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Background: Heavy-ion induced fusion reaction provides the opportunity for synthesizing heavy and superheavy
elements in laboratories. In general, the process can be divided in two successive dynamical evolutions. First,
a compact dinuclear configuration is formed through capture and then either it decays via quasifission or it
equilibrates to a compound nucleus.

Purpose: In this paper, we present a systematic study of nuclear capture process to disentangle the significances
of collective angular momentum, target-projectile mass asymmetry, and dissipative forces. Partial contributions
from different angular momentum are analyzed for three different reaction channels with 16O, 48Ca, and 50Ti
projectiles on the 208Pb target.

Method: A four dimensional Langevin dynamical framework is developed to simulate the time evolution of two
colliding nuclei starting from a well separated configuration until a captured composite is formed. The driving
potential and the dissipative forces are estimated using the double-folding procedure and the surface friction
model, respectively.

Results: Irrespective of target-projectile mass-asymmetry, the dynamics is found to be strongly influenced by
the collective angular momentum when it reaches beyond a critical value depending on the beam energy. Effects
are more prominent for 48Ca and 50Ti as these systems populate higher angular momenta. Nuclear dissipation is
shown to be strongly correlated with the angular momentum.

Conclusions: A deeper understanding of the nuclear dynamics in heavy-ion induced capture process is presented.
The importances of target-projectile mass asymmetry, collective angular momentum, and nuclear dissipation are
decoupled. This study may provide a better guidance in designing fusion experiments.

I. INTRODUCTION

Heavy-ion induced fusion reaction holds the key to the
production of superheavy elements [1, 2]. Substantial ex-
perimental and theoretical progresses [1–7] are performed
to resolve the intricacies associated with this process.
The fusion mechanism can be divided in two categories
depending on the incident beam energy. At below-barrier
energies, it strongly depends on the channel coupling be-
tween the relative motion of the target-projectile com-
posite and intrinsic degrees of freedom. Therefore, the
pertinent theoretical model requires a quantum mechan-
ical treatment of the whole process [8–13]. At energies
above the fusion barrier, several classical and semiclas-
sical approaches are unveiled. In general, the time evo-
lution can be conceptualized as a two-step process that
begins with the formation of a dinuclear system (DNS)
through capture or sticking of the target and projectile
[14–16]. Subsequently, the DNS either propagates along
mass-asymmetry coordinate to form an equilibrated com-
pound nucleus or it decays via quasifission. Therefore,
the fusion cross section can be evaluated as a product
of capture cross section σc and PCN, the compound nu-
cleus formation probability which is also known as sur-
vival probability.
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At present, quantum many-body dynamics based on
the time-dependent density functional theory (TDDFT)
provides an ideal platform to study above-barrier fu-
sion [17–19]. Albeit very promising, the current im-
plementations of TDDFT can only simulate single fu-
sion/quasifission event: calculation of σc and PCN in
TDDFT is beyond current computational capabilities,
since it would involve large-scale Monte Carlo sampling
of all possible entrance channel paths. Fortunately, such
a sampling is easily doable within different classical ap-
proaches that rely on nuclear dissipation or diffusion. In
this case, the time propagation of each event is gener-
ated explicitly by solving appropriate equations of mo-
tion [15, 20, 21]. Nuclear dissipation strongly influences
the dynamics by converting the collective kinetic energy
of the composite to its internal excitation energy. For ex-
ample, in the surface friction model (SFM) [15, 22, 23], σc
is obtained by employing Langevin dynamical formalism
that includes fluctuating and dissipative forces as pre-
scribed by the Einstein’s fluctuation-dissipation theorem.
In this context, we should mention that σc is often calcu-
lated using simplistic analytical formulas [24, 25] by ap-
proximating the underlying detailed dynamics. The PCN

is usually estimated from a statistical model prescription
for diffusion over the inner fusion barrier [16, 21, 25].

Numerous theoretical studies are performed to explore
different aspects of above-barrier fusion dynamics. A
majority of these explains the experimental fusion and
quasifission cross sections [15, 16, 25], effect of relative
orientation of the deformed target and projectile [21], and
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hindrance due to dissipation [26]. In the present work, we
implemented a 4-dimensional (4D) Langevin dynamical
model to perform a systematic study of capture process.
We closely follow the SFM for this purpose. Specifically,
the distributions of collective coordinates are analyzed for
different combinations of target-projectile mass asymme-
try and collective angular momentum. This study reveals
the relative importance of the input parameters and fa-
cilitates the choice of entrance channel in producing a
particular compound system. We elaborate on the dis-
tinct role of nuclear dissipation in different energy and
angular momentum regions. Further, the development
of a coherent dynamical model description to calculate
PCN is under progress.

The present paper is organized as follows. Section II il-
lustrates the 4D Langevin model. The calculated results
are analyzed in Sec. III. Possibility of evaporation of
light particles and mass transfer during the capture pro-
cess are described in Sec. IV and Sec. V, respectively.
Finally, we conclude in Sec. VI.

II. THEORETICAL MODEL

The expression for the nuclear capture cross section
can be written as [26],

σc =
π~2

2µEc.m.

∞∑
`=0

(2`+ 1)T` '
π~2

2µEc.m.

∫ ∞
0

(2`+ 1)T`d`

(1)
where µ and Ec.m. are the reduced mass and initial center
of mass energy of the composite, respectively. The initial
angular momentum is represented with `. The partial
capture cross section can be expressed in terms of the
transmission coefficient T` as,
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FIG. 1. (Color online) Schematic of relative coordinates of
target and projectile.

dσc(`)

d`
=

π~2

2µEc.m.
(2`+ 1)T`. (2)

We calculate T` by solving a stochastic Langevin dynam-
ical model. In general, multidimensional Langevin equa-
tions are written as [26],

dpi
dt

=−
∑
jk

pjpk
2

hjhk
hi

∂

∂qi
(M−1)jk −

1

hi

∂V

∂qi

−
∑
jk

Kij

(
M−1

)
jk
pkhk +

∑
j

gijΓj(t),

dqi
dt

=
∑
j

(
M−1

)
ij
pjhj , (3)

where qi represents a generalized coordinate and pi is
the conjugate momentum. Here, his are the Lamé
coefficients associated to generalized coordinates. M
and K are the collective inertia tensor and the dissi-
pation tensor, respectively. Time-correlation property
of the random force is assumed to follow the relation:
〈Γi(t)Γj(t′)〉 = 2δijδ(t−t′), and the strength gij is related
to the dissipation coefficient Kij through the fluctuation-
dissipation theorem: gikgkj = KijT ; T being the temper-
ature of the composite.

In the present work, the collective coordinates are cho-
sen to be (q1, q2, q3, q4) ≡ (r, θ, β1, β2), where r is the
distance between the centre of masses of the target and
projectile, θ is the angle made by r with the axis par-
allel to the incoming beam, and β1 and β2 define the
axial quadruploe deformations of target and projectile,
respectively. As shown in Fig. 1, (r, θ, φ) forms a spheri-
cal polar coordinate system with the origin at the center
of mass of the target. The dynamics along φ is trivial
since the initial deformations are assumed to be negligi-
ble. Also, the initial collective energy is fully coupled to
the r and θ motions. Hence, the mass asymmetry of the
composite is believed to be preserved during the course of
capture. This assumption is validated in Sec. V. In the
4D hyperspace, (h1, h2, h3, h4) = (1, r, 1, 1). The inertia
tensor has the following diagonal form,

M =

µ 0 0 0
0 µr2 0 0
0 0 B1 0
0 0 0 B2

 , (4)

where B1 (B2) is the liquid drop mass parameter corre-
sponding to the quadrupole deformation β1 (β2). The
dissipation tensor, K is calculated using the surface fric-
tion model as described in [26]. It is symmetric having
the components:

Krr =K0
r

(
∂VN
∂r

)2

,

Kθθ =K0
θ

(
∂VN
∂r

)2

,

Kβiβj
=RiRjY

2
20(0)Krr + δijK

0
β

√
CjBj ,

Krβi
=− 2RiY20(0)Krr, (5)
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and all the other components are zero. Here, VN is the
potential energy derived from the isospin independent
part of the target-projectile interaction, R1 (R2) is the
equivalent spherical radius of the target (projectile) nu-
cleus, and Ci is the liquid drop stiffness parameter cor-
responding to the deformation βi. The Y20(0) is the nor-
malized spherical harmonic calculated on the symmetry
axis of a nucleus. The values of the constant friction pa-
rameters are K0

r = 3.5×10−23 s/MeV, K0
θ = 0.01×10−23

s/MeV, and K0
β = 20. Incorporating the M and K ten-

sors in Eq. 3 we get,

dpr
dt

=
`2

µr3
− ∂V12

∂r
−Krr

pr
µ
−
∑
i

Krβi

πi
Bi

+ grrΓr(t),

dr

dt
=
pr
µ
,

1

r

d`

dt
=−Kθθ

`

µr
+ gθθΓθ(t),

dθ

dt
=

`

µr2
,

dπi
dt

=− ∂

∂βi

(
V12 +

1

2
Ciβ

2
i

)
−Krβi

pr
µ
−
∑
j

Kβiβj

πj
Bj

+ gβiβi
Γβi

(t),

dβi
dt

=
πi
Bi
, (6)

where pr and πi(i = 1, 2) are the momentum conjugate
to r and βi, respectively. The equation for πi addition-
ally contains the restoring force associated to the surface
vibration along βi. We have neglected fluctuations cou-
pled to the off-diagonal terms of the dissipation tensor as
their effects are small [27].

The driving potential V12 is calculated by adding the
contributions from nuclear (VN ), Coulomb (VC) and ro-
tational (VR) energies of the composite. The VN is ob-
tained by double folding the effective Migdal interaction
with nuclear densities. The resulting expression is [21],

VN (r, β1, β2) =

∫
ρ1(~r′;β1)feff (~r′)ρ2(~r′−~r;β2)d3r′ (7)

where ρ1 and ρ2 are the mass densities of the target
and projectile, respectively, as given by the Wood-Saxon
distribution [21]. The effective nucleon-nucleon force is
given by

feff (~r′) = 300

(
fin + (fex − fin)

ρ(0)− ρ(~r′)

ρ(0)

)
(8)

where ρ = ρ1 + ρ2, fin = 0.09, and fex = −2.59 [21].
The Coulomb potential between two uniformly charged
deformed nuclei is given by [28],

VC(r, β1, β2) =
Z1Z2e

2

r
+
Z1Z2e

2

r3
V ′C (9)

with

V ′C =

2∑
i=1

{√
9

20π
R2
i βi +

3

7π
(Riβi)

2

}
.

The rotational energy is calculated from the quantum
mechanical expression,

VR =
~2`(`+ 1)

2µr2
. (10)

In the present work, we consider spherical target and
projectiles and hence V12 is independent of initial orien-
tations. Both the nuclei can acquire deformation in the
course of dynamics and the corresponding symmetry axes
are always considered to be along r.

We solve Langevin equations (Eq. 6) using finite differ-
ence method with a time step of δt = 0.0005~/MeV. The
temperature T (in MeV) of the composite is calculated

using the Fermi gas model: T =
√
E∗/a; a being the

level density parameter which is assumed to be A/10 for
the present purpose. The excitation energy, E∗ is pro-
duced through dissipation of the collective kinetic energy.
At each time-step, we calculate E∗ from the conservation
of total energy as,

E∗ = Ec.m. −

(
p2r
2µ

+
∑
i

π2
i

2Bi
+ V12(r, β1, β2)

)
. (11)

An ensemble of Langevin trajectories is calculated for
each macrostate specified by (Ec.m., `, r(t = 0)). The ini-
tial r is chosen sufficiently large such that there is no over-
lap of nuclear densities and the fluctuation-dissipation
component is absent (E∗ = 0). In addition, πis are as-
sumed to be zero at the beginning (t = 0) and Ec.m. is
fully shared between pr and V . Therefore, both the ini-
tial pr and ` can be determined uniquely form the initial
r and θ. The fate of a Langevin trajectory is decided
from the magnitude and direction of pr. We judge a tra-
jectory as capture-event by satisfying the boundary con-
dition: pr |r<rb' 0, where rb is the value of r at the peak
of the potential barrier. For an unsuccessful capture, pr
increases with r (> rb) due to Coulomb repulsion. In an
ensemble of N t Langevin trajectories, if N c represents
the number of DNS formed then,

T` =
N c

N t
. (12)

In addition to the capture cross section, we calculate en-
semble averages of the dynamical coordinates at the time
of capture (t = tc),

〈qci 〉 =

∑
k(qci )kN

c
k∑

kN
c
k

=

∑
k(qci )kN

c
k

N c
, (13)

where N c
k is the number of DNS with the outcome (qci )k

for the observable qi. The superscript c indicates the final
value of qi at t = tc.

For a simplified calculation, T` is often parametrized
as,

T p` =
1

1 + exp
(
`−`cr
δ`

) . (14)
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The parameters `cr and δ` are derived in [29] by fitting
the capture cross-section of the 19F+181Ta reaction. The
corresponding expression for `cr is [26],

`cr =

√
A1A2

A1 +A2
(A

1/3
1 +A

1/3
2 )F (x) (15)

with

F (x) =

{
(0.33 + 0.205

√
x) if 0 < x < 120

2.5 if x > 120,
(16)

x = Ec.m. − Vc in MeV; Vc being the Coulomb barrier
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FIG. 2. (Color online) Projection of potential energy, on the
(a) β1 = 0 and (b) β2 = 0 surfaces, calculated for the 16O
+ 208Pb reaction. Capture barrier contours are indicated by
dashed lines

given by: Vc = 1.1755Z1Z2/(R1 +R2 + 1.6) in MeV. The
diffuseness δ` is formulated as,

δ` =

{
10−5(A1A2)3/2 [1.5 + 0.02(x− 10)] if x > 10

10−5(A1A2)3/2 [1.5− 0.04(x− 10)] if x < 10.

(17)
Here, A1 (Z1) and A2 (Z2) are mass numbers (atomic
numbers) of the target and projectile, respectively.

III. RESULTS

We have studied three reaction channels: (i)
16O+208Pb, (ii) 48Ca+208Pb, and (iii) 50Ti+208Pb,
where the target and projectiles are assumed to be spher-
ical at their ground state. The channel (i) is reasonably
asymmetric with a comparatively light projectile that
minimizes the chances of quasifission and, therefore, most
of the captured events emerge to complete fusion. The
other two channels are known to contribute in the quasi-
fission process [30]. First, we study the deformation de-
pendence of the potential energy V12. Two-dimensional
projections of V12 are plotted in Fig. 2 alternately for
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FIG. 3. (Color online) Variation of dσc

d`
with ` calculated for

(a) 16O+208Pb, (b) 48Ca+208Pb, and (c) 50Ti+208Pb reac-
tions. Solid and dashed lines represent Langevin dynamical
calculations and systematics (see text), respectively, for dif-
ferent Ec.m. (in MeV) as indicated.

fixed β1 and β2. Compared to the strong r dependence,
V12 remains very flat along β1 and β2. Therefore, β1 and
β2 are expected to play a minor role in capture dynamics.

Figure 3 shows the partial capture cross section (Eq.
2) calculated for different Ec.m.. The dynamical results
are compared with the approximate formula where T` is
replaced with T p` . Although there is a reasonable agree-
ment for the channel (i), T p` drastically overestimates the
dynamical results in case of the heavy projectiles (chan-
nel (ii) and (iii)). The parameters `cr and δ` can be
adjusted to mimic the dynamical capture cross section
σc (Eq. (1)). However, a major disadvantage of Eq. (14)
is that the shape of dynamical dσc/d` can not be repro-
duced near the high ` tail region where T` < 1. Specifi-
cally, in comparison to dσc/d` obtained from T p` , the dy-
namical dσc/d` shows a steeper descent along the `-axis
predicting the absence of very large ` values in captured
events. Hence, the simplified prescription of Eq. (14)
should not be used, especially for heavy projectiles with
mass ≈40 or more, to estimate ` distribution of captured
events. This is an important outcome of our calculation
as the formation of a fully equilibrated compound system
strongly depends on the `-population. The deviation of
dynamical results from the systematics is a manifestation
of dissipative effect that prevents Langevin trajectories
from overcoming the capture barrier at a high value of `.

The dynamical dσc/d` contains small fluctuations in



5

8 0 1 0 0 1 2 00 . 0
0 . 4
0 . 8
1 . 2

2 0 0 2 5 0 3 0 0 3 5 0
0 . 0
0 . 5
1 . 0
1 . 5
0 . 0
0 . 5
1 . 0
1 . 5

1 6 O + 2 0 8 P b

 

 

� c(b)
( a )

( c )

5 0 T i + 2 0 8 P b

4 8 C a + 2 0 8 P b

 

  

 ( b ) 

 

 
E c . m . ( M e V )

FIG. 4. Capture cross sections calculated from Langevin
dynamics (solid lines) and systematics (dashed lines) are
compared with experimental data (circle [31], triangle [32],
square[33], star [7], and right triangle [34]). Coulomb bar-
rier energies are indicated on x-axes with arrows. Reaction
channels are mentioned in each panel.

the T` < 1 region. These statistical fluctuations ap-
pear due to low N c counts. We considered N t = 25, 000
for each ensemble (ADNS, ZDNS, Ec.m., `) and the corre-
sponding statistical error is marginal when N c ≈ N t.
However, N c decreases sharply near the tail of dσc/d`
and in most cases, N c < 100 for T` < 0.5. The present
limitation of N t is imposed by the availability of com-
putational resources. Typically, calculation of a single
dσc/d` curve requires ≈ 1, 50, 000 cpu hours of computa-
tional time with a simultaneous use of 1000 processors in
a high-performance computer.

We calculated σcs from dσc/d` and compared it with
the experimental data in Figure 4. Evidently, the
Langevin results closely follow the experimental values
for (i) and (iii). In case of (ii), both the target and pro-
jectile are doubly magic nuclei. Hence, the observed mis-
match, specifically at lower energies, may be attributed
to strong shell effects. The shell effects are neglected in
the present work as we mainly consider beam energies
well above the potential barrier height. The excitation
functions of σc, obtained from T p` s of (i), (ii), and (iii),
do not reproduce the experimental values. It validates
the importance of dissipative dynamics in predicting the
correct nature of dσc/d` vis-á-vis σc. Although the dis-
crepancy is small for (i), a precise calculation of the tail
part of dσc/d` is required for an accurate estimation of
σc.

Subsequently, we calculate ensemble averages of the
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FIG. 5. (Color online) Variations of ensemble averages of
collective coordinates (〈βc1〉 in (a)-(c), 〈βc2〉 in (d)-(f), 〈rc〉 in
(g)-(i), and 〈θc〉 in (j)-(l)) and capture time 〈tc〉 ((m)-(o)) with
angular momentum `. Different lines correspond to different
Ec.m. (in MeV) as mentioned. Reaction channels are given on
top of each column.

capture time tc and all the collective coordinates at
t = tc. These are demonstrated in Fig. 5 as functions
of `. Irrespective of Ec.m., `, and mass asymmetry of
DNS, 〈βc1〉 and 〈βc2〉 remain almost constant at their ini-
tial value of 0. The restoring force provided by Ci is
strong enough to resist any shape change. Although this
observation is supposed to break at a high beam energy,
the dynamics along deformation coordinates may safely
be neglected for cold fusion reactions. In fig. 5, 〈rc〉 de-
fines the average r at t = tc and, as the figure shows,
it changes marginally with `. However, 〈rc〉 decreases
with Ec.m. since the collective kinetic energy drives the
DNS to a more compact configuration. Next, we de-
scribe 〈θc〉 that measures the amount of orbiting before
DNS is formed. θc governs the angular distribution of
non-compound events which decay within a very short
span of time after capture. Precisely, the correlation
between angular distribution and angular momentum of
these fast-decaying events can be understood from 〈θc〉.
As depicted in Fig. 5, initially 〈θc〉 increases linearly with
` and then it rises sharply as dσc/d` starts reducing to
zero. For (ii) and (iii), vary large values of ` (> 100 ~) are
populated that stimulate significant amount of orbiting.
This can be explained as follows. For a fixed incident
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FIG. 7. (Color online) Capture yield distribution as a function
of final angular momentum (`c) plotted for two initial angular
momenta (`) indicated by arrows.

energy (Ec.m.), the radial momentum, which decides the
capture time, is comparatively small near the terminal
values of `. It helps the composite to rotate more during
the slow propagation towards DNS. The corresponding
〈tc〉, plotted in Fig. 5, supports this argument. Also, a
comparison of 〈θc〉 for the three reactions concludes that
it depends only on the amount of ` induced, but there
is no intrinsic dependency on the target-projectile mass
asymmetry.

For a deeper understanding of the correlation between
θc and tc, the DNS yield distributions corresponding to
different final states specified with (θc, tc) are elucidated

in Fig. 6. For the smaller value of ` corresponding to
T` ' 1, the distribution is well localized in both the
directions suggesting a marginal role of dispersion. In
contrast, at the higher ` (T` ' 0), the ranges of θc and
tc are broad. However, the width of the distribution is
pretty narrow due to strong correlation between tc and
θc. A similar behavior is observed for the other systems.
This establishes the critical role of fluctuation-dissipation
in determining the high-` part of dσc/d` that tunes the
capture cross section.

Finally, we investigate the impact of dissipation along
θ. The capture barrier vanishes above a certain ` (say `m)
because of the centrifugal force; precisely, ` defines the
initial angular momentum of the composite. Then, DNS
formation is possible if the initial ` reduces to a value
for which the potential pocket reappears. This reduc-
tion is primarily controlled by the fluctuation-dissipation,
whereas the conservative force is weak enough to produce
such an effect. Figure 7 shows the dispersion in `c (value
of ` at t = tc) for two extreme values of `. As evident, the
distribution is symmetric and narrower for the lower `.
The higher ` is chosen to be more than `m. As a result,
the yield distribution is quite asymmetric with no events
at and above the `. Also, irrespective of the system we
found that the width of the distribution is more for a `
close to `m. It again signifies the importance of dissi-
pative forces for high angular momenta near the edge of
dσc/d`.
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FIG. 8. Fraction of captured events with target mass Ac1 and
target charge Zc1 at tc. Dotted lines indicate initial A1 and
Z1. Values of Ec.m., initial ` and reactions are mentioned in
each panel.

IV. PARTICLE EVAPORATION IN CAPTURE

We have investigated the possibility of pre-equilibrium
evaporation of light particles during the capture process.
Emission of neutron, proton, α, and γ-ray are considered
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at each time step. The particle emission widths are calcu-
lated using the Weisskopf’s statistical model prescription
[35]. The excitation energy for the particle evaporation
is generated through the dissipation of collective kinetic
energy. Particle emissions are found to be highly improb-
able during the short span of capture dynamics. More-
over, a moderate amount of excitation energy builds up
only at the end stage of dynamics. A detail study of
pre-equilibrium emission in the post-capture evolution is
under progress.

V. POSSIBILITY OF MASS FLOW

We have mentioned earlier that mass flow between the
target and projectile can be neglected during the capture
process and this mass rearrangement takes place as a sub-
sequent dynamical evolution with a comparatively slower
time scale. This assumption is followed in various other
theoretical models [14, 16, 21]. However, for a quanti-
tative understanding, we have estimated the amount of
mass transfer during the capture process. To this end,
we solved overdamped Langevin equation along the mass
asymmetry coordinate (α). The associated equation is
given by,

dα

dt
=− 1

Kαα

∂V12
∂α

+ gααΓα(t), (18)

where α = |Z1−Z2|/(Z1 +Z2) that measures the target-
projectile charge asymmetry (for each combination of
(Z1, Z2; Z1 + Z2 = ZDNS), the corresponding masses
(A1, A2; A1 + A2 = ADNS) are uniquely determined by
maximizing the total binding energy of the DNS) and V12
is the multidimensional potential energy [21] extended
along α for the present purpose. We incorporated the
above equation in the original set of Langevin equations
(Eq. 6) and the dynamics along β1 and β2 are neglected
as these hardly affect during capture. Therefore, the time
evolution is simulated with three coordinates - r, θ, and
α. The strong friction limit is applicable as the initial
collective kinetic energy associated to α is zero and the
mass transfer takes place only due to fluctuations in α.
As explained in a previous section, we have neglected
the off-diagonal terms in Eq. 18. Also, the dissipation
strength Kαα is assumed to be constant at 50~ which is
obtained in compliance with Krr.

We have performed the calculations for extreme val-
ues of ` where the chances of mass transfer is higher
because of long capture time. The mass number (Ac1)

and the atomic number (Zc1) of the target nucleus at the
time of capture are shown in Fig. 8 for two sample cases
of 48Ca and 50Ti projectiles. As evident, even at these
high `, the mass and charge transfer fractions are < 6%
and < 5%, respectively. Moreover, the contribution of
these ` in the capture cross section is small. Therefore,
the capture process is hardly effected due to the internu-
clear mass transfer. In addition, Fig. 8 indicates that,
both for 48Ca and 50Ti, a majority of the events tends
to move toward mass-symmetric DNS (i.e. both A1 and
Z1 decreases from their original values). These events
eventually contributes in the quasifission channel.

VI. CONCLUSION

We presented a 4-dimensional Langevin dynamical
model to study nuclear capture process. The model
is benchmarked with the experimentally known capture
cross sections. Independent behavior of all of the four col-
lective coordinates are extracted for various energy, an-
gular momentum, and entrance channel mass asymmetry.
Relative importance of these coordinates is discussed and
nuclear deformations are found to be insensitive to the
capture dynamics. Of course, the cross section depends
on the relative orientation of the target and projectile in
case of deformed nuclei [21]. We did not notice any di-
rect dependency on mass asymmetry except the fact that
heavier projectiles induce large angular momentum to the
dinuclear system. Specifically, the dynamical evolutions
are described to be almost identical for the three reaction
channels at a particular angular momentum and beam
energy. Further, strong correlation between the capture
time and nuclear orbiting is established. The role of nu-
clear dissipation in different angular momentum regions
is investigated. It is observed that dissipation plays a
pivotal role in ascertaining the shape of the partial cap-
ture cross section which essentially determines the total
capture cross section. The present findings give a guid-
ance in selecting the target and projectile for heavy ion
induced fusion reaction.
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