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Heavy quarks produced in relativistic heavy-ion collisions are known to be sensitive probes of
the hot and dense QCD matter they traverse. In this manuscript we study how their dynamics is
affected by the nature of the bulk evolution of the QCD matter, the initial condition of the system,
and the treatment of elementary interactions between heavy quarks and the surrounding medium.
For the same initial condition and the same QGP expansion scenario we discuss the consequences of
the assumption of a local equilibrium by comparing the consequences for the nuclear modification
factor RAA and the elliptic flows of charm quarks, scrutinizing the different components of the
final distribution of charm quarks. For this purpose we employ the parton-hadron-string dynamics
(PHSD) model, which is an off-shell microscopic transport approach, as well as the linearized-
Boltzmann (LB) scheme obtained by coarse graining the PHSD bulk and assuming local equilibrium
for the interactions of the charm quarks with the bulk. The RAA of charm quarks stemming from
the later LB approach is also compared to a genuine fluid dynamics evolution initiated by the
coarse grained PHSD, which allows to further assess the consequences of reducing the full n-body
dynamics. We then proceed to a systematic comparison of PHSD (in its LB approximation) with
MC@HQ, another transport model for heavy flavors which also relies on LB approach. In particular,
we investigate the consequences for the nuclear modification factor of charm quarks if we vary
separately the initial heavy quark distribution function in matter, the expansion dynamics of the
QGP and the elementary interactions of heavy quarks of these models. We find that the results for
both models vary significantly depending on the details of the calculation. However, both models
achieve very similar predictions for key heavy quark observables for certain combinations of initial
condition, bulk evolution and interactions. We conclude that this ambiguity limits our ability to
determine the different properties of the system based on the current set of observables.

PACS numbers: 25.75.Nq, 25.75.Ld

I. INTRODUCTION

Relativistic heavy-ion collisions create an extremely
hot and dense plasma of deconfined quarks and gluons
(QGP). Due to the early universe having been in a QGP
state and its occurrence in dense neutron stars, the prop-
erties of the QGP are of significant interest.

One promising probe to exhibit sensitivity to QGP
properties are heavy flavor hadrons. The production of
heavy flavor particles can reliably be described by pertur-
bative quantum chromodynamics (pQCD) [1–3]. Their
production and formation time is relatively short, en-
abling them to probe strongly interacting matter from
the early stage of heavy-ion collisions. The production
of heavy flavor particles is a rare process and only those
with a low transverse momentum, pT , equilibrate with
the QGP. Hydrodynamics, which has been successful in

∗Electronic address: tsong@gsi.de

describing the dynamics of the bulk QGP, is not appli-
cable to heavy flavor particles, due to their large mass
and small interaction cross sections. Instead, Langevin
or Boltzmann equations are used [4–14] to describe their
time evolution.

The Langevin equation describes the time evolution of
heavy flavor particles in a locally thermalized medium
by using drag and diffusion coefficients, which are pre-
calculated as a function of the temperature and momen-
tum [4, 15]. The Boltzmann equation is a more general
approach which does not require the assumption of a lo-
cal thermal equilibrium and treats interactions of heavy
flavor particles with matter in terms of particle-particle
interactions. Under the condition that the scattering
partners of the heavy quarks are in local equilibrium, the
Boltzmann equation reduces to the linearized Boltzmann
(LB) equation, which is less costly to calculate than the
full Boltzmann equation.

The time scale of QGP formation is on the order of 1
fm/c, giving rise to of-equilibrium contributions to both,
bulk and heavy flavor evolution. Since the initial ther-
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malization time is short compared to the lifetime of the
QGP, early pre-equilibrium interactions have previously
been ignored in most studies which employ hydrodynam-
ics. In addition it should also be noted that not all mat-
ter reaches a state of complete thermalization, even at
freeze-out, which can be seen from the long tail of the
momentum spectrum of the particles, which originates
mostly from initial hard scatterings.

Recently, the effects of the non-equilibrium evolution of
matter on heavy flavor transport coefficients were studied
in [16]. Employing the dynamical quasi particle model
(DQPM), it was shown that equilibrium transport coef-
ficients get modified by non-equilibrium features such as
an anisotropic pressure or a deviation of the average ki-
netic energy or mass of the partons from their thermal
value. In this study we continue to investigate these ef-
fects by comparing the outcome of calculations with and
without the assumption of local thermal equilibrium in
the Boltzmann transport approach.

For this purpose we use the parton-hadron-string dy-
namics (PHSD) which is based on the dynamical quasi-
particle model [17]. The PHSD has quite reasonably re-
produced experimental data of relativistic heavy-ion col-
lisions from the super proton synchrotron (SPS) to large
hadron collider (LHC) energies [18–21].

The PHSD has been extended to the production of
heavy flavor partons by using the PYTHIA event gener-
ator [22] and the EPS 09 package for (anti)shadowing
effects in heavy nuclei [23]. Scattering cross sections
of heavy quarks with off-shell parton are calculated up
to leading order in the coupling constant considering
dressed propagators from the DQPM [24, 25]. It has been
shown that the scattering cross sections reproduce the
spatial diffusion coefficient of heavy quarks from lQCD
calculations and the experimental data on D mesons.
Even more, also single electrons as well as dileptons are
in agreement with experiment from the beam energy scan
energies at RHIC to LHC energies [11, 12, 26–28].

PHSD is not the only approach for heavy flavor dynam-
ics in relativistic heavy-ion collisions. Here we compare
the PHSD approach with other models, which have as
well successfully described multiple heavy flavour observ-
ables. In this comparison we keep the initial condition
identical for all approaches but modify separately
a) the dynamics of the medium in which the heavy quarks
collide (keeping the elementary interaction between the
heavy quarks and the partons fixed).
b) the elementary interaction between the heavy quarks
and the partons (keeping the dynamics of the medium,
in which the heavy quarks collide, fixed).

For the study of the influence of the bulk dynamics
we compare PHSD with causal viscous hydrodynamics
which is widely used as a description of the QGP dy-
namics in heavy-ion collisions. Note that hydrodynami-
cal simulations are applicable only after an initial ther-
malization time and require an initial condition. PHSD
can provide this initial condition such as the local energy
densities, the local flow velocities or the local energy-

momentum tensor at the required times. Then one can
compare the dynamics of the QGP obtained from hydro-
dynamics with that obtained from PHSD. It has been
found, taking ensemble averages, that in the light quark
sector both approaches give similar results, although in
PHSD fluctuations are much larger [29].

While in the previous study we have compared macro-
scopic properties of the QGP medium, such as spatial
and momentum eccentricities [29], in this study we ex-
tend the comparison to heavy quark interactions with
the expanding QGP described by hydrodynamics or by
PHSD, in order to identify how specific descriptions of
the QGP dynamics affect the charm quark dynamics in
heavy-ion collisions. This comparison makes it also possi-
ble to study how the early pre-equilibrium stage modifies
the observables.

Secondly we use the description of the QGP provided
by the PHSD but employ different interactions of charm
quarks with the QGP. In this way we can separate the
influence of the elementary interactions from all other ef-
fects which may influence the final heavy quark spectrum.
For this comparison we use the elementary interaction ad-
vanced by the Nantes group in their MC@HQ model [30]
to study heavy flavour production in heavy ion collisions.
This transport code for heavy flavors needs to be supple-
mented with temperature and velocity fields describing
the bulk dynamics. Lately, it was then combined with an-
other major computational model, EPOS2 [31] which is,
as PHSD, an event generator describing the soft physics
of up, down and strange quarks produced in pp, pA and
AA collisions at RHIC and LHC energies. After the ini-
tial violent phase of the collision, a quark gluon plasma
(QGP) and jet-like hadrons are created. The expansion
of the QGP is described by hydrodynamical equations.
At the transition temperature hadrons are produced uti-
lizing the Cooper-Frye formula, and subsequent hadronic
interactions are described by UrQMD [32, 33]. The HQ
part of the program generates heavy quarks with a fixed-
order next-to-leading logarithm (FONLL) distribution at
the interaction points of the nucleons during the initial
stage of EPOS. The heavy quarks propagate through the
plasma having elastic [30] and radiative collisions [9, 34]
with the plasma constituents.

When the QGP hadronizes, the low momentum heavy
quarks coalesce with a light (u,d) quark of the cell where
the heavy quark is localized. Heavy quarks with high
momenta hadronize by fragmentation. After fragmen-
tation, UrQMD is used to model final hadronic interac-
tions of the D and B mesons. Beyond the heavy flavor
observables discussed here, EPOS2+MC@HQ has also
been used in previous work to study correlations between
heavy quarks and antiquarks [35], higher order flow com-
ponents [36] and the influence of the existence of hadronic
bound states beyond Tc [37].

This paper is organized as follows: In section II we
first discuss on how to realize a coarse grained medium
in PHSD. Section III shows how the assumption of lo-
cal thermal equilibrium affects charm quark interactions
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in heavy-ion collisions by using a linearized Boltzmann
approach. Section IV is devoted to the comparison of
charm dynamics in the PHSD with that in 3+1 dimen-
sional viscous hydrodynamics initialized by the PHSD
and also discusses the effects of pre-equilibrium interac-
tions on charm in heavy-ion collisions. We then study
the effects of different initial conditions and heavy quark
- light parton interactions on common observables in sec-
tion V, comparing results from PHSD and MC@HQ. Fi-
nally, a summary is given in section VI.

II. COARSE-GRAINING THE PHSD MEDIUM

In order to study the non-equilibrium effect on charm
and to compare with other models, the coarse-graining of
the PHSD medium is necessary. For example, one can in-
troduce local thermal equilibrium to the coarse graining
of the PHSD and compare with the charm from the origi-
nal PHSD, and the difference will be the non-equilibrium
effect on charm in heavy-ion collisions, which is described
in section III in details. It also enables to compare be-
tween models, because many models which study charm
in heavy-ion collisions assume local thermal equilibrium.
To calculate local thermal quantities in PHSD such as

the energy density or the energy-momentum tensor we
introduce a grid. During the expansion one projects all
particles onto the corresponding grid and calculates these
quantities cell by cell. In relativistic heavy-ion collisions
this coarse graining procedure needs special care, due to
the relativistic expansion of the QGP medium along the
beam axis. In PHSD, the grid size is fixed to 1 fm in the
x and y directions respectively. Since the matter expands
almost with the speed of light in z-direction, the grid size
in z-direction is designed to grow with time. Before the
two nuclei pass through each other, the grid size along
z-direction and the time step are, respectively, given by

dz =
1

γcm
, dt =

dz

2
(1)

where

γcm =
1

2

(

Eprojectile

Mprojectile
+

Etarget

M target

)

. (2)

We note that dt is taken to be smaller than dz in order
not to violate causality. In each nucleus rest frame dz in
Eq. (1) is 1 fm, as dx and dy. After the passage of the
two nuclei, dz grows linearly with time as

dz ≈ 1

Nz

(t− t∗) +
1

γcm
. (3)

t∗ is the approximate time which two nuclei need to pass
each other and Nz is the number of grid cells in +(-)
z-direction. Eq. (3) implies that the grid size in +(-)
z-direction corresponds to the elapsed time after t∗:

zmax = Nz × dz ≈ t− t∗. (4)

One can also use grid cells in the (τ, x, y, η) frame
where τ is the longitudinal proper time and η the spatial
rapidity,

τ =
√

t2 − z2, (5)

η =
1

2
ln

(

t+ z

t− z

)

. (6)

This coordinate system is very convenient to describe
matter which is boost-invariant as approximately real-
ized in relativistic heavy-ion collisions. Therefore hydro-
dynamic simulations and many fireball models often use
this coordinate system. It is, however, a bit tricky to
use this coordinate system in Boltzmann-type transport
models, because particle position and momentum should
then be updated based on dτ , not on dt whereas the up-
date in the PHSD transport equations is done in dt.
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FIG. 1: (a) Longitudinal cell size in PHSD compared with
those from constant η as functions of time and (b) η corre-
sponding to each cell boundary in (t,z) coordinate system for
Nz = 38 and 76.

In figure 1 (a) we see the difference between the grid in
the Cartesian coordinate system (t, z) and that in (τ, η).
The black line is the cell size in z-direction as a function of
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time given by Eq. (3). It does not depend on the position
of the cell. On the other hand, the dashed, dotted, and
dash-dotted lines are calculated for constant dη = 0.4
bins as function of time. dz at a fixed t is given as

dz ≈ 1

Nz

× t, for a (t, z)grid (7)

dz = sech2(η)dη × t for a (τ, η)grid, (8)

where the first dz does not depend on z or η, while the
second one depends on η and dη and is smaller for a larger
η because of the factor, sech2(η). SinceNz is 38 in PHSD,
dz in PHSD is similar to dz for 1.8 < η < 2.2, as shown
in figure 1. We can conclude that the coordinate system
(t, z) has a better resolution at mid-rapidity while that
of (τ, η) is better at forward and backward rapidities, if
the same number of grid cells is used.
Figure 1 (b) shows η corresponding to each cell bound-

ary in the (t,z) coordinate system for Nz = 38 and 76.
One can see that central cells in (t,z) coordinate system
correspond to very small dη, and corresponding dη in-
creases with larger cell index. In the case of Nz = 38 the
second last cell covers 1.8 < η < 2.2 and the last cell 2.2
< η < ∞. Increasing Nz by a factor of two, Nz = 76,
the last cell covers still a large range 2.5 < η < ∞.
In the next section we use both coordinate systems

to study the charm dynamics in relativistic heavy-ion
collisions with PHSD. It is straightforward to calculate
the local energy-momentum tensor or the energy density
in the coordinate system (t, z) while the calculations in
the coordinate system (τ, η) needs a brief description.
In the PHSD approach particles are updated with a

constant time step ∆t. Hence we know positions and
momenta of all particles at times ti = t0 + i · ∆t where
i is a positive integer number. We can calculate η at ti
from Eq. (6) and also dz corresponding to a constant ∆η:

dz(i,j) = z(i,j+1) − z(i,j) = ti{tanh(ηj+1)− tanh(ηj)},
(9)

where i is the time index and j is the index of the spatial
rapidity with ∆η = ηj+1−ηj . As a next step, the energy-
momentum tensor of the cell, whose boundaries are z(i,j)
and z(i,j+1), is calculated, and the energy density and
flow velocity are obtained by diagonalization [29]. We
assume that the calculated energy density and the flow
velocity is located at the center of the cell,

(t, z) =

(

ti,
z(i,j+1) − z(i,j)

2

)

, (10)

and the information is transferred into a cell in (τ, η)
coordinate system by using Eqs. (5) and (6). In this case
dz and dη are in one-to-one correspondence while dt and
dτ are not. Since the size of dt in PHSD is small, several
cells in t-direction correspond to one cell in the (τ, η)
grid. We solve this problem by taking averages over the
energy densities and the flow velocities of several cells for
the one cell in (τ, η) grid.

III. ASSUMPTION ON LOCAL THERMAL
EQUILIBRIUM

In the grid defined above, the energy-momentum ten-
sor is calculated for each cell. Then energy density, pres-
sure, and flow velocity are obtained by diagonalizing the
energy-momentum tensor [29]. In this study we will re-
strict ourselves to Au+Au collisions at

√
sNN =200 GeV

and phrase it simply as Au+Au collisions. Since the
matter produced in heavy-ion collisions is not necessar-
ily in thermal equilibrium, the pressure is, especially in
the early stage, not isotropic. Compared to the isotropic
pressure of a thermalized QGP at the same energy den-
sity, the transverse pressure in PHSD is initially small
and increases with time, until it converges to the isotropic
pressure before τ = 1 fm/c [29]. Extracting the longitu-
dinal pressure is technically difficult, since it depends on
the longitudinal size of cell. If the longitudinal size of cell
is chosen too large, the longitudinal flow will contribute
to the longitudinal pressure. On the other hand, a too
small longitudinal size will provoke large fluctuations due
to the small average number of particles in the cell, and
the calculation of the longitudinal pressure becomes very
difficult.

The parton mass and the strong coupling in PHSD de-
pend on the temperature. If the system is not in complete
equilibrium we calculate the temperature and a chemical
potential with help of the equation of state (which is the
lattice equation of state) by using the local energy den-
sity and baryon density as input.

Heavy quarks produced in heavy-ion collisions inter-
act with the QGP composed of quarks and gluons.
Quarks with high transverse momentum lose a consider-
able amount of energy while quarks with low transverse
momentum gain energy due to the collective flow. In-
teractions are described in PHSD by the scattering of
heavy quarks with individual partons. This microscopic
approach is time-consuming, since the energy-momentum
and the position of each parton is updated at each time
step during their propagation through the medium and
possible collision partners need to be identified during
each time step as well.

A simpler, alternative, method is the linearized Boltz-
mann (LB) approach, where the light partons from the
QGP are assumed to be so close to thermal equilibrium
that small contributions from non-equilibrium effects can
be ignored in the Boltzmann collision integral:

f(k) = feq.(k, T ) + δ(k) ≈ feq.(k, T ). (11)

f(k) is the real momentum distribution of the partons,
feq.(k, T ) is the thermal distribution at a given tempera-
ture T and δ(k) is a small deviation from the equilibrium
distribution. We note that the above approximation ap-
plies for the distribution of the QGP partons but not to
that of heavy quarks which may be far away from equi-
librium with the QGP particles. Assuming Eq. (11), one
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can calculate the interaction rate of heavy quarks:

Γ =
1

2Ep

∑

i=q,q̄,g

∫

d3k

(2π)32E
fi(k, T )

∫

d3k′

(2π)32E′

×
∫

d3p′

(2π)32E′

p

(2π)4δ(4)(p+ k − p′ − k′)
|Mic|2
γc

, (12)

with (Ep, p), (E, k) being the energy-momenta of the
heavy quark c and of the scattering partner i before scat-
tering and (E′

p, p
′), (E′, k′) being those after scattering,

respectively. Mic, γc and fi(k, T ) are the scattering am-
plitude, the degeneracy factor of heavy quarks, and the
distribution function of the scattering partner i at the
temperature T , respectively.
In DQPM, which is employed in PHSD, partons are

described by a spectral function [38]:

ρ(k0,k) =
γ

Ẽ

(

1

(k0 − Ẽ)2 + γ2
− 1

(k0 + Ẽ)2 + γ2

)

≡ 4k0γ

(k20 − k2 −M2)
2
+ 4γ2k20

, (13)

where Ẽ2(k) = k
2 + M2 − γ2 with γ and M being the

spectral width and the pole mass, respectively. Both are
functions of the temperature and the baryon chemical
potential. Considering the normalization of the spectral
function,

∫

∞

−∞

dk0
2π

k0ρ(k0,k) =

∫

∞

0

dk0
2π

2k0ρ(k0,k) = 1, (14)

the interaction rate in Eq. (12) is covariantly expressed
by

Γ =
1

2Ep

∑

i=q,q̄,g

∫

d4k

(2π)4
fi(k, T )ρi(k, T )

∫

d4k′

(2π)4
ρi(k

′, T )

×
∫

d3p′

(2π)32E′

p

(2π)4δ(4)(p+ k − p′ − k′)
|Mic|2
γc

,

(15)

where the charm spectral function is substituted by a
delta function,

ρ(E′

p, p
′) → 2πδ+(p′2 −m2

c). (16)

mc is the heavy quark mass. In this study a nonrel-
ativistic approximation is taken to Eq. (13), and the
Breit-Wigner spectral function ρ(m),

k0
π
ρ(k0,k) → ρBW (m) =

2

π

2m2γ

(m2 −M2)2 + (2mγ)2
,

(17)
is employed. The normalization is satisfied as
∫

∞

0 dm ρBW (m) = 1.
The LB approach is realized in PHSD as follows: Each

heavy quark is located in a cell which has a temperature
and a flow velocity. The heavy quark is then boosted

to the cell-rest-frame (i.e. the heat-bath frame) and one
obtains the heavy quark velocity in the heat-bath frame.
The interaction rate as a function of the temperature
and the heavy quark velocity in the heat-bath frame is
calculated with help of Eq. (15). Since one needs the in-
teraction rate in the simulation frame, it is boosted back
with the opposite sign of flow velocity. This is simply re-
alized by substituting Ep in the denominator of Eq. (15)
by the heavy quark energy in the simulation frame. The
other part of the equation is Lorentz-invariant.

From the interaction rate in the simulation frame, one
can decide, by using a Monte-Carlo approach, whether a
heavy quark scattering takes place in the following time
step or not. One draws a random number. If it is smaller
than Γsimulation∆t, with ∆t being the size of the time step
in the simulation, the heavy quark will scatter. Since
Γsimulation∆t is supposed to be less than 1, one needs to
ensure that ∆t is sufficiently small.

When a collision takes place, the details of the scat-
tering are again determined using Monte-Carlo methods
in the cell rest system. This approach allows us to use
the same collision term as it is used in PHSD for non-
equilibrium matter.

Using the above formalism we can now compare three
distinct scenarios:
1) The charm quarks interact with gluons and light
(anti)quarks whose time evolution is given by the PHSD
equations. In this approach one calculates the trajecto-
ries of all particles and therefore one does not assume
that the expanding system is in local equilibrium.
2) The charm quarks interact with gluons and light
(anti)quarks which are propagated as in 1) but it is
assumed that they are in local equilibrium. The ther-
modynamical quantities are determined from the energy
density and the flow velocity of the PHSD particles in
the cell in which the heavy quark is localized, using the
equation of state. The scattering partners of the heavy
quarks are taken from the thermal parton distribution.
3) The charm quarks interact with gluons and light
(anti)quarks which are assumed to be in a local equi-
librium. As in 2) the thermodynamical quantities are
determined from the properties of the cell in which the
heavy quark is localized. However, these quantities are
now provided by a hydrodynamical calculation of the
expanding medium utilizing initial conditions generated
by PHSD.

The elementary interaction between the heavy quarks
and the gluons or light (anti)quarks are identical in all
three cases and, as discussed above, are treated numer-
ically in an identical way. Therefore, the influence of
local non-equilibirum effects can directly be observed by
comparing scenarios 1) and 2). The difference between
the global expansion scenario of PHSD and a hydrody-
namical expansion can be obtained by comparing 2) and
3).

Figure 2 shows the rapidity distribution and the ra-
pidity change (rapidity at Tc subtracted by the initial



6

-4 -2 0 2 4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

(a)
dN

(c
,c
)/d

y

y

 PHSD
linearized Boltzmann

 (t, z) grid
 (t, z/2) grid
 ( , ) grid
 ( /2, /2) grid

at Tc in Au+Au @ 200 GeV, b=2 fm

-4 -2 0 2 4
-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

(a)

yfin
al
-y

in
iti
al

yinitial

 PHSD
linearized Boltzmann

 (t, z) grid
 (t, z/2) grid
 ( , ) grid
 ( , /2) grid

at Tc in Au+Au @ 200 GeV, b=2 fm

FIG. 2: (a) Final rapidity distribution and (b) rapidity
change (rapidity at Tc subtracted by the initial rapidity) of
a (anti)charm quark as a function of the initial rapidity in
Au+Au collisions at

√
sNN = 200 GeV and b = 2 fm from

PHSD and from the linearized Boltzmann approach with grids
in different coordinate systems and of different sizes.

rapidity) of (anti)charm quarks as a function of the ini-
tial rapidity in Au+Au collisions at an impact parameter
b = 2 fm from PHSD and from the LB approach with
grids defined in different reference frames and of differ-
ent sizes. As explained in the previous section, we can
define grids in both, (t, x, y, z) and (τ, x, y, η), reference
frames. Here we use cell sizes of Nz = 38 and Nz = 76
in Eq. (3) for the former case, which are denoted respec-
tively by (t, z) and (t, z/2), and of (dτ = 0.2, dη = 0.4)
and (dτ = 0.1, dη = 0.2) for the latter case, which are
denoted respectively by (τ, η) and (τ/2, η/2) in the figure.

We can see in the upper panel of figure 2 that for all 4
grids the charm rapidity distribution is almost the same
near mid-rapidity but it has humps at 2 < |y| < 3 in the
LB approach using a grid in the (t, z) coordinate system.
The reason can be seen from the lower panel of the fig-
ure, which shows the average rapidity change of charm
and anticharm quarks during the QGP phase. Both, the
PHSD and the LB approach, show that charm quarks,
which have initially a forward rapidity, are accelerated

forward and those which have initially a negative rapid-
ity are accelerated backwards. In other words, RAA(y),
the ratio of the rapidity distribution of charm quarks in
heavy ion collisions versus proton-proton collisions prop-
erly scaled by the number of binary collisions, becomes
larger than one at forward and backward rapidities after
the time-evolution of the QGP matter. This difference
in the rapidity change for the different grids is most pro-
nounced around |y| ≈ 2.
The rapidity change is largest for the LB approach with

grids in the (t, z) coordinate system, while using a grid in
(τ, η) the results are similar to those in PHSD which does
not assume equilibrium. Even if the cell size is reduced to
(t, z/2), rapidity changes at around |y| = 2 are still about
twice as large as those observed in PHSD. We attribute
this behavior of the grid in the (t, z) reference frame to
its poor resolution at forward and backward rapidities, as
shown in figure 1 (b). Therefore it is highly recommended
to use grid in (τ, η) reference frame to study forward and
backward rapidities.

A. mid-rapidity

We now discuss the effects of non-equilibrium vs. equi-
librium medium evolution on charm quarks at mid-
rapidity. Figure 3 shows RAA of (anti)charm quarks at
Tc before hadronization as well as RAA and the elliptic
flow, v2 , of D(D̄) mesons at freeze-out at mid-rapidity
(|y| < 1) in Au+Au collisions. We compare these results
with the experimental data from the STAR collabora-
tion [39, 40], although our impact parameter does not
exactly correspond to the centrality of the experimental
data. As expected from figure 2, local non-equilibrium ef-
fects of the matter do not have a significant consequences
for heavy flavor observables, at least for Au+Au collisions
at the top RHIC energy. In the LB approach, for all co-
ordinate systems and all grid sizes, RAA of the charm
quarks is larger at low transverse momentum (pT < 1
GeV) and a bit smaller around pT = 2 GeV, as com-
pared to RAA from the PHSD.
After the charm quark is hadronized into a D meson,

it interacts with the hadron gas until freeze-out. We
do not use the LB approach for D meson scattering in
the hadron gas phase but use the geometric method of
PHSD in which the hadrons interact by cross sections
without assuming that they are in equilibrium. In other
words, hadronization and hadronic interactions are the
same in both cases. Usually hadronization and hadronic
interactions shift the maximum of the RAA curve to a
higher transverse momentum, due to coalescence with
light (anti)quarks, which is the dominant hadronization
mechanism at low pT , and which enhances the trans-
verse momentum of the D mesons and also the radial
flow becomes stronger with time. This we observe com-
paring RAA in the upper panel of figure 3 with the RAA

in the middle panel. Differences between RAA from the
PHSD and that from the linearized Boltzmann approach
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FIG. 3: (a)RAA of (anti)charm quarks at Tc before hadroniza-
tion, (b) RAA and (c) the elliptic flow, v2, of D(D̄) mesons
at freeze-out at mid-rapidity (|y| < 1) in Au+Au collisions at√
sNN = 200 GeV. The impact parameter is b = 2 fm for (a)

and (b) and b = 6 fm for (c). We display results from PHSD
and from the linearized Boltzmann approach with a couple
of different grids. We note that the impact parameters do
not exactly correspond to the centralities of the experimental
data from the STAR Collaboration [39, 40].

are, however, much smaller than the experimental errors.
The same is true for v2. The differences for the elliptic

flow of D mesons are small in comparison with the large
experimental errors, as shown in the lower panel of fig-
ure 3. As we shall see, however, the above results do
not indicate that the charm interactions are similar on a
microscopic level.

The two upper panels of figure 4 show the transverse
momentum change (left) and the variance (right) of mid-
rapidity (anti)charm quarks in a QGP produced in cen-
tral Au+Au collisions. We note that the former corre-
sponds to the momentum drag coefficient and the latter
to the diffusion coefficient of longitudinal momentum of
charm quark, which are respectively defined as ∆pL/∆t
and (∆pL)

2/∆t, and that pT in the figure 4 is the longi-
tudinal momentum of charm quark at mid-rapidity. Even
though the RAA and the v2 of charm quarks are similar in
PHSD and in the LB approach, the change of the trans-
verse momentum and the variance are different. Irrespec-
tive of the reference frame used for the grid and the grid
size, in PHSD charm quarks with initially small trans-
verse momentum gain more pT and those which have ini-
tially a large transverse momentum lose more pT , com-
pared to the LB approach, which assumes local thermal
equilibrium. The variance of the transverse momentum
change is always larger in PHSD than for the LB ap-
proach. In other words, the drag of charm quarks in pT
direction and its variance is larger in PHSD than in the
LB approach. Naively one would think that a larger drag
coefficient causes a larger suppression of charm quarks at
high momentum. Figure 3 shows, however, that RAA of
charm quarks is almost the same in PHSD and in the LB
approach. The reason for this can be found in the lower
panels of figure 4.

The two lower panels display the final transverse mo-
mentum distributions of charm quarks at Tc in central
Au+Au collisions from the PHSD and from the LB ap-
proach with a grid in the (τ, η) reference frame (∆τ = 0.2
fm/c, ∆η = 0.4). The black solid line includes all con-
tributions regardless of the initial transverse momentum.
The red dashed line, the blue dot-dashed line, and the
green short dashed lines are transverse momentum dis-
tributions of heavy quarks whose initial transverse mo-
menta are between 0-2, 2-5, and 5-8 GeV, respectively.
Comparing the red dashed and blue dashed dotted lines,
the PHSD results have a long tail to large transverse mo-
menta which is not present in the results of the LB equa-
tion. For low final pT the final distributions for low initial
transverse momenta, where most of the charm quarks are
located, are rather similar. This explains the larger mo-
mentum gain and the larger variance of the transverse
momentum change in PHSD as compared to LB at low
initial transverse momentum, as shown in the two upper
panels.

It is interesting to see that the two black lines, the sum
of all contributions, are similar for both calculations, ex-
cept at very low transverse momentum. Therefore we
observe a similar RAA as shown in figure 3. We can
understand this as follows: A larger drag coefficient of
charm quarks in PHSD suppresses the number of charm
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sNN = 200 GeV.
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quarks at large transverse momentum, but a larger diffu-
sion coefficient compensates this suppression by spread-
ing charm quarks from low to large momenta. Though
the momentum diffusion coefficient is of higher order
than the momentum drag coefficient, it has a consider-
able effect for the distribution at high momenta, because
most charm quarks have initially a low pT . Although
only a few charm quarks are shifted to large pT by mo-
mentum diffusion, their contribution could therefore be
significant.
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FIG. 5: Transverse momentum distribution of partons which
scatter off (anti)charm quarks in mid-rapidity (|y| < 1) from
the PHSD and from the linearized Boltzmann approaches.

The reason for this large pT change of the charm quark
in PHSD calculations is elucidated in figure 5. It shows
for both, PHSD and LB, the pT distribution of partons
which have scattered with a (anti)charm quark, which
is finally seen at mid-rapidity (|y| < 1). One sees that
the parton spectrum in PHSD is harder than that in the
LB approach, which assumes that the cell in which the
heavy quark is located is equilibrated and therefore the
partons have an equilibrium distribution. This distribu-
tion is characterized by a temperature which is obtained
from the energy density by the equation-of-state. Obvi-
ously in PHSD the light partons do not have an equilib-
rium distribution in pT but show a strong high momen-
tum component. This high pT partons are responsible
for the high momentum transfer observed in PHSD cal-
culations and seen in Fig. 4 top left. This difference is
large compared to the differences due to different refer-
ence frames or different grid sizes in the LB approach.
Comparing (t, z) and (t, z/2), for example, energy densi-
ties are slightly lower while transverse flow velocities are
larger in (t, z/2).
We note from Fig. 5 that the integral over the pT spec-

trum is largest in the PHSD. This means that in PHSD
more collisions take place. This is related to the increase
of the cross section between heavy and light partons as a
function of

√
s but also to the medium modifications of

the parton mass and the parton kinetic energy in PHSD,
which have been studied by some of us [16] and which we

explain now.
In PHSD energetic hadron scattering produces strings.

If the local temperature or energy density is above the
critical value for the phase transition to the QGP, strings
do not fragment into hadrons but melt into partons. This
melting is not carried out directly but through an inter-
mediate step: in a first step hadrons, which are sup-
posed to be produced through string fragmentation, are
produced and then in a second step the hadrons are con-
verted to partons conserving all quantum numbers as well
as energy and momentum. The problem of this proce-
dure is that in relativistic heavy-ion collisions at RHIC
or LHC energies strings normally melt at very high tem-
peratures where, according to the DQPM, on which the
PHSD is based, the partons are very massive. There-
fore it may happen that the mass of the hadron which
should be converted to partons is not large enough to
create these massive partons. For this reason pions do
not directly convert to a quark - antiquark pair but form
first a rho meson and then the rho meson melts into a
quark-antiquark pair. Considering that a nucleon, which
is composed of three constituent quarks, has a mass of
around 1 GeV and a rho meson has a mass of around 0.8
GeV while the pole mass of the quark spectral function
is around 0.48 GeV at 2 Tc, the quarks produced through
the string melting have normally a mass below the pole
mass in order to conserve energy and momentum. In
other words, the QGP in the PHSD approach is com-
posed of lighter quarks and antiquarks than that in the
LB approach where partons are distributed according to
the complete spectral distribution based on the DQPM.
According to our recent study on transport coefficients
of heavy quarks in non-equilibrium matter [16], heavy
quarks have a larger drag and diffusion coefficient if the
QGP is composed of lighter partons or whose partons
have less kinetic energy than in equilibrium, assuming
that the local energy density is kept constant. These re-
sults add to the explanation of the larger drag seen in
PHSD calculations of figure 4.

B. Forward/backward-rapidity

The comparison between PHSD and the LB approach
can be extended to forward and backward rapidities.
Presently most studies on heavy flavor production in
heavy-ion collisions are focused on mid-rapidity, but in
the future we expect also results for forward and back-
ward rapidities. Assuming boost invariance, the results
will not depend on rapidity, but boost invariance is only
a very crude approximation. In reality it begins to break
down at few rapidity units away from midrapidity.
The upper panel of figure 6 shows RAA(pT ) of

(anti)charm quarks in forward/backward rapidities (2 <
|y| < 3) at Tc before hadronization in Au+Au collisions
at b = 2 fm. Since the resolution of a grid in (t, z) co-
ordinates is not good for forward/backward rapidities,
we choose for the LB approach a grid in the (τ, η) co-
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FIG. 6: (a) RAA(pT ) of (anti)charm quarks at for-
ward/backward rapidities (2 < |y| < 3) at Tc be-
fore hadronization, (b) Transverse momentum change of
(anti)charm quarks in a QGP produced in central Au+Au
collisions at

√
sNN = 200 GeV. We display the PHSD results

as a function of the initial transverse momentum of the charm
quarks and for three different rapidity ranges, and (c) same as
the middle panel but for the linearized Boltzmann approach.

ordinate system with a cell size of (∆τ =0.1 fm/c and
∆η =0.2). In contrast to the results at midrapidity, at
forward rapidity the results for RAA(pT ) differ consider-

ably between PHSD and the LB approach. RAA(pT ) of
charm quarks is larger at large transverse momentum in
PHSD as compared to that for the LB approach.
The middle and lower panels of figure 6 show for a

couple of rapidity bins the transverse momentum change
of charm quarks as a function of their initial transverse
momentum in a QGP produced in Au+Au collisions in
PHSD and in the LB approach, respectively. One finds
that in both approaches boost invariance in terms of
the rapidity independence of the change of pT of charm
quarks, is well satisfied up to 1 < |y| < 2 . For larger
rapidities the invariance begins to break down in PHSD,
while it is still valid for the LB approach. Comparing the
middle and lower panel, we see that up to 1 < |y| < 2 the
drag coefficient of charm quarks is larger in PHSD than in
the LB approach. In the rapidity interval 2 < |y| < 3, it
becomes similar in both approaches. The larger RAA(pT )
of charm quarks in PHSD, shown in the upper panel of
figure 6, is due to the larger variance of the transverse
momentum change. This means that the momentum dif-
fusion is larger which allows more charm quarks to con-
tribute to RAA at large transverse momentum, although
in both approaches the momentum drag, as seen in mid-
dle and bottom panels, becomes similar in 2 < |y| < 3.

IV. COMPARISON WITH HYDRODYNAMICS

Viscous hydrodynamics, often coupled with a hadronic
Boltzmann evolution for the late reaction stages, has
been remarkably successful in describing the bulk evolu-
tion of ultra-relativistic heavy-ion collisions [41–43]. Key
components of hydrodynamic calculations include initial
conditions that need to be calculated with a separate
initial condition model [31, 44], the QCD equation of
state, commonly taken from Lattice calculations [45–47]
and the QGP transport coefficients, most often extracted
from a comprehensive model-to-data comparison [48, 49].
Generally, hydrodynamics is valid under the assumption
of local thermal equilibrium, even though recent kinetic
theory derivations have shown the validity of hydrody-
namic calculations to extend beyond that limit [50, 51].
In contrast, PHSD provides a microscopic description

of the QGP dynamics without any equilibrium assump-
tions. However, it does reproduce the equation-of-state
and several other thermal quantities from lattice QCD in
the equilibrium limit [25, 52]. The shear and bulk vis-
cosities inherent in the PHSD dynamics can be extracted
and parameterized for use in hydrodynamic calculations,
making it very interesting to compare these two different
dynamical approaches for the same heavy-ion collision
scenario.
In a recent paper [29] such a comparison has been

started. It was discovered that the physics during the
initial thermalization time, before hydrodynamic can be
applied, is the critical difference between viscous hydro-
dynamics and PHSD. If PHSD and hydrodynamic simu-
lations start with the same macroscopic initial conditions,
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i.e. with the temperature and the flow velocity profiles af-
ter the initial thermalization time extracted from PHSD,
the results become quite similar although PHSD displays
larger fluctuations. The ensemble averaged spatial and
momentum eccentricities in PHSD are similar to those
in hydrodynamics for semi-central heavy-ion collisions.
It has also been found that the initial transverse flow at
the initial thermalization time has considerable effects on
the dynamics of the QGP while the initial shear tensor,
the off-diagonal part of energy momentum tensor, has
little effect.

Many heavy flavour studies use hydrodynamics to de-
scribe the time evolution of the QGP as the underlying
medium for LB calculations. Hydrodynamics provides
the energy density and the flow of the grid cell in which
the heavy quark is located. The local energy density
and flow velocity of the cell are here not obtained by
projecting the PHSD partons on cells, and hence by a
coarse-graining of the PHSD time-evolution, but by the
hydrodynamical time-evolution for a given initial con-
dition. Consequently, comparing PHSD with hydrody-
namics we can study the difference between a hydrody-
namical expansion of the QGP in comparison with the
PHSD dynamics. To make this possible we determine
the momentum of the scattering partner of the heavy
quark assuming that this momentum follows a thermal
distribution in the rest frame of the cell determined from
the energy density. Once the momentum of the QGP
partons is determined we boost it from the moving cell
into the center of mass of the scattering partners. The el-
ementary collision between the heavy quark and the light
parton are described by the Boltzmann collision integral.

While it is relatively easy to describe how heavy quarks
interact with partons from a thermalized QGP, the heavy
quark interactions with pre-equilibrium partons are not
well understood. In PHSD, partons that are produced
through string melting, need a formation time, which is
given by E/m2

T with E and mT being energy and trans-
verse mass, respectively. The formation time for heavy
quarks is much shorter than that for light partons. Dur-
ing the formation time, light partons exist in form of
color fields. Since it is not clear how these color fields
turn into particles and how heavy quarks interact with
the fields before the actual parton is formed, in PHSD
it is simply assumed that the heavy quarks, after their
formation time, interact with the color fields in the same
way as with partons which will appear after their for-
mation time. On the other hand, typical hydrodynamic
simulations do not extend to the pre-equilibrium stage.
Because of this reason many hydrodynamical studies ig-
nore heavy quark interactions with partons prior to the
initial thermalization time, assuming that they are neg-
ligible. We shall therefore study first the consequences
of the interaction of heavy quarks with the initial non-
equilibrium matter before comparing PHSD and hydro-
dynamics.

The upper panel of figure 7 shows the temperature of
the central cell (x = 0, y = 0) as a function of τ and η
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FIG. 7: (a) temperature of central cells (x = 0, y = 0) as a
function of τ and η in central Au+Au collisions at

√
sNN =

200 GeV from the PHSD and (b) RAA of charm quark in mid-
rapidity (|y| < 1) with and without charm quark interaction
before τ = 0.6 fm/c are compared with each other at several
time steps in linearized Boltzmann approach.

in Au+Au collisions at b = 2 fm employing PHSD. The
cell size is given by ∆τ = 0.1 and ∆η = 0.2 in the (τ, η)
coordinate system. One can see that boost invariance is
only slightly broken at mid-rapidity.
The lower panel displays RAA(pT ) of charm quarks at

mid-rapidity (|y| < 1) with and without charm quark
interactions between their formation time and τ = 0.6
fm/c at various times during their evolution employing
the LB approach. Using the EPS09 package in PHSD [23]
RAA is already initially suppressed at low pT by shadow-
ing effects and enhanced at large pT by anti-shadowing
effects. Therefore RAA deviates from 1 even before the
system starts to evolve (t = 0 fm/c). Comparing solid
and dotted lines, where charm quarks interact in the pre-
equilibrium phase and from τ = 0.6 fm/c on, respectively,
we see that the early interactions have a big influence on
the final value of RAA(pT ) in the rapidly expanding sys-
tem. The origin for this is the high temperature (see
upper panel) and the high density of the environment
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probed by the heavy quarks at early times. This leads to
a high collision rate and to a large energy transfer.
We are interested in the consequences of different dy-

namical evolutions of the QGP for charm quarks. There-
fore we utilize the same initial condition for the time evo-
lution of the plasma for both, PHSD and hydrodynamics.
To realize this, we disable the charm quark interactions in
PHSD prior to τ = 0.6 fm/c. This yields the dotted lines
in figure 7 which we compare to RAA(pT ) from hydrody-
namical calculations. Since the elementary cross sections
are identical in both approaches the differences are then
exclusively related to the different time evolution of the
QGP in PHSD and in the hydrodynamical approach.
Figure 8 shows the results from 3+1 dimensional vis-

cous hydrodynamical calculations using the initial con-
dition from the PHSD at τ = 0.6 fm/c in Au+Au colli-
sions at b = 2 fm. Since hydrodynamics cannot be ap-
plied prior to the initial thermalization time, as discussed
above, the temperature profiles in the upper panels are
empty prior to τ = 0.6 fm/c. In the left panels the initial
longitudinal flow is given by boost invariance and there
is no initial transverse flow:

vz(τ = 0.6 fm/c, η) =
z

t
= tanh(η),

vT (τ = 0.6 fm/c, η) = 0. (18)

In the right panels, the initial longitudinal and trans-
verse flow velocities, as provided by PHSD, are used in
the evolution. The calculation of the energy-momentum
tensor T µν in the (τ, η) coordinate system from the en-
ergy density and the flow velocity is given by [53]

Tµν = (e+ p)uµuν − pgµν , (19)

where

uτ = ut cosh η − uz sinh η,

uη = −ut sinh η + uz cosh η,

gττ = 1, gxx = gyy = gηη = −1. (20)

The initial shear tensor is ignored, because its contribu-
tion to dynamics is not significant [29].
Since there is no initial transverse flow in the left pan-

els, the QGP cools down more slowly, which can be seen
from the comparison of the upper left and right panels.
As a result, RAA of charm quarks is slightly lower in the
left panel than in the right panel, since the lifetime of the
QGP is a bit longer in the left panel. It is interesting to
note that the RAA values in the right panel are very sim-
ilar to that from the PHSD without interactions before
τ = 0.6 fm/c, while the RAA values in the left panel are
slightly lower than those from PHSD.
From these comparisons in figure 8 one can draw two

conclusions: First, the consequences of an initial trans-
verse flow velocity on the final spectra are not negligible,
as already shown in [29] and second, the time-evolution
of the QGP, as tested by heavy quarks, is very similar in
PHSD and in viscous hydrodynamical calculations pro-
vided that the initial conditions are identical.

V. COMPARISON OF PHSD AND MC@HQ
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FIG. 9: RAA of mid-rapidity (anti)charm quarks at Tc (before
hadronization) in central Au+Au collisions at

√
sNN = 200

GeV. We compare the influence of different initial charm spec-
trum and of different QGP evolutions on this observable. top:
Influence of different initial charm spectrum. We compare the
results for the initial charm spectrum of the Nantes approach
(with and without Cronin effect) with that for the PHSD
initial charm spectrum (with and without shadowing). The
QGP evolution is from PHSD. Middle: Influence of different
time evolutions of the QGP for the same (PHSD) initial charm
spectrum. Bottom: Result of the standard MC@HQ ap-
proach (initial charm spectrum and QGP evolution from Kolb
Heinz+MC@HQ) compared with that of standard PHSD (ini-
tial charm spectrum and QGP evolution from PHSD).
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FIG. 8: Temperature of the central cell (x = 0, y = 0) as a function of τ and η in central Au+Au collisions at
√
sNN = 200 GeV

employing 3+1 dimensional viscous hydrodynamics. In (a) we use the initial temperatures from PHSD and the longitudinal
flow from boost invariance without initial transverse flow, in (b) both, initial temperatures and initial flow velocities, from
PHSD. The lower panels (c) and (d) display RAA of mid-rapidity charm quarks for hydrodynamical background initialized by
PHSD (dotted lines) and PHSD background (full lines) in LB approach. For the calculations displayed in the left panel we
assume vT = 0 like in the left top panel, and for those displayed in the right panel vT is given by the PHSD calculations. We
assume that no charm quark - QGP interactions take place before τ = 0.6 fm/c.
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So far we have focused our study on the effects of non-
equilibrium QGP on charm dynamics. In this section
we extend the discussion to the consequences of different
initial charm quark and different elementary interactions
between heavy quarks and partons from the QGP. For
this we use an additional approach to study open heavy
flavor observables, MC@HQ, which has been developed
by the Nantes group and combined with different hydro-
dynamical scenarios that describe the expansion of the
plasma, namely the one from Kolb Heinz for RHIC ener-
gies [42, 54]. Both approaches use FONLL calculations
for the initial charm quark spectrum. This description
is not unique as the calculation for p+p collisions shows:
The spectrum of the Nantes model is close to the up-
per bounds of the FONLL calculations at low transverse
momentum while PHSD always takes the mean values
of FONLL. The elementary interaction differs in three
essential points from that of the PHSD approach: The
QGP partons are massless, the coupling constant de-
pends on the momentum transfer (and not on the tem-
perature) and the interactions between the heavy quarks
and the QGP partons can also be inelastic. The inelas-
tic collisions are those in which a gluon is emitted in
addition to the particles in the entrance channel. For de-
tails we refer to [34]. These newly created gluons are af-
fected by the Landau-Pomeranchuck-Migdal effect which
states that they need time to be considered as indepen-
dent (created) particles. This effect is taken into account
in the Nantes approach [55]. To perform each collision
one picks, as in the LB of PHSD, randomly the momen-
tum of the colliding parton (q,g) from the local thermal
distribution in the hydro-cell. This parton collides with
the heavy quark according to cross sections which are
calculated with the lowest order Feynman diagrams. The
elastic cross section differs from the pQCD cross section
by having a running coupling constant (α(t)) and a mod-
ified propagator. Instead of a propagation ∝ (t−m2

D)−1,
the form ∝ (t − κm2

D)−1 is used where κ is determined
by the requirement that the energy loss is independent
from the intermediate scale which separates the hard-
thermal-loop (HTL) dominated low momentum transfer
from the Born diagram which describes the cross sec-
tion for high momentum transfer, following the proce-
dure which Braaten and Thoma have introduced for QED
[56]. Since the pQCD calculations cannot be carried out
up to infinite order, higher order corrections are included
simply by multiplying the cross sections by a so-called
K-factor. The K-factor is taken to be 1, which means
that high-order corrections are ignored in the pQCD cal-
culations.

Figure 9 comparesRAA of (anti)charm quarks observed
at midrapidiy at Tc (before hadronization) in central
Au+Au collisions. We display the influence of differ-
ent initial charm spectra and of different descriptions of
the expansion of the QGP. The interaction between the
charm quarks and the QGP follows the Nantes model.

In the upper panel we study the influence of different
initial charm quark spectra on RAA of charm quarks at

Tc (before hadronization). The expansion of the QGP is
described by the PHSD. Both, the Nantes approach and
PHSD, include cold nuclear matter effects, the Cronin
effect in the former and shadowing effects in the lat-
ter. The Cronin effect is the enhancement of the heavy
quark transverse momentum due to the scattering of a
nucleon in one nucleus and a parton of the other nu-
cleus such that the parton gains additional transverse
momentum before the hard scattering which produces
heavy flavor [57]. As expected, the Cronin effect sup-
presses RAA at low transverse momentum and enhances
it at large transverse momentum. In a nucleus the num-
ber of partons at small x, with x being the longitudi-
nal momentum fraction, decreases and that at large x
increases. The former is called shadowing and the lat-
ter antishadowing. The (anti)shadowing effects suppress
RAA at low transverse momentum and enhance it at large
transverse momentum, as the Cronin effect. Whether the
(anti)shadowing effect includes the Cronin effect or not
is controversial. We display the results for two different
PHSD initial charm spectrum (with and without shad-
owing) and two different Nantes initial charm spectrum
(with and without Cronin effect). We observe that the
different initial conditions have a strong influence on RAA

at Tc, especially at low pT . Since the Cronin effect shifts
the whole pT distribution it is still visible at intermedi-
ate pT whereas the antishadowing is only little visible.
At low momentum PHSD shows an enhanced yield as
compared to the Nantes model whereas at large charm
quark momenta the approaches become more similar.

The middle panel shows how different descriptions of
the expansion of the QGP, those from MC@HQ (namely,
Kolb Heinz for RHIC energies) and from PHSD, influ-
ence RAA at Tc . Here we use the grid of PHSD as it
is used in the LB approach as described in sections III
and IV. Initial charm spectrum (PHSD) and elementary
interactions (from Nantes) are the same for both models.
It is clearly visible that the hydrodynamical expansion in
the Nantes model yields a larger enhancement at small
pT than the PHSD expansion. RAA for the Kolb Heinz
expansion are below those for the PHSD expansion for
1.5 < pT < 4 GeV.

The lower panel compares the consequences from
choosing standard ingredients from the PHSD approach
as compared to the ones from MC@HQ. We see that the
effects observed in a) and b) compensate each other to a
large extent. The higher RAA in PHSD due to the PHSD
initial charm spectrum is compensated by the lower RAA

due to PHSD expansion of the QGP and vice versa.
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FIG. 10: RAA of mid-rapidity (anti)charm quarks at Tc (be-
fore hadronization) for the elementary interaction between
heavy quarks and partons in the QGP from EPOS+MC@HQ
(blue) and from PHSD in the LB version (red line). Charm
quarks start to interact after τ = 0.6 fm/c. The initial charm
spectrum and the expansion of the QGP are taken from the
PHSD model.

Besides the initial charm spectrum and the QGP ex-
pansion there is a third component which has influence
on RAA at Tc, the elementary interaction between heavy
quarks and QGP partons. This influence is addressed in
Fig. 10. It showsRAA of mid-rapidity (anti)charm quarks
at Tc for different elementary interactions between heavy
quarks and QGP partons. The expansion of the QGP and
initial charm quarks distribution are given by the PHSD.
Charm quarks start to interact after τ = 0.6 fm/c. For
the red curve the elementary interaction is taken from
the PHSD approach whereas for the blue curve which
is identical to the full red curves in Figure 9) the inter-
action of the Nantes approach is applied. We see also
here a considerable difference in RAA. Though it is be-
yond the scope of the present study, we note that the
RAA shown here is that of the heavy quark at hadroniza-
tion and cannot be compared to experimental results for
heavy mesons. D mesons can be created by coalescence
of a QGP quark or by fragmentation. The relative frac-
tion of both depends on pT . The coalescence probability
of charm quarks is larger in MC@HQ than in PHSD. This
decreases the differences of RAA, because the coalescence
increases pT and, as a result, suppresses RAA at small pT
and enhances it at large pT .
Figures 9 and 10 show the challenges regarding the

use of charm quarks to study properties of the QGP pro-
duced in heavy-ion collisions. The lifetime of the plasma
is rather short due to the fast expansion. Therefore dif-
ferences in the initial state of the system show up in the
final charm quark spectra prior to hadronization. Differ-
ent initial charm spectra, different expansion scenarios as
well as a different elementary interactions between heavy
quarks and partons of the QGP lead to pT dependent
modifications of RAA which may easily reach individually
50% but which may compensate each other. Therefore

models with different expansions, different elementary in-
teractions and different initial charm spectra may yield
a similar final state RAA(pT ). Consequently, with the
available experimental data, essentially RAA and v2 at
midrapidty, all measured with a considerable error, one
cannot yet identify precisely the contributions of the dif-
ferent sources to the deviation of RAA(pT ) from unity.

VI. SUMMARY

In this study we have investigated how different de-
scriptions of the evolution of the bulk medium affects the
heavy quark observables by using three different models
for the QGP expansion.
A) a hydrodynamical approach which is based on the as-
sumption that the system is in local equilibrium during
its expansion and requires as only input the equation-of-
state of strongly interacting matter.
B) The PHSD approach which assumes that the QGP is
composed of quasi-particles whose time evolution is given
by the Kadanoff-Baym equations.
C) The coarse grained PHSD approach in which a grid
is introduced on which the partons, propagated by the
PHSD equations, are projected. At each time step and
for each cell the energy density and the cell flow velocity
are calculated.
Since the linearized Boltzmann approach assumes lo-

cal thermal equilibrium, the comparison of the results of
PHSD with that using a linearized Boltzmann approach
reveals to what extent a local equilibrium is established
in PHSD. We found that at mid-rapidity charm quarks
lose more energy at large transverse momentum with-
out the assumption of a local thermal equilibrium. This
translates into a larger drag coefficient of charm quarks
in PHSD. It shows that coarse graining of transport the-
ories (in order to use for example microscopically calcu-
lated thermal production rates of heavy quarks or lin-
earized Boltzmann equations) may bias results and has
to be tested against fully microscopic calculations.
Although the results from PHSD and from LB differ in

details for the central observable in heavy-ion collisions,
RAA(pT ), the influence of this larger drag coefficient is
compensated by a larger diffusion coefficient. Therefore
RAA(pT ) of charm quarks is similar at large transverse
momentum independent of whether a local thermal equi-
librium is assumed or not. Also v2 of heavy quarks and
D mesons are rather insensitive to the assumption of a
local thermal equilibrium.
Extending the comparison to forward and backward

rapidities we see that the boost invariance begins to
break down earlier in the PHSD without the assump-
tion of thermal equilibrium and that the drag coefficient
of charm quark momentum starts to decrease for rapidi-
ties of 2 < |y| < 3. While, assuming thermal equilibrium,
the drag coefficient is nearly rapidity independent, it gets
smaller in PHSD. As a result, RAA of charm quarks in
PHSD without thermal equilibrium is larger than that in
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the LB approach.
To test whether the space-time evolution of the en-

ergy density and of the collective velocity is different
we compared charm quark interactions in the QGP de-
scribed by PHSD and by 3+1 dimensional viscous hydro-
dynamics with the initial conditions provided by PHSD,
(both calculated in the LB approach). This compari-
son shows that after τ = 0.6 fm/c both approaches give
very similar results. Consequently the elementary in-
teraction among the partons in PHSD are sufficiently
strong for macroscopic thermal quantities to follow hy-
drodynamics, though the matter still remains in non-
equilibrium microscopically. This justifies a posteriori
also the parametrization of the masses and coupling con-
stant in PHSD as a function of the local temperature.
When we compare the heavy quark observables calcu-

lated in PHSD and in viscous hydrodynamics, the differ-
ence comes from the interactions between heavy quarks
and their environment before τ = 0.6 fm/c when the sys-
tem has obtained a local equilibrium and therefore hy-
drodynamical calculations can start. In PHSD partons
are produced through string melting and are ready for
interactions after their formation time which depends on
the transverse mass of the particle. Since the interactions
of charm quarks with the not yet formed QGP partons
is not well known, we assume that it is same as the in-
teraction with formed partons. As a consequence, RAA

of charm quark is more suppressed by about 0.1 at large
transverse momentum (4 < pT < 6 GeV) if charm quarks
are allowed to interacts before the initial thermalization
time. Considering that RAA of charm quarks is around
0.4 at 4 < pT < 6 GeV, the effect is not negligible.
We have also found that the initial transverse flow,

which is sometimes neglected in hydrodynamic simula-
tions, has an effect on charm quark observables, though
this influence is not as strong as that from the inter-
actions before the initial thermalization. If the initial
transverse flow is ignored, the cooling of the QGP be-
comes a bit slower and charm quarks interact in QGP
for a longer time. As a result, RAA of charm quarks is
slightly lower than in the PHSD calculations.
In the second part of this article we studied the in-

fluence of the elementary cross sections between heavy
quarks and QGP partons on RAA(pT ). We compared for
two approaches, the Nantes and the PHSD approaches,
those quantities which influence RAA of heavy quarks
at Tc, before they hadronize (to eliminate the uncer-
tainties due to different hadronization models and due
to hadronic final state interactions). For this purpose

we modified the three ingredients of kinetic approaches,
the heavy quark initial distribution, the QGP expansion
and the elementary interaction between heavy quarks and
QGP partons, independently, keeping the other two in-
gredients fixed. We see that in all three cases the modifi-
cation of RAA is not negligible and pT dependent. Mod-
els, in which all three ingredients are rather different, may
nevertheless give very similar RAA values, as has been ob-
served in the past [58–62]. Therefore, the observables at
hand will not allow to unambiguously determine these
ingredients separately. One may hope that with new ex-
perimental data models like EPOS+MC@HQ and PHSD,
which describe not only heavy quarks but also the light
quark observables, can be used to limit the uncertain-
ties of the QGP expansion and that heavy-ion reactions
with different size nuclei as well as correlations between
heavy mesons may constrain the elementary interaction
between heavy and light quarks further. At this stage,
it will for sure be mandatory for each model to take the
off-equilibrium effects into account, as they are one com-
ponent of possible discrepancies, however not dominant
over the other ones we have investigated in this work.
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