r4 {Sdd,14Sdd,24(Sdd,34 + Sde,34)

+ (Sdd,14Sde,24 + Sde,14Sdd,24)Sdd,34 } , (25)

and then evaluating

Edd,12 =
1

2
ρ

∫
d3r3 {Sddd,132 [Sdd,13(Sdd,32 + Sde,32)

+ Sde,13Sdd,32 ] + Sded,132Sdd,24Sdd,32 } . (26)

With six Sxyz, where xyz = ddd, dde, dee, eee, ccd, and
cce, many elementary diagrams at the four-, five-, and
higher-body level contributing to gij and gijk can be eval-
uated. These central elementary diagrams also dress the
SOCs.

In matter calculations, the correlations of Eq.(16) are
generated by solving a set of coupled Euler-Lagrange
equations in different pair-spin and isospin channels for
S = 0, 1 and T = 0, 1. For pure neutron matter, only
T = 1 channels are needed, leaving a single-channel equa-
tion for S = 0, producing a singlet correlation, and
a triple-channel equation for S = 1, which produces
triplet, tensor, and spin-orbit correlations. The singlet
and triplet correlations are then projected into central
and σij combinations. Three (increasing) healing dis-
tances are used: ds for the singlet correlation, dp for the
triplet and spin-orbit, and dt for the tensor.

Additional variational parameters are the quenching
factors αp whose introduction simulates modifications of
the two–body potentials entering in the Euler–Lagrange
differential equations arising from the screening induced
by the presence of the nuclear medium

vij =

8∑
p=1

αpv
p(rij)O

p
ij , (27)

whereas the full potential is used when computing the
energy expectation value. In practice we use just two
such parameters: αp=1 = 1 and αp=2,8 = α. In addition,
the resulting correlation functions fp may be rescaled
according to

Fij =

8∑
p=1

βpf
p(rij)O

p
ij , (28)

with βp=1 = 1, βp=2,4+7,8 = βσ, and βp=5,6 = βt.
However, these are usually invoked only in the presence
of three-body forces. For the present work, the varia-
tional parameters are the three healing distances and one
quenching factor. These are varied at each density with
a simplex search routine to minimize the energy.

One measure of the convergence of the FHNC/SOC
integral equations is that the volume integral of the cor-
relation hole from the central part of the two-body distri-
bution function gij (which has operator components like

the Fij of Eq. (15)) should be unity. To help guarantee
that the variational parameters entering the FHNC/SOC
correlations are well behaved – and to ensure that in a
given region of the parameter space the cluster expansion
is converged – we minimize the energy plus a constant
times the deviation of the volume integral from unity:

E + C

{
1 + ρ

∫
d3r[gc(r)− 1]

}2

,

as discussed in Ref.[35]. A value of C = 1000 MeV is
sufficient to limit the violation of this sum rule to 1% or
less at normal density, and 3% or less at twice normal
density for all the potentials considered here. There is
a related sum rule for the isospin component gτ that
applies in symmetric nuclear matter, but there is no sum
rule for the spin correlation hole for realistic potentials
with tensor forces.

C. Auxiliary-field diffusion Monte Carlo

Over the last two decades, the auxiliary-field diffusion
Monte Carlo (AFDMC) method [61] has become a main-
stay for neutron-matter calculations [43, 74, 101]. Within
AFDMC, properties of the infinite uniform system are
simulated with a finite number of neutrons obeying the
periodic-box boundary condition (PBC). The trial wave
function is a simplified version of the one reported in
Eq. (13)

ΨT (X) = 〈X|ΨT 〉 = 〈X|

(∏
i<j

f c(rij)

)
|Φ〉. (29)

The anti-symmetric mean-field part |Φ〉 is the Slater de-
terminant of Eq. (11). In order to satisfy the PBC, the
single-particle wave vector is discretized as

ki =
2π

L
{nx, ny, nz} , ni = 0,±1,±2, . . . , (30)

L being the size of the simulation box. When not oth-
erwise specified, in our simulations we typically employ
A = 66 neutrons in a box. Finite-size errors in PNM
simulations have been investigated in Ref. [102, 103] by
comparing the twist averaged boundary conditions with
the PBC. Remarkably, the PBC energies of 66 neutrons
differ by no more than 2% from the asymptotic value cal-
culated with twist averaged boundary conditions. This
essentially follows from the fact that the kinetic energy
of 66 fermions approaches the thermodynamic limit very
well. Additional finite-size effects due to the tail correc-
tions of two- and three-body potentials are accounted for
by summing the contributions given by neighboring cells
to the simulation box [104].

The spin-independent correlation ansatz of Eq. (29)
has proven to be inadequate to treat atomic nuclei and
infinite nucleonic matter comprised of both neutrons
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and protons. In fact, the expectation value of the ten-
sor components of the NN potential, which is large for
neutron-proton pairs in the T = 0 channel, is nearly zero
when tensor correlations are not included in ΨT (X). To
overcome these difficulties, a linearized version of spin-
dependent two-body correlations, in which only one pair
of nucleons is correlated at a time, was first implemented
in the AFDMC method in Ref. [68]. Very recently, the
trial wave function has been further improved by includ-
ing quadratic pair correlations [69]. These more sophisti-
cated wave functions have enabled a number of remark-
ably accurate AFDMC calculations, in which properties
of atomic nuclei with up to A = 16 nucleons [105] have
been investigated utilizing the local χEFT interactions
of Ref. [43, 70].

Analogously to the FHNC case, the two-body correla-
tion functions are obtained by minimizing the two-body
cluster contributions of the energy per particle, solving
the same set of coupled Euler-Lagrange equations. How-
ever, since in ΨT we only retain spin-independent terms,
we found that replacing f c(rij) → f c(rij) + βσf

σ(rij),
βσ being a variational parameter, provides a better vari-
ational energy than when βσ = 0. The relatively simple
trial wave function of Eq. (29) is completely determined
by three variational parameters: βσ, the spin-isospin po-
tential quencher αp=2,8 = α, and the central healing dis-
tance dc, as for simplicity we assume ds = dp = dc. As
a consequence, it is unnecessary to use advanced opti-
mization algorithms, such as the “stochastic reconfigu-
ration” [106] or the “linear method” [107] algorithm, to
minimize the variational energy.

AFDMC is an extension of standard diffusion Monte
Carlo (DMC) algorithms, in which the ground-state Ψ0

of a given Hamiltonian is projected out from the starting
trial wave function using an imaginary-time evolution

|Ψ0〉 = lim
τ→∞

e−(H−ET )τ |ΨT 〉 (31)

In the above equation τ is the imaginary time, and ET
is a parameter used to control the normalization. For
strongly interacting systems, the direct computation of
the propagator e−(H−E0)τ involves prohibitive difficul-
ties. For small imaginary times δτ = τ/N , with N being
a large number, one can compute the short-time propa-
gator, and the full propagation can be recovered inserting
complete sets of states. The propagated wave function
then reads

〈XN |Ψ(τ)〉 =

N−1∏
i=1

∫
dXi〈XN |e−(H−E0)δτ |XN−1〉 . . .

× 〈X2|e−(H−E0)δτ |X1〉〈X1|ΨT 〉 . (32)

By using the Suzuki-Trotter decomposition to order δτ3,
the short-time propagator can be cast in the form

G(X,X ′, δτ) = 〈X|e−(H−E0)δτ |X ′〉

' 〈X|e−V δτ
2 e−Tδτe−V

δτ
2 |X ′〉 . (33)

In the above equation, V is the nuclear potential and T
is the nonrelativistic kinetic energy, giving rise to the free
propagator

G0(X,X ′, δτ) = 〈X|e−Tδτ |X ′〉

=
( m

2πδτ

) 3A
2

e−
m(R−R′)2

2δτ δ(S − S′) , (34)

where R and S denote the spatial and spin coordinates,
respectively. Monte Carlo techniques are used to sample
the paths Xi. In practice, a set of configurations, typi-
cally called walkers, are simultaneously evolved in imag-
inary time, and then used to calculate observables once
convergence is reached.

Within the GFMC method used in light nuclei, the po-
sitions of the particles are sampled, but the full sum over
the spin-isospin degrees of of freedom is retained, lead-
ing to an exponential growth of the computational cost
with A. The AFDMC method overcomes this limitation
using a spin-isospin basis given by the outer product of
single-nucleon spinors

|S〉 = |s1〉 ⊗ |s2〉 · · · ⊗ |sA〉 . (35)

Realistic nuclear potentials, such the ones employed
in this work, contain quadratic spin-isospin operators.
In order to preserve the single-particle representation,
the short-time propagator is linearized utilizing the
Hubbard-Stratonovich transformation

e−λO
2δτ/2 =

1√
2π

∫ ∞
−∞

dxe−x
2/2ex

√
−λδτ O (36)

where x are the auxiliary fields and the operators O are
obtained as follows. The first six terms defining the NN
potential of Eq. (3) can be conveniently separated in a
spin-isospin dependent VSD and spin-isospin independent
VSI contributions. Since in purely neutron systems τij =
1, VSD can be cast in the form

VSD =
1

2

∑
iαjβ

Aiα,jβσ
α
i σ

β
j =

1

2

3A∑
n=1

O2
nλn , (37)

where the operators On are defined as

On =
∑
i,α

σαi ψ
n
iα (38)

In the above equations λn and ψniα are the eigenvalues
and eigenvectors of the matrix A. The spin-orbit term of
the NN potentials is implemented in the propagator as
described in Ref. [104] and appropriate counter terms are
included to remove the spurious contributions of order δτ .

Importance sampling techniques are routinely imple-
mented in the AFDMC – in both the spatial coordinates
and spin-isospin configurations – to drastically improve
the efficiency of the algorithm. To this aim, the propa-
gator of Eq. (33) is modified as

GI(X,X
′) = GI(X,X

′)
ΨI(X

′)

ΨI(X)
. (39)
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At each time-step, each walker is propagated sampling
a 3A-dimensional vector to shift the spatial coordinates
and a set of auxiliary fields X from Gaussian distribu-
tions. To remove the linear terms coming from the ex-
ponential of Eqs. (34), (36), in analogy to the GFMC
method, we consider four weights, corresponding to sep-
arately flipping the sign of the spatial moves and spin-
isospin rotations

wi =
ΨI(±R′, S′(±X ))

ΨI(R,S)
(40)

In the same spirit as the GFMC, only one of the four
configurations is kept according to a heat-bath sam-
pling among the four normalized weights wi/W , with

W =
∑4
i=1 wi/4 being the cumulative weight. The latter

is then rescaled byW →W exp[−VSI(R)/2+VSI(R
′)/2−

ET ]δτ} and associated to this new configuration for
branching and computing observables. This “plus and
minus” procedure, introduced in Ref. [68] and so far only
applied to systems including protons, is adopted in this
work to compute the energy of PNM, as it significantly
reduces the dependence of the results on δτ .

The expectation values of observables that commute
with the Hamiltonian are estimated as

〈O(τ)〉 =

∑
X OT (X)WT (X)∑

XWT (X)
, (41)

where

OT (X) =
〈ΨT |O|X〉
〈ΨT |X〉

, WT (X) = W (X)
〈ΨT |X〉
〈ΨI |X〉

. (42)

For all other observables we compute the mixed estimates

〈O(τ)〉 ' 2
〈ΨT |O|Ψ(τ)〉
〈ΨT |Ψ(τ)〉

− 〈ΨT |O|ΨT 〉
〈ΨT |ΨT 〉

, (43)

where the first and the second term correspond to the
DMC and variational Monte Carlo expectation value, re-
spectively.

As in standard fermion diffusion Monte Carlo algo-
rithms, the AFDMC method suffers from the fermion
sign problem. This originates from the fact that the
importance-sampling wave-function is not exact and en-
tails spuriosities from the bosonic ground-state of the sys-
tem. As a consequence, the numerator and denominator
of Eq. (41) are plagued by a decreasing signal-to-noise ra-
tio for a finite sample size and large imaginary times. To
alleviate the sign problem, as in Ref. [108], we implement
an algorithm similar to the constrained-path approxima-
tion [109], but applicable to complex wave functions and
propagators. The weights wi of Eq. (40) are evaluated
with

ΨI(R
′, S′)

ΨI(R,S)
→ Re

{
ΨT (R′, S′)

ΨT (R,S)

}
. (44)

and they are set to zero if the ratio is negative. Unlike the
fixed-node approximation, which is applicable for scalar

potentials and for cases in which a real wave function
can be used, the solution obtained from the constrained
propagation is not the a rigorous upper-bound to the
true ground-state energy [110]. To remove the bias asso-
ciated with this procedure, the configurations obtained
from a constrained propagation are further evolved us-
ing the following positive-definite importance sampling
function [69, 111]

ΨG(X) =
√

Re{ΨT (X)}2 + α Im{ΨT (X)}2 (45)

where the α parameter serves to make the guiding func-
tion positive definite. Throughout this work we take
α = 0.5 and we explicitly checked for selected cases that
our result are unchanged for α = 0.25 and α = 1.
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]

EUC(τ)
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E0

FIG. 3. PNM unconstrained evolution for the AV6′ potential
at ρ = 0.16 fm−3 for 14 neutrons in PBC. Data points (in
blue) refer to EUC(τ) while the dashed line and the shaded
(green) area indicate the asymptotic value E0 with the asso-
ciated uncertainty as estimated from the fit, represented by
the solid (red) line.
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FIG. 4. Same as Fig. 4 for the AV8′ interaction.
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Following the unconstrained propagation, the expecta-
tion value of the energy EUC(τ) is estimated according
to Eq. (41). The only difference, needed to compensate
for the change of the guiding wave function, is that the
weights need to be rescaled as

W (X)→W (X)
ΨG(X0)

ΨT (X0)
, (46)

where X0 is the initial configuration of the unconstrained
propagation at τ = τ0. In a typical calculation, ∼ 400
independent unconstrained propagations, each comprised
of an average of ∼ 140, 000 configurations, are performed
to control statistical fluctuations. The asymptotic value
E0 = limτ→∞EUC(τ) is found by fitting the imaginary-
time behavior of EUC(τ) with a single-exponential func-
tion, as in Ref. [112]. Since the expectation values are
substantially correlated in τ , the likelihood function is
computed by fully taking into account the covariance
matrix of the data. We have explicitly checked that
the number of independent unconstrained propagations is
large enough to avoid potential instabilities arising when
the covariance matrix has at least one very small eigen-
value [113]. The confidence interval associated with E0 is
estimated as discussed in Sec.15.6 of Ref. [114]. The best
value of the fit is perturbed in such a way that ∆χ2 = 1
from its minimum while varying the other fitting param-
eters to minimize the χ2. Since this procedure brings
about an asymmetric confidence interval, in our results
we report a symmetric error bar conservatively corre-
sponding to the largest interval.

Unconstrained propagations have been performed in
the latest AFDMC studies of atomic nuclei [69, 105, 115],
even though a relatively simpler fitting procedure was
employed to determine the asymptotic E0 and its er-
ror. On the other hand, the accuracy of the con-
strained approximation for neutron systems has been er-
roneously assumed, even in the state-of-the art AFDMC

0.0 1.0 2.0 3.0 4.0
 τ  [10-3 MeV-1]
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0.1

0.2

0.3

0.4
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1.0

E(
τ)

  [
M
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]

EUC(τ)
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E0

0.57(1)

FIG. 5. PNM unconstrained evolution of 〈v18 − v′8〉 for AV18
at ρ = 0.16 fm−3 for 14 neutrons in PBC. The notation is the
same as in Fig. 4.

neutron-matter calculations with local chiral interac-
tions [70, 74, 116]. Fig. 3 indeed shows that for the AV6′

potential at ρ = ρ0 releasing the constraint brings about
tiny changes to the constrained results. The situation is
drastically different for NN potentials that include spin-
orbit terms. The unconstrained propagation for the AV8′

potential at ρ = 0.16 fm−3 is displayed in Fig. 4 – note the
scale difference with Fig. 3. For this potential, EUC(τ)
exhibits a a clear exponentially-decaying behavior, low-
ering the energy per particle by as much as ∼ 3 MeV.
Nearby points in imaginary-time are strongly correlated.
If one assumes that the covariance matrix is diagonal,
this correlation is lost, and the fit is dominated by the
first values of EUC(τ), as they have small errors. Once
the covariance matrix is accounted for, the values of the
unconstrained energy at large τ become relatively more
important in the fit.

We checked that including linearized spin-dependent
correlations in the trial wave function yields only ∼ 0.3
MeV of additional binding in the constrained propaga-
tion. Since their calculation increases the computational
cost by a factor ∼ A2, we have decided not to include
them as we need large statistics to reliably perform the
imaginary-time extrapolation. On the other hand, the
spin-dependent backflow correlations of Ref. [117] seems
to be more effective: some preliminary calculations indi-
cate that the constrained results can be lowered by more
than ∼ 1 MeV per particle. However, given the complex-
ity of the analytic calculation of the derivatives, partic-
ularly for the operators in the AV18 potential that are
quadratic in L, we decided to stick to the simple central
Jastrow ansatz of Eq. (29).

For both AV6′ and AV8′, we simulated PNM using 14
neutrons in PBC, correcting for the tails of the potential
and Jastrow correlations. The dependency on the box
size of the AV8′ results has been tested by performing
an additional calculation with 38 neutrons in a PBC. It
turns out that EUC(τ)−EUC(τ0) obtained with the two
simulation boxes are fully compatible within statistical
errors. Our findings for the AV8′ interaction are consis-
tent with the GFMC results of Ref. [118] and with the
discrepancies in the spin-orbit splitting of neutron drops
between AFDMC and GFMC calculations [111].

Analogously to the GFMC method, when computing
the full AV18 and NV2 two-body interactions, the prop-
agation is performed with the simplified v′8 potential, de-
scribed in Section II. The expectation value 〈v18 − v′8〉 is
evaluated in perturbation theory according to Eq. (43).
As shown in Fig. 5 for ρ = 0.16 and 14 neutrons with
PBC, the potential energy difference remains fairly stable
during the unconstrained propagation. We fit its imagi-
nary time behavior with a simple inverse polynomial for-
mula with up to 1/τ2 powers and estimate the error on
the asymptotic value accordingly.
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IV. RESULTS

We compare the PNM equation of state as ob-
tained from the three independent many-body meth-
ods described in Section III, using the Argonne and
the Norfolk families of NN interactions. As for the
AFDMC, we present results corresponding to both the
constrained (AFDMC-CP) and unconstrained (AFDMC-
UC) imaginary-time propagations. To minimize finite-
size effects, AFDMC-CP calculations are carried out
with 66 neutrons in a box with PBC. On the other
hand, the unconstrained energy is estimated by adding to
the AFDMC-CP values the energy difference EUC(τ) −
EUC(τ0) computed simulating 14 neutrons with PBC.
This procedure significantly reduces the computational
cost of the calculation. Its accuracy is validated by
the successful comparison of unconstrained propagations
with 14 and 38 neutrons with PBC, discussed in the pre-
vious Section.

In the upper, middle, and lower panels of Fig. 6 we
show the PNM equation of state for the AV6′, AV8′, and
AV18 potentials, respectively. The curves in the plot
correspond to the following polynomial fit for the density
dependence of the energy per particle

E(ρ)

A
= a2/3

(
ρ

ρ0

)2/3

+ a1

(
ρ

ρ0

)
+ a2

(
ρ

ρ0

)2

, (47)

where ρ = 0.16 fm−3 is the nuclear saturation density.
The first term corresponds to a free Fermi gas, while the
second and third are inspired by the cluster expansion
of the energy expectation value, truncated at the three-
body level. We have checked that the four-parameter
fitting function of Ref. [119] produces overlapping curves
to the one obtained from Eq. (47).

To facilitate the comparison among the many-body
methods, in Table I we list the energy per particle and
the spin-orbit contribution at nuclear saturation den-
sity. As for the latter, since in neutron-matter τij = 1,
we directly report the expectation value of sum of the
p = 7, 8 operators of Eq. (4), denoted as 〈vLS〉. The
FHNC/SOC method allows to directly access the expec-
tation value of the spin-orbit terms of the potential. On
the other hand, within both BHF and the AFDMC, 〈vLS〉
is obtained employing the Hellman-Feynman theorem.
This amounts to computing the two ground-state ener-
gies E±ε = 〈H ± ε vLS〉, where ε is a small number. The
spin-orbit contribution is estimated as

〈vLS〉 '
E+ε − E−ε

2ε
. (48)

Consistently with Ref. [67], when the AV6′ interac-
tion is employed, the three many-body methods provide
similar results for E(ρ)/A. Generally, BHF yields the
most repulsive EoS, FHNC/SOC the softest, and the
AFDMC-CP values are in between. Even at ρ = 2ρ0, the
maximum spread among the different methods remains
within ∼ 5 MeV per particle. Note that the FHNC/SOC
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FIG. 6. (Color online) Energy per particle of PNM as a func-
tion of density calculated with the BHF (green diamonds),
FHNC/SOC (red triangles), AFDMC-CP (grey squares) and
AFDMC-UC (solid blue points) many-body approaches. Re-
sults for the AV6′, AV8′, and AV18 potentials are shown in
the upper, middle, and lower panels, respectively. The curves
correspond to the polynomial fit of Eq. (47)

calculations shown in this work are more sophisticated
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than those of Ref. [67], as more elementary diagrams
– at and beyond the FHNC/4 approximation – are ac-
counted for. This leads to accurate estimates for the
energy per particle, particularly when spin-orbit corre-
lations are not included. The AFDMC-UC energies for
AV6′ are not shown, as, within error bars, they overlap
with the AFDMC-CP ones – see the unconstrained prop-
agation of Fig. 3.

The inclusion of spin-orbit components of the AV8′ po-
tential brings about an overall attraction in PNM with re-
spect to the AV6′ results, for both BHF and FHNC/SOC
methods. This appears to be a consequence of the isospin
asymmetry: in GFMC calculations for light nuclei, AV6′

is more attractive for isospin-symmetric nuclei, but AV8′

is more attractive in neutron-rich systems [63]. For exam-
ple, as seen in the associated force evolution table [120],
the two models give the same energy for 6He, while in
8He, AV8′ is ' 1 MeV more bound. Also, the difference
in binding between 8Be and 8He is 26.9 MeV for AV6′

and 24.2 MeV for AV8′, implying that AV8′ is bringing
in relatively more attraction for the neutron-rich systems.

BHF FHNC/SOC AFDMC-CP AFDMC-UC

E/A [MeV]
AV6′ 15.89 14.98± 0.22 14.93± 0.02 14.92± 0.05
AV8′ 11.97 11.17± 0.19 15.55± 0.02 12.51± 0.39
AV18 13.40 12.38± 0.17 16.32± 0.02 13.32± 0.40

〈vLS〉 [MeV]
AV8′ −9.50 −6.71 −0.65± 0.03 −5.4± 1.2
AV18 −7.93 −5.80 −0.55± 0.03 −5.2± 1.1

TABLE I. Total energy and spin-orbit potential per particle at
nuclear saturation density for the AV6′, AV8′, and AV18 NN
potentials as obtained from the BHF, FHNC/SOC, AFDMC-
CP, and AFDMC-UC methods.

On the other hand, the AFDMC-CP energies per par-
ticle for AV8′ are slightly larger than those obtained with
AV6′, and they lie well above both BHF and FHNC/SOC
results, already at relatively small densities. As shown in
Table I, at ρ = ρ0, BHF, FHNC/SOC, and AFDMC-CP
provide 11.97 MeV, 11.17 ± 0.19 MeV, and 15.55 ± 0.02
MeV per particle, respectively. The unconstrained prop-
agation significantly lowers the AFDMC-CP estimates,
bringing them in much better agreement with the other
calculations. At ρ = ρ0, the AFDMC-UC value turns
out to be 12.51 ± 0.39 MeV, while at ρ = 2ρ0 the un-
constrained propagation yields 22.13 ± 0.52 MeV, to be
compared to the 29.01±0.01 MeV of the constrained ap-
proximation. The curve corresponding to the AFDMC-
CP calculations of Ref. [119] lies below the AFDMC-CP
obtained with the “plus and minus” importance-sampling
algorithm. The differences between the two constrained
approximations are largely due to the dependence on the
central Jastrow correlations of the importance-sampling
algorithm utilized in Ref. [119]. As noted in Ref. [70],
for the local N2LO χEFT potential this unphysical de-
pendence on the Jastrow function can be as large as 0.6
MeV per particle already at ρ = 0.1 fm−3. Note that

BHF FHNC/SOC AFDMC-CP AFDMC-UC

E/A [MeV]
NV2-Ia 14.19 12.77± 0.67 15.71± 0.02 13.75± 0.34
NV2-Ib 15.14 13.64± 0.74 17.67± 0.02 14.67± 0.48
NV2-IIa 12.89 11.77± 0.76 14.97± 0.02 12.74± 0.32
NV2-IIb 13.15 12.01± 0.36 15.49± 0.02 12.94± 0.27

〈vLS〉 [MeV]
NV2-Ia −5.32 −7.88 −0.37± 0.03 −5.0± 1.1
NV2-Ib −8.88 −9.95 −0.50± 0.03 −6.2± 1.3
NV2-IIa −6.23 −7.78 −0.39± 0.03 −4.6± 1.2
NV2-IIb −6.56 −7.48 −0.50± 0.03 −4.9± 1.1

TABLE II. Same as Table I for the NV2-Ia, NV2-Ib, NV2-IIa,
and NV2-IIb potentials

this dependence is completely removed once the “plus
and minus” procedure is employed.

The FHNC/SOC results stay well below both the BHF
and AFDMC-UC ones, with the spread increasing with
the density. This behavior is most likely due to the over-
simplified treatment of spin-orbit correlations, which be-
comes less accurate at higher densities, as contributions
arising from clusters involving more than three nucleons
should not be neglected. We explicitly checked that, as
pointed out in Refs. [67, 116, 121], when the spin-obit
correlations are turned off, FHNC/SOC and AFDMC-
CP are in much better agreement. It is remarkable that
the AFDMC-UC and BHF predictions are quite similar,
the differences remaining well below 1 MeV per particle
up to ρ = 2ρ0. This corroborates the accuracy of the
extrapolation of the unconstrained energy.

As in light nuclei, the AV18 potential, is more repulsive
than AV8′ for all the many-body methods considered in
this work. In particular, as the density increases, the dif-
ferences in partial waves higher than P become more and
more important. The AFDMC-CP results turn out to be
biased to a similar extent as in the AV8′ case: the uncon-
strained propagation at ρ = ρ0 and ρ = 2ρ0 lowers the
energy per particle by ∼ 3.0 MeV and ∼ 6.8 MeV, respec-
tively. The BHF and AFDMC-UC predictions are again
very close: the maximum difference remains below ∼ 1
MeV per particle. Contrary to the AV8′ case, AFDMC-
UC yields slightly less repulsion than BHF. At ρ > ρ0,
the FHNC/SOC results lie significantly below those com-
puted within both AFDMC-UC and BHF. This might
once more be ascribed to the three-body truncation in
the cluster expansion of the spin-orbit correlations.

In the lower panel of Fig. 6, we also compare our BHF
results for the AV18 interaction with those reported in
Ref. [67]. We do not display the BHF curve, as it is
almost coincident with ours. At ρ = 0.3 fm−3, we ob-
tain an energy per particle of 26.0 MeV, to be compared
to the 25.4 MeV of Ref. [67]. The small difference can
be attributed to the different number of partial waves:
Jmax = 11 in our case and Jmax = 8 in Ref. [67]. In
fact, using Jmax = 8 we also get 25.6 MeV. The results
of the energy per particle up to the three-hole line dia-
grams contribution of the BBG hole-line expansion, as
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FIG. 7. Same as Fig. 6 for the NV2-Ia (upper left panel), NV2-Ib (upper right panel), NV2-IIa (lower left panel), and NV2-IIb
(lower right panel) potentials.

taken from Ref. [67] are represented by the purple trian-
gles labeled as BBG3. As shown in Refs. [92, 93] and as
stressed in Section III A of the present work, comparing
the BBG3 and the BHF predictions numerically demon-
strates the fast convergence of the hole-line expansion
when the continuous choice for the auxiliary single par-
ticle potential U(k) of Eq. 9 is used. Finally, in the same
figure, we also plot the self-consistent Green’s function
(SCGF) results reported in Ref. [67].

The differences among the many-body methods dis-
cussed above are reflected in the contribution of the spin-
orbit terms to the energy per particle. AFDMC-CP cal-
culations clearly underestimate 〈vLS〉, as it turns out to
be much smaller than 1 MeV per particle for both the
AV8′ and AV18 potentials – see Table I. The uncon-
strained propagation enhances the spin-orbit contribu-
tion. Nevertheless, the AFDMC-UC values remain well
below the BHF and FHNC/SOC results. The Hellman-
Feynman procedure brings about sizable uncertainties in
the AFDMC-UC estimates, of about 1.2 MeV per par-
ticle for all the potentials that we consider. Applying

the error propagation formula to Eq. (48), the individ-
ual errors on E±ε are enhanced by a factor ∼ 1/ε, and
we take ε = 0.1. In addition, a stronger spin-orbit term,
even by only 10%, brings about significantly larger sta-
tistical errors in the unconstrained propagation. On the
other hand, the AFDMC-CP estimates for 〈vLS〉 do not
suffer from these additional statistical fluctuations. To
control this AFDMC-UC error, when computing 〈vLS〉
we accumulate more statistics (more Monte Carlo con-
figurations) than in standard calculations of the energy
per particle. As a consequence, the uncertainties on the
AFDMC-CP estimates for the spin-orbit term are not '
1/ε larger than those of the energy per particle.

Fig. 7 displays the energy per particle of the NV2-Ia,
NV2-Ib, NV2-IIa, and NV2-IIb potentials as computed
within the different many-body methods and their poly-
nomial fit using the expression of Eq. (47). The pic-
ture that emerges is fully consistent with the one already
discussed for the AV8′ and AV18 interactions. Look-
ing at the values listed in Table II, it is apparent that
AFDMC-CP calculations suffer from a substantial sys-
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tematic error: releasing the constraint in the imaginary-
time propagation lowers the energy per particle by at
least ∼ 2 MeV per nucleon, improving the agreement
with BHF and FHNC/SOC calculations. Consistently
with the AV8′ and AV18 potentials, the AFDMC-UC
values for 〈vLS〉 are smaller than those obtained within
the BHF and FHNC/SOC methods. The bias of the
AFDMC-CP results increases with the density: releasing
the constraint in the imaginary-time propagation low-
ers the energy per particle by as much as ∼ 8 MeV at
ρ = 2ρ0 for the NV2-Ib model. The good agreement
between BHF and AFDMC-UC is to a large extent con-
firmed, as the discrepancies between the two methods are
smaller than ∼ 2.5 MeV for all the densities and poten-
tials we analyzed. Once again, for densities larger than
ρ0, FHNC/SOC calculations yield considerably lower en-
ergies than BHF and AFDMC-UC. Comparing Tables I
and II, we see that for the Argonne interactions, the 〈vLS〉
is smaller in the FHNC/SOC calculations compared to
BHF, while the opposite is true for the Norfolk poten-
tials. Also, the error bar on the total energy attached
to the FHNC/SOC calculations is much larger for all the
Norfolk interactions.

By taking the AFDMC-UC results as our reference, in
Fig. 8 we display the EoS obtained using the AV18 and
the NV2 potentials. The parameters of the polynomial
fit of Eq. (47) along with their uncertainties are reported
in Table III. The latter are determined assuming that the
energy per particle and their errors are statistically in-
dependent and have a Gaussian distribution. Comparing
the EoS obtained using the AV18 and the NV2 potentials
we observe that, with the exception of the NV2-Ib case,
the maximum spread among the curves is well within 5
MeV per particle up to ρ = 2ρ0. In fact, for densities
smaller than nuclear saturation, the differences are al-
ways below ∼ 1 MeV per particle.

The NV2 energy results are ordered from most repul-
sive to least repulsive as Ib > Ia > IIb > IIa. This is the
same order observed in GFMC calculations of the en-
ergy of 4He in Ref. [65], where they give −22.89, −25.13,
−25.21, and −25.71 MeV, respectively, with Ib the least
bound (by a wide margin) and IIa the most bound. As
noted there, the spread in characteristics due to varia-
tions in the cut-off parameters is noticeably reduced by
fitting the NN data to higher laboratory energy, i.e.,
models IIa and IIb are closer together than Ia and Ib.
Also, the ‘softer’ the potential, the more attractive it is,
i.e., Ia is below Ib and IIa is below IIb. Finally, the fit to
higher energy has produced somewhat more attraction,
i.e., both models II are more attractive than models I.
Comparing the phase shifts in Fig. 2, it would appear
that NV2-IIb has the best reproduction of data and it is
fairly close to AV18.

It is also interesting to compare the uncertainties on
the EoS arising from the many-body method versus those
associated to the nucleon-nucleon interaction. At satura-
tion density, the AFDMC-UC, BHF and FHNC/SOC cal-
culations for all the potentials we consider are within 1.5

MeV per particle. The maximum difference among the
AFDMC-UC values for the energy per particle obtained
from different interactions is slightly larger, of about 1.9
MeV. At twice saturation density, the spread among the
many-body methods is 9.7 MeV per particle, to be com-
pared to the 8.7 MeV associated with the nuclear poten-
tials (less if model NV2-Ib is excluded).
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FIG. 8. AFDMC-UC energy per particle of PNM as a function
of density for the AV18 (black triangles), NV2-Ia (red trian-
gles), NV2-Ib (solid blue points), NV2-IIa (green diamonds),
and NV2-IIb (grey squares) potentials.

a2/3 a1 a2
AV18 26.99± 0.24 −18.61± 0.38 5.18± 0.12

NV2-Ia 26.65± 1.09 −18.79± 1.59 5.58± 0.44
NV2-Ib 27.08± 0.86 −19.46± 1.34 7.07± 0.40
NV2-IIa 26.17± 0.86 −17.81± 1.37 4.24± 0.42
NV2-IIb 27.01± 0.60 −18.80± 0.95 4.84± 0.30

TABLE III. Best-fit parameters from Eq. (47) for the
AFDMC-UC energy per particle displayed in Fig 8. All values
are in MeV.

V. CONCLUSIONS

We have carried out benchmark calculations of the en-
ergy per particle of pure neutron matter as a function
of the baryon density, employing two distinct families
of coordinate-space nucleon-nucleon potentials in three
independent nuclear many-body methods: AFDMC,
FHNC/SOC, and BHF. As for the nuclear Hamiltonians,
we have considered the phenomenological Argonne AV6′,
AV8′ [63], and AV18 two-body interactions [62], and the
set of Norfolk χEFT NV2 potentials [64, 65], which ex-
plicitly includes ∆-isobar intermediate states. With the
exception of AV6′, these potentials are characterized by
relatively strong spin-orbit components, needed to repro-
duce the NN phase shifts in P and higher odd partial
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waves.

Our pure neutron matter AFDMC calculations are per-
formed using the “plus and minus” importance-sampling
algorithm, introduced in Ref. [68] to treat atomic nu-
clei and isospin-symmetric and asymmetric nuclear mat-
ter. On the other hand, previous application of the
AFDMC method to purely-neutron systems used a dif-
ferent importance sampling for both the spacial coordi-
nates and the auxiliary fields. Extending the analysis of
Refs. [111, 118], we have investigated the systematic er-
ror of the AFDMC method arising from constraining the
imaginary-time propagation to alleviate the fermion-sign
problem. We have performed unconstrained imaginary-
time propagations up to 0.004 MeV−1, extrapolating
the asymptotic value for the energy per particle using a
single-exponential fit. By computing the covariance ma-
trix of the data to account for the correlations among the
AFDMC samples, we are able to estimate the uncertainty
of the asymptotic energy by varying the χ2 contour of the
fit. The FHNC/SOC method has been improved by sys-
tematically including sets of elementary diagrams, at and
beyond the FHNC/4 approximation, through the use of
three-point superbonds in the diagrammatic expansion.
However, the most relevant numerical difference with the
FHNC/SOC results reported in Ref. [67] is the inclusion
of spin-orbit correlations.

When the AV6′ interaction is employed, AFDMC,
FHNC/SOC, and BHF yield similar energies per particle,
the maximum difference among the methods remaining
smaller than 5 MeV per particle up to ρ = 2ρ0. The
excellent agreement between AFDMC and FHNC/SOC
calculations has to be ascribed to both the improved sam-
pling in the AFDMC method and to the inclusion of
the elementary diagrams in FHNC/SOC. Releasing the
constraint on the imaginary-time propagation does not
bring about appreciable difference with respect to the
AFDMC-CP results. Notice that the moderate differ-
ences between the BHF EoS and those for the AFDMC
and FHNC/SOC methods are partially reduced when the
contribution of the three-hole line diagrams is added to
the BHF results (BBG3). For example, at ρ = 2ρ0 one
has (E/A)BBG3

= 28.7 MeV [67] which is in better agree-
ment with the AFDMC and FHNC/SOC results. Clearly
we checked that for the AV6’ potential our BFH results
overlap with those of Ref. [67].

On the other hand, when spin-orbit terms are present
in the nuclear interaction, we find that performing un-
constrained propagations is crucial to reliably compute
the equation of state of neutron matter. Simple con-
strained propagation significantly overestimates the en-
ergy per particle, with the bias increasing with the den-
sity. For instance, when the AV18 potential is used, the
difference between AFDMC-CP and AFDMC-UC cal-
culations can be as large as ∼ 3 MeV at ρ = ρ0 and
∼ 7 MeV at ρ = 2ρ0. Similar trends are also found
for the AV8′ potential and all NV2 interactions and we
can reasonably expect that analogous systematic errors
affect the AFDMC calculations of neutron-matter prop-

erties carried out with local N2LO χEFT Hamiltoni-
ans [43, 70, 71, 74, 101].

The AFDMC-UC predictions are in good agreement
with those of the BHF approach. For both AV18 and
the NV2 potentials, the discrepancies between the two
methods remain well within 3 MeV per particle, with
the AFDMC-UC method always providing less repulsion
than the BHF. This highly non trivial outcome of our
comparison has been enabled by the possibility of per-
forming unconstrained propagations in AFDMC. As a
matter of fact, the AFDMC-CP equations of state are
sizably above both BHF and AFDMC-UC ones. The
FHNC/SOC energies per particle are consistently be-
low those computed within the other two many-body
methods, particularly for densities larger than ρ0. This
is likely to be ascribed to the somewhat oversimplified
treatment of spin-orbit correlations, whose contributions
are exactly treated only at the two-body cluster level.
Only a limited number of three-body terms in the clus-
ter expansion are kept, as in Ref. [35]. An alternate se-
lection of three-body terms is followed in [36]. We plan
to compare with this latter choice in the future to see
if there is better agreement with the new AFDMC and
BHF results. Limiting our analysis to ρ ≤ ρ0, where
higher-order terms in the cluster expansion are smaller,
FHNC/SOC and AFDMC-UC agree within 1 MeV per
particle, while the difference between AFDMC-CP and
FHNC/SOC turns out to be significantly larger.

The AV18 potential fits NN scattering data with
χ2 ∼ 1 in the energy range 0 ≤ Elab ≤ 350 MeV,
while NV2 potentials are constrained up to lower ener-
gies: 0 ≤ Elab ≤ 125 and 0 ≤ Elab ≤ 200 MeV for class
I and class II, respectively. Hence, the AV18, NV2-IIa,
and NV2-IIb reproduce the experimental proton-neutron
scattering phase shifts in the 1S0, 3P0, 3P1, 3P2, ε2,
and 1D2 partial waves to higher energies than NV2-Ia
and NV2-Ib. Since in highly-degenerate matter neutron-
neutron collisions mostly take place in the vicinity of the
Fermi surface, one can reasonably expect that potential
models capable of reproducing NN scattering to higher
Elab will more reliably predict the EoS at larger densities.
Our AFDMC-UC calculations indicate that this is indeed
the case. The maximum spread among the energies per
particle obtained using the AV18, NV2-IIa, and NV2-IIb
potentials is well within 4 MeV per particle up to twice
nuclear saturation density. On the other hand, including
NV2-Ia and NV2-Ib, the spread among the models can
be as large as ∼ 9 MeV per particle.

This work extends the benchmark calculations car-
ried out in the literature [67, 122, 123] and it is not
aimed at obtaining a realistic description of the neutron
matter EoS, for which three-body forces are required.
Two classes of χEFT three-nucleon interactions consis-
tent with the ∆-full NN potentials employed in this work
have been derived and successfully applied to describe the
spectrum of light nuclei [76] and the β-decay of 3H [77].
Once implemented in our many-body methods, we will
compute the EoS and check their compatibility with as-
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trophysical constraints, gauging potential regulator ar-
tifacts [74, 121, 124] and the convergence of the chiral
expansion.
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