

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Shape evolution of neutron-rich ^{106,108,110}Mo isotopes in the triaxial degree of freedom

Phys. Rev. C **101**, 044311 — Published 20 April 2020 DOI: 10.1103/PhysRevC.101.044311

¹ Shape evolution of neutron-rich ^{106,108,110}Mo isotopes in the triaxial degree of freedom

2	J. Ha, ^{1,2,*} T. Sumikama, ^{2,3,†} F. Browne, ^{2,4} N. Hinohara, ^{5,6} A. M. Bruce, ⁴ S. Choi, ¹ I. Nishizuka, ³
3	S. Nishimura, ² P. Doornenbal, ² G. Lorusso, ^{2,7,8} PA. Söderström, ² H. Watanabe, ^{2,9} R. Daido, ¹⁰
4	Z. Patel. ^{2,7} S. Rice. ^{2,7} L. Sinclair. ^{2,11} J. Wu. ^{2,12} Z. Y. Xu. ^{13,14} A. Yagi. ¹⁰ H. Baba. ² N. Chiga. ^{3,2}
5	B Carroll ⁷ F Didieriean ¹⁵ Y Fang ¹⁰ N Fukuda ² G Gev 16,17 E Ideguchi ¹⁰ N Inabe ² T Isobe ²
5 c	D Kameda ² I Kojouharov ¹⁸ N Kurz ¹⁸ T Kubo ² S Lalkovski ¹⁹ Z Li ¹² B Lozeva ^{15,20} H Nishibata ¹⁰
-	A Odehara ¹⁰ Za Dodolućk ⁷ D H Baran ^{7,8} O I Dobarta ⁴ H Soluraj ² H Schaffnar ¹⁸ C S Simpson ¹⁶
1	H. Surguli 2 H. Talada 2 M. Tanaka 10.21 I. Tanagara 2.22.23 V. Warner 24.25 and O. Wieland26
8	n. Suzuki, n. Takeda, M. Tahaka, "," J. Taprogge, ","," V. werner, "," and O. wieland"
9	¹ Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
10	² RIKEN Nishina Center, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
11	Department of Physics, Tohoku University, Aoba, Sendai, Miyagi 980-8578, Japan
12	$^{4}School$ of Computing, Engineering and Mathematics,
13	University of Brighton, Brighton BN2 4GJ, United Kingdom
14	⁵ Center for Computational Sciences, University of Tsukuba, Tsukuba, 305-8577, Japan
15	⁶ Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan
16	⁷ Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
17	⁸ National Physical Laboratory, Teddington, Middlesex, TW11 0LW, United Kingdom
18	⁹ IRCNPC, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
19	¹⁰ Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
20	¹¹ Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
21	¹² Department of Physics, Peking University, Beijing 100871, China
22	¹³ Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
23	¹⁴ Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong
24	¹⁵ IPHC, CNRS/IN2P3, Université de Strasbourg, 67037 Strasbourg, France
25	¹⁶ LPSC, Université Grenoble-Alpes, CNRS/IN2P3, F-38026 Grenoble Cedex, France
26	¹⁷ ILL, 38042 Grenoble Cedex, France
27	¹⁸ GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
28	¹⁹ Department of Physics, University of Sofia, 1164 Sofia, Bulgaria
29	²⁰ CSNSM, CNRS/IN2P3, Université Paris-Sud, F-91405 Orsay Campus, France
30	²¹ Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan
31	²² Departamento de Física Teórica, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
32	²³ Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain
33	²⁴ A.W. Wright Nuclear Structure Laboratory, Yale University, New Haven, CT 06520, USA
34	²⁵ Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
35	²⁶ INFN Sezione di Milano, I-20133 Milano, Italy
36	(Dated: January 29, 2020)

The structure of ¹⁰⁶Mo, ¹⁰⁸Mo, and ¹¹⁰Mo was investigated through β -delayed γ -ray spectroscopy at the RIKEN RI Beam Factory. New γ -ray transitions and levels are reported, including newly assigned 0_2^+ states in ^{108,110}Mo. The β -delayed neutron-emission probabilities of ¹⁰⁸Nb and ¹¹⁰Nb were determined by examining the γ rays of their respective daughter decays. Quadrupole deformations were obtained for ^{106,108,110}Mo from their 2_1^+ energies and lifetimes. The even-odd energy staggering in the 2_2^+ band was compared with typical patterns of the γ -vibrational band, rigid triaxial rotor, and γ -soft rotor. The very small even-odd staggering of ¹⁰⁶Mo, ¹⁰⁸Mo, and ¹¹⁰Mo favors a γ -vibrational band assignment. The kinematic moment of inertia for the 2_2^+ band showed a trend similar to the ground-state band, which is expected for the γ -vibrational band. Beyond-mean-field calculations employing the constrained Hartree-Fock-Bogoliubov (HFB) + local quasiparticle-random-phase approximation (QRPA) method using the SLy5+T interaction reproduced the ground and 2_2^+ bands in ¹⁰⁶Mo and ¹⁰⁸Mo. The collective wave functions are consistent with the interpretation of the 2_2^+ band as the γ -vibrational band of the prolate shape. However, the staggering pattern observed in ¹¹⁰Mo differs from the one suggested in the calculations which predict a γ -soft rotor. There was no experimental indication of the oblate shape or the γ -soft rotor predicted in heavier Mo isotopes.

37

I. INTRODUCTION

The triaxial degree of freedom, γ , plays an important ³⁹ role in collective excitations of deformed even-even nu-⁴⁰ clei. While the first $J^{\pi} = 2^+$ state (2^+_1) is sensitive pri-⁴¹ marily to the quadrupole deformation parameter, β , the ⁴² so-called γ band with a 2^+ band head is strongly related

^{*} hjs0314@snu.ac.kr

[†] sumikama@ribf.riken.jp

 $\mathbf{2}$

⁴³ to triaxial motion [1]. In the case of axially-symmetric ¹⁰¹ The staggering of the rigid triaxial rotor is opposite to 44 quadrupole deformation, a rotational band built on a γ - 102 that of the γ -soft rotor; for example, the 3^+_{γ} state is close ⁴⁵ vibrational state constitutes the γ band. The energy of $_{103}$ to the 2^+_{γ} and 4^+_{γ} states of the rigid triaxial and γ -soft 46 its band head is related to the softness of the vibrational $_{104}$ rotors, respectively, where the γ subscript indicates the ⁴⁷ motion in the γ direction. When the potential energy 105 band member of the 2^+_2 state. On the other hand, the ⁴⁸ surface (PES) has a deep minimum between $\gamma = 0^{\circ}$ (pro- 106 γ -vibrational band with a small γ oscillation has a small ⁴⁹ late) and 60° (oblate), the nucleus takes on a static tri- ¹⁰⁷ or negligible staggering since the shape is close to being ⁵⁰ axial shape and rotates about all three axes of the intrin- ¹⁰⁸ axially symmetric. si sic body. The rigid triaxial rotor model by Davydov et $_{109}$ Another signature of γ vibration is the existence of a ³¹ bid body. The light the 2^+_2 state lies below the 4^+_1 state ¹¹⁰ two-phonon γ -vibrational band based on the $K = 4^+$ ⁵³ at the maximum triaxiality of $\gamma = 30^\circ$. Another model ¹¹¹ state. The $K = 4^+$ band lying below the pairing gap ⁵⁴ of the triaxial shape is the γ -unstable rotor by Wilets 112 was identified in the ^{104,106,108} Mo isotopes with an en-⁵⁵ and Jean [3], where PES has a γ -independent valley at ¹¹³ ergy ratio $E_{K=4}/E_{K=2} = 1.95$, 2.02, and 2.42 for ¹⁰⁴Mo, ⁵⁶ a given β . The γ -unstable model predicts degenerate ¹¹⁴ ¹⁰⁶Mo, and ¹⁰⁸Mo, respectively, which are close to the $_{57}$ 2_2^+ and 4_1^+ states. A transitional rotor between the γ - $_{115}$ harmonic-vibrator value of 2 [13, 14]. $_{58}$ vibrational band and the γ -unstable rotor is the γ -soft $_{116}$ The second 0⁺ state provides additional information $_{59}$ rotor, of which the PES has a moderate path between $_{117}$ on the nuclear shape, since its origin can derive from β ⁶⁰ prolate and oblate [4].

61 $_{22}$ investigate shape evolution in the γ degree of freedom. $_{120}$ from β decay and (t,p) reaction studies [12, 18–20]. Calculations using the liquid-drop or the finite-range $_{^{121}}$ In the present study, the β -delayed γ rays of liquid-drop model using particle number projection or $_{^{122}}$ 106,108,110 Mo were observed under lower background con-63 64 66 67 ⁶⁹ Bogoliubov (HFB) calculations with the D1S-Gogny in- ¹²⁷ ported in Ref. [22]. Reliable branching ratios of the 2⁺₂ ⁷⁰ teraction [6] predict a gradual transition from γ -soft ro- 128 states were determined. The 2^+_2 band in ¹¹⁰Mo was ex-74 75 neutron Fermi surfaces[8]. 76

77 $_{78}$ band in $^{100-108}$ Mo [9], the quadrupole deformation was $_{136}$ ing the constrained HFB (CHFB) + local quasiparticle-⁷⁹ indicated to reach a maximum at ¹⁰⁶Mo. More precise ¹³⁷ random-phase approximation (LQRPA) approach. ⁸⁰ measurements are awaited to obtain a certain conclu-⁸¹ sion, since uncertainties of transitional quadrupole mo-⁸² ments are larger than a change among isotopes. The ¹³⁸ ⁸³ measured 2^+_2 -state energy, $E(2^+_2)$, in the neutron-rich Mo $_{\tt 84}$ isotopes decreases as mass number, A, increases. It be- $_{\tt 139}$ ²⁵ comes almost equal to $E(4_1^+)$ at A = 108 and drops be- ¹⁴⁰ (RIBF), operated by RIKEN Nishina Center and CNS, 86 87 88 ⁸⁹ and γ -soft rotor [15] based on the measured values of the 144 beam was separated by the BigRIPS fragment separa-⁹⁰ energies of the 2_1^+ , 4_1^+ , and 2_2^+ states and the γ -decay $_{145}$ tor and transported through the ZeroDegree spectrome-⁹¹ branching ratio from 2_2^+ state. The interpretation of the $_{146}$ ter [23, 24]. The particle identification (PID) was per- $_{22}2_2^+$ state attracts controversy due to its similarity be- $_{147}$ formed by determining the mass-to-charge ratio, A/Q, ⁹³ tween the three models, since the γ -vibrational state and ₁₄₈ and the atomic number, Z [25]. $\gamma\text{-soft}$ rotor have a finite root-mean-square value of γ as $_{_{149}}$ 94 a result of a dynamic motion. 95

96 97 98

¹¹⁸ vibration or a coexisting shape. The 0^+_2 states in the The neutron-rich Mo isotopes are good candidates to $_{119}$ neutron-rich Mo isotopes are assigned up to A = 106

Bardeen-Cooper-Schrieffer methods predict the coexis- 123 ditions and/or with higher statistics than the previous tence of prolate and oblate shapes, a prolate-to-oblate $_{124}$ investigations [12, 15, 19, 21]. The lifetimes of the 2^+_1 shape transition at N = 68 or 70, and triaxial ground 125 states were measured using a fast timing array of 18 68 states in ¹⁰⁴Mo, ¹⁰⁶Mo, and ¹⁰⁸Mo [5]. Hartree-Fock- 126 LaBr₃(Ce) crystals, of which preliminary results are re-⁷¹ tor in ¹⁰²Mo to oblate in ¹¹²Mo. A calculation using the ¹²⁹ tended from 5⁺ to 7⁺. In ¹⁰⁸Mo and ¹¹⁰Mo, 0_2^+ states ⁷² global Skyrme energy density functional UNEDF0 pre-⁷³ dicts triaxial ground-state deformation in ^{106,108}Mo [7]. ¹³¹ 0_2^+ assignment in ¹⁰⁶Mo [12] was incorrect. Values of Calculations of two quasi-particle states are used to inves- 132 quadrupole deformation and evidence for triaxial motion tigate quasi-particle configurations near the proton and 133 have been extracted from these measurements. The re-134 sults are compared with beyond-mean-field calculations From the lifetime measurement of the ground-state 135 based on the five-dimensional collective Hamiltonian us-

II. EXPERIMENT

The experiment was performed at RI Beam Factory low $E(4_1^+)$ at $A \ge 110$ [10–16]. The low-lying 2_2^+ state $\frac{1}{141}$ University of Tokyo. The RI beam was produced by the in the neutron-rich Mo isotopes has been interpreted in $_{142}$ in-flight fission reaction of a 345 MeV/u 238 U⁸⁶⁺ beam terms of the rigid triaxial shape [12], γ vibration [13, 14], $_{_{143}}$ impinging on a 3.0-mm thick beryllium target. The RI

The RI beam was implanted into the active stop-¹⁵⁰ per WAS3ABi (Wide-range Active Silicon Strip Stop-The energy staggering of the 2^+_2 band is a good sig- ¹⁵¹ per Array for Beta and ion implantation), which comnature to distinguish among the three models which de- 152 prised five stacked Double-Sided Silicon Strip Detectors scribe axial asymmetry [1, 17]. The rigid-triaxial and ¹⁵³ (DSSSDs) [26]. The RI hit position of one DSSSD was γ -soft rotors show an energy staggering which deviates $_{154}$ determined by selecting the fastest timing signal of x and 100 from the J(J+1) dependence of the rigid axial rotor. 155 y strips [27]. The implanted layer was determined by de-

TABLE I. The number of 106,108,110 Zr and 106,108,110 Nb ions implanted in WAS3ABi and their implantation rate.

Isotope	The number of	Implantation rate
	implanted ions	(pps)
106 Zr	1.9×10^6	3.5
$^{108}\mathrm{Zr}$	2.1×10^6	3.8
$^{110}\mathrm{Zr}$	3.2×10^4	0.059
$^{106}\mathrm{Nb}$	$7.1 imes 10^4$	16
$^{108}\mathrm{Nb}$	$1.3 imes 10^5$	0.24
$^{110}\mathrm{Nb}$	1.9×10^6	3.5

¹⁵⁶ tecting the cross-talk signal induced to the DSSSD downstream of the implanted one [28]. 157

The β particles emitted by the decay of the RI were 158 ¹⁵⁹ measured by WAS3ABi and two plastic scintillators with mm thickness, placed upstream and downstream of 2160 WAS3ABi. The timing signal of the plastic scintillator 161 was used for the high-time resolution detection of β par-162 ticles. The β -particle hit pattern and energy deposition in WAS3ABi and the plastic scintillators were used to 164 restrict position candidates of the β emitter [29]. The β 165 particle was associated with the implanted RI by using the position and time differences between the RI and β 167 168 particle.

WAS3ABi was surrounded by the EUroball-RIKEN 169 ¹⁷⁰ Cluster Array (EURICA) [30] to detect γ rays emitted ₂₂₇ the 784.6-keV transition feeding only the 171.4-keV level. $_{171}$ from excited states populated by the β decay of im- $_{228}$ However, the high statistics of the present study allowed $_{172}$ planted RIs. The systematic uncertainty of γ -ray en- $_{229}$ us to observe additional coincidences with the 784.6-keV 174 175 176 177 ¹⁷⁹ ray sources. A fast-timing LaBr₃(Ce) array consisting ²³⁶ the 2_1^+ state [12], but it was reassigned to a known tran-¹⁸⁰ of eighteen $\phi 1.5'' \times 2''$ crystals was coupled to the EU-²³⁷ sition [34] from the 1816.9-keV state, since a coincidence 181 182 states in the nanosecond regime [31]. The Full-Width 239 determined to be 1.10(5) s from the decay curve of the ¹⁸³ Half Maximum (FWHM) of the time resolution of the $_{240}$ 171.4-keV γ ray for the 106 Nb \rightarrow ¹⁰⁶Mo decay as shown in ¹⁸⁴ LaBr₃(Ce) array was evaluated to be 0.61 ns at 200 keV. ²⁴¹ Fig. 3 (a). The obtained half life was consistent with the The γ -ray detection efficiency was 3.0(5)% and 0.7(2)% ₂₄₂ evaluated value of 1.02(5) s [34]. 185 186 at 250 keV and 1 MeV, respectively.

187 188 189 ¹⁹⁰ and to search for β -decaying isomeric states. The num-²⁴⁷ decay chains, there was no evidence on the existence of a ¹⁹¹ ber of implanted Nb and Zr isotopes are summarized in ²⁴⁸ second β -decaying state in ¹⁰⁶Nb. The absolute γ -ray in-193 ¹⁹⁸ terms revealed that ¹⁰²Y has a β -decaying isomeric state ²⁵⁴ tion to the β -particle counts as a function of time. The ¹⁹⁹ and the β decay of the even-even ¹⁰²Sr isotope with the ²⁵⁵ conversion factor from the relative to absolute γ -ray in-

²⁰⁰ spin-parity of 0^+ can only populate the β -decaying low spin state in 102 Y. The same method was applied to the 201 $_{202}$ Zr \rightarrow Nb \rightarrow Mo β -decay chain in this work. For each β decay chain, $Zr \rightarrow Nb \rightarrow Mo$ or $Nb \rightarrow Mo$, the β -ion time window was optimized to maximize the number of the 205 Nb-decay events and minimize the number of other de-206 cays.

RESULTS III.

207

208

β decay to ¹⁰⁶Mo Α.

The β -delayed γ -ray spectrum of ¹⁰⁶Mo obtained from 209 ²¹⁰ the β -decay chain ${}^{106}Zr \rightarrow {}^{106}Nb \rightarrow {}^{106}Mo$ is shown in $_{212}$ Figs. 1 (a–b). The proposed level scheme of 106 Mo, illus-²¹³ trated in Fig. 2, was constructed through the use of γ -ray ²¹⁵ coincidences, for example Figs. 1 (c-d), energy sums and ²¹⁶ intensity balances. Nine new levels were identified and $_{217}$ a new transition from the 2^+_2 to 4^+_1 states was observed. ²¹⁸ In the previous β - γ spectroscopic study [12], the ground ²¹⁹ band was observed up to 6^+ , and the 2^+_2 and 4^+_3 bands $_{\rm 220}$ up to 4⁺. In the present study, γ rays from the 5⁺ states ²²¹ in the 2^+_2 and 4^+_3 bands were observed. These γ rays 222 are consistent with the results obtained from the spon-²²³ taneous fission of ²⁵²Cf [35–37]. The placement of the $_{224}$ 784.6-keV and 1106.7-keV γ rays were reassigned from ²²⁵ those of Ref. [12] based on the following arguments. The $_{226}$ 0⁺₂ state was previously assigned at 956.6 keV based on ergy was evaluated to be 0.15 keV from the residuals of 230 transition, which are shown in Fig. 1 (d). Based on this the energy calibration with standard γ -ray sources. The $_{231}$ information, the assignment of the 784.6-keV γ ray as the γ -ray detection efficiency of EURICA was measured to $_{232}$ transition between the 5^+_1 and 4^+_1 states is preferred. The be 18.3% at 250 keV and 8.1% at 1 MeV. A system- $_{233}$ observation of the transition from 5^+_1 to 3^+_1 supports this atic uncertainty of 5% was determined for the absolute $_{234}$ assignment. The previous assignment of the 1106.7-keV value from the uncertainty of the radioactivity of the γ - $_{235} \gamma$ ray was the transition between a 1279.9-keV state to RICA array to measure the lifetimes of low-lying excited 238 with 710.2 keV was observed. The half life of ¹⁰⁶Nb was

at 250 keV and 1 MeV, respectively. Excited states in ^{106,108,110}Mo populated in the beta ²⁴³ Table II summarizes the relative γ -ray intensity, I_{γ} , excited states in ^{106,108,110}Mo populated in the beta ²⁴⁴ following the β decay from ¹⁰⁶Nb to ¹⁰⁶Mo from the two decay of ^{106,108,110}Nb were studied. The daughter decays ²⁴⁵ decay chains, ¹⁰⁶Nb \rightarrow ¹⁰⁶Mo and ¹⁰⁶Zr \rightarrow ¹⁰⁶Nb \rightarrow ¹⁰⁶Mo. of Zr isotopes were also analyzed to increase statistics $_{246}$ Since I_{γ} of the major peaks was consistent between both Table I. Daughter-decay analysis provides evidence on $_{249}$ tensities per 100 β decays were determined from the data the existence of β -decaying isomeric states. For exam- 250 of the ¹⁰⁶Nb \rightarrow ¹⁰⁶Mo decay for the first time. Here, we ple, in Ref. [32], the β - γ spectrum of ¹⁰²Zr was observed ₂₅₁ used the number of the detected β particles emitted from $^{102}\text{Sr} \rightarrow ^{102}\text{Y} \rightarrow ^{102}\text{Zr}$. Two different γ -ray transition pat- $_{253}$ curve integral of the parent component in the fitting func-

FIG. 1. (a-b) The β -delayed γ -ray spectrum of ¹⁰⁶Nb obtained from the β -decay chain ¹⁰⁶Zr \rightarrow ¹⁰⁶Nb \rightarrow ¹⁰⁶Mo. The range of the time window was set to be 180 ms $< t_{\rm ion} - t_{\beta} < 2200$ ms. The labeled peaks belong to ¹⁰⁶Mo. The identified background peaks are marked with asterisks. Other unknown peaks are mainly associated with parent 106 Zr decays. (c-d) The coincidence spectra gated on 171.4 keV and 784.6 keV.

²⁵⁶ tensities was obtained from the absolute intensity of the ²⁷⁰ Two relevant transitions, $2_1^+ \rightarrow 0_1^+$ and $2_2^+ \rightarrow 0_1^+$, were 258 259 tainty of the conversion factor as 0.696(38). 260

261 262 263 chains so as to take into account small β -decay branches. 279 < 8.4%. 264 The decay schemes and I_{γ} values were obtained from $_{280}$ 266 $_{267}$ higher statistics. The total I_{β} of all γ -decaying excited $_{282}$ atomic mass evaluation (AME2016) [33] and the calcula-268 states is given by summing the absolute transition in- 283 tion tool of Ref. [38]. The log ft of the 6_1^+ state, 6.6(1), ²⁶⁹ tensities of excited states decaying to the ground state.

largest γ -ray peak at 171.4 keV in the ¹⁰⁶Nb \rightarrow ¹⁰⁶Mo de- ₂₇₁ observed. The sum of the absolute intensities of these two cay. The relative systematic uncertainty of the absolute 272 transitions was 92.2(51)%, which included contributions γ -ray detection efficiency was adopted into the uncer- 273 of possible undetected transitions, due to low intensities, $_{274}$ through the 2^+_1 or 2^+_2 states. The remaining 7.8(51)% $_{\rm 275}$ contribution is the sum of I_β to the ground state, and The β -decay intensities, I_{β} , to excited states, given in 276 the β -delayed neutron emission probability, P_n . When a Table II, were determined by combining results obtained 277 previously measured P_n of 4.5(3)% [34] is subtracted, the from the ${}^{106}\text{Zr} \rightarrow {}^{106}\text{Nb} \rightarrow {}^{106}\text{Mo}$ and ${}^{106}\text{Nb} \rightarrow {}^{106}\text{Mo}$ decay ${}_{278}I_{\beta}$ value to the ground state is given as the upper limit

Table II summarizes the $\log ft$ value of each excited the ¹⁰⁶Zr \rightarrow ¹⁰⁶Nb \rightarrow ¹⁰⁶Mo decay chain, which provided ₂₈₁ state calculated using $Q(\beta^{-}) = 9931(10)$ keV from the

FIG. 2. The proposed level scheme of ¹⁰⁶Mo obtained from the β -decay chain ¹⁰⁶Zr \rightarrow ¹⁰⁶Nb \rightarrow ¹⁰⁶Mo. The Q(β^{-}) of ¹⁰⁶Nb is taken from the atomic mass evaluation (AME2016: [33]). The arrow width is proportional to the relative intensity I_{γ} (Zr \rightarrow Mo, given in Table II). Red lines are the new levels and transitions. Spin-parities of the known states are taken from ENSDF [34].

TABLE II: The level energy, E_i , spin-parity, J^{π} , γ -ray energy, E_{γ} , relative γ -ray intensity, I_{γ} , β -decay intensity, I_{β} , and log ft of the excited states in ¹⁰⁶Mo. (Nb \rightarrow Mo) indicates the β decay from the implanted ¹⁰⁶Nb to ¹⁰⁶Mo. (Zr \rightarrow Mo) indicates the β decay to ¹⁰⁶Mo in the decay chain of the implanted ¹⁰⁶Zr, i.e. ¹⁰⁶Zr \rightarrow ¹⁰⁶Nb \rightarrow ¹⁰⁶Mo. (allowed/non-UF) indicates the calculation is for the allowed or non-unique forbidden transitions. (1UF) is for the first unique forbidden transition from 4^- to 2^+ or 6^+ states.

$E_i(\text{keV})$	J^{π}	$E_{\gamma}({ m keV})$	$I_{\gamma}^{\ a}$ (Nb \rightarrow Mo)	I_{γ} (Zr \rightarrow Mo)	$I_{eta}(\%)^b$	$\log ft$ (allowed/non-UF)	$\log ft$ (1UF)
0.0	0^+				< 8.4		
171.4(2)	2^{+}	171.4(2)	100(2)	100.0(5)	7.3(8)	6.7(1)	9.1(1)
521.9(2)	4^{+}	350.5(2)	37.9(16)	43.8(5)	9.1(14)	6.5(1)	

TABLE II: (continued)

$E_i(\text{keV})$	J^{π}	$E_{\gamma}(\text{keV})$	$I_{\gamma}{}^{a}$ (Nb \rightarrow Mo)	$\begin{array}{c} I_{\gamma} \\ (\mathrm{Zr} \rightarrow \mathrm{Mo}) \end{array}$	$I_{eta}(\%)^b$	$\log ft$ (allowed/non-UF)	$\log ft$ (1UF)
710.2(1)	2^{+}	188.4(4)	2.9(7)	0.3(2)	2.8(6)	7.0(1)	9.3(1)
		538.8(2)	16.6(12)	15.6(3)			
		710.2(2)	14.4(15)	15.2(3)			
884.7(2)	3^{+}	174.7(3)		1.0(4)	8.7(7)	6.5(1)	
		362.5(3)	1.7(7)	0.7(2)			
		713.5(2)	30.1(17)	31.9(4)			
1032.8(3)	6^{+}	510.9(2)	5.3(12)	8.2(15)	5.5(11)	6.6(1)	8.9(1)
1067.4(1)	4^{+}	357.4(2)	3.9(8)	2.1(2)	7.9(5)	6.5(1)	
		545.4(2)	5.3(10)	7.6(2)			
		896.0(2)	6.1(10)	6.1(2)			
1149.5(2)	(2^+)	978.1(2)		2.3(2)	1.6(2)	7.1(1)	9.4(1)
1306.2(2)	5^{+}	421.3(2)	3.1(7)	3.5(2)	5.4(8)	6.6(1)	
		784.6(2)	3.4(8)	5.5(7)			
1434.3(1)	4^{+}	549.5(2)	5.1(9)	6.9(2)	7.0(5)	6.4(1)	
		724.3(2)	11.7(12)	14.0(3)			
		1262.7(3)		1.4(2)			
1535.1(3)	(4^{+})	1013.2(2)		1.5(3)	1.0(2)	7.2(1)	
1657.2(3)	5^{+}	772.5(2)		1.4(2)	1.0(1)	7.2(1)	
1719.2(2)		1009.0(2)		1.3(2)	0.9(1)	7.2(1)	
1816.9(2)	(3^{-})	932.2(2)	1.3(7)	2.0(2)	4.9(4)	6.5(1)	
		1106.7(2)	4.0(8)	7.4(3)			
1881.4(3)		1359.5(2)		2.9(2)	2.0(2)	6.9(1)	
1923.2(2)		1751.8(2)		1.6(2)	1.1(2)	7.1(1)	
1936.5(2)	(4^{-})	869.2(2)		2.0(2)	3.5(3)	6.6(1)	
		1051.7(2)	2.9(2)	3.1(2)			
1951.8(2)	(5^{-})	517.4(2)	6.2(9)	4.6(2)	2.3(2)	6.8(1)	
2020.9(2)		1849.5(2)	3.2(14)	4.1(3)	2.9(3)	6.7(1)	
2089.8(2)	(5^{-})	783.4(4)	2.6(11)	1.3(7)	2.7(5)	6.7(1)	
		1022.4(2)		2.5(2)			
2146.1(4)	(5^{-})	1113.4(5)		0.3(2)	0.5(2)	7.4(2)	
(-)		1624.2(4)		0.4(2)	(.)	(.)	
2175.0(3)		223.3(2)		1.3(2)	0.9(1)	7.1(1)	
2183.7(4)		1473.5(3)		1.3(2)	0.9(1)	7.1(1)	
2198.7(3)	(- +)	1676.8(2)		2.2(2)	1.5(2)	6.9(1)	
2302.1(3)	(5^{+})	1780.2(3)	(-)	1.4(2)	1.0(1)	7.1(1)	
2798.1(2)		1363.9(2)	6.3(9)	5.9(2)	5.2(3)	6.2(1)	
0014 0(0)		1913.2(3)		1.5(1)	2 F(0)	C 4/1)	
2814.9(2)		998.1(2)		2.3(1)	3.5(2)	0.4(1)	
2905 0(3)		1929.9(2) 1470.7(3)		$\frac{2.7(2)}{1.7(2)}$	1 9(9)	6.8(1)	
2905.0(5)		1410.1(3)		1.1(2)	1.2(2)	0.0(1)	

^{*a*} The absolute intensity per 100 β -decays is 0.696(38) I_{γ} .

^b Internal conversion coefficients, calculated using the BrIcc code [39], were adopted for three transitions with 171.4, 174.7, and 188.4 keV.

²⁸⁵ indicates an allowed transition with $\Delta J = 0$ or 1 and ²⁸⁹ dicates allowed or first non-unique forbidden transitions. ²⁸⁶ $\Delta \pi = 0$, or a first non-unique forbidden transition with ²⁹⁰ However, the transitions with $\Delta J \leq 1$ can not populate ²⁸⁷ $\Delta J = 0$ or 1 and $\Delta \pi = 1$ [40]. Three 2⁺ states have ²⁹¹ both the 2⁺ and 6⁺ states. Therefore, transitions with ²⁸⁸ similar log ft values ranging from 6.7 to 7.1 which also in-²⁹² at least $\Delta J = 2$ are required for these states. For the

²⁹³ unique forbidden transitions, the log ft values need to ²⁹⁴ be calculated by taking into account the different energy ²⁹⁵ dependence of the shape factor from that of the allowed ²⁹⁶ decay [38, 41]. The log ft of the 6^+_1 state becomes 8.9(1)²⁹⁷ for the first unique forbidden transition with $\Delta J = 2$ and ²⁹⁸ $\Delta \pi = 1$. This value is consistent with the typical range ²⁹⁹ from 8 to 11 [40]. This indicates that the spin-parity of 106 Nb is 4⁻. This assignment determines the transition 300 $_{301}$ type to other states. Since the β decay to the 2⁺ states is $_{302}$ also a first unique forbidden transition, the log ft values of the 2^+ states with 171.4, 710.2, and 1149.5 keV were 303 recalculated as 9.1(1), 8.9(1), and 9.4(1), respectively. 304 These values are consistent with the typical range of the 305 first unique forbidden transition. The $\log ft$ values of 306 the 3^- , 4^- , and 5^- states are consistent with the allowed 307 transition with $\Delta J = 0$ or 1 and $\Delta \pi = 0$, and those of 308 $_{309}$ 3⁺, 4⁺, and 5⁺ states are consistent with the first non-³¹⁰ unique forbidden transition with $\Delta J = 0$ or 1 and $\Delta \pi =$ 311 1. Thus, providing further evidence that the spin-parity ³¹² of ¹⁰⁶Nb is 4⁻. The quasi-particle state configuration of 106 Nb is discussed in Sec. IV F. 313

β decay to ¹⁰⁸Mo в.

The β -delayed γ -ray spectrum of ¹⁰⁸Mo obtained 316 $_{317}$ from the $^{108}\text{Zr} \rightarrow ^{108}\text{Nb} \rightarrow ^{108}\text{Mo}$ decay chain is shown in 319 Figs. 4 (a-b). The proposed level scheme illustrated in Fig. 5 was constructed through the use of γ -ray co-320 $_{322}$ incidences, examples shown in Figs. 4 (c-d), energy $_{323}$ sums, and intensity balances. In the previous β -decay $_{324}$ study [21], the ground band was observed up to 4^+ and $_{325}$ the 2^+_2 band was up to 3^+ . In this work, the 2^+_2 band was $_{326}$ observed up to 4^+ , and the band head of the 4^+ band was 327 observed at 1422.1 keV. Fifteen new levels were identi- $_{328}$ fied, of which the lowest at 893.4 keV was assigned to 0^+_2 ³²⁹ from the typical γ decay pattern of a low-lying 0⁺ state, ³³⁰ namely the observed 700.7-keV transition was measured ³³¹ to be in strong coincidence with the $2^+_1 \rightarrow 0^+_1$ transition, $_{332}$ as shown in Fig. 4 (c), and without an observed γ de- $_{333}$ cay to the 0_1^+ state. The spin-parity of the 1158.4-keV $_{334}$ state was assigned to be 2^+ , and those of the 1404.8-, $_{335}$ and 1727.6-keV states were to be 3 or 4^+ by assuming the transition type from those states is E1 or M1/E2. 336 ³³⁷ The half life of the ¹⁰⁸Nb decay was determined to be ³³⁸ $T_{1/2} = 186(8)$ ms from the decay curve of the 192.8-keV $_{339} \gamma$ ray, as shown in Fig. 3 (b), and is consistent with the $_{340}$ evaluated value of 198(6) ms [34].

341 342 343 344 345 ³⁴⁶ to absolute γ -ray intensities was determined from the ab-³⁵⁶ emission, was determined by using a new method de-³⁴⁷ solute 192.8-keV intensity in the ¹⁰⁸Nb \rightarrow ¹⁰⁸Mo decay. ³⁵⁶ emission, was determined by using a new method de-³⁵⁷ scribed in Sec. III C as, $P_{0n} = 82(11)\%$. The difference

348

FIG. 3. The time spectra of β -delayed γ rays in the Mo isotopes. Dashed lines indicate the fitting region of the decay curve to determine the β -decay half life, $T_{1/2}$. Orange lines are the constant background, which was determined by fitting to the negative-time region. The β -delayed γ rays with 531.5, 462.6, 563.3, and 563.4 keV from the implanted 110 Nb were selected as the β decays of the high-spin state in ¹¹⁰Nb.

The I_{γ} values were determined for the two decay $_{351}$ was determined to be 62.8(33)% from the sum of absochains, $^{108}\text{Nb} \rightarrow ^{108}\text{Mo}$ and $^{108}\text{Zr} \rightarrow ^{108}\text{Nb} \rightarrow ^{108}\text{Mo}$, as $_{352}$ lute transition intensities of three transitions from the 2^+_1 , summarized in Table III. The consistent I_{γ} values be- $_{353} 2_2^+$, and 2_3^+ states to the ground state. The zero-neutron tween two decay chains indicate no β -decaying isomeric 354 emission probability of the ¹⁰⁸Nb decay, P_{0n} , which is the state in ¹⁰⁸Nb. The conversion factor from the relative ³⁵⁵ probability decaying to ¹⁰⁸Mo without a delayed-neutron The I_{β} values were determined from the absolute inten- ³⁵⁸ of these two values gave the ground-state I_{β} of 19(12)%. ³⁴⁹ sities and the decay scheme. As described in Sec. III A, ³⁵⁹ The I_{γ} values obtained in this work are inconsistent ³⁵⁰ the total I_{β} of the γ -decaying excited states in ¹⁰⁸Mo ³⁶⁰ with the previous results [21] with the exception of the

FIG. 4. (a-b) The β -delayed γ -ray spectrum of ¹⁰⁸Nb obtained from the β -decay chain ¹⁰⁸Zr \rightarrow ¹⁰⁸Nb \rightarrow ¹⁰⁸Mo. The range of the time window was set to be 80 ms $< t_{\rm ion} - t_{\beta} < 280$ ms. The labeled peaks belong to ¹⁰⁸Mo. The identified background peaks are marked with asterisks. Other unknown peaks are mainly associated with parent 108 Zr decays. (c-d) The coincidence spectra gated on 192.8 keV and 700.7 keV.

 $_{361}$ 371.1- and 393.1-keV γ rays. Notably the $I_{\gamma}(590.1 \text{ keV})_{376}$ and 4^+_1 states were 5.8(3) and 6.4(1) and are too small 363 365 366 367 368 369 371 372 3_1^+ state. 373

374 $_{399} Q_{\beta} = 11210(12) \text{ keV} [33].$ The log ft values of the 0^+_1

of 26.1(6)% was roughly half of that reported in Ref. [21], $_{377}$ for any transitions with $\Delta J > 2$ [40]. This is the same 53%. As mentioned in Ref. [21], a large background in 378 situation as for the ¹⁰⁶Nb decay. If the first unique fortheir γ -ray spectrum might be the cause of the inconsis- $_{379}$ bidden transition with $\Delta J = 2$ and $\Delta \pi = 1$ is considered tency. The absolute intensity of the $2_1^+ \rightarrow 0_1^+$ transition $_{380}$ for the transitions to these states, the spin-parity of the was also roughly half of that reported in Ref. [21]. This $_{381}$ ¹⁰⁸Nb ground state is 2⁻. The log ft values of the 0⁺ may be due to a 50% uncertainty of the ¹⁰⁸Nb yield ex- ₃₈₂ and 4⁺ states were recalculated as the first unique fortrapolated as a function of the atomic number [21]. Al- 383 bidden transition to be 8.2(3), 8.8(1), 8.7(1), 8.5(1), and though the uncertainty of the previous I_{β} was not eval- $_{384}$ 9.2(1) for the ground state and the excited states at 563.8 uated, the present $I_{\beta}(3^+_1)$ of 5.1(6)% is 1/10 of the re- $_{385}$ keV, 893.4 keV, 978.3 keV, and 1422.1 keV, respectively. ported 53% [21] owing to yield uncertainties and the pre- 386 These are within the typical range from 8 to 11 [40]. The vious non-observation of the cascade transitions to the $_{387} \log ft$ values of the 2^+ , 3^+ , and 3^- states indicate the ³⁸⁸ allowed transition or the first non-unique forbidden tran-The log ft values were determined from $T_{1/2}$, I_{β} , and $_{389}$ sition, and are consistent with the β decay from a 2⁻ state. The β decay to the 5⁻ state at 2161.8 keV is the

FIG. 5. The proposed level scheme of ¹⁰⁸Mo obtained from the β -decay chain ¹⁰⁸Zr \rightarrow ¹⁰⁸Nb \rightarrow ¹⁰⁸Mo. Red lines are the new levels and transitions.

$E_i(\text{keV})$	J^{π}	$E_{\gamma}(\text{keV})$	I_{γ}^{a} (Nb \rightarrow Mo)	I_{γ} (Zr \rightarrow Mo)	$I_{eta}(\%)^b$	$\log ft$ (allowed/non-UF)	$\log ft$ (1UF)	$\log ft$ (2UF)
0.0	0^+				19(12)	5.8(3)	8.2(3)	
192.8(2)	2^{+}	192.8(2)	100(2)	100.0(9)	6.7(10)	6.2(1)		
563.8(2)	4^{+}	371.1(2)	18.2(10)	14.5(5)	3.7(6)	6.4(1)	8.8(1)	
586.0(1)	2^+	393.1(2)	28.3(13)	27.8(10)	13.2(12)	5.8(1)		
		586.1(2)	25.0(12)	26.4(7)				
783.0(2)	3^+	197.9(6)		3.4(1)	5.1(6)	6.2(1)		
		590.1(2)	27.4(12)	26.1(6)				
893.4(2)	(0^{+})	700.7(2)	4.7(16)	9.7(5)	4.3(3)	6.3(1)	8.7(1)	

TABLE III: Same as Table II, but for ¹⁰⁸Mo. (1UF) is for the first unique forbidden transition from 2^- to 0^+ or 4^+ states. (2UF) is for the second unique forbidden transition from 2^- to 5^- states.

TABLE III: (continued)

$E_i(\text{keV})$	J^{π}	$E_{\gamma}(\text{keV})$	$I_{\gamma}^{\ a}$ (Nb \rightarrow Mo)	I_{γ} (Zr \rightarrow Mo)	$I_{eta}(\%)^b$	$\log ft$ (allowed/non-UF)	$\log ft$ (1UF)	$\log ft$ (2UF)
978.3(2)	4^{+}	196.0(2)		5.0(1)	5.4(7)	6.1(1)	8.5(1)	
. ,		391.2(3)	7.0(9)	4.5(14)				
		414.4(3)	2.1(5)	2.3(6)				
1158.4(1)	(2^+)	594.8(3)	1.2(5)	1.5(4)	3.8(4)	6.3(1)		
		965.7(2)	4.2(7)	4.4(4)				
		1158.3(2)	3.2(6)	2.5(4)				
1404.8(2)	$(3, 4^+)$	622.3(3)		1.7(4)	2.1(3)	6.5(1)		
		818.1(4)		0.8(3)				
		839.7(3)		0.7(3)				
		1212.5(3)		1.4(4)				
1422.1(2)	(4^{+})	638.8(4)	0.6(1)	0.5(3)	0.9(2)	6.8(1)	9.2(1)	
		836.2(3)		1.4(3)				
1547.5(3)		1354.7(2)		2.1(4)	0.9(2)	6.8(1)		
1727.6(2)	$(3, 4^+)$	944.0(5)		0.4(3)	1.5(3)	6.5(1)		
		1141.7(3)		1.4(3)				
		1163.4(6)		0.5(5)				
		1535.3(4)		1.1(3)				
1839.0(5)		1056.0(4)		0.8(3)	0.4(1)	7.1(1)		
1844.4(2)	(3^{-})	1061.5(2)	2.2(1)	3.6(4)	4.1(4)	6.1(1)		
		1258.3(2)	7.5(6)	5.6(5)				
1962.3(2)		1769.5(2)		0.8(1)	0.4(1)	7.1(1)		
2048.4(3)		1265.4(2)	3.3(5)	3.1(4)	1.4(2)	6.5(1)		
2161.8(4)	(5^{-})	1598.0(3)		1.2(5)	0.5(2)	6.9(2)		11.6(2)
2208.4(2)	(3^{-})	1425.9(7)		1.1(3)	2.4(3)	6.2(1)		
		1622.3(2)		4.2(4)				
2309.7(3)		1526.7(3)		1.8(3)	0.8(1)	6.7(1)		
2339.6(2)		1753.4(3)		3.3(5)	2.8(3)	6.1(1)		
		2147.1(3)		3.0(4)				
3093.4(5)		2900.6(4)		1.6(4)	0.7(2)	6.6(1)		
3104.1(4)		2911.3(3)		2.3(5)	1.0(2)	6.4(1)		
3550.1(5)		3357.3(4)		1.6(6)	0.7(3)	6.4(2)		

^{*a*} The absolute intensity per 100 β -decays is 0.448(23) I_{γ} .

^b Internal conversion coefficients, calculated using the BrIcc code [39], were adopted for three transitions with 192.8, 196.0, and 197.9 keV.

³⁹¹ second unique forbidden transition with $\Delta J = 3$ and ⁴⁰² sured ¹⁰⁸Mo and ¹⁰⁸Nb decays after the ¹⁰⁸Nb implanta- $_{392} \Delta \pi = 0$. The log ft value of the 5⁻ state was recal- $_{403}$ tion, respectively. The neutron emission probability P_n $_{393}$ culated to be 11.6(2) and within the typical range from $_{404}$ is given by ³⁹⁴ 10.6 to 18 for the second unique forbidden transition [40]. Therefore, the spin-parity of the ¹⁰⁸Nb was assigned to 395 be 2^- . The quasi-particle state configuration of ¹⁰⁸Nb is 396 ³⁹⁷ described in Sec. IV F.

C. Neutron-emission probability in ¹⁰⁸Nb β decay

398

$$P_n = 1 - P_{0n} = \sum_{i \ge 1} P_{in}, \tag{1}$$

 $_{405}$ where *i* is the number of the emitted neutrons.

 $_{406}$ $N_{\beta}(^{108}\text{Nb})$ was determined to be $5.20(13) \times 10^4$ from $_{407}$ a fit to the β -decay time curve obtained following the ⁴⁰⁸ implantation of ¹⁰⁸Nb. The fit used the decay half-lives $_{409}$ and neutron-emission probabilities of the parent $^{108}\mathrm{Nb},$ The zero-neutron emission probability, P_{0n} , of the ⁴¹⁰ daughters ^{107,108}Mo, granddaughters ^{106,107,108}Tc and ⁴⁰⁰ ¹⁰⁸Nb decay is given by the ratio $N_{\beta}(^{108}\text{Mo})/N_{\beta}(^{108}\text{Nb})$, ⁴¹¹ great granddaughters ^{107,108}Ru from the literature [34] ⁴⁰¹ where $N_{\beta}(^{108}\text{Mo})$ and $N_{\beta}(^{108}\text{Nb})$ are the integral of mea-⁴¹² except for ¹⁰⁸Nb where the half-life of 186(8) ms mea413 sured in this work was used. It was assumed that the 464 ⁴¹⁴ probability of the emission of two or more neutrons is ⁴¹⁵ negligibly small so that $P_{1n} = 1 - P_{0n}$.

 $N_{\beta}(^{108}\text{Mo})$ can be derived from the number of counts 416 417 of the 268.3-keV γ ray, $N_{\gamma}(268.3 \text{ keV})$, emitted from the $_{418}$ ¹⁰⁸Mo \rightarrow ¹⁰⁸Tc decay using the relation,

$$N_{\gamma}(268.3 \text{ keV}) = N_{\beta}(^{108}\text{Mo})\varepsilon_{\gamma}(268.3 \text{ keV})$$
$$\times I_{\gamma,\text{abs}}(268.3 \text{ keV}), \qquad (2)$$

 $_{420}$ which is sensitive to the implantation position, and $_{475}$ the 2^+_2 band is extended up to its 7⁺ state. A new band $_{421}$ $I_{\gamma, abs}(268.3 \text{ keV})$ is the absolute intensity of 268.3 keV ⁴²² per one ¹⁰⁸Mo decay. In order to evaluate N_{β} (¹⁰⁸Mo), 423 we define the ratio,

$$R(268.3 \text{ keV}) = \frac{N_{\gamma}(268.3 \text{ keV})}{N_{\beta}(^{108}\text{Mo})},$$
(3)

 $_{424}$ which should be the same for the $^{108}\mathrm{Nb}$ \rightarrow $^{108}\mathrm{Mo}$ \rightarrow $^{108}\mathrm{Tc}$ and $^{108}\mathrm{Mo}$ \rightarrow $^{108}\mathrm{Tc}$ decays, if the position of $_{\rm 426}$ the $^{108}\rm Nb$ and $^{108}\rm Mo$ parent in WAS3ABi is the same. 427 To satisfy this requirement, we consider only events $_{428}$ where the implanted ion is 108 Nb. To obtain a value of $_{429}$ R(268.3 keV) from the ¹⁰⁸Mo \rightarrow ¹⁰⁸Tc decay, we use the $_{430}$ detection time of the 192.8-keV γ ray emitted from the $_{431}$ 2⁺₁ state in ¹⁰⁸Mo as a time-zero of the decay of ¹⁰⁸Mo. $_{432}$ $N_{\beta}(^{108}\text{Mo})$ was then obtained from the β -decay time $_{433}$ curve using the same method as described for 108 Nb. The $_{434}$ number of ¹⁰⁸Tc 268.3-keV γ rays was obtained from the $_{435}$ γ -ray peak integral to give R(268.3 keV) = 0.0558(65). To obtain a value of $N_{\gamma}(268.3 \text{ keV})$ for the ¹⁰⁸Nb \rightarrow $_{\rm 437}$ $^{108}{\rm Mo}$ \rightarrow $^{108}{\rm Tc}$ decay, a time gate of 400–3000 ms af- $_{\rm 438}$ ter the $^{108}{\rm Nb}$ implantation in WAS3ABi was applied $_{439}$ to optimize the γ rays emitted from the 108 Mo de-440 cay. This yielded a 268.3-keV peak containing 1695(43) 441 counts. The expected number of 268.3-keV γ rays ob-442 served without time restriction is evaluated as $N_{\gamma}(268.3)$ $_{443}$ keV) = 2380(140), which, using Eq. (3), equates to ⁴⁴⁴ $N_{\beta}(^{108}\text{Mo}) = 42700(5600).$

⁵⁰³ and high-spin states in ¹¹⁵Nb be ⁵⁰³ and high-spin states in ¹¹⁵Nb be ⁵⁰⁴ reaction populates both states. ⁴⁴⁵ $P_{0n} = 82(11)\%$, giving $P_n = 18(11)\%$. Observation of 447 the known 65.4-keV γ ray [42] from the isomeric state ⁴⁴⁸ in ¹⁰⁷Mo in Fig. 4 (a) provides a direct evidence of the ⁵⁰⁵ ⁴⁴⁹ β -delayed neutron emission of ¹⁰⁸Nb. The absolute γ -ray $_{450}$ intensity of the 65.4-keV γ ray corresponds to a minimum $_{451}$ P_{1n} of 8.1(7)%, which includes the contribution of the in- 507 452 ternal conversion for the E2 transition. It is reasonable 508 solute γ -ray intensities, I_{β} , and $\log ft$, need to be de- $_{453}$ that this is less than $P_n = 18(11)\%$, given above, as there $_{509}$ termined separately for the low- and high-spin states in $_{454}$ exist unobserved one- or multi-neutron emission chan- $_{510}$ ¹¹⁰Nb. To evaluate $T_{1/2}$ for the high-spin state, the γ 455 nels. The minimum value reported here is larger than a 511 rays with 462.6, 531.5, 563.3, and 563.4 keV from the 456 previously reported P_n value of 6.2(5)% [43] and equal 5125^+_1 , 6^+_1 , or 6^+_2 states were used as they are emitted only $_{457}$ to 8(2)% of Ref. [44]. The previous P_n values were de- $_{513}$ in the β decay of the high-spin state. The half-life of the $_{458}$ rived from measurements of β -delayed neutrons with ³He $_{514}$ high-spin state in ¹¹⁰Nb was determined to be 75(1) ms $_{459}$ ionization chamber tubes [43], or a combination of ³He $_{515}$ from the sum of the decay curves of these four γ rays $_{460}$ and B₃F proportional gas-counter tubes [44]. Neutron- $_{516}$ using the data of the $^{110}Nb \rightarrow ^{110}Mo$ decay as shown in 461 detection efficiencies of these configurations, which have 517 Fig. 3 (c). The 213.4-keV γ ray obtained in the ¹¹⁰Zr $_{462}$ a possible energy dependence, could have been affected $_{518} \rightarrow ^{110}\text{Nb} \rightarrow ^{110}\text{Mo}$ decay chain was used for the half-life $_{463}$ by unknown β -delayed neutron energy distributions.

D. β decay to ¹¹⁰Mo

The β -delayed γ -ray spectrum of ¹¹⁰Mo obtained from 465 466 the β decay of ¹¹⁰Nb is shown in Figs. 6 (a-b), and ⁴⁶⁸ the coincidence spectrum of the $2^+_1 \rightarrow 0^+_1$ transition is 469 shown in Fig. 6 (c). The proposed level scheme is shown ⁴⁷⁰ in Fig. 7. In the previous works of the ¹¹⁰Nb β decay and $_{472}$ the 248 Cm spontaneous fission decay [15, 45], the ground $_{473}$ band up to 10^+ and the 2^+_2 band up to 5^+ were reported. ⁴¹⁹ where $\varepsilon_{\gamma}(268.3 \text{ keV})$ is the γ -ray detection efficiency, ⁴⁷⁴ In the present work, thirty new levels are identified and $_{\rm 476}$ based on a 1243.8-keV state was observed and from its $_{477}$ interband transitions to the 2^+_2 band, a spin-parity of 4^+ 478 was assigned to its band head. The spin-parities of the ⁴⁷⁹ band members with 1520.1 keV and 1796.2 keV were as- $_{480}$ signed as 5⁺ and 6⁺, respectively. A state at 1042.2 keV $_{481}$ was measured based on the observation of a 828.8-keV γ ⁴⁸² ray coincident only with the 213.4-keV γ ray, as shown in 483 Fig. 6 (d). Direct γ decay from the 1042.2-keV state to ⁴⁸⁴ the ground state was not observed. Based on this typical $_{485}$ $\gamma\text{-decay}$ pattern of a low-lying 0⁺ state, the 1042.2-keV 486 state was assigned to 0^+ . The I_{γ} values are summarized 487 in Table IV.

> The β -delayed γ -ray spectrum of ¹¹⁰Mo obtained from 488 ⁴⁸⁹ the ¹¹⁰Zr \rightarrow ¹¹⁰Nb \rightarrow ¹¹⁰Mo decay chain is shown in $_{\rm 490}$ Fig. 6 (e). Only five excited states were observed, which $_{491}$ were the 2^+ and 4^+ states in the ground band, the 2^+ $_{492}$ and 3^+ states in the 2^+_2 band, and the 0^+_2 state. This ⁴⁹³ β -decay feeding pattern and the I_{γ} values, given in Ta- $_{494}$ ble V, are different from those of the $^{110}\rm{Nb}$ \rightarrow $^{110}\rm{Mo}$ ⁴⁹⁵ decay. These differences indicate the existence of two β - $_{496}$ decaying states in $^{110}\mathrm{Nb}.$ Since the spin-parity of the $_{497}$ even-even nucleus $^{110}{\rm Zr}$ is $0^+,$ it is expected that the ⁴⁹⁸ low-spin states in ¹¹⁰Nb are populated by the β decay of $_{499}$ ¹¹⁰Zr. This expectation is consistent with the β -decay $_{500}$ feeding pattern to the lower-spin states in 110 Mo by the $_{501}$ 110 Zr \rightarrow 110 Nb \rightarrow 110 Mo decay chain. On the other hand, $_{502}$ the ¹¹⁰Nb \rightarrow ¹¹⁰Mo decay has contributions of the low-⁵⁰³ and high-spin states in ¹¹⁰Nb because the in-flight fission

Е. Extraction of β -decay properties for low- and high-spin states in ¹¹⁰Nb

Beta-decay properties, namely $T_{1/2}$, relative and ab-⁵¹⁹ measurement of the low-spin state in ¹¹⁰Nb. The decay

FIG. 6. (a-b) The β -delayed γ -ray spectrum of the implanted ¹¹⁰Nb. The time window after the implantation of ¹¹⁰Nb was set to be less than 400 ms. The labeled peaks belong to ¹¹⁰Mo. The identified background peaks are marked with asterisks. (c-d) The coincidence spectra gated on 213.4 keV and 828.8 keV. (e) The β -delayed γ -ray spectrum obtained from the β -decay chain 110 Zr $\rightarrow ^{110}$ Nb $\rightarrow ^{110}$ Mo, where $\Delta t_{\beta-ion}$ from 30 to 250 ms was selected.

 $_{521}$ daughter populated by the decay of a parent. The half- $_{529}$ second β -decaying state in 110 Nb. The previous values $_{522}$ life of the low-spin state in ¹¹⁰Nb was determined to be $_{530}$ of 82(4) ms [34] and 82(2) ms [46] appear to be a reason-523 94(9) ms by considering the daughter-decay component 531 able average of the presently reported low- and high-spin ⁵²⁴ and the constant background. The half-life of ¹¹⁰Zr, used ⁵³² states. $_{525}$ in the fitting, was determined to be 37.7(31) ms from the $_{533}$ The absolute γ -ray intensities for the low-spin state in $_{526}$ decay curve of the 90.5- and 95-keV γ rays associated $_{534}$ ¹¹⁰Nb were determined as follows. The β decay of ¹¹⁰Nb with the ¹¹⁰Zr decay. The half life of previous measure- which followed the emission of a 95-keV γ ray from the 535

⁵²⁰ curve shown in Fig. 3 (d) shows the typical shape of a ⁵²⁸ ments was determined without any consideration of the

FIG. 7. The proposed level scheme of ¹¹⁰Mo obtained from the β -decay of ¹¹⁰Nb isotopes implanted into WAS3ABi. Red lines are the new levels and transitions.

TABLE IV: Same as Table II, but for the ¹¹⁰Mo results obtained from the β decay of the implanted ¹¹⁰Nb. (high) indicates the β decay of the high-spin state in ¹¹⁰Nb. The low-spin contribution was subtracted by combining with the results in Table V and the assumption that the 0⁺ states at 0 and 1042.2 keV are populated only from the low-spin β decay. (1UF) is for the first unique forbidden transition from 6⁻ to 4⁺ or 8⁺ states.

$E_i(\text{keV})$	J^{π}	$E_{\gamma}(\text{keV})$	$I_{\gamma}^{\ a}$ (Nb \rightarrow Mo)	$I_{\gamma}{}^b$ (high)	$I_{eta}(\%)^c$ (high)	$\log ft$ (high) (allowed/non-UF)	$\log ft$ (high) (1UF)
0.0	0+				0		. ,
213.4(2)	(2^+)	213.4(2)	100.0(5)	100(11)	<1.5		
493.7(1)	(2^+)	280.2(2)	23.5(4)	21.6(33)	-5.4(45)		
	. ,	493.8(2)	23.1(3)	18.9(38)	. ,		
599.0(2)	(4^{+})	385.5(2)	39.0(7)	52.7(14)	6.2(16)	5.9(2)	8.5(3)
699.8(1)	(3^{+})	206.0(2)	8.5(2)	$11.3(3)^{e}$	1.5(6)	6.5(2)	
		486.4(2)	26.2(3)	34.9(8)			

$E_i(\text{keV})$	J^{π}	$E_{\gamma}(\text{keV})$	$I_{\gamma}{}^a$	$I_{\gamma}{}^{b}$	$I_{eta}(\%)^c$	$\log ft$	$\log ft$
			$(Nb \rightarrow Mo)$	(high)	(high)	(high) $(allowed/non-UF)$	(high) $(1\mathrm{UF})$
914.4(2)	(4^{+})	420.7(2)	18.8(3)	27.0(4)	4.8(15)	6.0(2)	8.5(3)
	. ,	315.4(2)	2.9(2)	4.2(3)			
1042.2(2)	(0^{+})	828.8(2)	1.8(1)	0	0		
1130.4(3)	(6^{+})	531.5(2)	19.7(3)	28.3(4)	8.2(20)	5.7(2)	
1162.4(2)	(5^+)	462.6(2)	19.7(3)	28.3(4)	6.5(17)	5.8(2)	
	· · ·	563.4(3)	1.8(4)	2.6(6)			
1243.8(1)	(4^{+})	544.0(2)	2.9(2)	4.2(3)	3.5(9)	6.1(2)	8.5(3)
		750.1(2)	5.9(2)	8.5(3)			
1317.3(2)		823.7(2)	1.3(1)	1.9(1)	1.4(3)	6.5(2)	
		1103.5(3)	0.5(1)	0.7(1)			
1458.5(2)		964.8(2)	1.1(1)	1.6(1)	0.5(2)	6.9(2)	
1477.7(2)	(6^{+})	563.3(2)	10.0(10)	14.4(14)	4.8(14)	5.9(2)	
1520.1(2)	(5^+)	276.3(3)	0.3(4)	0.4(6)	3.8(11)	6.0(2)	
		605.6(2)	2.9(2)	4.2(3)			
		820.5(2)	4.9(2)	7.0(3)			
1574.7(3)		874.9(3)	0.9(1)	1.3(1)	0.7(2)	6.7(2)	
1680.1(2)		1081.5(3)	0.4(1)	0.6(1)	0.9(2)	6.6(2)	
		1466.4(3)	0.8(1)	1.2(1)			
1754.3(3)	(7^{+})	591.8(2)	3.3(3)	4.7(4)	2.5(7)	6.1(2)	
1782.7(3)	(8^+)	652.2(2)	2.8(2)	4.0(3)	2.2(5)	6.2(2)	8.6(3)
1796.2(1)	(6^{+})	276.1(3)	0.8(4)	1.2(6)	1.7(7)	6.3(2)	
		552.5(2)	2.7(2)	3.9(3)			
		633.6(2)	2.1(2)	3.0(3)			
		881.9(2)	1.6(1)	2.3(1)			
1999.8(2)		1300.0(2)	2.3(2)	3.3(3)	0.5(3)	6.8(3)	
		1400.8(4)	0.3(1)	0.4(1)			
2142.6(3)		1543.6(2)	1.6(2)	2.3(3)	1.2(3)	6.4(2)	
2170.8(3)		693.1(2)	0.9(1)	1.3(1)	0.7(2)	6.6(2)	
2181.0(1)		181.5(2)	1.9(2)	2.7(3)	10.1(25)	5.4(2)	
		384.8(2)	5.0(6)	7.2(9)			
		660.9(2)	1.4(1)	2.0(1)			
		(03.1(2))	2.4(1) 5 0(2)	3.5(1)			
		1018.0(2) 1050.5(2)	5.0(2) 1.6(1)	(.2(3))			
2183 1(3)		1030.3(2) 1584 1(2)	1.0(1) 1.4(2)	2.3(1) 2.0(3)	0.4(2)	6.8(3)	
2103.1(3) 2191.0(3)		947.6(3)	0.6(1)	2.0(3)	1.0(3)	6.4(2)	
2101.0(0)		1591.3(4)	0.7(2)	1.0(3)	1.0(0)	0.1(2)	
2208.0(4)		1994.6(3)	0.8(1)	1.2(1)	0.6(2)	6.6(2)	
2218.7(4)		1088.3(3)	0.5(1)	0.7(1)	0.4(1)	6.8(2)	
2371.4(4)		1127.6(3)	0.6(1)	0.9(1)	0.5(1)	6.7(2)	
2376.0(3)		1213.4(3)	0.9(1)	1.3(1)	0.9(2)	6.4(2)	
		1245.8(3)	0.3(1)	0.5(1)			
2421.6(2)		240.6(2)	4.2(7)	6.0(10)	3.2(9)	5.9(2)	
2431.7(3)		1268.7(3)	0.7(1)	1.0(1)	0.8(2)	6.5(2)	
		1302.9(6)	0.4(1)	0.6(1)			
2454.8(2)		934.7(3)	0.5(1)	0.7(1)	2.0(5)	6.1(2)	

TABLE IV: (continued)

TABLE IV: (continued)

$E_i(\mathrm{keV})$	J^{π}	$E_{\gamma}(\mathrm{keV})$	$I_{\gamma}{}^{a}$ (Nb \rightarrow Mo)	$I_{\gamma}{}^b$ (high)	$egin{array}{lll} I_eta(\%)^c\ (ext{high}) \end{array}$	$\log ft$ (high) (allowed/non-UF)	log ft (high) (1UF)
		976.5(3)	0.4(1)	0.6(1)			
		1292.4(2)	1.0(1)	1.4(1)			
		1324.6(3)	0.7(1)	1.0(1)			
2480.8(4)		1350.4(3)	0.7(1)	1.1(1)	0.5(2)	6.7(3)	
2569.1(3)		1110.2(3)	0.4(1)	0.6(1)	0.8(2)	6.5(2)	
		1438.9(3)	0.6(1)	0.9(1)			
2594.6(5)		1074.5(5)	0.4(1)	0.6(1)	0.3(1)	6.9(2)	
2624.5(4)		1494.1(3)	0.9(3)	1.3(4)	0.7(3)	6.5(3)	
2654.1(4)		1523.7(3)	0.6(1)	0.9(1)	0.5(1)	6.6(2)	
2838.6(2)		655.4(2)	0.9(1)	1.3(1)	1.4(4)	6.2(2)	
		1924.3(3)	0.9(2)	1.3(3)			
3036.1(2)		2822.6(3)	1.1(1)	1.6(1)	2.1(5)	5.9(2)	
		3036.1(3)	1.6(2)	2.3(3)			

^a The absolute intensity per 100 β -decays is $0.492(25)I_{\gamma}$.

^b The absolute intensity per 100 β -decays is $0.54(19)I_{\gamma}$.

 c Internal conversion coefficients [39] were adopted for two transitions with 213.4 and 206.0 keV.

^e Branching ratio of the 206.0- and 486.4-keV transitions and I_{γ} (486.4 keV) in Table V were used to subtract the low-spin β decay contribution.

 $_{537}$ 95-keV γ ray as time zero. The observation of the 213.4- $_{564}$ state. The conversion-electron coefficients were taken $_{538}$, 280.2-, and 493.8-keV γ rays shows that the low-spin $_{565}$ into account. This sum includes unobserved small I_{β} ⁵³⁹ state in ¹¹⁰Nb is selected by the gate on the 95-keV γ ray. ⁵⁶⁶ contributions with cascade transitions through the 2_1^{+} ⁵⁴⁰ The ratio of the number of the measured β decays and ⁵⁶⁷ and 2_2^{+} states. The same method was applied to the β - $_{541}$ 213.4-keV γ rays was determined from this subsequent β - $_{568}$ decay results of the implanted ¹¹⁰Nb. The contribution of

545 546 tion from the results given in Table V under the assump- 574 the low-spin state in the implanted ¹¹⁰Nb as, 547 tion that the ground and second 0^+ states are directly populated only by the low-spin β decay. The I_{β} values 549 for low- and high-spin β decays were determined and are 550 summarized in Tables IV and V. 551

The I_{β} value of the ¹¹⁰Mo ground state corresponding 552 553 to the low-spin state and P_n values corresponding to the ⁵⁵⁴ low- and high-spin states were determined by combining $_{\rm 555}$ the following five equations. First, the P_n value has a ⁵⁵⁶ relation to $I_{\beta}(E_i)$ for the γ -decaying states at the energy 557 E_i and $I_{\beta}(0)$ for the ground state as,

$$\sum I_{\beta}^{\rm L}(E_i) + I_{\beta}^{\rm L}(0) + P_n^{\rm L} = 100\%, \qquad (4)$$

$$\sum I_{\beta}^{\rm H}(E_i) + P_n^{\rm H} = 100\%, \qquad (5)$$

 $_{558}$ where \sum represents the sum over all excited states de- $_{\rm 559}$ caying to the ground state and the superscripts L and H ⁵⁶⁰ represent the low- and high-spin states in ¹¹⁰Nb, respec- ⁵⁸³ Here, only the differences from Sec. III C are de-561 tively. The $\sum I_{\beta}^{\rm L}(E_i)$ value was evaluated as 58(20)% 584 scribed. The 213.4-keV γ ray was used for the iden-⁵⁶² by the sum of the two absolute transition intensities of ⁵⁸⁵ tification of the ¹¹⁰Nb \rightarrow ¹¹⁰Mo decay. The number

⁵³⁶ decay of ¹¹⁰Zr was analyzed using the observation of the ⁵⁶³ 213.4 and 493.8 keV, which decay directly to the ground ⁵⁴² decay analysis. The conversion factor from I_{γ} to absolute ⁵⁶⁹ the 3036.1-keV transition was also added. The obtained ⁵⁴³ intensity was determined to be 0.41(14) using the 213.4-⁵⁴⁴ keV γ ray. ⁵⁴⁰ to both the low- and high-spin states. The superscript The I_{γ} values corresponding to the high-spin state ${}_{572}$ L+H refers to the β decay of the implanted 110 Nb. The were determined by subtracting the low-spin contribu- $573 \sum I_{\beta}^{\rm H}(E_i)$ value was described by using the fraction r of

$$\sum I_{\beta}^{L+H}(E_i) = r \sum I_{\beta}^{L}(E_i) + (1-r) \sum I_{\beta}^{H}(E_i).$$
(6)

575 From the assumption that the 828.8-keV γ ray is emitted 576 only from the β decay of the low-spin state, r was given 577 as,

$$r = \frac{I_{\gamma,\text{abs}}^{\text{L+H}}(828.8 \text{ keV})}{I_{\gamma,\text{abs}}^{\text{L}}(828.8 \text{ keV})} = 0.36(15),$$
(7)

⁵⁷⁸ where $I_{\gamma,\text{abs}}(828.8 \text{ keV})$ is the absolute intensity of the 579 828.8-keV γ ray.

From the data of the ¹¹⁰Nb \rightarrow ¹¹⁰Mo \rightarrow ¹¹⁰Tc decay ⁵⁸¹ chain, the P_{0n}^{L+H} value can be determined following the ⁵⁸² procedure described in Sec. III C. It is given by

$$1 - P_{0n}^{\rm L+H} = r P_n^{\rm L} + (1 - r) P_n^{\rm H}, \tag{8}$$

TABLE V. Same as Table II, but for the ¹¹⁰Mo results obtained from the β -decay chain ¹¹⁰Zr \rightarrow ¹¹⁰Nb \rightarrow ¹¹⁰Mo, where the low-spin state in ¹¹⁰Nb is populated by the β decay of the 0⁺ ground state in ¹¹⁰Zr. (1UF) is for the first unique forbidden transition from 2^- to 0^+ or 4^+ states.

E_i (keV)	J^{π}	$E_{\gamma} \; (\text{keV})$	$I_{\gamma}{}^{\mathrm{a}}$	$I_{eta}(\%)$	$\log ft$	$\log ft$
		(low)	(low)	(low)	(low)	(low)
					(allowd/non-UF)	(UF)
0.0	0^{+}			47(26)	5.2(3)	7.8(4)
213.4	(2^+)	213.4	100(4)	25.0(88)	5.5(2)	
493.7	(2^+)	280.2	28.0(24)	25.0(87)	5.4(2)	
		493.8	33.0(27)			
599.0	(4^{+})	385.5	7.0(13)	2.9(11)	6.4(2)	8.9(3)
699.8	(3^+)	486.4	6.0(4)	2.5(9)	6.4(2)	
1042.2	(0^{+})	828.8	6.0(15)	2.5(10)	6.3(2)	8.8(3)

643

^a The absolute intensity per 100 β decays is 0.41(14) I_{γ} .

 $_{586}$ of the ¹¹⁰Mo β decay was obtained using the 121.0- $_{625}$ higher excited states may cause a significant deviation $_{587}$ keV γ ray emitted from 110 Tc. From $R(121.0 \text{ keV}) = _{626}$ from the actual log ft. On the other hand, it is reason- $_{588}$ 0.0375(16), $N_{\gamma}(121.0 \text{ keV}) = 2.279(44) \times 10^4$, and $_{627}$ able that the 8⁺ state, which is the largest spin among $_{589}$ $N_{\beta}(^{110}\text{Nb}) = 7.39(7) \times 10^5$, $P_{0n}^{\text{L+H}} = 82(4)\%$ and $P_n^{\text{L+H}} = _{628}$ the measured states, is directly populated. Therefore, the $_{18}(4)\%$ mean determined $_{590}$ 18(4)% were determined.

⁵⁹² ing values were determined as $P_n^{\rm L} = -5(41)\%, P_n^{\rm H} =$ 593 31(15)%, $I_{\beta}^{L}(0) = 47(26)\%$, and $\Sigma I_{\beta}^{H}(E_{i}) = 69(15)\%$. ⁵⁹⁴ Since the $P_n^{\rm L}$ value must be positive, an upper limit is ⁵⁹⁵ given as $P_n^{\rm L} < 36\%$. The large uncertainties were prop-⁵⁹⁶ agated mainly from the uncertainty of $I_{\gamma, abs}^{L}(828.8 \text{ keV})$. ⁵⁹⁷ The separate P_n determination of the low- and high-spin ⁵⁹⁸ states was made for the first time in the ¹¹⁰Nb β decay. The previous $P_n^{\text{L+H}}$ value of 40(8)% [43] is larger than the 599 present result. In the previous work, ¹¹⁰Nb was produced $_{601}$ by bombarding a U target with a 50 MeV H₂⁺ beam. The $_{602}$ low-spin fraction r may be different due to the different ⁶⁰³ production reaction and energy.

The $\log ft$ values were determined from the half-lives, 604 605 I_{β} and $Q_{\beta} = 12230(840)$ keV [33] for the low- and high-⁶⁰⁶ spin states, (as summarized in Tables IV and V), respec-⁶⁰⁷ tively. The excitation energy in ¹¹⁰Nb was not taken into account, which would be negligible in comparison with its 609 Q_{β} .

610 ⁶¹¹ is discussed. Positive-parity states with spins ranging $_{647} \gamma$ ray corresponding to the $2^+_1 \rightarrow 0^+_1$ transition in the $_{612}$ from 0 to 4 are populated by the β decay of the low- $_{648}$ LaBr₃(Ce) detector array. Figure 8 shows the time- $_{613}$ spin 110 Nb. Because this decay pattern and the log ft_{649} difference distributions for the three nuclei and Fig. 9 values are similar to the ¹⁰⁸Nb decay, the spin-parity of $_{650}$ shows the corresponding γ -ray spectra with the regions $_{615}$ the low-spin ¹¹⁰Nb is assigned to be 2^- . The log ft values $_{651}$ used to make the time spectra highlighted in gray. The 616 of 0⁺ and 4⁺ states were recalculated as the first unique 652 time spectra show a clear single exponential decay on $_{617}$ forbidden transition to be 7.8(4), 8.8(3), and 8.9(3) for $_{653}$ a very low background. The γ -ray spectra in Fig. 9 do $_{618}$ 0_1^+ , 0_2^+ , and 4_1^+ , respectively. These are consistent with $_{654}$ not show any evidence for delayed feeding of the 2_1^+ state $_{619}$ the typical range from 8 to 11 [40].

 $_{621}$ sible to interpret the log ft values of both the 3^+ and $_{657}$ ps [9]. Its effect can be ignored, since the lifetime is 622 8⁺ states, even if the first unique forbidden transition 658 one order of magnitude smaller than the time resolution $_{623}$ is considered. Because the I_{β} to the 3⁺ state, 1.5(6), $_{659}$ of 0.61 ns at 200 keV. The lifetimes of the 2⁺₁ states 624 is smaller than the other states, missing feedings from 660 were determined from fitting the slope with a single ex-

 $_{629}$ 3⁺ state is considered to be mainly fed from the higher Based on the above values and Eqs. (4-8), the remain- $_{631}$ and 8^+ states are in the range from 5.7 to 6.3. This case ⁶³² is similar to the situation above. When the spin-parity of $_{633}$ the high-spin state in 110 Nb is 6⁻, the transitions to 4⁺ or 8^+ states become the first unique forbidden transition. 634 $_{635}$ The recalculated log ft values, 8.5(3), 8.5(3), 8.5(3) and $_{636}$ 8.6(3) for the 4_1^+ , 4_2^+ , 4_3^+ , and 8_1^+ states, respectively, are 637 consistent with the typical range. For the other positive $_{638}$ parity states, the log ft values are consistent with the first $_{639}$ non-unique forbidden transitions from the 6^- state. As 640 a result, the spin-parity of the high-spin state is assigned $_{641}$ to be 6^- .

F. Lifetime measurement of 2^+_1 states in ^{106,108,110}**Mo**

The mean lifetimes, τ , of the 2^+_1 states in 106,108,110 Mo 644 645 were measured from the time between the observation First, the spin-parity of the low-spin state in 110 Nb $_{646}$ of a β particle in a plastic scintillation detector and a ie typical range from 8 to 11 [40]. For the β decay from the high-spin state, it is impos- 655 from higher-lying states and indeed, the lifetime of the 4⁺₁ 655 state in 108 Mo was recently measured as $\tau = 29.7^{+11.3}_{-9.1}$

FIG. 8. The time spectra of $2^+_1 \rightarrow 0^+_1 \gamma$ -ray transition in ¹⁰⁶Mo, ¹⁰⁸Mo, and ¹¹⁰Mo. ΔT is the time from β -particle detection by the plastic scintillator to γ -ray detection by the $LaBr_3(Ce)$ array. The solid red lines are the best-fit curves using an exponential function and fixed constant background to the region indicated by the dashed red lines. The constant backgrounds, shown by the orange lines, were determined by fitting the region of $15 < \Delta T < 25$ ns, $10 < \Delta T < 25$ ns, and $8 < \Delta T < 25$ ns for ¹⁰⁶Mo, ¹⁰⁸Mo, and ¹¹⁰Mo, respectively.

⁶⁶¹ ponential function and a constant background, yielding $_{662} \tau = 1.86(13), 1.21(7), \text{ and } 0.84(4) \text{ ns for } {}^{106}\text{Mo}, {}^{108}\text{Mo},$ ⁶⁶³ and ¹¹⁰Mo, respectively. The previously reported results $_{664}$ for ¹⁰⁶Mo are 0.54(8) [47, 48], 1.08(22) [49], 1.73(24) [50], 665 and 1.93(14) ns [51]. The present lifetime ($\tau = 1.86(13)$ ⁶⁶⁶ ns) is consistent with the values in Refs. [50, 51]. The ₆₆₇ result of $\tau = 1.21(7)$ ns for ¹⁰⁸Mo is consistent with the $_{668}$ previously reported value of 0.72(43) ns [21] but pro-⁶⁶⁹ vides a smaller uncertainty. The measurement for ¹¹⁰Mo 670 was made for the first time. The systematic trend of $_{671} B(\text{E2};2^+_1 \to 0^+_1)$ values in the Mo isotopes is shown in ⁶⁷² Fig. 10. The present results with small uncertainties ⁶⁷³ show that the B(E2) value is nearly unchanged between ⁶⁹² $_{674}$ the neutron numbers N = 62 and 66, and drops slightly $_{693}$ against γ vibration, a γ -unstable rotor, or a rigid triaxial 675 at N = 68.

FIG. 9. The γ -ray energy spectra of the LaBr₃(Ce) array. The energy region used to make the time spectra of Fig. 8 are highlighted with gray. The prompt, $|\Delta T| < 1$ ns, and delayed, $\Delta T > 1$ ns, components are shown by the red and blue dotted lines, respectively.

IV. DISCUSSION

Quadrupole deformation of ground state in ${}^{106,108,110}{\rm Mo}{}$ 677 678

676

691

679 The ground-state band is described as the rotational 680 motion of a deformed nucleus. The quadrupole deforma-⁶⁸¹ tion parameter β was obtained from the $B(\text{E2};2^+_1 \rightarrow 0^+_1)$ ⁶⁸² values using the formula given in the review paper [48] $_{683}$ as 0.349(13), 0.327(10), and 0.305(7) for ^{106}Mo , ^{108}Mo , and ¹¹⁰Mo, respectively. Figure 11 shows the neutron-686 number dependence of β for Mo and Zr isotopes. While $_{\rm 687}$ the Zr isotopes have a clear peak structure at $N\,=\,64$ and reach $\beta = 0.46(1)$, the Mo isotopes have almost con- $_{689}$ stant $\beta \sim 0.32$ between N = 60 and 68. A comparison ⁶⁹⁰ with microscopic calculations is described in Sec. IV E.

В. Triaxial motion in 2^+_2 band

The low-lying 2^+_2 state is a signature of a softness ⁶⁹⁴ rotor. The three models are distinguished by means of

FIG. 10. Experimental and theoretical $B(E2; 2^+_1 \rightarrow 0^+_1)$ values of the even-even Mo isotopes. The experimental values were calculated by the use of the relation in Ref. [52]. The open circles are taken from Ref. [48]. The theoretical values were calculated using the five-dimensional collective Hamiltonian with the pairing-plus-quadrupole interaction parameters determined from the two kinds of the Skyrme-interaction parameters (SLy5+T and SLy4).

FIG. 11. Quadrupole deformation parameter β for Zr (square) and Mo (circle) isotopes. Filled circles are the present results for the Mo isotopes. Filled squares for the Zr isotopes are the results from the same data set [53], but the values were recalculated from $B(E2; 2^+_1 \to 0^+_1)$ by using the formula given in the review paper [48]. Open circles and squares are taken from the review paper [48] and a later work [54].

⁶⁹⁵ the energy staggering of the 2^+_2 band [1]:

$$\frac{E_s(J)}{E(2_1^+)} = \frac{\Delta E_J - \Delta E_{J-1}}{E(2_1^+)},\tag{9}$$

 $E_{s}(4)/E(2_1^+)$ value of the γ -vibrational band is close to 738 699 700 rotational energies are described approximately as the 740 ground band. Figure 14 shows the kinematic MoI of the $_{701}$ axially-symmetric rigid rotor. At maximum triaxiality $_{742}$ ground and 2^+_2 bands up to J = 10. The newly discovered $_{702}$ ($\gamma = 30^{\circ}$) of a rigid-triaxial rotor in the Davydov model, $_{743}$ levels in the $\bar{K} = 2$ band of 110 Mo extended the kinematic ⁷⁰³ it becomes 5/3 [2]. Another extreme case of γ -unstable ⁷⁴⁴ MoI up to J = 7. The similar evolution of the kinematic

FIG. 12. The $E_s(4)/E(2_1^+)$ ratio around neutron-rich A =110. The black-dashed lines represent the ideal values of three models; rigid-triaxial rotor, γ -unstable rotor, and γ vibrational band. Filled square, circles, triangles and inverted triangles represent Zr, Mo, Ru, and Pd isotopes, respectively.

 $_{705}$ 12 shows the $E_s(4)/E(2_1^+)$ ratio around the neutron-rich $_{707}$ A = 110 region. The Mo, Ru, and Pd isotopes have simi-⁷⁰⁸ lar values in the range from -0.5 to +0.1, which is below ⁷⁰⁹ the 1/3 of the γ vibrational band. A larger value of ¹⁰²Zr $_{710}$ than other isotopes suggests that 102 Zr has the steeper potential towards the γ direction. 711

Figure 13 shows the $E_s(J)/E(2_1^+)$ ratio as a function 712 of J for the Mo, Ru, and Pd isotopes. The difference among the isotopes is more apparent than in Fig. 12. The J-dependence of $E_s(J)/E(2_1^+)$ is shown to have a relation to the triaxial motion from the calculation using the Bohr Hamiltonian with a γ -dependent potential 718 [4]. While the γ -vibrational band shows a flat pattern, 719 γ_{20} the γ -soft and the rigid triaxial rotors show a staggering $_{721}$ pattern with low values at even and odd J, respectively. The flat pattern of the ^{106,108,110}Mo isotopes indicates 722 $_{\rm 723}$ that the excitation energies are explained by the rota- $_{724}$ tional bands built on a $\gamma\text{-vibrational}\ 2^+_2$ state with the 725 axially-symmetric deformed shape and quantum number $_{726}$ K = 2. On the other hand, the staggering pattern of the ₇₂₇ Pd isotopes with $N \leq 66$ indicates a γ -soft rotor. The 728 Ru isotopes show an intermediate behavior. The stag-729 gering pattern of the Pd isotopes suddenly disappears at $_{730}$ N = 68. Especially at J > 6, a slight staggering in the 731 opposite direction is observed. It is observed that the $_{732}$ three isotopes with N = 68 show a similar staggering 733 pattern to each other. This staggering is enhanced for $_{734}$ ¹¹²Ru. The staggering pattern at N = 68 might indicate 735 the onset of a very weak triaxial shape and might show ⁶⁹⁶ where $\Delta E_J = E_{\gamma}(J) - E_{\gamma}(J-1)$, and $E_{\gamma}(J)$ is the ⁷³⁶ a significant neutron contribution to make a shallow po-⁶⁹⁷ energy of the 2^+_2 band member with the spin J. The ⁷³⁷ tential minimum at a finite γ .

For the γ -vibrational band, the kinematic moment of 1/3, which is given by the $J(J+1) - K^2$ rule if the 739 inertia (MoI) is expected to be similar to that of the $_{704}$ nuclei in the Wilets-Jean model [3] yields -2. Figure $_{745}$ MoI between these two bands supports the interpretation

FIG. 13. The staggering pattern of $E_s(J)/E(2_1^+)$. The flat pattern indicates the γ -vibrational band, while the staggering pattern with low values at even and odd J indicates the γ -soft and rigid triaxial rotor, respectively, [4].

TABLE VI. The experimental and theoretical B(E2) ratios. The M1/E2 mixing ratio of $\delta = 6.2^{+1.0}_{-0.8}$ [56] was used for ¹⁰⁶Mo. A pure E2 transition was assumed for ¹⁰⁸Mo and $^{110}\mathrm{Mo.}\,$ The theoretical calculation using the SLy5+T interaction is given.

	Alaga	$^{106}\mathrm{Mo}$	$^{108}\mathrm{Mo}$	$^{110}\mathrm{Mo}$
$\frac{B(\text{E2}; 2_2^+ \to 2_1^+)}{B(\text{E2}; 2_2^+ \to 0_1^+)}_{\text{exp.}}$		4.5(6)	8.3(6)	17.3(4)
$\frac{B(\text{E2}; 2_2^+ \to 2_1^+)}{B(\text{E2}; 2_2^+ \to 0_1^+)}_{\text{th.}}$	1.43	2.0	4.9	14.0

of a γ -vibrational band. 746

The ratio $B(\text{E2};2^+_2\to2^+_1)/B(\text{E2};2^+_2\to0^+_1)$ provides additional information about the 2^+_2 band. The 747 748 ⁷⁴⁹ B(E2) ratio is given as 1.43 by the Alaga rule [55], where π_1 that the $K^{\pi} = 4^+$ band head is a collective excitation 750 the rotational and vibrational motions for the axially- 772 rather than a two quasiparticle state. symmetric shape are well decoupled. The experimental 773 751 $_{752}$ B(E2) ratios shown in Table VI are clearly larger than the $_{774}$ the context of a two-phonon γ vibration [13]. The ra-753 Alaga value. For the γ -vibrational band, the enhance- 775 tio of the lowest $K^{\pi} = 4^+$ and 2^+ band-head energies ⁷⁵⁵ ment can be explained by the rotation-vibration coupling ⁷⁷⁶ is 2.02, which is close to the 2.0 value for a harmonic 756 model which introduces the Coriolis mixing between two 777 vibrator. The reduced transition probabilities of the in-⁷⁵⁷ bands with $\Delta K = 2$ [1]. In Sec. IV E, the B(E2) ratio is ⁷⁷⁸ terband transition between $K^{\pi} = 2^+$ and 4^+ bands were ⁷⁵⁸ compared with beyond-mean-field calculations.

FIG. 14. The kinematic moment of inertia for the ground band (black line with filled squares), $K^{\pi} = 2^+$ band (blue line with filled triangles for even J and green line for odd J), and $K^{\pi} = 4^{+}$ band (red line with open circles for even J and orange line for odd J) in (a)¹⁰⁶Mo, (b)¹⁰⁸Mo, and (c)¹¹⁰Mo.

Candidate of two-phonon γ band С.

759

The $K^{\pi} = 4^+$ band in ¹¹⁰Mo has the lowest band-⁷⁶¹ head energy of 1244 keV among the neutron-rich Mo iso-⁷⁶² topes. A potential two-quasiparticle state with $K^{\pi} = 4^+$ 763 would appear around or above the pairing gap. How- $_{764}$ ever, the observed energy is well below $2\Delta_p\sim 3.4~{\rm MeV}$ $_{765}$ and $2\Delta_n \sim 2.5$ MeV for the proton and neutron pairs, ⁷⁶⁶ respectively, which are calculated from the atomic mass ⁷⁶⁷ evaluation AME2016 [33]. A $K^{\pi} = 4^+$ band, decaying to the γ band, is known in many neighboring nuclei, such as 104,106,108 Mo, and 108,110,112,114,116 Ru [34, 57]. The 768 769 ⁷⁷⁰ systematical observations of the $K^{\pi} = 4^+$ state indicate

The $K^{\pi} = 4^+$ band in ¹⁰⁶Mo has been discussed in ⁷⁷⁹ compared with those between $K^{\pi} = 0^+$ and 2^+ bands, $_{782}$ energies changes gradually as 1.95, 2.02, 2.43, and 2.52 $_{837} \gamma = 60^{\circ}$. For the comparison with the experimental re- $_{787}$ assigned as a candidate of the two-phonon γ vibrational $_{842}$ Fig. 10. The theoretical values with SLy5+T are roughly 788 band.

789

D. Second 0^+ state

The energies of the 0^+_2 state, 893.4 and 1042.2 keV 790 ⁷⁹¹ for ¹⁰⁸Mo and ¹¹⁰Mo, respectively, are low enough to indicate a β -vibrational state or shape coexistence rather 792 than two-quasiparticle states, since they are well below 793 the pairing gaps, $2\Delta_p$ and $2\Delta_n$, given in Sec. IV C. The 794 energies are similar to those of other Mo isotopes, which 795 range from 695 keV to 886 keV between ⁹⁸Mo and ¹⁰⁴Mo, 796 respectively [34]. 797

The 1158.4-keV 2^+ state in ¹⁰⁸Mo has a similar decay pattern to the 2^+_3 state in ^{106,108,110}Ru isotopes [34]. The 798 799 2_3^+ state in the Ru isotopes decays also to the 0_2^+ state. 800 ⁸⁰¹ Although the corresponding γ -ray transition from 1158.4- $_{802}$ keV state to 0^+_2 state in 108 Mo was not observed due to ⁸⁰³ the lack of the sensitivity for $I_{\gamma} < 0.5\%$, the energy dif-⁸⁰⁴ ference, $E(2_3^+) - E(0_2^+) = 265$ keV, is similar to the cases ⁸⁰⁵ of 402, 273, and 260 keV for ^{106,108,110}Ru [34], respec-⁸⁰⁶ tively. Based on these systematic trends, the 1158.4-keV state in ¹⁰⁸Mo was tentatively assigned as the member of ₈₆₅ vibration of the prolate shape. While the band-head en- $_{808}$ the 0^+_2 band.

809 ⁸¹⁰ paring with predictions in Sec. IV E.

Comparison with 5D collective Hamiltonian E. 811 calculation with microscopic approach 812

813 814 815 816 817 $_{\rm sug}$ single-particle energies in the two-major harmonic oscil- $_{\rm sug}$ mental results indicate γ vibration in the stiffer potential. $_{s20}$ lator shell model space and interaction strengths, were $_{ss1}$ It is noticed that the calculated wave function of the 3^+_{γ} 821 $_{*22}$ of Skyrme interactions, SLy5+T or SLy4 (see Refs. [58– $_{**3}$ dicates γ vibration. The characteristics of the wave func-823 824 825 826 829 830 ⁸³² with the experimental ones in Fig. 17. The PESs show a ⁸⁹⁰ and odd spins. The odd-spin states cannot mix with the $_{833}$ strong dependence on the effective interaction used. The $_{891}$ $K^{\pi} = 0^+$ component, since the odd-spin states are not ⁸³⁴ calculation with the SLy5+T interaction predicts a pro- ⁸⁹² allowed in the $K^{\pi} = 0^+$ band. This means that the ex-

 $_{780}$ and were consistent with the relation of the one-phonon $_{835}$ late shape with $\beta \sim 0.35$ and $\gamma = 0^{\circ}$, while the SLy4 $_{781}$ and two-phonon excitations. The ratio of the band-head $_{836}$ interaction predicts an oblate shape with $\beta \sim 0.2$ and ⁷⁸³ for ¹⁰⁴Mo, ¹⁰⁶Mo, ¹⁰⁸Mo, and ¹¹⁰Mo, respectively. The ⁸³⁸ sults, the $B(E2; 2_1^+ \rightarrow 0_1^+)$ value was used instead of β . ⁷⁸⁴ kinematic MoI of the $K^{\pi} = 4^+$ band shown in Fig. 14 has ⁸³⁹ The $B(E2; 2_1^+ \rightarrow 0_1^+)$ values were calculated by adopting res similar values to those of the ground-state and γ bands. 840 the effective charges, $e_{\pi} = 1.5e$, and $e_{\nu} = 0.5e$, for the Thus, the newly discovered $K^{\pi} = 4^+$ band in ¹¹⁰Mo was ⁸⁴¹ two major-shell single-particle model space as shown in ⁸⁴³ double those with SLy4 and agree well with the exper-⁸⁴⁴ imental ones. The energy of 2^+_1 state for the rotational ⁸⁴⁵ band, which has a strong correlation to B(E2) [52], is an observable closely related to β . The energies of the ⁸⁴⁷ ground-state band are well reproduced by the calcula-⁸⁴⁸ tions with SLy5+T, as shown in Fig. 17. The good agree- $_{\rm 849}$ ment with the theoretical values using the SLy5+T in- $_{\tt 850}$ teraction indicates that the ground state in $^{106,108,110}{\rm Mo}$ $_{851}$ has a prolate shape. The B(E2) values for SLy5+T shows $_{852}$ an increase at N = 64, while the experimental ones are ⁸⁵³ rather constant. The PES of ¹⁰⁶Mo has a gentle slope $_{854}$ toward $\beta \sim 0.45$, which may increase β compared with $_{855}$ $^{108}{\rm Mo.}$ Because the largest β was observed at N = 64 $_{856}$ in the Zr isotopes [53] and the energy of the 2^+_1 state ⁸⁵⁷ becomes minimum at N = 64 for both isotopes [61], the soft potential toward the large β might be consistent with ⁸⁵⁹ the experimental results. But a less-soft potential would ⁸⁶⁰ be necessary for a better agreement.

The energies of the 2^+_2 band in ¹⁰⁶Mo are well repro-duced by the calculation with SLy5+T. The wave func- $_{863}$ tions of 2^+_{γ} and 3^+_{γ} are localized on a finite γ value, reflect- $_{864}$ ing the dynamical triaxial deformation induced by the γ ⁸⁶⁶ ergy in ¹⁰⁸Mo is overestimated, the excitation energies The 0^+_2 states of 108,110 Mo will be discussed by com- $_{868}$ duced and the wave functions show the γ vibration ex-⁸⁶⁹ pected from the experimental odd-even staggering. Thus, $_{\rm 870}$ the calculations for $^{106}{\rm Mo}$ and $^{108}{\rm Mo}$ are consistent with ⁸⁷¹ the interpretation in Sec. IVB, that is, the rotational $_{\rm 872}$ band of the γ vibrational state. On the other hand, the $_{273}$ calculated 2^+_2 band in 110 Mo shows considerable energy Five-dimensional collective Hamiltonian calculations ${}_{874}$ staggering. The 3^+_{γ} and 5^+_{γ} states converge toward the were performed for the low-lying states in 106,108,110 Mo. ${}_{875}$ 4^+_{γ} and 6^+_{γ} states, respectively. The degeneracy of these The PES and the kinetic terms (vibrational and rota- $_{876}$ states is predicted in the γ -unstable model. The wave tional masses) were microscopically calculated using the $_{877}$ function of 2^+_{γ} is prolonged in the γ direction as expected CHFB+LQRPA approach using pairing-plus-quadrupole 378 in the γ -unstable model. It is caused by the flatness of the (P+Q) interactions whose parameters, such as spherical $_{879}$ PES between $\gamma = 20^{\circ}$ and 60° . Conversely, the experifitted to the mean-field results obtained with two kinds see state is similar to those of the lighter Mo isotopes and in-60] for details). The Schrödinger equation in the collective space was solved to obtain the energies and the col- 885 is even or odd. This is also noticed in the calculations lective wave functions of the ground and excited states. *** with SLy4. It is suggested that the energy staggering The PESs and the collective wave functions squared are $_{887}$ with the close degeneracy of $E(3_{\gamma})$ and $E(4_{\gamma})$ might deshown in Fig. 15 for SLy5+T and Fig. 16 for SLy4. The see pend not only on the prolonged wave function toward the two kinds of theoretical excitation energies are compared $_{889} \gamma$ direction, but also on the difference between the even

FIG. 15. The potential-energy surface and the collective-wave functions squared (with a factor of β^4) of low-lying states in ¹⁰⁶Mo, ¹⁰⁸Mo, and ¹¹⁰Mo. The pairing-plus-quadrupole interaction and spherical single-particle energies used in the CHFB+LQRPA calculations were fitted to the mean-field results obtained with the SLy5+T interaction.

FIG. 16. Same as Fig. 15, but with the SLy4 interaction.

 $_{893}$ cited even-spin states (e.g. 4^+_2) are more influenced by $_{898}$ at all. This will result in a qualitative difference between ⁸⁹⁴ the mixing with $K^{\pi} = 0^+$ bands, which are built on the ⁸⁹⁹ the even- and odd-spin states, and energy staggering that $_{895}$ ground state, shape coexistence, shape fluctuation in the $_{900}$ deviates from the ideal γ -band energy. ⁸⁹⁶ β direction around $\gamma = 0^{\circ}$, and any low-lying $K^{\pi} = 0^{+}$ ⁸⁹⁷ states. The odd-spin states are not very sensitive to them ⁹⁰¹

¹⁰⁶Mo

¹⁰⁸Mo

 0^{+}_{1}

β

γ(deg

γ(deg)

β

The quadrupole collective Hamiltonian approach can ⁹⁰² predict a two-phonon γ vibrational band with $K^{\pi} = 4^+$,

FIG. 17. The experimental and theoretical energies of the low-lying excited states in ¹⁰⁶Mo, ¹⁰⁸Mo, and ¹¹⁰Mo. Black lines present the experimental results, and red and blue lines present the results from the theoretical calculations using SLy5+T and SLy4, respectively.

⁹⁰⁴ clude the quasiparticle degrees of freedom explicitly. As ⁹³⁵ ¹¹⁰Mo. Additional experimental and theoretical works $_{905}$ discussed in Sec. IVC, the observed $K^{\pi} = 4^+$ band is $_{936}$ are awaited for further discussions. ⁹⁰⁶ most likely built on a collective excitation. However, the $_{907}$ $K^{\pi} = 4^+$ band was not predicted by the calculations. An 908 ideal two-phonon γ vibrational state has a wave function 937 localized around the prolate minimum. To have a local-⁹¹⁰ ized two-phonon $K^{\pi} = 4^+$ vibrational state, which has ⁹¹¹ a larger vibrational energy than that of a one-phonon $_{912}$ state, generally the PES along the γ direction has to be ⁹¹³ deep enough to prevent oblate admixtures. If this is not ⁹¹⁴ satisfied, the corresponding two-phonon state will mix ⁹¹⁵ with the oblate shape and lose its two-phonon charac-⁹¹⁶ ter. The potential barriers in the γ direction from the ⁹¹⁷ potential minimum, shown in Fig. 15, are shallow. By ⁹¹⁸ increasing in energy by 1 MeV or so from the prolate 919 potential minimum, the other side of the axial symme- $_{920}$ try at $\gamma = 60^{\circ}$ (oblate) is reached. Further theoretical investigations are necessary to reproduce these collective 921 922 excitations. One of the important improvements for the 5D collective model is to use effective interactions such 923 ⁹²⁴ as modern Skyrme energy density functionals instead of $_{925}$ the P+Q Hamiltonian [62].

926 927 ⁹²⁸ tion. On the other hand, the calculation with SLy4 indi- ⁹⁵⁶ state was assigned to be a high-spin $K^{\pi} = 4^{-}$ isomeric $_{929}$ cates the possibility of shape coexistence of prolate and $_{957}$ state of the GM partner in the $\pi 3/2^{-}[301] \otimes \nu 5/2^{+}[413]$ 930 oblate shapes. Since the energy difference between the 958 configuration. 931 0⁺₂ and 2⁺₃ states in ¹⁰⁸Mo is consistent with the predic- 959 Configuration of ¹⁰⁸Nb: The spin-parity of the ¹⁰⁸Nb 932 tion with SLy5+T, the 0⁺₂ state in ¹⁰⁸Mo is suggested to 960 ground-state was assigned to be 2⁻, and there was no $_{933}$ be a β vibrational state. There is no experimental in- $_{961}$ evidence of a β -decaying isomeric state. The single-

 $_{903}$ but not two quasiparticle states because it does not in- $_{934}$ formation providing a favored origin for the 0^+_2 state in

Structure of parent nuclei ^{106,108,110}Nb F.

Configuration of ¹⁰⁶Nb: The spin-parity of the β -938 939 decaying state in ¹⁰⁶Nb was assigned to be 4⁻, and ⁹⁴⁰ there were no experimental indications of the existence $_{\texttt{941}}$ of a second $\beta\text{-decaying state.}$ From the prompt $\gamma\text{-}$ ⁹⁴² ray spectroscopy of the ²⁵²Cf spontaneous fission [63], 943 the spin-parity of the ground state in ¹⁰⁶Nb was as- $_{944}$ signed as 1⁻. Owing to the relatively strong popula-945 tion of high-spin states in ¹⁰⁶Mo and the fact that no $_{\rm 946}$ known γ rays of $^{106}{\rm Nb}$ are observed following the de- $_{947}$ cay of 106 Zr, it is likely that the β -decaying state of $_{948}$ ¹⁰⁶Nb is not the 1⁻ ground state. The configuration $_{949}$ of $\pi 3/2^{-}[301] \otimes \nu 5/2^{+}[413]$ with $K^{\pi} = 1^{-}$ was pro-⁹⁵⁰ posed for the ground state [63]. In the Nilsson dia-⁹⁵¹ gram [64], these quasiparticle states are predicted for $_{952}$ the prolate shape with $\beta \sim +0.35$ measured in 106 Mo. 953 The Gallagher-Moszkowski (GM) rule [65] predicts that The squared wave functions of the 0_2^+ state in $_{954}$ the state with the antiparallel spin-coupling becomes a ^{106,108,110} Mo with SLy5+T indicate β vibrational mo- ⁹⁵⁵ higher-lying state. Therefore, the observed β -decaying

cle states are selected from the Nilsson diagram [64] and the $\frac{1006}{20}$ 2⁻ state, there are three candidates as given in Table VII. quasiparticle level in the Woods-Saxon potential [66] for each ¹⁰⁰⁷ Since the spin difference between the GM pair is 1 for all nucleon. The left and right values show the spin-parity of 1008 three candidates, the lower energy state with the parallel the parallel- and antiparallel-spin coupling, respectively. The 1009 spin becomes the β -decaying state. Thus, the parallel parallel-spin coupling state becomes lower-lying state [65]. 1010 spin-coupling state of the $\pi 5/2^+$ [422] $\otimes \nu 1/2^-$ [541] con-The spins of the assigned configurations for the low and high- $_{1011}$ figuration was assigned to the β -decaying 2⁻ state. spin states are written in **bold** text.

	$\pi 1/2^+[431]$	$\pi 5/2^+[422]$	$\pi 5/2^{-}[303]$	$\pi 3/2^{-}[301]$
$\nu 5/2^+[402]$	$2^{+}/3^{+}$	$5^{+}/0^{+}$	$0^{-}/5^{-}$	$4^{-}/1^{-}$
$\nu 1/2^+[411]$	$1^{+}/0^{+}$	$2^{+}/3^{+}$	$3^{-}/2^{-}$	$1^{-}/2^{-}$
$\nu 7/2^-[523]$	$3^{-}/4^{-}$	$6^{-}/1^{-}$	$1^{+}/6^{+}$	$5^{+}/2^{+}$
$\nu 1/2^-[541]$	$1^{-}/0^{-}$	$2^{-}/3^{-}$	$3^{+}/2^{+}$	$1^{+}/2^{+}$

962 proton and neutron levels in the deformed nucleus ⁹⁶³ were calculated according to the Nilsson diagram [64] ⁹⁶⁴ and by using the Woods-Saxon potential [66]. A ma-⁹⁶⁵ jor difference of the level orderings between these two ⁹⁶⁶ is the negative parity states of the protons. $_{967}$ didates of the valence proton and neutron configura- $_{1026}$ that the $\pi 3/2^{-}[301]$ state in the Woods-Saxon potential ⁹⁶⁸ tions were selected based on these two predictions. ¹⁰²⁷ may need to lower in energy so as to cross the $\pi 5/2^+$ [422] ⁹⁶⁹ These are, $\pi 1/2^+[431]$, $\pi 5/2^+[422]$, $\pi 5/2^-[303]$, and ¹⁰²⁸ state at $\beta \sim 0.3$. $_{970} \pi 3/2^{-}[301]$ for the proton configuration, and $\nu 1/2^{+}[411]$, 1029 $_{971} \nu 5/2^{+}[413]$, and $\nu 1/2^{-}[541]$ for the neutron configura- $_{972}$ tion at around $\beta = +0.33$ for 108 Mo. The spin-parity $_{973}$ of the $\pi 5/2^{-}[303] \otimes \nu 1/2^{+}[411]$ configuration is 2⁻ and $_{1030}$ ⁹⁷⁴ 3⁻ with the antiparallel- and parallel-spin couplings, re- $_{\rm 975}$ spectively. The lower-lying state is the 3^- state based $_{\rm 1031}$ $_{976}$ on the GM rule. The 2^{-} state would not form a β - $_{1032}$ 106,108,110 Nb were observed to investigate the shape evo-977 decaying isomeric state because of a fast M1 transi- 1033 lution of ^{106,108,110}Mo. The neutron-emission probabil- $_{978}$ tion to the 3⁻ state. Thus, the expected β -decaying $_{1034}$ ity, P_n , of 108 Nb and 110 Nb was determined from the β - $_{279}$ state is not the 2⁻ state, but the 3⁻ state. The 2⁻ $_{1035}$ delayed γ rays emitted from the daughter nuclei with the set te of the $\pi 3/2^{-}[301] \otimes \nu 1/2^{+}[411]$ configuration is also 1036 same mass number. The daughter decays of 106,108,110 Zr $_{981}$ antiparallel-spin coupled, therefore the 1⁻ state with the $_{1037}$ were used to search for β -decaying isomeric states in the $_{982}$ parallel-spin coupling would be the β -decaying state. The $_{1038}$ Nb isotopes and to increase the statistics of the γ rays $_{983} \pi 5/2^+[422] \otimes \nu 1/2^-[541]$ configuration can generate a β - $_{1039}$ from 106 Mo and 108 Mo. Two β -decaying states with low decaying 2⁻ state with the parallel-spin coupling. The $_{1040}$ and high spins were found in the 110 Nb β decay. Al-3⁻ state with the antiparallel-spin coupling will decay to 1041 though the ground state in ¹¹⁰Nb was not assigned from 985 $_{1042}$ the 2⁻ state by a M1 transition. Therefore, the ground $_{1042}$ these two candidates, the decay properties, including P_n , state of 108 Nb was assigned to be the 2^- state with the $_{1043}$ were separately determined for each state. $\pi 5/2^+[422] \otimes \nu 1/2^-[541]$ configuration. 988

989 observed. The spin-parities were assigned to be 2⁻ and 1046 quadrupole deformation parameter was obtained from 990 ⁹⁹¹ 6⁻. The quasiparticle states are selected from the Nilsson 1047 the energy and lifetime of the 2⁺₁ state. The deforma-⁹⁹² diagram [64] at around $\beta = +0.305$ for ¹¹⁰Mo or the ¹⁰⁴⁸ tion is almost unchanged with $\beta \sim 0.33$ from the neutron single particle levels in the Woods-Saxon potential [66] $_{1049}$ number N = 62 to 66 and slightly decreases to 0.305(7)993 ⁹⁹⁴ as $\pi 1/2^+[431]$, $\pi 5/2^+[422]$, $\pi 5/2^-[303]$, and $\pi 3/2^-[301]_{1050}$ at N = 68. The even-odd energy staggering of the 2^+_2 for the proton, and $\nu 5/2^{-}[402]$, $\nu 1/2^{+}[411]$, $\nu 7/2^{-}[523]$, $_{1051}$ band was evaluated using $E_s(J)/E(2_1^+)$ as a function of and $\nu 1/2^{-}[541]$ for the neutron. The spin-parities of the $_{1052}$ the spin J. The staggering of the 106 Mo, 108 Mo, and configuration coupled with these quasiparticle states are $_{1053}^{-110}$ mode isotopes shows the pattern of the γ -vibrational 996 997 summarized in Table VII. 998

1000 pling of the $\pi 5/2^+[422] \otimes \nu 7/2^-[523]$ configuration. The 1056 pretation as the γ -vibrational band. A candidate of the 1001 $_{1002}$ anti-parallel spin coupled 1⁻ state of this configuration, $_{1057}$ two-phonon γ vibrational band was found well below the ¹⁰⁰³ which has a higher energy based on the GM rule, would ¹⁰⁵⁸ proton and neutron pairing gaps also in the ¹¹⁰Mo iso-

The difference between the assigned configurations of 1012 ¹⁰¹³ the two β -decaying states is the neutron quasiparticle 1014 state. It is indicated that the $\nu 7/2^{-}[523]$ and $\nu 1/2^{-}[541]$ 1015 states are near the Fermi surface and close to each other. There was no experimental evidence to select the ground 1016 state from these two states. 1017

Comparison between Nilsson diagram and single-1018 ¹⁰¹⁹ particle levels in Woods-Saxon potential: The assigned ¹⁰²⁰ configurations of ¹⁰⁶Nb, ¹⁰⁸Nb, and ¹¹⁰Nb are consistent ¹⁰²¹ with the Nilsson diagram given in Ref. [64]. On the 1022 other hand, the $\pi 5/2^+$ [422] state in the Woods-Saxon 1023 potential is located below Z = 40 [66], even though it ¹⁰²⁴ is used in the configuration of ¹⁰⁸Nb and ¹¹⁰Nb. From Can- 1025 comparison with the Nilsson diagram, it is suggested

SUMMARY V.

The delayed γ rays emitted from the β decays of

1044 The lifetime of the 2^+_1 state in the Mo isotopes was Configuration of ¹¹⁰Nb: Two β -decaying states were 1045 measured by using the fast timing LaBr₃(Ce) array. The 1054 band. The comparison of kinematic moment of inertia The 6^- state is only generated by the parallel-spin cou- 1055 between the ground and 2^+_2 bands supports the inter-

tope. 1059

The ground, γ , and two-phonon γ bands were com-1060 pared to beyond-mean-field calculations. The ground-1061 band energies and B(E2) of the 2^+_1 state were reproduced 1062 by the calculation with the SLy5+T interaction. The γ 1063 1091 band of ¹⁰⁶Mo was also reproduced very well. The com-1064 parison indicates that the shape is prolate with axial sym-1065 metry. However, the even-odd staggering of the γ band 1092 1066 1067 1068 1069 two-phonon γ bands exist in the theoretical results. 1070 1071 1072

1073 previously reported in the β -decay to ¹⁰⁶Mo was shown ¹¹⁰⁰ ish Ministerio de Ciencia e Innovación under Contracts to be the known $5_1^+ \rightarrow 4_1^+$ transition. The compari- ¹¹⁰¹No. FPA2009-13377-C02 and No. FPA2011-29854-C04. 1074 1075 son with the beyond-mean-field calculation indicates a 1102 P.H.R. acknowledges support from the UK National Mea-1076 β -vibrational character for the 0^+_2 state in ¹⁰⁸Mo. 1077

1078 1079 1080 1081 figurations of the parent nuclei were assigned by referring 1108 readout electronics of the cluster detectors. NH ac-1082 the Nilsson diagram for the prolate shape. 1083

1084 ment between the experiment and prediction for ¹¹⁰Mo 1111 ravelling mysteries of r-process." Numerical calculations 1085 1086 is enhanced at heavier Mo isotopes or not. The low-lying 1112 were performed in part using the COMA (PACS-IX) and ¹⁰⁸⁷ 2_1^+ , 4_1^+ , and 2_2^+ states are known in ¹¹²Mo [16]. In order ¹¹¹³ Oakforest-PACS provided by Multidisciplinary Coopera-¹⁰⁸⁸ to study the triaxial motion, measurements of the higher ¹¹¹⁴ tive Research Program in Center for Computational Sci-1089 spin states in the 2^+_2 band are awaited.

1146

1147

ACKNOWLEDGEMENTS

We would like to express our gratitude to the in ¹¹⁰Mo was not reproduced. The predicted potential 1093 RIKEN Nishina Center accelerator staff for providmight be too shallow toward the triaxial deformation es- 1094 ing a stable and high intensity ²³⁸U primary beam. pecially for ¹¹⁰Mo. This may also be the reason why no 1095 This work was supported by JSPS KAKENHI Grants 1096 Nos. 24740188, 25247045, 26800117, and 16K17680, The 893.4- and 1042.2-keV states in 108 Mo and 110 Mo $_{1097}$ NRF Grant No. 2016K1A3A7A09005575, STFC Grant were assigned as the second 0^+ states, respectively. On 1098 Nos. ST/J000132/1, ST/J000051/1 and ST/K502431/1, the other hand, the transition from the second 0⁺ state 1099 DOE Grant No. DE-FG02-91ER-40609, and Span-¹¹⁰³ surement Office (NMO). P.-A.S. was financed by JSPS The $\log ft$ values were reasonably understood only 1104 Grant No. 23 01752 and the RIKEN Foreign Postdocwhen the first unique forbidden transition was intro-1105 toral Researcher Program. We acknowledge the EUduced. It gave the strong constraint for the spin-parity 1106 ROBALL Owners Committee for the loan of germaassignment of the parent nuclei. The quasiparticle con- 1107 nium detectors and the PreSpec Collaboration for the ¹¹⁰⁹ knowledges the JSPS-NSFC Bilateral Program for the It is interesting to investigate whether the disagree- 1110 Joint Research Project on "Nuclear mass and life for un-¹¹¹⁵ ences, University of Tsukuba.

- [1] R. F. Casten, Nuclear Structure from a Simple Perspec- 1142 1116 tive (Oxford University Press, Oxford, 2000). 1143 1117
- [2] A. S. Davydov and G. F. Filippov, Nucl. Phys. 8, 237 1144 1118 (1958).1119 1145
- [3] L. Wilets and M. Jean, Phys. Rev. 102, 788 (1956). 1120
- [4] M. A. Caprio, Phys. Rev. C 83, 064309 (2011). 1121
- [5] J. Skalski, S. Mizutori, and W. Nazarewicz, Nucl. Phys. 1148 1122 A 617, 282 (1997). 1149 1123
- [6] S. Hilaire and M. Girod, AIP Conference Proceedings 1150 1124 1012, 359 (2008). http://www-phynu.cea.fr/science_ 1151 1125 en_ligne/carte_potentiels_microscopiques/carte_ 1152 1126 potentiel_nucleaire_eng.htm. 1153 1127
- [7]C. L. Zhang, G. H. Bhat, W. Nazarewicz, J. A. Sheikh, ¹¹⁵⁴ 1128 and Y. Shi, Phys. Rev. C 92, 034307 (2015). 1155 1129
- [8] A.-C. Dai, F.-R. Xu, and W.-Y. Liang, Chinese Physics 1156 1130 C 43, 084101 (2019). 1157 1131
- [9] D. Ralet, S. Pietri, T. Rodríguez, M. Alaqeel, T. Alexan- 1158 [10] 1132 der, N. Alkhomashi, F. Ameil, T. Arici, A. Ataç, 1159 1133 R. Avigo, T. Bäck, D. Bazzacco, B. Birkenbach, 1160 1134 P. Boutachkov, B. Bruyneel, A. M. Bruce, F. Cam- 1161 1135 era, B. Cederwall, S. Ceruti, E. Clément, M. L. 1162 [12] 1136 Cortés, D. Curien, G. De Angelis, P. Désesquelles, 1163 1137 M. Dewald, F. Didierjean, C. Domingo-Pardo, M. Don- 1164 1138 cel, G. Duchêne, J. Eberth, A. Gadea, J. Gerl, 1165 1139 F. Ghazi Moradi, H. Geissel, T. Goigoux, N. Goel, P. Gol- 1166 1140 ubev, V. González, M. Górska, A. Gottardo, E. Gregor, 1167 1141

G. Guastalla, A. Givechev, T. Habermann, M. Hackstein, L. Harkness-Brennan, G. Henning, H. Hess, T. Hüyük, J. Jolie, D. S. Judson, A. Jungclaus, R. Knoebel, I. Kojouharov, A. Korichi, W. Korten, N. Kurz, M. Labiche, N. Lalović, C. Louchart-Henning, D. Mengoni, E. Merchán, B. Million, A. I. Morales, D. Napoli, F. Naqvi, J. Nyberg, N. Pietralla, Z. Podolyák, A. Pullia, A. Prochazka, B. Quintana, G. Rainovski, M. Reese, F. Recchia, P. Reiter, D. Rudolph, M. D. Salsac, E. Sanchis, L. G. Sarmiento, H. Schaffner, C. Scheidenberger, L. Sengele, B. S. N. Singh, P. P. Singh, C. Stahl, O. Stezowski, P. Thoele, J. J. Valiente Dobon, H. Weick, A. Wendt, O. Wieland, J. S. Winfield, H. J. Wollersheim, and M. Zielinska (for the PreSPEC and PreSPEC and AGATA Collaborations), Phys. Rev. C 95, 034320 (2017).

- H. Ahrens, N. Kaffrell, N. Trautmann, and G. Herrmann, Phys. Rev. C 14, 211 (1976).
- B. D. Kern, K. Sistemich, W.-D. Lauppe, and H. Lawin, Z. Phys. A **306**, 161 (1982).
- K. Shizuma, H. Lawin, and K. Sistemich, Z. Phys. A 311, 71 (1983).
- A. Guessous, N. Schulz, W. R. Phillips, I. Ahmad, [13]M. Bentaleb, J. L. Durell, M. A. Jones, M. Leddy, E. Lubkiewicz, L. R. Morss, R. Piepenbring, A. G. Smith, W. Urban, and B. J. Varley, Phys. Rev. Lett. 75, 2280

1168 (1995).

- ¹¹⁶⁹ [14] A. Guessous, N. Schulz, M. Bentaleb, E. Lubkiewicz, ¹²³²
 ¹¹⁷⁰ J. L. Durell, C. J. Pearson, W. R. Phillips, J. A. Shan- ¹²³³
- non, W. Urban, B. J. Varley, I. Ahmad, C. J. Lister, L. R. 1234
 Morss, K. L. Nash, C. W. Williams, and S. Khazrouni, 1235
- ¹¹⁷³ Phys. Rev. C 53, 1191 (1996). ¹²³⁶
- 1174 [15] H. Watanabe, K. Yamaguchi, A. Odahara, T. Sumikama, 1237
- 1175 S. Nishimura, K. Yoshinaga, Z. Li, Y. Miyashita, K. Sato, 1238
- 1176 L. Próchniak, H. Baba, J. S. Berryman, N. Blasi, 1239
- A. Bracco, F. Camera, J. Chiba, P. Doornenbal, S. Go, 1240
- 1178 T. Hashimoto, S. Hayakawa, C. Hinke, N. Hinohara, 1241
- E. Ideguchi, T. Isobe, Y. Ito, D. G. Jenkins, Y. Kawada, 1242
 N. Kobayashi, Y. Kondo, R. Krücken, S. Kubono, 1243
- G. Lorusso, T. Nakano, T. Nakatsukasa, M. Kurata- 1244
- Nishimura, H. J. Ong, S. Ota, Z. Podolyák, H. Saku- 1245
- rai, H. Scheit, K. Steiger, D. Steppenbeck, K. Sugi- 1246
- moto, K. Tajiri, S. Takano, A. Takashima, T. Teranishi, 1247 [26]
 Y. Wakabayashi, P. M. Walker, O. Wieland, and H. Ya- 1248
- $\begin{array}{c} \text{maguchi, Phys. Lett. B$ **704** $, 270 (2011). \end{array}$
- ¹¹⁸⁷ [16] N. Paul, A. Corsi, A. Obertelli, P. Doornenbal, G. Au-¹²⁵⁰ thelet, H. Baba, B. Bally, M. Bender, D. Calvet, ¹²⁵¹
- 1189 F. Château, S. Chen, J.-P. Delaroche, A. Delbart, J.-M. 1252 [28]
- 1190 Gheller, A. Giganon, A. Gillibert, M. Girod, P.-H. Hee- 1253
- 1191 nen, V. Lapoux, J. Libert, T. Motobayashi, M. Niikura, 1254
- T. Otsuka, T. R. Rodríguez, J.-Y. Roussé, H. Sakurai, 1255
 C. Santamaria, N. Shimizu, D. Steppenbeck, R. Taniuchi, 1256
- T. Togashi, Y. Tsunoda, T. Uesaka, T. Ando, T. Arici, 1257
- A. Blazhev, F. Browne, A. M. Bruce, R. Carroll, L. X. 1258
- 1196 Chung, M. L. Cortés, M. Dewald, B. Ding, F. Flav- 1259
- 1197 igny, S. Franchoo, M. Górska, A. Gottardo, A. Jung- 1260
- claus, J. Lee, M. Lettmann, B. D. Linh, J. Liu, Z. Liu, 1261
- C. Lizarazo, S. Momiyama, K. Moschner, S. Nagamine, 1262
 N. Nakatsuka, C. Nita, C. R. Nobs, L. Olivier, Z. Pa- 1263
- 1201 N. Nakatsuka, C. Nita, C. R. Nobs, E. Oliviel, Z. 1 a 1263 1201 tel. Z. Podolvák, M. Rudigier, T. Saito, C. Shand, 1264 [29]
- P.-A. Söderström, I. Stefan, R. Orlandi, V. Vaquero, 1265
- V. Werner, K. Wimmer, and Z. Xu, Phys. Rev. Lett. 1266 [30]
 118, 032501 (2017).
- ¹²⁰⁵ [17] N. V. Zamfir and R. F. Casten, Phys. Lett. B **260**, 265 ¹²⁶⁸ (1991).
- 1207 [18] R. Casten, E. Flynn, O. Hansen, and T. Mulligan, Nucl. 1270
 1208 Phys. A 184, 357 (1972). 1271
- 1209 [19] S. Takeda, S. Yamaji, K. Matsuda, I. Kohno, N. Nakan- 1272
 1210 ishi, Y. Awaya, and S. Kusuno, J. Phys. Soc. Jpn. 34, 1273
 1115 (1973), https://doi.org/10.1143/JPSJ.34.1115. 1274
- 1212 [20] K. Sistemich, W. D. Lauppe, H. Lawin, H. Seyfarth, and 1275
 B. D. Kern, Z. Phys. A 289, 225 (1979).
- III. 1214 [21] H. Penttilä, P. Dendooven, A. Honkanen, M. Huhta, 1277
 III. 1215 G. Lhersonneau, M. Oinonen, J.-M. Parmonen, 1278
 III. 1216 K. Peräjärvi, J. Äystö, J. Kurpeta, and J. R. Persson, 1279
 Phys. Rev. C 54, 2760 (1996). 1280
- Phys. Rev. C 54, 2760 (1996).
 1280
 1218 [22] F. Browne, A. M. Bruce, T. Sumikama, I. Nishizuka, 1281
- 1219 S. Nishimura, P. Doornenbal, G. Lorusso, Z. Patel, 1282 [33]
- 1220 S. Rice, L. Sinclair, P.-A. Söderström, H. Watanabe, 1283
- J. Wu, Z. Y. Xu, H. Baba, N. Chiga, R. Carroll, R. Daido, 1284
- 1222 F. Didierjean, Y. Fang, G. Gey, E. Ideguchi, N. In- 1285
- abe, T. Isobe, D. Kameda, I. Kojouharov, N. Kurz, 1286
- 1224 T. Kubo, S. Lalkovski, Z. Li, R. Lozeva, N. Naoki, 1287 H. Nishibata, A. Odahara, Z. Podolyák, P. H. Regan, 1288
- H. Nishibata, A. Odahara, Z. Podolyak, P. H. Regan, 1288
 O. J. Roberts, H. Sakurai, H. Schaffner, G. S. Simp- 1289
- 1226 O. J. Roberts, H. Sakurai, H. Schaffner, G. S. Simp-1289 1227 son, H. Suzuki, H. Takeda, M. Tanaka, J. Taprogge, 1290
- 1228 V. Werner, O. Wieland, and A. Yagi, Acta Phys. Pol. 1291
- 1229 B **46**, 721 (2015).
- ¹²³⁰ [23] T. Kubo, Nucl. Instrum. Methods B **204**, 97 (2003).

[24] T. Kubo, D. Kameda, H. Suzuki, N. Fukuda, H. Takeda, Y. Yanagisawa, M. Ohtake, K. Kusaka, K. Yoshida, N. Inabe, T. Ohnishi, A. Yoshida, K. Tanaka, and Y. Mizoi, Prog. Theor. Exp. Phys. **2012**, 03C003 (2012).

1231

- [25] T. Sumikama, F. Browne, A. M. Bruce, I. Nishizuka, S. Nishimura, P. Doornenbal, G. Lorusso, Z. Patel, S. Rice, L. Sinclair, P.-A. Söderström, H. Watanabe, J. Wu, Z. Y. Xu, A. Yagi, H. Baba, N. Chiga, R. Carroll, R. Daido, F. Didierjean, Y. Fang, G. Gey, E. Ideguchi, N. Inabe, T. Isobe, D. Kameda, I. Kojouharov, N. Kurz, T. Kubo, S. Lalkovski, Z. Li, R. Lozeva, N. Fukuda, H. Nishibata, A. Odahara, Z. Podolyák, P. H. Regan, O. J. Roberts, H. Sakurai, H. Schaffner, G. S. Simpson, H. Suzuki, H. Takeda, M. Tanaka, J. Taprogge, V. Werner, and O. Wieland, RIKEN Accel. Prog. Rep. 47, 9 (2014).
- [26] S. Nishimura, Prog. Theor. Exp. Phys. 2012, 03C006 (2012).
- 1249 [27] S. Nishimura, G. Lorusso, Z. Xu, J. Wu, R. Gernhäuser,
 H. Jung, Y. Kwon, Z. Li, K. Steiger, and H. Sakurai,
 RIKEN Accel. Prog. Rep. 46, 182 (2013).
 - [28] I. Nishizuka, T. Sumikama, F. Browne, A. M. Bruce, S. Nishimura, P. Doornenbal, G. Lorusso, Z. Patel, S. Rice, L. Sinclair, P.-A. Söderström, H. Watanabe, J. Wu, Z. Y. Xu, A. Yagi, H. Baba, N. Chiga, R. Carrol, R. Daido, F. Didierjean, Y. Fang, N. Fukuda, G. Gey, E. Ideguchi, N. Inabe, T. Isobe, D. Kameda, I. Kojouharov, N. Kurz, T. Kubo, S. Lalkovski, Z. Li, R. Lozeva, H. Nishibata, A. Odahara, Z. Podolyák, P. H. Regan, O. J. Roberts, H. Sakurai, H. Schaffner, G. S. Simpson, H. Suzuki, H. Takeda, M. Tanaka, J. Taprogge, V. Werner, and O. Wieland, JPS Conf. Proc. 6, 030062 (2015).
 - [29] J. Ha, T. Sumikama, and S. Choi, Nucl. Instrum. Methods B 463, 216 (2020).
 - [30] P.-A. Söderström, S. Nishimura, P. Doornenbal, G. Lorusso, T. Sumikama, H. Watanabe, Z. Y. Xu, H. Baba, F. Browne, S. Go, G. Gey, T. Isobe, H.-S. Jung, G. D. Kim, Y.-K. Kim, I. Kojouharov, N. Kurz, Y. K. Kwon, Z. Li, K. Moschner, T. Nakao, H. Nishibata, M. Nishimura, A. Odahara, H. Sakurai, H. Schaffner, T. Shimoda, J. Taprogge, Z. Vajta, V. Werner, J. Wu, A. Yagi, and K. Yoshinaga, Nucl. Instrum. Methods B **317**, 649 (2013).
 - [31] Z. Patel, F. Browne, A. M. Bruce, N. Chiga, R. Daido, S. Nishimura, Z. Podolyák, P. H. Regan, O. J. Roberts, H. Sakurai, P.-A. Söderström, T. Sumikama, and H. Watanabe, RIKEN Accel. Prog. Rep. 47, 13 (2014).
 - [32] J. C. Hill, D. D. Schwellenbach, F. K. Wohn, J. A. Winger, R. L. Gill, H. Ohm, and K. Sistemich, Phys. Rev. C 43, 2591 (1991).
 - [33] M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X. Xu, Chin. Phys. C 41, 030003 (2017).
 - [34] ENSDF database, http://www.nndc.bnl.gov/ensdf.
 - [35] X. Rui-Qing, Z. Sheng-Jiang, J. H. Hamilton, A. V. Ramayya, J. K. Hwang, X. Q. Zhang, L. Ke, Y. Li-Ming, Z. Ling-Yan, G. Cui-Yun, Z. Zheng, J. Zhuo, X. Shu-Dong, W. C. Ma, J. Kormicki, E. F. Jones, J. D. Cole, R. Aryaeinejad, M. W. Drigert, I. Y. Lee, J. O. Rasmussen, M. A. Stoyer, G. M. Ter-Akopian, and A. V. Daniel, Chin. Phys. Lett. **19**, 180 (2002).
- 1292 [36] S. J. Zhu, J. H. Hamilton, A. V. Ramayya, P. M. Gore,
 1293 J. O. Rasmussen, V. Dimitrov, S. Frauendorf, R. Q. Xu,
 1294 J. K. Hwang, D. Fong, L. M. Yang, K. Li, Y. J. Chen,

1295 X. Q. Zhang, E. F. Jones, Y. X. Luo, I. Y. Lee, W. C. Ma, 1359 [53] F. Browne, A. M. Bruce, T. Sumikama, I. Nishizuka,

1361

- J. D. Cole, M. W. Drigert, M. Stoyer, G. M. Ter-Akopian, 1360
- and A. V. Daniel, Eur. Phys. J. A **25**, 459 (2005).
- 1298 [37] E. F. Jones, P. M. Gore, S. J. Zhu, J. H. Hamilton, A. V. 1362
- 1299 Ramayya, J. K. Hwang, R. Q. Xu, L. M. Yang, K. Li, 1363
- 1300 Z. Jiang, Z. Zhang, S. D. Xiao, X. Q. Zhang, W. C. Ma, 1364
- J. D. Cole, M. W. Drigert, I. Y. Lee, J. O. Rasmussen, 1365
- Y. X. Luo, and M. A. Stoyer, Phys. Atom. Nucl. 69, 1198 1366
 (2006). 1367
- 1304 [38] Calculation program of log*ft*, http://www.nndc.bnl. 1368
 1305 gov/logft. 1369
- 1306 [39] T. Kibédi, T. W. Burrows, M. B. Trzhaskovskaya, P. M. 1370
- 1307
 Davidson, and C. W. Nestor Jr, Nucl. Instrum. Methods 1371

 1308
 A 589, 202 (2008).
 1372
- 1309 [40] B. Singh, J. L. Rodriguez, S. S. M. Wong, and J. K. Tuli, 1373
 1310 Nucl. Data Sheets 84, 487 (1998).
- 1311 [41] H. Behrens and W. Bühring, *Electron Radial Wave Func-* 1375
 1312 *tions and Nuclear Beta-decay* (Oxford Science Publica-1313 tions, 1982).
- 1314 [42] J. A. Pinston, W. Urban, C. Droste, T. Rzaça-Urban, 1378
 1315 J. Genevey, G. Simpson, J. L. Durell, A. G. Smith, B. J. 1379
 1316 Varley, and I. Ahmad, Phys. Rev. C 74, 064304 (2006). 1380
- ¹³¹⁷ [43] T. Mehren, B. Pfeiffer, S. Schoedder, K.-L. Kratz, ¹³⁸⁰
- 1318 M. Huhta, P. Dendooven, A. Honkanen, G. Lhersonneau, 1382
- M. Oinonen, J.-M. Parmonen, H. Penttilä, A. Popov, 1383 [55]
- ¹³²⁰ V. Rubchenya, and J. Äystö, Phys. Rev. Lett. **77**, 458 ¹³⁸⁴ ¹³²¹ (1996). ¹³⁸⁵
- ¹³²² [44] J. Pereira, S. Hennrich, A. Aprahamian, O. Arndt, A. Be¹³²³ cerril, T. Elliot, A. Estrade, D. Galaviz, R. Kessler, K.-L.
 ¹³⁸⁶ C. L. D. Kessler, K.-L.
- 1324 Kratz, G. Lorusso, P. F. Mantica, M. Matos, P. Möller, 1388
- F. Montes, B. Pfeiffer, H. Schatz, F. Schertz, L. Schnor- 1389 [57]
 renberger, E. Smith, A. Stolz, M. Quinn, W. B. Walters, 1390
 and A. Wöhr, Phys. Rev. C **79**, 035806 (2009). 1391
- and A. Wöhr, Phys. Rev. C 79, 035806 (2009).
 1321
 1328 [45] W. Urban, T. Rzaca-Urban, J. L. Durell, W. R. Phillips, 1392
- 1328 [45] W. Urban, T. Rzaça-Urban, J. L. Durell, W. R. Phillips, 1392
 A. G. Smith, B. J. Varley, I. Ahmad, and N. Schulz, Eur. 1393
 Phys. J. A 20, 381 (2004).
- 1331 [46] G. Lorusso, S. Nishimura, Z. Y. Xu, A. Jungclaus, 1395
 1332 Y. Shimizu, G. S. Simpson, P.-A. Söderström, H. Watan-1396
 1333 abe, F. Browne, P. Doornenbal, G. Gey, H. S. Jung, 1397
 1334 B. Meyer, T. Sumikama, J. Taprogge, Z. Vajta, J. Wu, 1398
 1335 H. Baba, G. Benzoni, K. Y. Chae, F. C. L. Crespi, 1399
 1336 N. Fukuda, R. Gernhäuser, N. Inabe, T. Isobe, T. Ka-1400
- 1337 jino, D. Kameda, G. D. Kim, Y.-K. Kim, I. Ko- 1401
- 1338 jouharov, F. G. Kondev, T. Kubo, N. Kurz, Y. K. 1402
- 1339 Kwon, G. J. Lane, Z. Li, A. Montaner-Pizá, K. Moschner, 1403
- F. Naqvi, M. Niikura, H. Nishibata, A. Odahara, R. Or- 1404 [59]
- landi, Z. Patel, Z. Podolyák, H. Sakurai, H. Schaffner, 1405
- P. Schury, S. Shibagaki, K. Steiger, H. Suzuki, H. Takeda, 1406
 A. Wendt, A. Yagi, and K. Yoshinaga, Phys. Rev. Lett. 1407 [60]
- 1344 **114**, 192501 (2015). 1408 1345 [47] G. Mamane, Ph.D. thesis, Weizmann Inst.Science, Re- 1409
- 1345 [47] G. Mannahe, FH.D. thesis, weizinanii first. Science, Re- 1409 1346 hovot (1983). 1410
- ¹³⁴⁷ [48] B. Pritychenko, M. Birch, B. Singh, and M. Horoi, At. ¹⁴¹¹
 Data Nucl. Data Tables **107**, 1 (2016).
- ¹³⁴⁹ [49] E. Cheifetz, R. C. Jared, S. G. Thompson, and J. B. ¹⁴¹³
 ¹³⁵⁰ Wilhelmy, Phys. Rev. Lett. **25**, 38 (1970).
- Isol J. K. Hwang, A. V. Ramayya, J. H. Hamilton, Y. X. Luo, 1415
 A. V. Daniel, G. M. Ter-Akopian, J. D. Cole, and S. J. 1416
 Zhu, Phys. Rev. C 73, 044316 (2006).
- [51] E. Cheifetz, H. Selic, A. Wolf, R. Chechik, and J. Wil- 1418
 helmy, in *Proc. Conf. Nucl. Spectr. Fission Products* 1419
- (1980) p. 193.
 1357 [52] S. Raman, C. W. Nestor Jr, and P. Tikkanen, At. Data 1421
- 1357 [92] S. Rahali, C. W. Restor 51, and T. Tikkanen, At. Data Nucl. Data Tables **78**, 1 (2001).

- [53] F. Browne, A. M. Bruce, T. Sumikama, I. Nishizuka, S. Nishimura, P. Doornenbal, G. Lorusso, P.-A. Söderström, H. Watanabe, R. Daido, Z. Patel, S. Rice, L. Sinclair, J. Wu, Z. Y. Xu, A. Yagi, H. Baba, N. Chiga, R. Carroll, F. Didierjean, Y. Fang, N. Fukuda, G. Gey, E. Ideguchi, N. Inabe, T. Isobe, D. Kameda, I. Kojouharov, N. Kurz, T. Kubo, S. Lalkovski, Z. Li, R. Lozeva, H. Nishibata, A. Odahara, Z. Podolyák, P. H. Regan, O. J. Roberts, H. Sakurai, H. Schaffner, G. S. Simpson, H. Suzuki, H. Takeda, M. Tanaka, J. Taprogge, V. Werner, and O. Wieland, Phys. Lett. B **750**, 448 (2015).
- [54] S. Ansari, J.-M. Régis, J. Jolie, N. Saed-Samii, N. Warr, W. Korten, M. Zielińska, M.-D. Salsac, A. Blanc, M. Jentschel, U. Köster, P. Mutti, T. Soldner, G. S. Simpson, F. Drouet, A. Vancraeyenest, G. de France, E. Clément, O. Stezowski, C. A. Ur, W. Urban, P. H. Regan, Z. Podolyák, C. Larijani, C. Townsley, R. Carroll, E. Wilson, H. Mach, L. M. Fraile, V. Paziy, B. Olaizola, V. Vedia, A. M. Bruce, O. J. Roberts, J. F. Smith, M. Scheck, T. Kröll, A.-L. Hartig, A. Ignatov, S. Ilieva, S. Lalkovski, N. Mărginean, T. Otsuka, N. Shimizu, T. Togashi, and Y. Tsunoda, Phys. Rev. C 96, 054323 (2017).
- [55] G. Alaga, K. Alder, A. Bohr, and B. R. Mottelson, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 29 (1955).
- ¹³⁸⁵ [56] J. M. Eldridge, B. Fenker, J. H. Hamilton, C. Goodin,
 ¹³⁸⁶ C. J. Zachary, E. Wang, A. V. Ramayya, A. V. Daniel,
 ¹³⁸⁷ G. M. Ter-Akopian, Y. T. Oganessian, Y. X. Luo, J. O.
 ¹³⁸⁸ Rasmussen, and S. J. Zhu, Eur. Phys. J. A 54, 15 (2018).
 - Söderström. G. Lorusso, H. P.-A. Watanabe, S. Nishimura, P. Doornenbal, G. Thiamova, F. Browne, G. Gey, H. S. Jung, T. Sumikama, J. Taprogge, Z. Vajta, J. Wu, Z. Y. Xu, H. Baba, G. Benzoni, K. Y. Chae, F. C. L. Crespi, N. Fukuda, R. Gernhäuser, N. Inabe, T. Isobe, A. Jungclaus, D. Kameda, G. D. Kim, Y.-K. Kim, I. Kojouharov, F. G. Kondev, T. Kubo, N. Kurz, Y. K. Kwon, G. J. Lane, Z. Li, A. Montaner-Pizá, K. Moschner, F. Naqvi, M. Niikura, H. Nishibata, A. Odahara, R. Orlandi, Z. Patel, Z. Podolyák, H. Sakurai, H. Schaffner, G. S. Simpson, K. Steiger, H. Suzuki, H. Takeda, A. Wendt, A. Yagi, and K. Yoshinaga, Phys. Rev. C 88, 024301 (2013).
 - [58] N. Hinohara, K. Sato, T. Nakatsukasa, M. Matsuo, and K. Matsuyanagi, Phys. Rev. C 82, 064313 (2010).
 - [59] N. Hinohara, K. Sato, K. Yoshida, T. Nakatsukasa, M. Matsuo, and K. Matsuyanagi, Phys. Rev. C 84, 061302(R) (2011).
 - [60] K. Sato, N. Hinohara, K. Yoshida, T. Nakatsukasa, M. Matsuo, and K. Matsuyanagi, Phys. Rev. C 86, 024316 (2012).
 - [61] T. Sumikama, K. Yoshinaga, H. Watanabe, S. Nishimura, Y. Miyashita, K. Yamaguchi, K. Sugimoto, J. Chiba, Z. Li, H. Baba, J. S. Berryman, N. Blasi, A. Bracco, F. Camera, P. Doornenbal, S. Go, T. Hashimoto, S. Hayakawa, C. Hinke, E. Ideguchi, T. Isobe, Y. Ito, D. G. Jenkins, Y. Kawada, N. Kobayashi, Y. Kondo, R. Krücken, S. Kubono, G. Lorusso, T. Nakano, M. Kurata-Nishimura, A. Odahara, H. J. Ong, S. Ota, Z. Podolyák, H. Sakurai, H. Scheit, K. Steiger, D. Steppenbeck, S. Takano, A. Takashima, K. Tajiri, T. Teranishi, Y. Wakabayashi, P. M. Walker, O. Wieland, and H. Yamaguchi, Phys. Rev. Lett. **106**, 202501 (2011).

- 1422 [62] K. Washiyama and T. Nakatsukasa, Phys. Rev. C 96, 1429 $041304({\rm R})$ (2017). 1423
- 1424 [63] Y. X. Luo, J. O. Rasmussen, J. H. Hamilton, A. V. Ra- 1431 1425
- F. R. Xu, Y. Sun, S. Frauendorf, J. K. Hwang, S. H. Liu, 1433 1426
- 1427
- Y. Oganessian, R. Donangelo, and W. C. Ma, Phys. Rev. 1435 1428

C 89, 044326 (2014).

- 1430 [64] Y.-X. Liu, Y. Sun, X.-H. Zhou, Y.-H. Zhang, S.-Y. Yu, Y.-C. Yang, and H. Jin, Nucl. Phys. A 858, 11 (2011).
- mayya, E. Wang, Y. X. Liu, C. F. Jiao, W. Y. Liang, 1432 [65] C. J. Gallagher Jr and S. A. Moszkowski, Phys. Rev. 111, 1282 (1958).
- S. J. Zhu, N. T. Brewer, I. Y. Lee, G. M. Ter-Akopian, 1434 [66] F. R. Xu, P. M. Walker, and R. Wyss, Phys. Rev. C 65, 021303(R) (2002).