This is the accepted manuscript made available via CHORUS. The article has been published as:

Shape evolution of neutron-rich ^ \{106,108,110\}Mo

 isotopes in the triaxial degree of freedomJ. Ha et al.

Phys. Rev. C 101, 044311 - Published 20 April 2020
DOI: 10.1103/PhysRevC.101.044311

1. Shape evolution of neutron-rich

J. Ha, ${ }^{1,2, *}$ T. Sumikama,,${ }^{2,3, \dagger}$ F. Browne,,${ }^{2,4}$ N. Hinohara, ${ }^{5,6}$ A. M. Bruce, ${ }^{4}$ S. Choi, ${ }^{1}$ I. Nishizuka, ${ }^{3}$ S. Nishimura, ${ }^{2}$ P. Doornenbal, ${ }^{2}$ G. Lorusso, ${ }^{2,7,8}$ P.-A. Söderström, ${ }^{2}$ H. Watanabe, ${ }^{2,9}$ R. Daido, ${ }^{10}$ Z. Patel,,2,7 S. Rice, ${ }^{2,7}$ L. Sinclair, ${ }^{2,11}$ J. Wu, ${ }^{2,12}$ Z. Y. Xu, ${ }^{13,14}$ A. Yagi, ${ }^{10}$ H. Baba, ${ }^{2}$ N. Chiga, ${ }^{3,2}$ R. Carroll, ${ }^{7}$ F. Didierjean, ${ }^{15}$ Y. Fang, ${ }^{10}$ N. Fukuda, ${ }^{2}$ G. Gey, ${ }^{16,17}$ E. Ideguchi, ${ }^{10}$ N. Inabe, ${ }^{2}$ T. Isobe, ${ }^{2}$ D. Kameda, ${ }^{2}$ I. Kojouharov, ${ }^{18}$ N. Kurz, ${ }^{18}$ T. Kubo, ${ }^{2}$ S. Lalkovski, ${ }^{19}$ Z. Li, ${ }^{12}$ R. Lozeva, ${ }^{15},{ }^{20}$ H. Nishibata, ${ }^{10}$ A. Odahara, ${ }^{10}$ Zs. Podolyák, ${ }^{7}$ P. H. Regan, ${ }^{7,8}$ O. J. Roberts, ${ }^{4}$ H. Sakurai, ${ }^{2}$ H. Schaffner, ${ }^{18}$ G. S. Simpson, ${ }^{16}$ H. Suzuki, ${ }^{2}$ H. Takeda, ${ }^{2}$ M. Tanaka, ${ }^{10,21}$ J. Taprogge, ${ }^{2,22,23}$ V. Werner, ${ }^{24,}{ }^{25}$ and O. Wieland ${ }^{26}$
${ }^{1}$ Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
${ }^{2}$ RIKEN Nishina Center, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
${ }^{3}$ Department of Physics, Tohoku University, Aoba, Sendai, Miyagi 980-8578, Japan
${ }^{4}$ School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ, United Kingdom
${ }^{5}$ Center for Computational Sciences, University of Tsukuba, Tsukuba, 305-8577, Japan
${ }^{6}$ Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan
${ }^{7}$ Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
${ }^{8}$ National Physical Laboratory, Teddington, Middlesex, TW11 0LW, United Kingdom
${ }^{9}$ IRCNPC, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
${ }^{10}$ Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
${ }^{11}$ Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
${ }^{12}$ Department of Physics, Peking University, Beijing 100871, China
${ }^{13}$ Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
${ }^{14}$ Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong
${ }^{15}$ IPHC, CNRS/IN2P3, Université de Strasbourg, 67037 Strasbourg, France
${ }^{16}$ LPSC, Université Grenoble-Alpes, CNRS/IN2P3, F-38026 Grenoble Cedex, France
${ }^{17}$ ILL, 38042 Grenoble Cedex, France
${ }^{18}$ GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
${ }^{19}$ Department of Physics, University of Sofia, 1164 Sofia, Bulgaria
${ }^{20}$ CSNSM, CNRS/IN2P3, Université Paris-Sud, F-91405 Orsay Campus, France
${ }^{21}$ Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan
${ }^{22}$ Departamento de Física Teórica, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
${ }^{23}$ Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain
${ }^{24}$ A.W. Wright Nuclear Structure Laboratory, Yale University, New Haven, CT 06520, USA
${ }^{25}$ Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany ${ }^{26}$ INFN Sezione di Milano, I-20133 Milano, Italy

(Dated: January 29, 2020)
The structure of ${ }^{106} \mathrm{Mo},{ }^{108} \mathrm{Mo}$, and ${ }^{110} \mathrm{Mo}$ was investigated through β-delayed γ-ray spectroscopy at the RIKEN RI Beam Factory. New γ-ray transitions and levels are reported, including newly assigned 0_{2}^{+}states in ${ }^{108,110} \mathrm{Mo}$. The β-delayed neutron-emission probabilities of ${ }^{108} \mathrm{Nb}$ and ${ }^{110} \mathrm{Nb}$ were determined by examining the γ rays of their respective daughter decays. Quadrupole deformations were obtained for ${ }^{106,108,110} \mathrm{Mo}$ from their 2_{1}^{+}energies and lifetimes. The even-odd energy staggering in the 2_{2}^{+}band was compared with typical patterns of the γ-vibrational band, rigid triaxial rotor, and γ-soft rotor. The very small even-odd staggering of ${ }^{106} \mathrm{Mo},{ }^{108} \mathrm{Mo}$, and ${ }^{110} \mathrm{Mo}$ favors a γ-vibrational band assignment. The kinematic moment of inertia for the 2_{2}^{+}band showed a trend similar to the ground-state band, which is expected for the γ-vibrational band. Beyond-mean-field calculations employing the constrained Hartree-Fock-Bogoliubov (HFB) + local quasiparticle-random-phase approximation (QRPA) method using the SLy5+T interaction reproduced the ground and 2_{2}^{+}bands in ${ }^{106} \mathrm{Mo}$ and ${ }^{108} \mathrm{Mo}$. The collective wave functions are consistent with the interpretation of the 2_{2}^{+} band as the γ-vibrational band of the prolate shape. However, the staggering pattern observed in ${ }^{110}$ Mo differs from the one suggested in the calculations which predict a γ-soft rotor. There was no experimental indication of the oblate shape or the γ-soft rotor predicted in heavier Mo isotopes.

I. INTRODUCTION

The triaxial degree of freedom, γ, plays an important 39 role in collective excitations of deformed even-even nu${ }_{40}$ clei. While the first $J^{\pi}=2^{+}$state $\left(2_{1}^{+}\right)$is sensitive pri-
${ }_{41}$ marily to the quadrupole deformation parameter, β, the

[^0]to triaxial motion [1]. In the case of axially-symmetric quadrupole deformation, a rotational band built on a $\gamma-102$ vibrational state constitutes the γ band. The energy of its band head is related to the softness of the vibrational motion in the γ direction. When the potential energy surface (PES) has a deep minimum between $\gamma=0^{\circ}$ (prolate) and 60° (oblate), the nucleus takes on a static triaxial shape and rotates about all three axes of the intrinsic body. The rigid triaxial rotor model by Davydov et al. [2] predicts that the 2_{2}^{+}state lies below the 4_{1}^{+}state at the maximum triaxiality of $\gamma=30^{\circ}$. Another model of the triaxial shape is the γ-unstable rotor by Wilets and Jean [3], where PES has a γ-independent valley at a given β. The γ-unstable model predicts degenerate 2_{2}^{+}and 4_{1}^{+}states. A transitional rotor between the $\gamma-$ vibrational band and the γ-unstable rotor is the γ-soft rotor, of which the PES has a moderate path between prolate and oblate [4].

The neutron-rich Mo isotopes are good candidates to investigate shape evolution in the γ degree of freedom. Calculations using the liquid-drop or the finite-range liquid-drop model using particle number projection or Bardeen-Cooper-Schrieffer methods predict the coexistence of prolate and oblate shapes, a prolate-to-oblate shape transition at $N=68$ or 70 , and triaxial ground states in ${ }^{104} \mathrm{Mo},{ }^{106} \mathrm{Mo}$, and ${ }^{108} \mathrm{Mo}$ [5]. Hartree-FockBogoliubov (HFB) calculations with the D1S-Gogny interaction [6] predict a gradual transition from γ-soft rotor in ${ }^{102}$ Mo to oblate in ${ }^{112} \mathrm{Mo}$. A calculation using the global Skyrme energy density functional UNEDF0 predicts triaxial ground-state deformation in ${ }^{106,108} \mathrm{Mo}$ [7]. Calculations of two quasi-particle states are used to investigate quasi-particle configurations near the proton and neutron Fermi surfaces[8].

From the lifetime measurement of the ground-state band in ${ }^{100-108} \mathrm{Mo}$ [9], the quadrupole deformation was indicated to reach a maximum at ${ }^{106} \mathrm{Mo}$. More precise measurements are awaited to obtain a certain conclusion, since uncertainties of transitional quadrupole moments are larger than a change among isotopes. The measured 2_{2}^{+}-state energy, $E\left(2_{2}^{+}\right)$, in the neutron-rich Mo isotopes decreases as mass number, A, increases. It becomes almost equal to $E\left(4_{1}^{+}\right)$at $A=108$ and drops below $E\left(4_{1}^{+}\right)$at $A \geq 110[10-16]$. The low-lying 2_{2}^{+}state in the neutron-rich Mo isotopes has been interpreted in terms of the rigid triaxial shape [12], γ vibration [13, 14], and γ-soft rotor [15] based on the measured values of the energies of the $2_{1}^{+}, 4_{1}^{+}$, and 2_{2}^{+}states and the γ-decay branching ratio from 2_{2}^{+}state. The interpretation of the 2_{2}^{+}state attracts controversy due to its similarity between the three models, since the γ-vibrational state and γ-soft rotor have a finite root-mean-square value of γ as a result of a dynamic motion.

The energy staggering of the 2_{2}^{+}band is a good signature to distinguish among the three models which describe axial asymmetry $[1,17]$. The rigid-triaxial and γ-soft rotors show an energy staggering which deviates from the $J(J+1)$ dependence of the rigid axial rotor.

The staggering of the rigid triaxial rotor is opposite to that of the γ-soft rotor; for example, the 3_{γ}^{+}state is close to the 2_{γ}^{+}and 4_{γ}^{+}states of the rigid triaxial and γ-soft rotors, respectively, where the γ subscript indicates the band member of the 2_{2}^{+}state. On the other hand, the γ-vibrational band with a small γ oscillation has a small or negligible staggering since the shape is close to being axially symmetric.
Another signature of γ vibration is the existence of a two-phonon γ-vibrational band based on the $K=4^{+}$ state. The $K=4^{+}$band lying below the pairing gap was identified in the ${ }^{104,106,108} \mathrm{Mo}$ isotopes with an energy ratio $E_{K=4} / E_{K=2}=1.95,2.02$, and 2.42 for ${ }^{104} \mathrm{Mo}$, ${ }^{106} \mathrm{Mo}$, and ${ }^{108} \mathrm{Mo}$, respectively, which are close to the harmonic-vibrator value of $2[13,14]$.

The second 0^{+}state provides additional information on the nuclear shape, since its origin can derive from β vibration or a coexisting shape. The 0_{2}^{+}states in the neutron-rich Mo isotopes are assigned up to $A=106$ from β decay and (t, p) reaction studies [12, 18-20].

In the present study, the β-delayed γ rays of $106,108,110 \mathrm{Mo}$ were observed under lower background conditions and/or with higher statistics than the previous investigations $[12,15,19,21]$. The lifetimes of the 2_{1}^{+} states were measured using a fast timing array of 18 $\mathrm{LaBr}_{3}(\mathrm{Ce})$ crystals, of which preliminary results are reported in Ref. [22]. Reliable branching ratios of the 2_{2}^{+} states were determined. The 2_{2}^{+}band in ${ }^{110} \mathrm{Mo}$ was extended from 5^{+}to 7^{+}. In ${ }^{108} \mathrm{Mo}$ and ${ }^{110} \mathrm{Mo}, 0_{2}^{+}$states are newly assigned. It is observed that the previous 0_{2}^{+}assignment in ${ }^{106} \mathrm{Mo}$ [12] was incorrect. Values of quadrupole deformation and evidence for triaxial motion have been extracted from these measurements. The results are compared with beyond-mean-field calculations based on the five-dimensional collective Hamiltonian using the constrained HFB (CHFB) + local quasiparticle-random-phase approximation (LQRPA) approach.

II. EXPERIMENT

The experiment was performed at RI Beam Factory (RIBF), operated by RIKEN Nishina Center and CNS, University of Tokyo. The RI beam was produced by the in-flight fission reaction of a $345 \mathrm{MeV} / \mathrm{u}^{238} \mathrm{U}^{86+}$ beam impinging on a $3.0-\mathrm{mm}$ thick beryllium target. The RI beam was separated by the BigRIPS fragment separator and transported through the ZeroDegree spectrometer $[23,24]$. The particle identification (PID) was performed by determining the mass-to-charge ratio, A / Q, and the atomic number, Z [25].

The RI beam was implanted into the active stopper WAS3ABi (Wide-range Active Silicon Strip Stopper Array for Beta and ion implantation), which comprised five stacked Double-Sided Silicon Strip Detectors (DSSSDs) [26]. The RI hit position of one DSSSD was determined by selecting the fastest timing signal of x and y strips [27]. The implanted layer was determined by de-

TABLE I. The number of ${ }^{106,108,110} \mathrm{Zr}$ and ${ }^{106,108,110} \mathrm{Nb}$ ions implanted in WAS3ABi and their implantation rate.

Isotope	The number of implanted ions	Implantation rate (pps)
${ }^{106} \mathrm{Zr}$	3.9×10^{6}	3.5
${ }^{108} \mathrm{Zr}$	2.1×10^{6}	0.059
${ }^{110} \mathrm{Zr}$	3.2×10^{4}	16
${ }^{106} \mathrm{Nb}$	7.1×10^{4}	0.24
${ }^{108} \mathrm{Nb}$	1.3×10^{5}	3.5
${ }^{110} \mathrm{Nb}$	1.9×10^{6}	

tecting the cross-talk signal induced to the DSSSD downstream of the implanted one [28].

The β particles emitted by the decay of the RI were measured by WAS3ABi and two plastic scintillators with 2 mm thickness, placed upstream and downstream of WAS3ABi. The timing signal of the plastic scintillator was used for the high-time resolution detection of β particles. The β-particle hit pattern and energy deposition in WAS3ABi and the plastic scintillators were used to restrict position candidates of the β emitter [29]. The β particle was associated with the implanted RI by using the position and time differences between the RI and β particle.

WAS3ABi was surrounded by the EUroball-RIKEN Cluster Array (EURICA) [30] to detect γ rays emitted from excited states populated by the β decay of implanted RIs. The systematic uncertainty of γ-ray energy was evaluated to be 0.15 keV from the residuals of the energy calibration with standard γ-ray sources. The γ-ray detection efficiency of EURICA was measured to be 18.3% at 250 keV and 8.1% at 1 MeV . A systematic uncertainty of 5% was determined for the absolute value from the uncertainty of the radioactivity of the γ ray sources. A fast-timing $\mathrm{LaBr}_{3}(\mathrm{Ce})$ array consisting of eighteen $\phi 1.5^{\prime \prime} \times 2^{\prime \prime}$ crystals was coupled to the EURICA array to measure the lifetimes of low-lying excited states in the nanosecond regime [31]. The Full-Width Half Maximum (FWHM) of the time resolution of the $\mathrm{LaBr}_{3}(\mathrm{Ce})$ array was evaluated to be 0.61 ns at 200 keV . The γ-ray detection efficiency was $3.0(5) \%$ and $0.7(2) \%$ at 250 keV and 1 MeV , respectively.

Excited states in ${ }^{106,108,110}$ Mo populated in the beta decay of ${ }^{106,108,110} \mathrm{Nb}$ were studied. The daughter decays of Zr isotopes were also analyzed to increase statistics and to search for β-decaying isomeric states. The number of implanted Nb and Zr isotopes are summarized in Table I. Daughter-decay analysis provides evidence on the existence of β-decaying isomeric states. For example, in Ref. [32], the $\beta-\gamma$ spectrum of ${ }^{102} \mathrm{Zr}$ was observed through the β decay of ${ }^{102} \mathrm{Y}$ and the β-decay chain of ${ }^{102} \mathrm{Sr} \rightarrow{ }^{102} \mathrm{Y} \rightarrow{ }^{102} \mathrm{Zr}$. Two different γ-ray transition patterns revealed that ${ }^{102} \mathrm{Y}$ has a β-decaying isomeric state and the β decay of the even-even ${ }^{102} \mathrm{Sr}$ isotope with the

200
spin-parity of 0^{+}can only populate the β-decaying low spin state in ${ }^{102} \mathrm{Y}$. The same method was applied to the $\mathrm{Zr} \rightarrow \mathrm{Nb} \rightarrow \mathrm{Mo} \beta$-decay chain in this work. For each β decay chain, $\mathrm{Zr} \rightarrow \mathrm{Nb} \rightarrow \mathrm{Mo}$ or $\mathrm{Nb} \rightarrow \mathrm{Mo}$, the β-ion time window was optimized to maximize the number of the Nb-decay events and minimize the number of other decays.

III. RESULTS

A. β decay to ${ }^{106} \mathrm{Mo}$

The β-delayed γ-ray spectrum of ${ }^{106} \mathrm{Mo}$ obtained from the β-decay chain ${ }^{106} \mathrm{Zr} \rightarrow{ }^{106} \mathrm{Nb} \rightarrow{ }^{106} \mathrm{Mo}$ is shown in Figs. 1 (a-b). The proposed level scheme of ${ }^{106} \mathrm{Mo}$, illustrated in Fig. 2, was constructed through the use of γ-ray coincidences, for example Figs. 1 (c-d), energy sums and intensity balances. Nine new levels were identified and a new transition from the 2_{2}^{+}to 4_{1}^{+}states was observed. In the previous $\beta-\gamma$ spectroscopic study [12], the ground band was observed up to 6^{+}, and the 2_{2}^{+}and 4_{3}^{+}bands up to 4^{+}. In the present study, γ rays from the 5^{+}states in the 2_{2}^{+}and 4_{3}^{+}bands were observed. These γ rays are consistent with the results obtained from the spontaneous fission of ${ }^{252} \mathrm{Cf}$ [35-37]. The placement of the $784.6-\mathrm{keV}$ and $1106.7-\mathrm{keV} \gamma$ rays were reassigned from those of Ref. [12] based on the following arguments. The 0_{2}^{+}state was previously assigned at 956.6 keV based on the $784.6-\mathrm{keV}$ transition feeding only the $171.4-\mathrm{keV}$ level. However, the high statistics of the present study allowed us to observe additional coincidences with the $784.6-\mathrm{keV}$ transition, which are shown in Fig. 1 (d). Based on this information, the assignment of the $784.6-\mathrm{keV} \gamma$ ray as the transition between the 5_{1}^{+}and 4_{1}^{+}states is preferred. The observation of the transition from 5_{1}^{+}to 3_{1}^{+}supports this assignment. The previous assignment of the $1106.7-\mathrm{keV}$ γ ray was the transition between a $1279.9-\mathrm{keV}$ state to the 2_{1}^{+}state [12], but it was reassigned to a known transition [34] from the $1816.9-\mathrm{keV}$ state, since a coincidence with 710.2 keV was observed. The half life of ${ }^{106} \mathrm{Nb}$ was determined to be $1.10(5) \mathrm{s}$ from the decay curve of the $171.4-\mathrm{keV} \gamma$ ray for the ${ }^{106} \mathrm{Nb} \rightarrow{ }^{106} \mathrm{Mo}$ decay as shown in Fig. 3 (a). The obtained half life was consistent with the evaluated value of $1.02(5) \mathrm{s}$ [34].

Table II summarizes the relative γ-ray intensity, I_{γ}, following the β decay from ${ }^{106} \mathrm{Nb}$ to ${ }^{106} \mathrm{Mo}$ from the two decay chains, ${ }^{106} \mathrm{Nb} \rightarrow{ }^{106} \mathrm{Mo}$ and ${ }^{106} \mathrm{Zr} \rightarrow{ }^{106} \mathrm{Nb} \rightarrow{ }^{106} \mathrm{Mo}$. Since I_{γ} of the major peaks was consistent between both decay chains, there was no evidence on the existence of a second β-decaying state in ${ }^{106} \mathrm{Nb}$. The absolute γ-ray intensities per 100β decays were determined from the data of the ${ }^{106} \mathrm{Nb} \rightarrow{ }^{106} \mathrm{Mo}$ decay for the first time. Here, we used the number of the detected β particles emitted from the ${ }^{106} \mathrm{Nb}$ decay, which was determined from the decaycurve integral of the parent component in the fitting function to the β-particle counts as a function of time. The conversion factor from the relative to absolute γ-ray in-

FIG. 1. ($\mathrm{a}-\mathrm{b}$) The β-delayed γ-ray spectrum of ${ }^{106} \mathrm{Nb}$ obtained from the β-decay chain ${ }^{106} \mathrm{Zr} \rightarrow{ }^{106} \mathrm{Nb} \rightarrow{ }^{106} \mathrm{Mo}$. The range of the time window was set to be $180 \mathrm{~ms}<t_{\text {ion }}-t_{\beta}<2200 \mathrm{~ms}$. The labeled peaks belong to ${ }^{106}$ Mo. The identified background peaks are marked with asterisks. Other unknown peaks are mainly associated with parent ${ }^{106} \mathrm{Zr}$ decays. (c-d) The coincidence spectra gated on 171.4 keV and 784.6 keV .

256

$$
257
$$

tensities was obtained from the absolute intensity of the ${ }_{270}$ Two relevant transitions, $2_{1}^{+} \rightarrow 0_{1}^{+}$and $2_{2}^{+} \rightarrow 0_{1}^{+}$, were largest γ-ray peak at 171.4 keV in the ${ }^{106} \mathrm{Nb} \rightarrow{ }^{106} \mathrm{Mo}$ de- ${ }^{271}$ observed. The sum of the absolute intensities of these two cay. The relative systematic uncertainty of the absolute 272 transitions was $92.2(51) \%$, which included contributions γ-ray detection efficiency was adopted into the uncer- 273 of possible undetected transitions, due to low intensities, tainty of the conversion factor as $0.696(38)$.

The β-decay intensities, I_{β} to excited states, given in 275 , I_{β} to the gity, P_{n}. When Table II, were determined by combining results obtained ${ }_{277}$ previously measured P_{n} of $4.5(3) \%$ [34] is subtracted, the from the ${ }^{106} \mathrm{Zr} \rightarrow{ }^{106} \mathrm{Nb} \rightarrow{ }^{106} \mathrm{Mo}$ and ${ }^{106} \mathrm{Nb} \rightarrow{ }^{106} \mathrm{Mo}$ decay ${ }_{278} I_{\beta}$ value to the ground state is given as the upper limit chains so as to take into account small β-decay branches. $279<8.4 \%$.
The decay schemes and I_{γ} values were obtained from ${ }^{280}$ Table II summarizes the $\log f t$ value of each excited the ${ }^{106} \mathrm{Zr} \rightarrow{ }^{106} \mathrm{Nb} \rightarrow{ }^{106} \mathrm{Mo}$ decay chain, which provided ${ }_{281}$ state calculated using $Q\left(\beta^{-}\right)=9931(10) \mathrm{keV}$ from the higher statistics. The total I_{β} of all γ-decaying excited 282 atomic mass evaluation (AME2016) [33] and the calculastates is given by summing the absolute transition in- ${ }^{283}$ tion tool of Ref. [38]. The $\log f t$ of the 6_{1}^{+}state, 6.6(1), tensities of excited states decaying to the ground state.

FIG. 2. The proposed level scheme of ${ }^{106} \mathrm{Mo}$ obtained from the β-decay chain ${ }^{106} \mathrm{Zr} \rightarrow{ }^{106} \mathrm{Nb} \rightarrow{ }^{106} \mathrm{Mo}$. The $\mathrm{Q}\left(\beta^{-}\right)$of ${ }^{106} \mathrm{Nb}$ is taken from the atomic mass evaluation (AME2016: [33]). The arrow width is proportional to the relative intensity I_{γ} ($\mathrm{Zr} \rightarrow \mathrm{Mo}$, given in Table II). Red lines are the new levels and transitions. Spin-parities of the known states are taken from ENSDF [34].

TABLE II: The level energy, E_{i}, spin-parity, J^{π}, γ-ray energy, E_{γ}, relative γ-ray intensity, I_{γ}, β-decay intensity, I_{β}, and $\log f t$ of the excited states in ${ }^{106} \mathrm{Mo}$. ($\mathrm{Nb} \rightarrow \mathrm{Mo}$) indicates the β decay from the implanted ${ }^{106} \mathrm{Nb}$ to ${ }^{106} \mathrm{Mo}$. ($\mathrm{Zr} \rightarrow \mathrm{Mo}$) indicates the β decay to ${ }^{106} \mathrm{Mo}$ in the decay chain of the implanted ${ }^{106} \mathrm{Zr}$, i.e. ${ }^{106} \mathrm{Zr} \rightarrow{ }^{106} \mathrm{Nb} \rightarrow{ }^{106} \mathrm{Mo}$. (allowed/non-UF) indicates the calculation is for the allowed or non-unique forbidden transitions. (1UF) is for the first unique forbidden transition from 4^{-}to 2^{+}or 6^{+}states.

$E_{i}(\mathrm{keV})$	J^{π}	$E_{\gamma}(\mathrm{keV})$	$I_{\gamma}{ }^{a}$ $(\mathrm{Nb} \rightarrow \mathrm{Mo})$	I_{γ} $(\mathrm{Zr} \rightarrow \mathrm{Mo})$	$I_{\beta}(\%)^{b}$	$\log f t$ (allowed/non-UF)
0.0	0^{+}				<8.4	
(102)						
$171.4(2)$	2^{+}	$171.4(2)$	$100(2)$	$100.0(5)$	$7.3(8)$	$6.7(1)$

TABLE II: (continued)

$E_{i}(\mathrm{keV})$	J^{π}	$E_{\gamma}(\mathrm{keV})$	$\begin{gathered} I_{\gamma}{ }^{a} \\ (\mathrm{Nb} \rightarrow \mathrm{Mo}) \end{gathered}$	$\begin{gathered} I_{\gamma} \\ (\mathrm{Zr} \rightarrow \mathrm{Mo}) \end{gathered}$	$I_{\beta}(\%)^{b}$	$\begin{gathered} \log f t \\ \text { (allowed/non-UF) } \end{gathered}$	$\begin{aligned} & \log f t \\ & (1 \mathrm{UF}) \end{aligned}$
710.2(1)	2^{+}	188.4(4)	2.9(7)	0.3(2)	2.8(6)	7.0(1)	9.3(1)
		538.8(2)	16.6(12)	15.6(3)			
		710.2(2)	14.4(15)	15.2(3)			
884.7(2)	3^{+}	174.7(3)		1.0(4)	8.7(7)	$6.5(1)$	
		362.5(3)	1.7(7)	0.7(2)			
		713.5(2)	30.1(17)	31.9(4)			
1032.8(3)	6^{+}	510.9(2)	5.3(12)	8.2(15)	5.5(11)	6.6(1)	8.9(1)
1067.4(1)	4^{+}	357.4(2)	3.9(8)	2.1(2)	$7.9(5)$	$6.5(1)$	
		545.4(2)	5.3(10)	7.6(2)			
		896.0(2)	6.1(10)	6.1(2)			
1149.5(2)	$\left(2^{+}\right)$	978.1(2)		2.3(2)	1.6(2)	7.1(1)	9.4(1)
1306.2(2)	5^{+}	421.3(2)	3.1(7)	3.5(2)	5.4(8)	6.6(1)	
		784.6(2)	3.4(8)	5.5(7)			
1434.3(1)	4^{+}	549.5(2)	5.1(9)	6.9(2)	7.0(5)	6.4(1)	
		724.3(2)	11.7(12)	14.0(3)			
		1262.7(3)		1.4(2)			
1535.1(3)	$\left(4^{+}\right)$	1013.2(2)		1.5(3)	1.0(2)	7.2(1)	
1657.2(3)	5^{+}	$772.5(2)$		1.4(2)	1.0(1)	7.2(1)	
1719.2(2)		1009.0(2)		1.3(2)	0.9(1)	7.2(1)	
1816.9(2)	$\left(3^{-}\right)$	932.2(2)	1.3(7)	2.0(2)	4.9(4)	$6.5(1)$	
		1106.7(2)	4.0(8)	7.4(3)			
1881.4(3)		1359.5(2)		2.9(2)	2.0(2)	6.9(1)	
1923.2(2)		1751.8(2)		1.6(2)	1.1(2)	7.1(1)	
1936.5(2)	$\left(4^{-}\right)$	869.2(2)		2.0(2)	$3.5(3)$	6.6(1)	
		1051.7(2)	2.9(2)	3.1(2)			
1951.8(2)	$\left(5^{-}\right)$	517.4(2)	$6.2(9)$	4.6(2)	2.3(2)	6.8(1)	
2020.9(2)		1849.5(2)	3.2(14)	4.1(3)	2.9(3)	6.7(1)	
2089.8(2)	$\left(5^{-}\right)$	783.4(4)	2.6(11)	1.3(7)	2.7(5)	6.7(1)	
		1022.4(2)		2.5(2)			
2146.1(4)	$\left(5^{-}\right)$	1113.4(5)		0.3(2)	0.5(2)	7.4(2)	
		1624.2(4)		0.4(2)			
2175.0(3)		223.3(2)		1.3(2)	0.9(1)	7.1(1)	
2183.7(4)		1473.5(3)		1.3(2)	0.9(1)	7.1(1)	
2198.7(3)		1676.8(2)		2.2(2)	1.5(2)	6.9(1)	
2302.1(3)	$\left(5^{+}\right)$	1780.2(3)		1.4(2)	1.0(1)	7.1(1)	
2798.1(2)		1363.9(2)	6.3(9)	5.9(2)	5.2(3)	6.2(1)	
		1913.2(3)		1.5(1)			
2814.9(2)		998.1(2)		2.3(1)	$3.5(2)$	6.4(1)	
		1929.9(2)		2.7(2)			
2905.0(3)		1470.7(3)		1.7(2)	1.2(2)	6.8(1)	

${ }^{a}$ The absolute intensity per 100β-decays is $0.696(38) I_{\gamma}$.
b Internal conversion coefficients, calculated using the BrIcc code [39], were adopted for three transitions with 171.4, 174.7, and 188.4 keV.
285 indicates an allowed transition with $\Delta J=0$ or 1 and 289 dicates allowed or first non-unique forbidden transitions. ${ }_{286} \Delta \pi=0$, or a first non-unique forbidden transition with ${ }_{290}$ However, the transitions with $\Delta J \leq 1$ can not populate ${ }_{287} \Delta J=0$ or 1 and $\Delta \pi=1[40]$. Three 2^{+}states have 291 both the 2^{+}and 6^{+}states. Therefore, transitions with ${ }_{288}$ similar $\log f t$ values ranging from 6.7 to 7.1 which also in- 292 at least $\Delta J=2$ are required for these states. For the
unique forbidden transitions, the $\log f t$ values need to be calculated by taking into account the different energy dependence of the shape factor from that of the allowed decay $[38,41]$. The $\log f t$ of the 6_{1}^{+}state becomes $8.9(1)$ for the first unique forbidden transition with $\Delta J=2$ and $\Delta \pi=1$. This value is consistent with the typical range from 8 to 11 [40]. This indicates that the spin-parity of ${ }^{106} \mathrm{Nb}$ is 4^{-}. This assignment determines the transition type to other states. Since the β decay to the 2^{+}states is also a first unique forbidden transition, the $\log f t$ values of the 2^{+}states with $171.4,710.2$, and 1149.5 keV were recalculated as $9.1(1), 8.9(1)$, and $9.4(1)$, respectively. These values are consistent with the typical range of the first unique forbidden transition. The $\log f t$ values of the $3^{-}, 4^{-}$, and 5^{-}states are consistent with the allowed transition with $\Delta J=0$ or 1 and $\Delta \pi=0$, and those of $3^{+}, 4^{+}$, and 5^{+}states are consistent with the first nonunique forbidden transition with $\Delta J=0$ or 1 and $\Delta \pi=$ 1. Thus, providing further evidence that the spin-parity of ${ }^{106} \mathrm{Nb}$ is 4^{-}. The quasi-particle state configuration of ${ }^{106} \mathrm{Nb}$ is discussed in Sec. IV F.

B. β decay to ${ }^{108} \mathrm{Mo}$

The β-delayed γ-ray spectrum of ${ }^{108} \mathrm{Mo}$ obtained from the ${ }^{108} \mathrm{Zr} \rightarrow{ }^{108} \mathrm{Nb} \rightarrow{ }^{108} \mathrm{Mo}$ decay chain is shown in Figs. 4 (a-b). The proposed level scheme illustrated in Fig. 5 was constructed through the use of γ-ray coincidences, examples shown in Figs. 4 (c-d), energy sums, and intensity balances. In the previous β-decay study [21], the ground band was observed up to 4^{+}and the 2_{2}^{+}band was up to 3^{+}. In this work, the 2_{2}^{+}band was observed up to 4^{+}, and the band head of the 4^{+}band was observed at 1422.1 keV . Fifteen new levels were identified, of which the lowest at 893.4 keV was assigned to 0_{2}^{+} from the typical γ decay pattern of a low-lying 0^{+}state, namely the observed $700.7-\mathrm{keV}$ transition was measured to be in strong coincidence with the $2_{1}^{+} \rightarrow 0_{1}^{+}$transition, as shown in Fig. 4 (c), and without an observed γ decay to the 0_{1}^{+}state. The spin-parity of the $1158.4-\mathrm{keV}$ state was assigned to be 2^{+}, and those of the 1404.8-, and $1727.6-\mathrm{keV}$ states were to be 3 or 4^{+}by assuming the transition type from those states is E1 or M1/E2. The half life of the ${ }^{108} \mathrm{Nb}$ decay was determined to be $T_{1 / 2}=186(8) \mathrm{ms}$ from the decay curve of the $192.8-\mathrm{keV}$ γ ray, as shown in Fig. 3 (b), and is consistent with the evaluated value of $198(6) \mathrm{ms}$ [34].

The I_{γ} values were determined for the two decay ${ }^{35}$ chains, ${ }^{108} \mathrm{Nb} \rightarrow{ }^{108} \mathrm{Mo}$ and ${ }^{108} \mathrm{Zr} \rightarrow{ }^{108} \mathrm{Nb} \rightarrow{ }^{108} \mathrm{Mo}$, as ${ }^{35}$ summarized in Table III. The consistent I_{γ} values be- ${ }^{355}$ tween two decay chains indicate no β-decaying isomeric ${ }^{354}$ state in ${ }^{108} \mathrm{Nb}$. The conversion factor from the relative ${ }^{35}$ to absolute γ-ray intensities was determined from the absolute $192.8-\mathrm{keV}$ intensity in the ${ }^{108} \mathrm{Nb} \rightarrow{ }^{108} \mathrm{Mo}$ decay.

The I_{β} values were determined from the absolute intensities and the decay scheme. As described in Sec. III A, ${ }_{359}$ ${ }_{50}$ the total I_{β} of the γ-decaying excited states in ${ }^{108}$ Mo ${ }^{36}$

FIG. 3. The time spectra of β-delayed γ rays in the Mo isotopes. Dashed lines indicate the fitting region of the decay curve to determine the β-decay half life, $T_{1 / 2}$. Orange lines are the constant background, which was determined by fitting to the negative-time region. The β-delayed γ rays with 531.5 , $462.6,563.3$, and 563.4 keV from the implanted ${ }^{110} \mathrm{Nb}$ were selected as the β decays of the high-spin state in ${ }^{110} \mathrm{Nb}$.
${ }_{1}$ was determined to be $62.8(33) \%$ from the sum of abso32 lute transition intensities of three transitions from the 2_{1}^{+}, 2_{2}^{+}, and 2_{3}^{+}states to the ground state. The zero-neutron ${ }_{5}$ emission probability of the ${ }^{108} \mathrm{Nb}$ decay, $P_{0 n}$, which is the 5 probability decaying to ${ }^{108} \mathrm{Mo}$ without a delayed-neutron ${ }_{56}$ emission, was determined by using a new method de${ }_{57}$ scribed in Sec. III C as, $P_{0 n}=82(11) \%$. The difference ${ }^{58}$ of these two values gave the ground-state I_{β} of $19(12) \%$.

The I_{γ} values obtained in this work are inconsistent with the previous results [21] with the exception of the

FIG. 4. (a-b) The β-delayed γ-ray spectrum of ${ }^{108} \mathrm{Nb}$ obtained from the β-decay chain ${ }^{108} \mathrm{Zr} \rightarrow{ }^{108} \mathrm{Nb} \rightarrow{ }^{108} \mathrm{Mo}$. The range of the time window was set to be $80 \mathrm{~ms}<t_{\mathrm{ion}}-t_{\beta}<280 \mathrm{~ms}$. The labeled peaks belong to ${ }^{108}$ Mo. The identified background peaks are marked with asterisks. Other unknown peaks are mainly associated with parent ${ }^{108} \mathrm{Zr}$ decays. (c-d) The coincidence spectra gated on 192.8 keV and 700.7 keV .

361

362

 363371.1- and 393.1-keV γ rays. Notably the $I_{\gamma}(590.1 \mathrm{keV}){ }_{376}$ and 4_{1}^{+}states were $5.8(3)$ and $6.4(1)$ and are too small of $26.1(6) \%$ was roughly half of that reported in Ref. [21], 377 for any transitions with $\Delta J \geq 2$ [40]. This is the same 53%. As mentioned in Ref. [21], a large background in ${ }^{378}$ situation as for the ${ }^{106} \mathrm{Nb}$ decay. If the first unique fortheir γ-ray spectrum might be the cause of the inconsis- ${ }^{379}$ bidden transition with $\Delta J=2$ and $\Delta \pi=1$ is considered tency. The absolute intensity of the $2_{1}^{+} \rightarrow 0_{1}^{+}$transition 380 for the transitions to these states, the spin-parity of the was also roughly half of that reported in Ref. [21]. This ${ }^{381}{ }^{108} \mathrm{Nb}$ ground state is 2^{-}. The $\log f t$ values of the 0^{+} may be due to a 50% uncertainty of the ${ }^{108} \mathrm{Nb}$ yield ex- 382 and 4^{+}states were recalculated as the first unique fortrapolated as a function of the atomic number [21]. Al- 383 bidden transition to be $8.2(3), 8.8(1), 8.7(1), 8.5(1)$, and though the uncertainty of the previous I_{β} was not eval- $3849.2(1)$ for the ground state and the excited states at 563.8 uated, the present $I_{\beta}\left(3_{1}^{+}\right)$of $5.1(6) \%$ is $1 / 10$ of the re- $385 \mathrm{keV}, 893.4 \mathrm{keV}, 978.3 \mathrm{keV}$, and 1422.1 keV , respectively. ported 53% [21] owing to yield uncertainties and the pre- ${ }_{386}$ These are within the typical range from 8 to 11 [40]. The vious non-observation of the cascade transitions to the ${ }^{387} \log f t$ values of the $2^{+}, 3^{+}$, and 3^{-}states indicate the 3_{1}^{+}state
The $\log f t$ values were determined from $T_{1 / 2}, I_{\beta}$, and ${ }_{389}$ sition, and are consistent with the β decay from a 2^{-} ${ }^{398} Q_{\beta}=11210(12) \mathrm{keV}[33]$. The $\log f t$ values of the $0_{1}^{+} \quad$ state. The β decay to the 5^{-}state at 2161.8 keV is the

FIG. 5. The proposed level scheme of ${ }^{108} \mathrm{Mo}$ obtained from the β-decay chain ${ }^{108} \mathrm{Zr} \rightarrow^{108} \mathrm{Nb} \rightarrow{ }^{108} \mathrm{Mo}$. Red lines are the new levels and transitions.

TABLE III: Same as Table II, but for ${ }^{108} \mathrm{Mo}$. (1UF) is for the first unique forbidden transition from 2^{-}to 0^{+}or 4^{+}states. $(2 \mathrm{UF})$ is for the second unique forbidden transition from 2^{-}to 5^{-}states.

$E_{i}(\mathrm{keV})$	J^{π}	$E_{\gamma}(\mathrm{keV})$	$I_{\gamma}{ }^{a}$ $(\mathrm{Nb} \rightarrow \mathrm{Mo})$	I_{γ} $(\mathrm{Zr} \rightarrow \mathrm{Mo})$	$I_{\beta}(\%)^{b}$	$\log f t$ (allowed/non-UF)	$\log f t$ $(1 \mathrm{UF})$	$\log f t$ $(2 \mathrm{UF})$
0.0	0^{+}				$19(12)$	$5.8(3)$	$8.2(3)$	
$192.8(2)$	2^{+}	$192.8(2)$	$100(2)$	$100.0(9)$	$6.7(10)$	$6.2(1)$		
$563.8(2)$	4^{+}	$371.1(2)$	$18.2(10)$	$14.5(5)$	$3.7(6)$	$6.4(1)$	$8.8(1)$	
$586.0(1)$	2^{+}	$393.1(2)$	$28.3(13)$	$27.8(10)$	$13.2(12)$	$5.8(1)$		
		$586.1(2)$	$25.0(12)$	$26.4(7)$				
$783.0(2)$	3^{+}	$197.9(6)$		$3.4(1)$	$5.1(6)$	$6.2(1)$		
		$590.1(2)$	$27.4(12)$	$26.1(6)$				
$893.4(2)$	$\left(0^{+}\right)$	$700.7(2)$	$4.7(16)$	$9.7(5)$	$4.3(3)$	$6.3(1)$	$8.7(1)$	

TABLE III: (continued)

$E_{i}(\mathrm{keV})$	J^{π}	$E_{\gamma}(\mathrm{keV})$	$\begin{gathered} I_{\gamma}{ }^{a} \\ (\mathrm{Nb} \rightarrow \mathrm{Mo}) \end{gathered}$	$\begin{gathered} I_{\gamma} \\ (\mathrm{Zr} \rightarrow \mathrm{Mo}) \end{gathered}$	$I_{\beta}(\%)^{b}$	$\begin{gathered} \log f t \\ \text { (allowed/non-UF) } \end{gathered}$	$\begin{aligned} & \log f t \\ & (1 \mathrm{UF}) \end{aligned}$	$\begin{aligned} & \log f t \\ & (2 \mathrm{UF}) \end{aligned}$
978.3(2)	4^{+}	196.0(2)		5.0(1)	5.4(7)	6.1(1)	8.5(1)	
		391.2(3)	7.0(9)	4.5(14)				
		414.4(3)	2.1(5)	2.3(6)				
1158.4(1)	$\left(2^{+}\right)$	594.8(3)	$1.2(5)$	1.5(4)	3.8(4)	6.3 (1)		
		965.7(2)	$4.2(7)$	4.4(4)				
		1158.3(2)	$3.2(6)$	2.5(4)				
1404.8(2)	$\left(3,4^{+}\right)$	622.3(3)		1.7(4)	2.1(3)	6.5(1)		
		818.1(4)		0.8(3)				
		839.7(3)		0.7(3)				
		1212.5(3)		1.4(4)				
1422.1(2)	$\left(4^{+}\right)$	$638.8(4)$	0.6(1)	$0.5(3)$	0.9(2)	$6.8(1)$	9.2(1)	
		$836.2(3)$		$1.4(3)$				
1547.5(3)		1354.7(2)		2.1(4)	0.9(2)	6.8(1)		
1727.6(2)	$\left(3,4^{+}\right)$	944.0(5)		0.4(3)	1.5(3)	6.5(1)		
		1141.7(3)		1.4(3)				
		1163.4(6)		0.5(5)				
		1535.3(4)		1.1(3)				
1839.0(5)		1056.0(4)		0.8(3)	0.4(1)	7.1(1)		
1844.4(2)	$\left(3^{-}\right)$	1061.5(2)	2.2(1)	3.6(4)	4.1(4)	6.1(1)		
		1258.3(2)	7.5(6)	5.6(5)				
1962.3(2)		1769.5(2)		0.8(1)	0.4(1)	7.1(1)		
2048.4(3)		1265.4(2)	3.3 (5)	3.1(4)	1.4(2)	6.5(1)		
2161.8(4)	$\left(5^{-}\right)$	1598.0(3)		$1.2(5)$	0.5(2)	$6.9(2)$		11.6(2)
2208.4(2)	$\left(3^{-}\right)$	1425.9(7)		1.1(3)	2.4(3)	$6.2(1)$		
		1622.3(2)		$4.2(4)$				
2309.7(3)		1526.7(3)		1.8(3)	0.8(1)	6.7(1)		
2339.6(2)		1753.4(3)		3.3(5)	2.8(3)	6.1(1)		
		2147.1(3)		3.0(4)				
3093.4(5)		2900.6(4)		1.6(4)	0.7(2)	6.6(1)		
3104.1(4)		2911.3(3)		2.3(5)	1.0(2)	6.4(1)		
3550.1(5)		3357.3(4)		1.6(6)	0.7(3)	6.4(2)		

${ }^{a}$ The absolute intensity per 100β-decays is $0.448(23) I_{\gamma}$.
${ }^{b}$ Internal conversion coefficients, calculated using the BrIcc code [39], were adopted for three transitions with 192.8, 196.0, and 197.9 keV.
${ }_{391}$ second unique forbidden transition with $\Delta J=3$ and 402 sured ${ }^{108} \mathrm{Mo}$ and ${ }^{108} \mathrm{Nb}$ decays after the ${ }^{108} \mathrm{Nb}$ implanta${ }_{392} \Delta \pi=0$. The $\log f t$ value of the 5^{-}state was recal- 403 tion, respectively. The neutron emission probability P_{n} ${ }_{393}$ culated to be 11.6(2) and within the typical range from 404 is given by
39410.6 to 18 for the second unique forbidden transition [40].
${ }_{395}$ Therefore, the spin-parity of the ${ }^{108} \mathrm{Nb}$ was assigned to ${ }_{396}$ be 2^{-}. The quasi-particle state configuration of ${ }^{108} \mathrm{Nb}$ is 397 described in Sec. IV F.

$$
\begin{equation*}
P_{n}=1-P_{0 n}=\sum_{i \geq 1} P_{i n} \tag{1}
\end{equation*}
$$

C. Neutron-emission probability in ${ }^{108} \mathrm{Nb} \beta$ decay

${ }_{405}$ where i is the number of the emitted neutrons.
${ }_{406} \quad N_{\beta}\left({ }^{108} \mathrm{Nb}\right)$ was determined to be $5.20(13) \times 10^{4}$ from 407 a fit to the β-decay time curve obtained following the ${ }_{408}$ implantation of ${ }^{108} \mathrm{Nb}$. The fit used the decay half-lives 409 and neutron-emission probabilities of the parent ${ }^{108} \mathrm{Nb}$, 399 The zero-neutron emission probability, $P_{0 n}$, of the 410 daughters ${ }^{107,108} \mathrm{Mo}$, granddaughters ${ }^{106,107,108} \mathrm{Tc}$ and ${ }_{400}{ }^{108} \mathrm{Nb}$ decay is given by the ratio $N_{\beta}\left({ }^{108} \mathrm{Mo}\right) / N_{\beta}\left({ }^{108} \mathrm{Nb}\right)$, 411 great granddaughters ${ }^{107,108} \mathrm{Ru}$ from the literature [34] ${ }_{401}$ where $N_{\beta}\left({ }^{108} \mathrm{Mo}\right)$ and $N_{\beta}\left({ }^{108} \mathrm{Nb}\right)$ are the integral of mea- ${ }_{412}$ except for ${ }^{108} \mathrm{Nb}$ where the half-life of $186(8) \mathrm{ms}$ mea-

462

where $\varepsilon_{\gamma}(268.3 \mathrm{keV})$ is the γ-ray detection efficiency, which is sensitive to the implantation position, and $I_{\gamma, \text { abs }}(268.3 \mathrm{keV})$ is the absolute intensity of 268.3 keV per one ${ }^{108} \mathrm{Mo}$ decay. In order to evaluate $N_{\beta}\left({ }^{108} \mathrm{Mo}\right)$, we define the ratio,

$$
\begin{equation*}
R(268.3 \mathrm{keV})=\frac{N_{\gamma}(268.3 \mathrm{keV})}{N_{\beta}\left({ }^{108} \mathrm{Mo}\right)} \tag{3}
\end{equation*}
$$

sured in this work was used. It was assumed that the probability of the emission of two or more neutrons is negligibly small so that $P_{1 n}=1-P_{0 n}$.
$N_{\beta}\left({ }^{108} \mathrm{Mo}\right)$ can be derived from the number of counts of the $268.3-\mathrm{keV} \gamma$ ray, $N_{\gamma}(268.3 \mathrm{keV})$, emitted from the ${ }^{108} \mathrm{Mo} \rightarrow{ }^{108} \mathrm{Tc}$ decay using the relation,

$$
\begin{align*}
N_{\gamma}(268.3 \mathrm{keV})= & N_{\beta}\left({ }^{108} \mathrm{Mo}\right) \varepsilon_{\gamma}(268.3 \mathrm{keV}) \\
& \times I_{\gamma, \mathrm{abs}}(268.3 \mathrm{keV}) \tag{2}
\end{align*}
$$

 the known \(65.4-\mathrm{keV} \gamma\) ray [42] from the isomeric state
 in \({ }^{107}\) Mo in Fig. 4 (a) provides a direct evidence of the
 \(\beta\)-delayed neutron emission of \({ }^{108} \mathrm{Nb}\). The absolute \(\gamma\)-ray
 intensity of the \(65.4-\mathrm{keV} \gamma\) ray corresponds to a minimum
 \(P_{1 n}\) of \(8.1(7) \%\), which includes the contribution of the in-
 ternal conversion for the E2 transition. It is reasonable
 that this is less than \(P_{n}=18(11) \%\), given above, as there
 exist unobserved one- or multi-neutron emission chan-
 nels. The minimum value reported here is larger than a
 previously reported P_{n} value of $6.2(5) \%$ [43] and equal
to $8(2) \%$ of Ref. [44]. The previous P_{n} values were de-
rived from measurements of β-delayed neutrons with ${ }^{3} \mathrm{He}$
ionization chamber tubes [43], or a combination of ${ }^{3} \mathrm{He}$
and $\mathrm{B}_{3} \mathrm{~F}$ proportional gas-counter tubes [44]. Neutron-
detection efficiencies of these configurations, which have
2 a possible energy dependence, could have been affected
π_{3} by unknown β-delayed neutron energy distributions.

$$
486
$$

464 the 2^{+}band is extended up to its 7^{+}state A new band based on a $1243.8-\mathrm{keV}$ state was observed and from its interband transitions to the 2_{2}^{+}band, a spin-parity of 4^{+} was assigned to its band head. The spin-parities of the band members with 1520.1 keV and 1796.2 keV were assigned as 5^{+}and 6^{+}, respectively. A state at 1042.2 keV was measured based on the observation of a $828.8-\mathrm{keV} \gamma$ ray coincident only with the $213.4-\mathrm{keV} \gamma$ ray, as shown in Fig. 6 (d). Direct γ decay from the 1042.2 -keV state to the ground state was not observed. Based on this typical γ-decay pattern of a low-lying 0^{+}state, the $1042.2-\mathrm{keV}$ state was assigned to 0^{+}. The I_{γ} values are summarized in Table IV.

The β-delayed γ-ray spectrum of ${ }^{110} \mathrm{Mo}$ obtained from the ${ }^{110} \mathrm{Zr} \rightarrow{ }^{110} \mathrm{Nb} \rightarrow{ }^{110} \mathrm{Mo}$ decay chain is shown in Fig. 6 (e). Only five excited states were observed, which were the 2^{+}and 4^{+}states in the ground band, the 2^{+} and 3^{+}states in the 2_{2}^{+}band, and the 0_{2}^{+}state. This β-decay feeding pattern and the I_{γ} values, given in Table V , are different from those of the ${ }^{110} \mathrm{Nb} \rightarrow{ }^{110} \mathrm{Mo}$ decay. These differences indicate the existence of two β decaying states in ${ }^{110} \mathrm{Nb}$. Since the spin-parity of the even-even nucleus ${ }^{110} \mathrm{Zr}$ is 0^{+}, it is expected that the low-spin states in ${ }^{110} \mathrm{Nb}$ are populated by the β decay of ${ }^{110} \mathrm{Zr}$. This expectation is consistent with the β-decay feeding pattern to the lower-spin states in ${ }^{110}$ Mo by the ${ }^{110} \mathrm{Zr} \rightarrow{ }^{110} \mathrm{Nb} \rightarrow{ }^{110} \mathrm{Mo}$ decay chain. On the other hand, the ${ }^{110} \mathrm{Nb} \rightarrow{ }^{110} \mathrm{Mo}$ decay has contributions of the lowand high-spin states in ${ }^{110} \mathrm{Nb}$ because the in-flight fission reaction populates both states.

E. Extraction of β-decay properties for low- and high-spin states in ${ }^{110} \mathrm{Nb}$

Beta-decay properties, namely $T_{1 / 2}$, relative and ab${ }_{008}$ solute γ-ray intensities, I_{β}, and $\log f t$, need to be determined separately for the low- and high-spin states in ${ }^{110} \mathrm{Nb}$. To evaluate $T_{1 / 2}$ for the high-spin state, the γ rays with $462.6,531.5,563.3$, and 563.4 keV from the $5_{1}^{+}, 6_{1}^{+}$, or 6_{2}^{+}states were used as they are emitted only in the β decay of the high-spin state. The half-life of the high-spin state in ${ }^{110} \mathrm{Nb}$ was determined to be $75(1) \mathrm{ms}$ from the sum of the decay curves of these four γ rays using the data of the ${ }^{110} \mathrm{Nb} \rightarrow{ }^{110} \mathrm{Mo}$ decay as shown in Fig. 3 (c). The $213.4-\mathrm{keV} \gamma$ ray obtained in the ${ }^{110} \mathrm{Zr}$ $\rightarrow{ }^{110} \mathrm{Nb} \rightarrow{ }^{110} \mathrm{Mo}$ decay chain was used for the half-life 19 measurement of the low-spin state in ${ }^{110} \mathrm{Nb}$. The decay

FIG. 6. (a-b) The β-delayed γ-ray spectrum of the implanted ${ }^{110} \mathrm{Nb}$. The time window after the implantation of ${ }^{110} \mathrm{Nb}$ was set to be less than 400 ms . The labeled peaks belong to ${ }^{110} \mathrm{Mo}$. The identified background peaks are marked with asterisks. ($\mathrm{c}-\mathrm{d}$) The coincidence spectra gated on 213.4 keV and 828.8 keV . (e) The β-delayed γ-ray spectrum obtained from the β-decay chain ${ }^{110} \mathrm{Zr} \rightarrow{ }^{110} \mathrm{Nb} \rightarrow{ }^{110} \mathrm{Mo}$, where $\Delta t_{\beta-\text { ion }}$ from 30 to 250 ms was selected.
${ }_{520}$ curve shown in Fig. 3 (d) shows the typical shape of a 528 ments was determined without any consideration of the ${ }_{521}$ daughter populated by the decay of a parent. The half- ${ }_{529}$ second β-decaying state in ${ }^{110} \mathrm{Nb}$. The previous values 522 life of the low-spin state in ${ }^{110} \mathrm{Nb}$ was determined to be ${ }_{530}$ of $82(4) \mathrm{ms}[34]$ and $82(2) \mathrm{ms}$ [46] appear to be a reason${ }_{523} 94(9) \mathrm{ms}$ by considering the daughter-decay component ${ }_{531}$ able average of the presently reported low- and high-spin ${ }_{524}$ and the constant background. The half-life of ${ }^{110} \mathrm{Zr}$, used 532 states.
525 in the fitting, was determined to be $37.7(31) \mathrm{ms}$ from the ${ }_{533}$ The absolute γ-ray intensities for the low-spin state in ${ }_{526}$ decay curve of the $90.5-$ and $95-\mathrm{keV} \gamma$ rays associated ${ }_{534}{ }^{110} \mathrm{Nb}$ were determined as follows. The β decay of ${ }^{110} \mathrm{Nb}$ ${ }_{538}$ with the ${ }^{110} \mathrm{Zr}$ decay. The half life of previous measure- which followed the emission of a $95-\mathrm{keV} \gamma$ ray from the

FIG. 7. The proposed level scheme of ${ }^{110}$ Mo obtained from the β-decay of ${ }^{110} \mathrm{Nb}$ isotopes implanted into WAS3ABi. Red lines are the new levels and transitions.

TABLE IV: Same as Table II, but for the ${ }^{110}$ Mo results obtained from the β decay of the implanted ${ }^{110} \mathrm{Nb}$. (high) indicates the β decay of the high-spin state in ${ }^{110} \mathrm{Nb}$. The low-spin contribution was subtracted by combining with the results in Table V and the assumption that the 0^{+}states at 0 and 1042.2 keV are populated only from the low-spin β decay. (1UF) is for the first unique forbidden transition from 6^{-}to 4^{+}or 8^{+}states.

$E_{i}(\mathrm{keV})$	J^{π}	$E_{\gamma}(\mathrm{keV})$	$\begin{gathered} I_{\gamma}{ }^{a} \\ (\mathrm{Nb} \rightarrow \mathrm{Mo}) \end{gathered}$	$\begin{gathered} I_{\gamma}{ }^{b} \\ \text { (high) } \end{gathered}$	$\begin{gathered} I_{\beta}(\%)^{c} \\ (\text { high }) \end{gathered}$	$\begin{gathered} \quad \log f t \\ \text { (high) } \\ \text { (allowed/non-UF) } \end{gathered}$	$\begin{aligned} & \log f t \\ & \text { (high) } \\ & \text { (1UF) } \end{aligned}$
0.0	0^{+}				0		
213.4(2)	$\left(2^{+}\right)$	213.4(2)	100.0(5)	100(11)	<1.5		
493.7(1)	$\left(2^{+}\right)$	280.2(2)	23.5(4)	21.6(33)	-5.4(45)		
		493.8(2)	23.1(3)	18.9(38)			
599.0(2)	$\left(4^{+}\right)$	385.5(2)	39.0(7)	52.7(14)	$6.2(16)$	5.9(2)	8.5(3)
699.8(1)	$\left(3^{+}\right)$	206.0(2)	8.5(2)	11.3(3) ${ }^{e}$	1.5(6)	6.5(2)	
		486.4(2)	26.2(3)	34.9(8)			

TABLE IV: (continued)

$E_{i}(\mathrm{keV})$	J^{π}	$E_{\gamma}(\mathrm{keV})$	$\begin{gathered} I_{\gamma}{ }^{a} \\ (\mathrm{Nb} \rightarrow \mathrm{Mo}) \end{gathered}$	$\begin{gathered} I_{\gamma}{ }^{b} \\ \text { (high) } \end{gathered}$	$\begin{gathered} I_{\beta}(\%)^{c} \\ \text { (high) } \end{gathered}$	$\begin{gathered} \log f t \\ \text { (high) } \\ \text { (allowed/non-UF) } \end{gathered}$	$\log f t$ (high) (1UF)
914.4(2)	$\left(4^{+}\right)$	420.7(2)	18.8(3)	27.0(4)	4.8(15)	$6.0(2)$	8.5(3)
		315.4(2)	2.9(2)	4.2(3)			
1042.2(2)	$\left(0^{+}\right)$	828.8(2)	1.8(1)	0	0		
1130.4(3)	$\left(6^{+}\right)$	531.5(2)	19.7(3)	28.3(4)	$8.2(20)$	5.7(2)	
1162.4(2)	$\left(5^{+}\right)$	462.6(2)	19.7(3)	28.3(4)	$6.5(17)$	5.8(2)	
		563.4(3)	1.8(4)	2.6(6)			
1243.8(1)	$\left(4^{+}\right)$	544.0(2)	2.9(2)	4.2(3)	$3.5(9)$	6.1(2)	8.5(3)
		750.1(2)	5.9(2)	8.5(3)			
1317.3(2)		823.7(2)	1.3(1)	1.9(1)	$1.4(3)$	$6.5(2)$	
		1103.5(3)	0.5(1)	0.7(1)			
1458.5(2)		964.8(2)	1.1(1)	1.6(1)	0.5(2)	6.9(2)	
1477.7(2)	$\left(6^{+}\right)$	563.3(2)	10.0(10)	14.4(14)	4.8(14)	5.9(2)	
1520.1(2)	$\left(5^{+}\right)$	276.3(3)	0.3(4)	0.4(6)	$3.8(11)$	6.0(2)	
		605.6(2)	2.9(2)	4.2(3)			
		820.5(2)	4.9(2)	7.0(3)			
1574.7(3)		874.9(3)	0.9(1)	1.3(1)	0.7(2)	6.7(2)	
1680.1(2)		1081.5(3)	0.4(1)	0.6(1)	0.9(2)	6.6(2)	
		1466.4(3)	0.8(1)	1.2(1)			
1754.3(3)	$\left(7^{+}\right)$	591.8(2)	3.3(3)	4.7(4)	2.5(7)	6.1(2)	
1782.7(3)	$\left(8^{+}\right)$	652.2(2)	2.8(2)	4.0(3)	2.2(5)	$6.2(2)$	8.6(3)
1796.2(1)	$\left(6^{+}\right)$	276.1(3)	0.8(4)	1.2(6)	$1.7(7)$	6.3(2)	
		552.5(2)	2.7(2)	3.9(3)			
		633.6(2)	2.1(2)	3.0(3)			
		881.9(2)	1.6(1)	2.3(1)			
1999.8(2)		1300.0(2)	2.3(2)	3.3(3)	0.5(3)	6.8(3)	
		1400.8(4)	0.3(1)	0.4(1)			
2142.6(3)		1543.6(2)	1.6(2)	2.3(3)	1.2(3)	6.4(2)	
2170.8(3)		693.1(2)	0.9(1)	1.3(1)	0.7(2)	6.6(2)	
2181.0(1)		181.5(2)	1.9(2)	2.7(3)	10.1(25)	5.4(2)	
		384.8(2)	5.0(6)	7.2(9)			
		660.9(2)	1.4(1)	2.0(1)			
		703.1(2)	2.4(1)	3.5(1)			
		1018.6(2)	5.0(2)	7.2(3)			
		1050.5(2)	1.6(1)	2.3(1)			
2183.1(3)		1584.1(2)	1.4(2)	2.0(3)	0.4(2)	6.8(3)	
2191.0(3)		947.6(3)	0.6(1)	0.9(1)	1.0(3)	$6.4(2)$	
		1591.3(4)	0.7(2)	1.0(3)			
2208.0(4)		1994.6(3)	0.8(1)	1.2(1)	0.6(2)	6.6(2)	
2218.7(4)		1088.3(3)	0.5(1)	0.7(1)	0.4(1)	6.8(2)	
2371.4(4)		1127.6(3)	0.6(1)	0.9(1)	0.5(1)	6.7(2)	
2376.0(3)		1213.4(3)	0.9(1)	1.3(1)	0.9(2)	$6.4(2)$	
		1245.8(3)	0.3(1)	0.5(1)			
2421.6(2)		240.6(2)	$4.2(7)$	6.0(10)	$3.2(9)$	5.9(2)	
2431.7(3)		1268.7(3)	0.7(1)	1.0(1)	0.8(2)	$6.5(2)$	
		1302.9(6)	0.4(1)	0.6(1)			
2454.8(2)		934.7(3)	0.5(1)	0.7(1)	2.0(5)	6.1(2)	

TABLE IV: (continued)

$E_{i}(\mathrm{keV})$	J^{π}	$E_{\gamma}(\mathrm{keV})$	$\begin{gathered} I_{\gamma}{ }^{a} \\ (\mathrm{Nb} \rightarrow \mathrm{Mo}) \end{gathered}$	$\begin{gathered} I_{\gamma}{ }^{b} \\ \text { (high) } \end{gathered}$	$\begin{gathered} I_{\beta}(\%)^{c} \\ (\text { high }) \end{gathered}$	$\begin{gathered} \quad \log f t \\ \text { (high) } \\ \text { (allowed/non-UF) } \end{gathered}$	$\begin{gathered} \log f t \\ \text { (high) } \\ (1 \mathrm{UF}) \end{gathered}$
		976.5(3)	0.4(1)	0.6(1)			
		1292.4(2)	1.0(1)	1.4(1)			
		1324.6(3)	0.7(1)	1.0(1)			
2480.8(4)		1350.4(3)	0.7(1)	1.1(1)	0.5(2)	6.7(3)	
2569.1(3)		1110.2(3)	0.4(1)	0.6(1)	0.8(2)	$6.5(2)$	
		1438.9(3)	0.6(1)	0.9(1)			
2594.6(5)		1074.5(5)	0.4(1)	0.6(1)	0.3(1)	6.9(2)	
2624.5(4)		1494.1(3)	0.9(3)	1.3(4)	0.7(3)	$6.5(3)$	
2654.1(4)		1523.7(3)	0.6(1)	0.9(1)	0.5(1)	6.6(2)	
2838.6(2)		655.4(2)	0.9(1)	1.3(1)	1.4(4)	$6.2(2)$	
		1924.3(3)	0.9(2)	1.3(3)			
3036.1(2)		2822.6(3)	1.1(1)	1.6(1)	2.1(5)	5.9(2)	
		3036.1(3)	1.6(2)	2.3(3)			

${ }^{a}$ The absolute intensity per 100β-decays is $0.492(25) I_{\gamma}$.
${ }^{b}$ The absolute intensity per 100β-decays is $0.54(19) I_{\gamma}$.
${ }^{c}$ Internal conversion coefficients [39] were adopted for two transitions with 213.4 and 206.0 keV .
e Branching ratio of the 206.0 - and $486.4-\mathrm{keV}$ transitions and $I_{\gamma}(486.4 \mathrm{keV})$ in Table V were used to subtract the low-spin β decay contribution. E_{i} and $I_{\beta}(0)$ for the ground state as,

$$
\begin{align*}
\sum I_{\beta}^{\mathrm{L}}\left(E_{i}\right)+I_{\beta}^{\mathrm{L}}(0)+P_{n}^{\mathrm{L}} & =100 \%, \tag{4}\\
\sum I_{\beta}^{\mathrm{H}}\left(E_{i}\right)+P_{n}^{\mathrm{H}} & =100 \%, \tag{5}
\end{align*}
$$

${ }_{58}$ where \sum represents the sum over all excited states de559 caying to the ground state and the superscripts L and H 560 represent the low- and high-spin states in ${ }^{110} \mathrm{Nb}$, respec${ }_{561}$ tively. The $\sum I_{\beta}^{\mathrm{L}}\left(E_{i}\right)$ value was evaluated as $58(20) \%$ 562 by the sum of the two absolute transition intensities of 585
decay of ${ }^{110} \mathrm{Zr}$ was analyzed using the observation of the ${ }_{563} 213.4$ and 493.8 keV , which decay directly to the ground $95-\mathrm{keV} \gamma$ ray as time zero. The observation of the 213.4- 564 state. The conversion-electron coefficients were taken , 280.2-, and $493.8-\mathrm{keV} \gamma$ rays shows that the low-spin 565 into account. This sum includes unobserved small I_{β} state in ${ }^{110} \mathrm{Nb}$ is selected by the gate on the $95-\mathrm{keV} \gamma$ ray. ${ }_{566}$ contributions with cascade transitions through the 2_{1}^{+} The ratio of the number of the measured β decays and ${ }_{567}$ and 2_{2}^{+}states. The same method was applied to the β -$213.4-\mathrm{keV} \gamma$ rays was determined from this subsequent β - ${ }_{568}$ decay results of the implanted ${ }^{110} \mathrm{Nb}$. The contribution of decay analysis. The conversion factor from I_{γ} to absolute ${ }_{569}$ the $3036.1-\mathrm{keV}$ transition was also added. The obtained intensity was determined to be $0.41(14)$ using the $213.4-{ }_{570}$ value, $\sum I_{\beta}^{\mathrm{L}+\mathrm{H}}\left(E_{i}\right)=65.2(33)$, includes the contribution keV γ ray.

The I_{γ} values corresponding to the high-spin state ${ }_{572} \mathrm{~L}+\mathrm{H}$ refers to the β decay of the implanted ${ }^{110} \mathrm{Nb}$. The were determined by subtracting the low-spin contribu- ${ }^{573} \sum I_{\beta}^{\mathrm{H}}\left(E_{i}\right)$ value was described by using the fraction r of tion from the results given in Table V under the assump- ${ }_{574}$ the low-spin state in the implanted ${ }^{110} \mathrm{Nb}$ as, tion that the ground and second 0^{+}states are directly populated only by the low-spin β decay. The I_{β} values for low- and high-spin β decays were determined and are summarized in Tables IV and V.
The I_{β} value of the ${ }^{110}$ Mo ground state corresponding to the low-spin state and P_{n} values corresponding to the low- and high-spin states were determined by combining the following five equations. First, the P_{n} value has a relation to $I_{\beta}\left(E_{i}\right)$ for the γ-decaying states at the energy

578
57
580 From the data of the ${ }^{110} \mathrm{Nb} \rightarrow{ }^{110} \mathrm{Mo} \rightarrow{ }^{110} \mathrm{Tc}$ decay
${ }_{580}^{580}$ From the data of the ${ }^{110} \mathrm{Nb} \rightarrow{ }^{110} \mathrm{Mo} \rightarrow{ }^{110} \mathrm{Tc}$ decay
${ }_{581}$ chain, the $P_{0 n}^{\mathrm{L}+\mathrm{H}}$ value can be determined following the ${ }_{582}$ procedure described in Sec. III C. It is given by

$$
\begin{equation*}
1-P_{0 n}^{\mathrm{L}+\mathrm{H}}=r P_{n}^{\mathrm{L}}+(1-r) P_{n}^{\mathrm{H}} \tag{8}
\end{equation*}
$$

55 From the assumption that the $828.8-\mathrm{keV} \gamma$ ray is emitted 576 only from the β decay of the low-spin state, r was given 577 as,

$$
\begin{equation*}
r=\frac{I_{\gamma, \mathrm{abs}}^{\mathrm{L}+\mathrm{H}}(828.8 \mathrm{keV})}{I_{\gamma, \mathrm{abs}}^{\mathrm{L}}(828.8 \mathrm{keV})}=0.36(15) \tag{7}
\end{equation*}
$$

where $I_{\gamma, \text { abs }}(828.8 \mathrm{keV})$ is the absolute intensity of the $828.8-\mathrm{keV} \gamma$ ray.
${ }_{83}$ Here, only the differences from Sec. IIIC are de54 scribed. The $213.4-\mathrm{keV} \gamma$ ray was used for the iden585 tification of the ${ }^{110} \mathrm{Nb} \rightarrow{ }^{110} \mathrm{Mo}$ decay. The number

TABLE V. Same as Table II, but for the ${ }^{110} \mathrm{Mo}$ results obtained from the β-decay chain ${ }^{110} \mathrm{Zr} \rightarrow{ }^{110} \mathrm{Nb} \rightarrow{ }^{110} \mathrm{Mo}$, where the low-spin state in ${ }^{110} \mathrm{Nb}$ is populated by the β decay of the 0^{+}ground state in ${ }^{110} \mathrm{Zr}$. (1UF) is for the first unique forbidden transition from 2^{-}to 0^{+}or 4^{+}states.

$E_{i}(\mathrm{keV})$	J^{π}	$E_{\gamma}(\mathrm{keV})$ $($ low $)$	$I_{\gamma}{ }^{\text {a }}$ $($ low $)$	$I_{\beta}(\%)$ $($ low $)$	$\log f t$ $($ low $)$	$\log f t$ (low) (allowd/non-UF)
0.0	0^{+}			$47(26)$	$5.2(3)$	$7.8(4)$
213.4	$\left(2^{+}\right)$	213.4	$100(4)$	$25.0(88)$	$5.5(2)$	
493.7	$\left(2^{+}\right)$	280.2	$28.0(24)$	$25.0(87)$	$5.4(2)$	
		493.8	$33.0(27)$			
599.0	$\left(4^{+}\right)$	385.5	$7.0(13)$	$2.9(11)$	$6.4(2)$	$8.9(3)$
699.8	$\left(3^{+}\right)$	486.4	$6.0(4)$	$2.5(9)$	$6.4(2)$	$8.3(2)$
1042.2	$\left(0^{+}\right)$	828.8	$6.0(15)$	$2.5(10)$	$8.8(3)$	

${ }^{\text {a }}$ The absolute intensity per 100β decays is $0.41(14) I_{\gamma}$.

625 higher excited states may cause a significant deviation 626 from the actual $\log f t$. On the other hand, it is reason${ }^{67}$ able that the 8^{+}state, which is the largest spin among ${ }_{228}$ the measured states, is directly populated. Therefore, the ${ }_{29} 3^{+}$state is considered to be mainly fed from the higher ${ }_{30}$ excited states. The $\log f t$ values of the $4^{+}, 5^{+}, 6^{+}, 7^{+}$, ${ }_{631}$ and 8^{+}states are in the range from 5.7 to 6.3 . This case 632 is similar to the situation above. When the spin-parity of ${ }_{633}$ the high-spin state in ${ }^{110} \mathrm{Nb}$ is 6^{-}, the transitions to 4^{+} ${ }_{634}$ or 8^{+}states become the first unique forbidden transition. ${ }_{635}$ The recalculated $\log f t$ values, $8.5(3), 8.5(3), 8.5(3)$ and ${ }_{636} 8.6(3)$ for the $4_{1}^{+}, 4_{2}^{+}, 4_{3}^{+}$, and 8_{1}^{+}states, respectively, are ${ }_{637}$ consistent with the typical range. For the other positive ${ }_{638}$ parity states, the $\log f t$ values are consistent with the first 639 non-unique forbidden transitions from the 6^{-}state. As ${ }_{640}$ a result, the spin-parity of the high-spin state is assigned 641 to be 6^{-}.

F. Lifetime measurement of 2_{1}^{+}states in ${ }^{106,108,110} \mathrm{Mo}$

The mean lifetimes, τ, of the 2_{1}^{+}states in ${ }^{106,108,110} \mathrm{Mo}$ 64 were measured from the time between the observation of a β particle in a plastic scintillation detector and a γ ray corresponding to the $2_{1}^{+} \rightarrow 0_{1}^{+}$transition in the $\mathrm{LaBr}_{3}(\mathrm{Ce})$ detector array. Figure 8 shows the timedifference distributions for the three nuclei and Fig. 9 shows the corresponding γ-ray spectra with the regions used to make the time spectra highlighted in gray. The time spectra show a clear single exponential decay on a very low background. The γ-ray spectra in Fig. 9 do not show any evidence for delayed feeding of the 2_{1}^{+}state from higher-lying states and indeed, the lifetime of the 4_{1}^{+} state in ${ }^{108} \mathrm{Mo}$ was recently measured as $\tau=29.7_{-9.1}^{+11.3}$ ps [9]. Its effect can be ignored, since the lifetime is one order of magnitude smaller than the time resolution of 0.61 ns at 200 keV . The lifetimes of the 2_{1}^{+}states were determined from fitting the slope with a single ex-

FIG. 8. The time spectra of $2_{1}^{+} \rightarrow 0_{1}^{+} \gamma$-ray transition in ${ }^{106} \mathrm{Mo},{ }^{108} \mathrm{Mo}$, and ${ }^{110} \mathrm{Mo} . \Delta T$ is the time from β-particle detection by the plastic scintillator to γ-ray detection by the $\mathrm{LaBr}_{3}(\mathrm{Ce})$ array. The solid red lines are the best-fit curves using an exponential function and fixed constant background to the region indicated by the dashed red lines. The constant backgrounds, shown by the orange lines, were determined by fitting the region of $15<\Delta T<25 \mathrm{~ns}, 10<\Delta T<25 \mathrm{~ns}$, and $8<\Delta T<25 \mathrm{~ns}$ for ${ }^{106} \mathrm{Mo},{ }^{108} \mathrm{Mo}$, and ${ }^{110} \mathrm{Mo}$, respectively.

FIG. 9. The γ-ray energy spectra of the $\mathrm{LaBr}_{3}(\mathrm{Ce})$ array. The energy region used to make the time spectra of Fig. 8 are highlighted with gray. The prompt, $|\Delta T|<1 \mathrm{~ns}$, and delayed, $\Delta T>1 \mathrm{~ns}$, components are shown by the red and blue dotted lines, respectively.

IV. DISCUSSION

A. Quadrupole deformation of ground state in ${ }^{106,108,110} \mathrm{Mo}$

The ground-state band is described as the rotational

The low-lying 2_{2}^{+}state is a signature of a softness ${ }_{93}$ against γ vibration, a γ-unstable rotor, or a rigid triaxial 694 rotor. The three models are distinguished by means of

FIG. 10. Experimental and theoretical $B\left(\mathrm{E} 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)$values of the even-even Mo isotopes. The experimental values were calculated by the use of the relation in Ref. [52]. The open circles are taken from Ref. [48]. The theoretical values were calculated using the five-dimensional collective Hamiltonian with the pairing-plus-quadrupole interaction parameters determined from the two kinds of the Skyrme-interaction parameters (SLy5+T and SLy4).

FIG. 11. Quadrupole deformation parameter β for Zr (square) and Mo (circle) isotopes. Filled circles are the present results for the Mo isotopes. Filled squares for the Zr isotopes are the results from the same data set [53], but the values were recalculated from $B\left(\mathrm{E} 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)$by using the formula given in the review paper [48]. Open circles and squares are taken from the review paper [48] and a later work [54].
the energy staggering of the 2_{2}^{+}band [1]:

$$
\begin{equation*}
\frac{E_{s}(J)}{E\left(2_{1}^{+}\right)}=\frac{\Delta E_{J}-\Delta E_{J-1}}{E\left(2_{1}^{+}\right)} \tag{9}
\end{equation*}
$$

703

 704where $\Delta E_{J}=E_{\gamma}(J)-E_{\gamma}(J-1)$, and $E_{\gamma}(J)$ is the energy of the 2_{2}^{+}band member with the spin J. The $E_{s}(4) / E\left(2_{1}^{+}\right)$value of the γ-vibrational band is close to $1 / 3$, which is given by the $J(J+1)-K^{2}$ rule if the rotational energies are described approximately as the axially-symmetric rigid rotor. At maximum triaxiality $\left(\gamma=30^{\circ}\right)$ of a rigid-triaxial rotor in the Davydov model, it becomes 5/3 [2]. Another extreme case of γ-unstable ${ }_{4}$ nuclei in the Wilets-Jean model [3] yields -2 . Figure

FIG. 12. The $E_{s}(4) / E\left(2_{1}^{+}\right)$ratio around neutron-rich $A=$ 110. The black-dashed lines represent the ideal values of three models; rigid-triaxial rotor, γ-unstable rotor, and γ vibrational band. Filled square, circles, triangles and inverted triangles represent Zr , Mo, Ru, and Pd isotopes, respectively.

- ground and 2_{2}^{+}bands up to $J=10$. The newly discovered levels in the $K=2$ band of ${ }^{110} \mathrm{Mo}$ extended the kinematic MoI up to $J=7$. The similar evolution of the kinematic MoI between these two bands supports the interpretation

FIG. 13. The staggering pattern of $E_{s}(J) / E\left(2_{1}^{+}\right)$. The flat pattern indicates the γ-vibrational band, while the staggering pattern with low values at even and odd J indicates the γ-soft and rigid triaxial rotor, respectively, [4].

TABLE VI. The experimental and theoretical $B(\mathrm{E} 2)$ ratios. The M1/E2 mixing ratio of $\delta=6.2_{-0.8}^{+1.0}$ [56] was used for ${ }^{106}$ Mo. A pure E2 transition was assumed for ${ }^{108}$ Mo and ${ }^{110}$ Mo. The theoretical calculation using the SLy $5+\mathrm{T}$ interaction is given.

	Alaga	${ }^{106} \mathrm{Mo}$	${ }^{108} \mathrm{Mo}$	${ }^{110} \mathrm{Mo}$
$\frac{B\left(\mathrm{E} 2 ; 2_{2}^{+} \rightarrow 2_{1}^{+}\right)}{B\left(\mathrm{E} 2 ; 2_{2}^{+} \rightarrow 0_{1}^{+}\right)}$		$4.5(6)$	$8.3(6)$	$17.3(4)$
${ }^{7}$				${ }^{7}$
$\frac{B\left(\mathrm{E} 2 ; 2_{2}^{+} \rightarrow 2_{1}^{+}\right)}{B\left(\mathrm{E} 2 ; 2_{2}^{+} \rightarrow 0_{1}^{+}\right)_{\text {th. }}}$	1.43	2.0	4.9	14.0

746 of a γ-vibrational band.

FIG. 14. The kinematic moment of inertia for the ground band (black line with filled squares), $K^{\pi}=2^{+}$band (blue line with filled triangles for even J and green line for odd J), and $K^{\pi}=4^{+}$band (red line with open circles for even J and orange line for odd J) in $(\mathrm{a})^{106} \mathrm{Mo},(\mathrm{b})^{108} \mathrm{Mo}$, and $(\mathrm{c})^{110} \mathrm{Mo}$.

C. Candidate of two-phonon γ band

The $K^{\pi}=4^{+}$band in ${ }^{110} \mathrm{Mo}$ has the lowest bandhead energy of 1244 keV among the neutron-rich Mo isotopes. A potential two-quasiparticle state with $K^{\pi}=4^{+}$ would appear around or above the pairing gap. However, the observed energy is well below $2 \Delta_{p} \sim 3.4 \mathrm{MeV}$ and $2 \Delta_{n} \sim 2.5 \mathrm{MeV}$ for the proton and neutron pairs, respectively, which are calculated from the atomic mass evaluation AME2016 [33]. A $K^{\pi}=4^{+}$band, decaying to the γ band, is known in many neighboring nuclei, such as ${ }^{104,106,108} \mathrm{Mo}$, and ${ }^{108,110,112,114,116} \mathrm{Ru}[34,57]$. The systematical observations of the $K^{\pi}=4^{+}$state indicate that the $K^{\pi}=4^{+}$band head is a collective excitation rather than a two quasiparticle state.

The $K^{\pi}=4^{+}$band in ${ }^{106}$ Mo has been discussed in the context of a two-phonon γ vibration [13]. The ratio of the lowest $K^{\pi}=4^{+}$and 2^{+}band-head energies is 2.02 , which is close to the 2.0 value for a harmonic vibrator. The reduced transition probabilities of the interband transition between $K^{\pi}=2^{+}$and 4^{+}bands were ${ }_{79}$ compared with those between $K^{\pi}=0^{+}$and 2^{+}bands,
and were consistent with the relation of the one-phonon 83 and two-phonon excitations. The ratio of the band-head 83 energies changes gradually as $1.95,2.02,2.43$, and 2.52 for ${ }^{104} \mathrm{Mo},{ }^{106} \mathrm{Mo},{ }^{108} \mathrm{Mo}$, and ${ }^{110} \mathrm{Mo}$, respectively. The 8 kinematic MoI of the $K^{\pi}=4^{+}$band shown in Fig. 14 has similar values to those of the ground-state and γ bands. Thus, the newly discovered $K^{\pi}=4^{+}$band in ${ }^{110}$ Mo was assigned as a candidate of the two-phonon γ vibrational band.

D. Second 0^{+}state

The energies of the 0_{2}^{+}state, 893.4 and 1042.2 keV for ${ }^{108} \mathrm{Mo}$ and ${ }^{110} \mathrm{Mo}$, respectively, are low enough to indicate a β-vibrational state or shape coexistence rather than two-quasiparticle states, since they are well below the pairing gaps, $2 \Delta_{p}$ and $2 \Delta_{n}$, given in Sec. IV C. The energies are similar to those of other Mo isotopes, which range from 695 keV to 886 keV between ${ }^{98} \mathrm{Mo}$ and ${ }^{104} \mathrm{Mo}$, respectively [34].

The $1158.4-\mathrm{keV} 2^{+}$state in ${ }^{108} \mathrm{Mo}$ has a similar decay pattern to the 2_{3}^{+}state in ${ }^{106,108,110} \mathrm{Ru}$ isotopes [34]. The 2_{3}^{+}state in the Ru isotopes decays also to the 0_{2}^{+}state. Although the corresponding γ-ray transition from 1158.4keV state to 0_{2}^{+}state in ${ }^{108} \mathrm{Mo}$ was not observed due to the lack of the sensitivity for $I_{\gamma}<0.5 \%$, the energy difference, $E\left(2_{3}^{+}\right)-E\left(0_{2}^{+}\right)=265 \mathrm{keV}$, is similar to the cases of 402,273 , and 260 keV for ${ }^{106,108,110} \mathrm{Ru}$ [34], respectively. Based on these systematic trends, the $1158.4-\mathrm{keV}$ state in ${ }^{108} \mathrm{Mo}$ was tentatively assigned as the member of the 0_{2}^{+}band.

The 0_{2}^{+}states of ${ }^{108,110}$ Mo will be discussed by comparing with predictions in Sec. IV E.

E. Comparison with 5D collective Hamiltonian calculation with microscopic approach

Five-dimensional collective Hamiltonian calculations were performed for the low-lying states in ${ }^{106,108,110}$ Mo. ${ }^{87}$ The PES and the kinetic terms (vibrational and rotational masses) were microscopically calculated using the CHFB+LQRPA approach using pairing-plus-quadrupole $(\mathrm{P}+\mathrm{Q})$ interactions whose parameters, such as spherical single-particle energies in the two-major harmonic oscillator shell model space and interaction strengths, were fitted to the mean-field results obtained with two kinds of Skyrme interactions, SLy5+T or SLy4 (see Refs. [5860] for details). The Schrödinger equation in the collective space was solved to obtain the energies and the collective wave functions of the ground and excited states. The PESs and the collective wave functions squared are shown in Fig. 15 for SLy5+T and Fig. 16 for SLy4. The two kinds of theoretical excitation energies are compared with the experimental ones in Fig. 17. The PESs show a strong dependence on the effective interaction used. The calculation with the SLy5+T interaction predicts a pro-

35 late shape with $\beta \sim 0.35$ and $\gamma=0^{\circ}$, while the SLy4 ${ }_{36}$ interaction predicts an oblate shape with $\beta \sim 0.2$ and ${ }_{37} \gamma=60^{\circ}$. For the comparison with the experimental re38 sults, the $B\left(\mathrm{E} 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)$value was used instead of β. The $B\left(\mathrm{E} 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)$values were calculated by adopting the effective charges, $e_{\pi}=1.5 e$, and $e_{\nu}=0.5 e$, for the two major-shell single-particle model space as shown in ${ }_{42}$ Fig. 10. The theoretical values with SLy5+T are roughly

FIG. 15. The potential-energy surface and the collective-wave functions squared (with a factor of β^{4}) of low-lying states in ${ }^{106} \mathrm{Mo}$, ${ }^{108} \mathrm{Mo}$, and ${ }^{110} \mathrm{Mo}$. The pairing-plus-quadrupole interaction and spherical single-particle energies used in the CHFB+LQRPA calculations were fitted to the mean-field results obtained with the SLy5+T interaction.

FIG. 16. Same as Fig. 15, but with the SLy4 interaction.
${ }_{893}$ cited even-spin states (e.g. 4_{2}^{+}) are more influenced by ${ }^{898}$ at all. This will result in a qualitative difference between ${ }_{894}$ the mixing with $K^{\pi}=0^{+}$bands, which are built on the ${ }^{899}$ the even- and odd-spin states, and energy staggering that ${ }_{895}$ ground state, shape coexistence, shape fluctuation in the 900 deviates from the ideal γ-band energy.
${ }_{896} \beta$ direction around $\gamma=0^{\circ}$, and any low-lying $K^{\pi}=0^{+}$
${ }_{897}$ states. The odd-spin states are not very sensitive to them 901 The quadrupole collective Hamiltonian approach can ${ }_{902}$ predict a two-phonon γ vibrational band with $K^{\pi}=4^{+}$,

FIG. 17. The experimental and theoretical energies of the low-lying excited states in ${ }^{106} \mathrm{Mo},{ }^{108} \mathrm{Mo}$, and ${ }^{110} \mathrm{Mo}$. Black lines present the experimental results, and red and blue lines present the results from the theoretical calculations using SLy5+T and SLy4, respectively.
but not two quasiparticle states because it does not in- ${ }_{934}$ formation providing a favored origin for the 0_{2}^{+}state in clude the quasiparticle degrees of freedom explicitly. As ${ }_{935}{ }^{110} \mathrm{Mo}$. Additional experimental and theoretical works discussed in Sec. IV C, the observed $K^{\pi}=4^{+}$band is 936 are awaited for further discussions. most likely built on a collective excitation. However, the $K^{\pi}=4^{+}$band was not predicted by the calculations. An ideal two-phonon γ vibrational state has a wave function ${ }^{937}$ localized around the prolate minimum. To have a localized two-phonon $K^{\pi}=4^{+}$vibrational state, which has a larger vibrational energy than that of a one-phonon state, generally the PES along the γ direction has to be deep enough to prevent oblate admixtures. If this is not satisfied, the corresponding two-phonon state will mix with the oblate shape and lose its two-phonon character. The potential barriers in the γ direction from the potential minimum, shown in Fig. 15, are shallow. By increasing in energy by 1 MeV or so from the prolate potential minimum, the other side of the axial symmetry at $\gamma=60^{\circ}$ (oblate) is reached. Further theoretical investigations are necessary to reproduce these collective excitations. One of the important improvements for the 5 D collective model is to use effective interactions such as modern Skyrme energy density functionals instead of the $\mathrm{P}+\mathrm{Q}$ Hamiltonian [62].

The squared wave functions of the 0_{2}^{+}state in ${ }^{95}$ ${ }^{106,108,110}$ Mo with SLy5+T indicate β vibrational mo- ${ }_{955}$ tion. On the other hand the calculation with SLy 4 indicates the possibility of oblate shapes. Since the energy difference between the 0_{2}^{+}and 2_{3}^{+}states in ${ }^{108} \mathrm{Mo}$ is consistent with the predic- ${ }^{95}$ tion with SLy5 $5+\mathrm{T}$, the 0_{2}^{+}state in ${ }^{108} \mathrm{Mo}$ is suggested to ${ }^{96}$ be a β vibrational state. There is no experimental in- 96

F. Structure of parent nuclei ${ }^{106,108,110} \mathbf{N b}$

Configuration of ${ }^{106} \mathrm{Nb}$: The spin-parity of the β ${ }_{39}$ decaying state in ${ }^{106} \mathrm{Nb}$ was assigned to be 4^{-}, and ${ }_{90}$ there were no experimental indications of the existence 41 of a second β-decaying state. From the prompt γ ${ }_{42}$ ray spectroscopy of the ${ }^{252} \mathrm{Cf}$ spontaneous fission [63], ${ }_{943}$ the spin-parity of the ground state in ${ }^{106} \mathrm{Nb}$ was as944 signed as 1^{-}. Owing to the relatively strong popula${ }_{945}$ tion of high-spin states in ${ }^{106} \mathrm{Mo}$ and the fact that no ${ }_{946}$ known γ rays of ${ }^{106} \mathrm{Nb}$ are observed following the de${ }_{947}$ cay of ${ }^{106} \mathrm{Zr}$, it is likely that the β-decaying state of ${ }_{948}{ }^{106} \mathrm{Nb}$ is not the 1^{-}ground state. The configuration ${ }_{949}$ of $\pi 3 / 2^{-}[301] \otimes \nu 5 / 2^{+}[413]$ with $K^{\pi}=1^{-}$was pro950 posed for the ground state [63]. In the Nilsson dia${ }_{951}$ gram [64], these quasiparticle states are predicted for 952 the prolate shape with $\beta \sim+0.35$ measured in ${ }^{106} \mathrm{Mo}$.
${ }_{953}$ The Gallagher-Moszkowski (GM) rule [65] predicts that 54 the state with the antiparallel spin-coupling becomes a 55 higher-lying state. Therefore, the observed β-decaying 956 state was assigned to be a high-spin $K^{\pi}=4^{-}$isomeric 57 state of the GM partner in the $\pi 3 / 2^{-}[301] \otimes \nu 5 / 2^{+}[413]$ configuration.

Configuration of ${ }^{108} \mathrm{Nb}$: The spin-parity of the ${ }^{108} \mathrm{Nb}$ ground-state was assigned to be 2^{-}, and there was no evidence of a β-decaying isomeric state. The single-

TABLE VII. Candidates of the quasiparticle-state configurations of two β-decaying states in ${ }^{110} \mathrm{Nb}$. Four quasiparticle states are selected from the Nilsson diagram [64] and the quasiparticle level in the Woods-Saxon potential [66] for each nucleon. The left and right values show the spin-parity of the parallel- and antiparallel-spin coupling, respectively. The 1009 parallel-spin coupling state becomes lower-lying state [65]. 101 The spins of the assigned configurations for the low and highspin states are written in bold text.

$\pi / 2^{+}[431]$				
$\pi 5 / 2^{+}[422]$	$\pi 5 / 2^{-}[303]$	$\pi 3 / 2^{-}[301]$		
$\nu 5 / 2^{+}[402]$	$2^{+} / 3^{+}$	$5^{+} / 0^{+}$	$0^{-} / 5^{-}$	$4^{-} / 1^{-}$
$\nu 1 / 2^{+}[411]$	$1^{+} / 0^{+}$	$2^{+} / 3^{+}$	$3^{-} / 2^{-}$	$1^{-} / 2^{-}$
$\nu 7 / 2^{-}[523]$	$3^{-} / 4^{-}$	$\mathbf{6}^{-} / 1^{-}$	$1^{+} / 6^{+}$	$5^{+} / 2^{+}$
$\nu 1 / 2^{-}[541]$	$1^{-} / 0^{-}$	$\mathbf{2}^{-} / 3^{-}$	$3^{+} / 2^{+}$	$1^{+} / 2^{+}$

proton and neutron levels in the deformed nucleus were calculated according to the Nilsson diagram [64] and by using the Woods-Saxon potential [66]. A major difference of the level orderings between these two is the negative parity states of the protons. Candidates of the valence proton and neutron configurations were selected based on these two predictions. These are, $\pi 1 / 2^{+}[431], \pi 5 / 2^{+}[422], \pi 5 / 2^{-}[303]$, and $\pi 3 / 2^{-}[301]$ for the proton configuration, and $\nu 1 / 2^{+}[411]$, $\nu 5 / 2^{+}[413]$, and $\nu 1 / 2^{-}$[541] for the neutron configuration at around $\beta=+0.33$ for ${ }^{108} \mathrm{Mo}$. The spin-parity of the $\pi 5 / 2^{-}[303] \otimes \nu 1 / 2^{+}[411]$ configuration is 2^{-}and ${ }^{103}$ 3^{-}with the antiparallel- and parallel-spin couplings, respectively. The lower-lying state is the 3^{-}state based ${ }_{103}$ on the GM rule. The 2^{-}state would not form a $\beta-{ }_{103}$ decaying isomeric state because of a fast M1 transi- ${ }^{103}$ tion to the 3^{-}state. Thus, the expected β-decaying ${ }_{1034}$ state is not the 2^{-}state, but the 3^{-}state. The $2^{-}{ }_{103}$ state of the $\pi 3 / 2^{-}[301] \otimes \nu 1 / 2^{+}[411]$ configuration is also ${ }_{103}$ antiparallel-spin coupled, therefore the 1^{-}state with the ${ }_{103}$ parallel-spin coupling would be the β-decaying state. The $\pi 5 / 2^{+}[422] \otimes \nu 1 / 2^{-}[541]$ configuration can generate a $\beta-{ }_{103}$ decaying 2^{-}state with the parallel-spin coupling. The ${ }_{104}$ 3^{-}state with the antiparallel-spin coupling will decay to ${ }_{104}$ the 2^{-}state by a M1 transition. Therefore, the ground ${ }_{1042}$ state of ${ }^{108} \mathrm{Nb}$ was assigned to be the 2^{-}state with the ${ }_{1043}$ $\pi 5 / 2^{+}[422] \otimes \nu 1 / 2^{-}[541]$ configuration.

Configuration of ${ }^{110} \mathrm{Nb}$: Two β-decaying states were 104 observed. The spin-parities were assigned to be 2^{-}and ${ }_{1046}$ 6^{-}. The quasiparticle states are selected from the Nilsson ${ }^{1047}$ diagram [64] at around $\beta=+0.305$ for ${ }^{110} \mathrm{Mo}$ or the ${ }_{1048}$ single particle levels in the Woods-Saxon potential [66] 104 as $\pi 1 / 2^{+}[431], \pi 5 / 2^{+}[422], \pi 5 / 2^{-}[303]$, and $\pi 3 / 2^{-}[301]^{105}$ for the proton, and $\nu 5 / 2^{-}[402], \nu 1 / 2^{+}[411], \nu 7 / 2^{-}[523],{ }_{105}$ and $\nu 1 / 2^{-}[541]$ for the neutron. The spin-parities of the ${ }_{1052}$ configuration coupled with these quasiparticle states are ${ }^{105}$ summarized in Table VII.

The 6^{-}state is only generated by the parallel-spin cou- ${ }^{1055}$ pling of the $\pi 5 / 2^{+}[422] \otimes \nu 7 / 2^{-}[523]$ configuration. The ${ }_{105}$ anti-parallel spin coupled 1^{-}state of this configuration, ${ }^{105}$ which has a higher energy based on the GM rule, would ${ }_{105}$ three candidates, the lower energy state with the parallel spin becomes the β-decaying state. Thus, the parallel spin-coupling state of the $\pi 5 / 2^{+}[422] \otimes \nu 1 / 2^{-}[541]$ configuration was assigned to the β-decaying 2^{-}state.

The difference between the assigned configurations of the two β-decaying states is the neutron quasiparticle state. It is indicated that the $\nu 7 / 2^{-}[523]$ and $\nu 1 / 2^{-}[541]$ states are near the Fermi surface and close to each other. There was no experimental evidence to select the ground state from these two states.

Comparison between Nilsson diagram and single1019 particle levels in Woods-Saxon potential: The assigned 1020 configurations of ${ }^{106} \mathrm{Nb},{ }^{108} \mathrm{Nb}$, and ${ }^{110} \mathrm{Nb}$ are consistent 21 with the Nilsson diagram given in Ref. [64]. On the other hand, the $\pi 5 / 2^{+}[422]$ state in the Woods-Saxon potential is located below $Z=40$ [66], even though it is used in the configuration of ${ }^{108} \mathrm{Nb}$ and ${ }^{110} \mathrm{Nb}$. From comparison with the Nilsson diagram, it is suggested that the $\pi 3 / 2^{-}[301]$ state in the Woods-Saxon potential may need to lower in energy so as to cross the $\pi 5 / 2^{+}[422]$ state at $\beta \sim 0.3$.

V. SUMMARY

The delayed γ rays emitted from the β decays of ${ }^{106,108,110} \mathrm{Nb}$ were observed to investigate the shape evolution of ${ }^{106,108,110} \mathrm{Mo}$. The neutron-emission probability, P_{n}, of ${ }^{108} \mathrm{Nb}$ and ${ }^{110} \mathrm{Nb}$ was determined from the β delayed γ rays emitted from the daughter nuclei with the same mass number. The daughter decays of ${ }^{106,108,110} \mathrm{Zr}$ were used to search for β-decaying isomeric states in the Nb isotopes and to increase the statistics of the γ rays from ${ }^{106} \mathrm{Mo}$ and ${ }^{108} \mathrm{Mo}$. Two β-decaying states with low and high spins were found in the ${ }^{110} \mathrm{Nb} \beta$ decay. Although the ground state in ${ }^{110} \mathrm{Nb}$ was not assigned from these two candidates, the decay properties, including P_{n}, were separately determined for each state.
The lifetime of the 2_{1}^{+}state in the Mo isotopes was measured by using the fast timing $\mathrm{LaBr}_{3}(\mathrm{Ce})$ array. The quadrupole deformation parameter was obtained from the energy and lifetime of the 2_{1}^{+}state. The deformation is almost unchanged with $\beta \sim 0.33$ from the neutron number $N=62$ to 66 and slightly decreases to $0.305(7)$ at $N=68$. The even-odd energy staggering of the 2_{2}^{+} band was evaluated using $E_{s}(J) / E\left(2_{1}^{+}\right)$as a function of the spin J. The staggering of the ${ }^{106} \mathrm{Mo},{ }^{108} \mathrm{Mo}$, and ${ }^{110}$ Mo isotopes shows the pattern of the γ-vibrational 54 band. The comparison of kinematic moment of inertia between the ground and 2_{2}^{+}bands supports the interpretation as the γ-vibrational band. A candidate of the two-phonon γ vibrational band was found well below the proton and neutron pairing gaps also in the ${ }^{110}$ Mo iso-

The ground, γ, and two-phonon γ bands were compared to beyond-mean-field calculations. The groundband energies and $B(\mathrm{E} 2)$ of the 2_{1}^{+}state were reproduced by the calculation with the SLy5+T interaction. The γ band of ${ }^{106} \mathrm{Mo}$ was also reproduced very well. The comparison indicates that the shape is prolate with axial symmetry. However, the even-odd staggering of the γ band 1092 in ${ }^{110} \mathrm{Mo}$ was not reproduced. The predicted potential 1093 might be too shallow toward the triaxial deformation es- 109 pecially for ${ }^{110} \mathrm{Mo}$. This may also be the reason why no 1095 two-phonon γ bands exist in the theoretical results.

The 893.4- and $1042.2-\mathrm{keV}$ states in ${ }^{108} \mathrm{Mo}$ and ${ }^{110} \mathrm{Mo} 1097$ were assigned as the second 0^{+}states, respectively. On 1098 the other hand, the transition from the second 0^{+}state 1099 previously reported in the β-decay to ${ }^{106} \mathrm{Mo}$ was shown 1100 ish Ministerio de Ciencia e Innovación under Contracts to be the known $5_{1}^{+} \rightarrow 4_{1}^{+}$transition. The compari- ${ }_{1101}$ No. FPA2009-13377-C02 and No. FPA2011-29854-C04. son with the beyond-mean-field calculation indicates a 1102 P.H.R. acknowledges support from the UK National Mea-β-vibrational character for the 0_{2}^{+}state in ${ }^{108} \mathrm{Mo}$. ${ }_{1103}$ surement Office (NMO). P.-A.S. was financed by JSPS

The $\log f t$ values were reasonably understood only ${ }_{1104}$ Grant No. 2301752 and the RIKEN Foreign Postdocwhen the first unique forbidden transition was intro- 1105 toral Researcher Program. We acknowledge the EUduced. It gave the strong constraint for the spin-parity ${ }_{1106}$ ROBALL Owners Committee for the loan of germaassignment of the parent nuclei. The quasiparticle con- ${ }_{107}$ nium detectors and the PreSpec Collaboration for the figurations of the parent nuclei were assigned by referring ${ }_{1108}$ readout electronics of the cluster detectors. NH acthe Nilsson diagram for the prolate shape.

It is interesting to investigate whether the disagree- 1110 Joint Research Project on "Nuclear mass and life for unment between the experiment and prediction for ${ }^{110} \mathrm{Mo}{ }_{1111}$ ravelling mysteries of r-process." Numerical calculations is enhanced at heavier Mo isotopes or not. The low-lying 1112 were performed in part using the COMA (PACS-IX) and $2_{1}^{+}, 4_{1}^{+}$, and 2_{2}^{+}states are known in ${ }^{112} \mathrm{Mo}$ [16]. In order ${ }_{1113}$ Oakforest-PACS provided by Multidisciplinary Cooperato study the triaxial motion, measurements of the higher ${ }_{1114}$ tive Research Program in Center for Computational Scispin states in the 2_{2}^{+}band are awaited. 1115 ences, University of Tsukuba.
[1] R. F. Casten, Nuclear Structure from a Simple Perspec- 1142 tive (Oxford University Press, Oxford, 2000). ${ }_{1143}$
[2] A. S. Davydov and G. F. Filippov, Nucl. Phys. 8, $237{ }_{1144}$ (1958).
[3] L. Wilets and M. Jean, Phys. Rev. 102, 788 (1956).
[4] M. A. Caprio, Phys. Rev. C 83, 064309 (2011). ${ }^{1147}$
[5] J. Skalski, S. Mizutori, and W. Nazarewicz, Nucl. Phys. 1148 A 617, 282 (1997).

1149
[6] S. Hilaire and M. Girod, AIP Conference Proceedings 1150 1012, 359 (2008). http://www-phynu.cea.fr/science_ 1151 en_ligne/carte_potentiels_microscopiques/carte_ 1152 potentiel_nucleaire_eng.htm.
[7] C. L. Zhang, G. H. Bhat, W. Nazarewicz, J. A. Sheikh, 1154 and Y. Shi, Phys. Rev. C 92, 034307 (2015). 1155
[8] A.-C. Dai, F.-R. Xu, and W.-Y. Liang, Chinese Physics 1156 C 43, 084101 (2019).
[9] D. Ralet, S. Pietri, T. Rodríguez, M. Alaqeel, T. Alexan- 1158 der, N. Alkhomashi, F. Ameil, T. Arici, A. Ataç, 1159 R. Avigo, T. Bäck, D. Bazzacco, B. Birkenbach, 1160 P. Boutachkov, B. Bruyneel, A. M. Bruce, F. Cam- 1161 era, B. Cederwall, S. Ceruti, E. Clément, M. L. 1162 Cortés, D. Curien, G. De Angelis, P. Désesquelles, 1163 M. Dewald, F. Didierjean, C. Domingo-Pardo, M. Don- 1164 cel, G. Duchêne, J. Eberth, A. Gadea, J. Gerl, 1165 F. Ghazi Moradi, H. Geissel, T. Goigoux, N. Goel, P. Gol- 1166 ubev, V. González, M. Górska, A. Gottardo, E. Gregor, 1167
G. Guastalla, A. Givechev, T. Habermann, M. Hackstein, L. Harkness-Brennan, G. Henning, H. Hess, T. Hüyük, J. Jolie, D. S. Judson, A. Jungclaus, R. Knoebel, I. Kojouharov, A. Korichi, W. Korten, N. Kurz, M. Labiche, N. Lalović, C. Louchart-Henning, D. Mengoni, E. Merchán, B. Million, A. I. Morales, D. Napoli, F. Naqvi, J. Nyberg, N. Pietralla, Z. Podolyák, A. Pullia, A. Prochazka, B. Quintana, G. Rainovski, M. Reese, F. Recchia, P. Reiter, D. Rudolph, M. D. Salsac, E. Sanchis, L. G. Sarmiento, H. Schaffner, C. Scheidenberger, L. Sengele, B. S. N. Singh, P. P. Singh, C. Stahl, O. Stezowski, P. Thoele, J. J. Valiente Dobon, H. Weick, A. Wendt, O. Wieland, J. S. Winfield, H. J. Wollersheim, and M. Zielinska (for the PreSPEC and PreSPEC and AGATA Collaborations), Phys. Rev. C 95, 034320 (2017).
[10] H. Ahrens, N. Kaffrell, N. Trautmann, and G. Herrmann, Phys. Rev. C 14, 211 (1976).
[11] B. D. Kern, K. Sistemich, W.-D. Lauppe, and H. Lawin, Z. Phys. A 306, 161 (1982).
[12] K. Shizuma, H. Lawin, and K. Sistemich, Z. Phys. A 311, 71 (1983).
[13] A. Guessous, N. Schulz, W. R. Phillips, I. Ahmad, M. Bentaleb, J. L. Durell, M. A. Jones, M. Leddy, E. Lubkiewicz, L. R. Morss, R. Piepenbring, A. G. Smith, W. Urban, and B. J. Varley, Phys. Rev. Lett. 75, 2280
[14] A. Guessous, N. Schulz, M. Bentaleb, E. Lubkiewicz, 1232 J. L. Durell, C. J. Pearson, W. R. Phillips, J. A. Shan- ${ }^{1233}$ non, W. Urban, B. J. Varley, I. Ahmad, C. J. Lister, L. R. ${ }^{1234}$ Morss, K. L. Nash, C. W. Williams, and S. Khazrouni, 1235 Phys. Rev. C 53, 1191 (1996).
15] H. Watanabe, K. Yamaguchi, A. Odahara, T. Sumikama, 1237 S. Nishimura, K. Yoshinaga, Z. Li, Y. Miyashita, K. Sato, 1238 L. Próchniak, H. Baba, J. S. Berryman, N. Blasi, 1239 A. Bracco, F. Camera, J. Chiba, P. Doornenbal, S. Go, 1240 T. Hashimoto, S. Hayakawa, C. Hinke, N. Hinohara, ${ }_{1241}$ E. Ideguchi, T. Isobe, Y. Ito, D. G. Jenkins, Y. Kawada, 1242 N. Kobayashi, Y. Kondo, R. Krücken, S. Kubono, 1243 G. Lorusso, T. Nakano, T. Nakatsukasa, M. Kurata- 1244 Nishimura, H. J. Ong, S. Ota, Z. Podolyák, H. Saku- ${ }^{1245}$ rai, H. Scheit, K. Steiger, D. Steppenbeck, K. Sugi- 1246 moto, K. Tajiri, S. Takano, A. Takashima, T. Teranishi, 1247 Y. Wakabayashi, P. M. Walker, O. Wieland, and H. Ya- 1248 maguchi, Phys. Lett. B 704, 270 (2011).
16] N. Paul, A. Corsi, A. Obertelli, P. Doornenbal, G. Au- ${ }^{125}$ thelet, H. Baba, B. Bally, M. Bender, D. Calvet, 1251 F. Château, S. Chen, J.-P. Delaroche, A. Delbart, J.-M. 1252 Gheller, A. Giganon, A. Gillibert, M. Girod, P.-H. Hee- ${ }_{1253}$ nen, V. Lapoux, J. Libert, T. Motobayashi, M. Niikura, ${ }_{1254}$ T. Otsuka, T. R. Rodríguez, J.-Y. Roussé, H. Sakurai, 1255 C. Santamaria, N. Shimizu, D. Steppenbeck, R. Taniuchi, 1256 T. Togashi, Y. Tsunoda, T. Uesaka, T. Ando, T. Arici, 1257 A. Blazhev, F. Browne, A. M. Bruce, R. Carroll, L. X. ${ }_{1258}$ Chung, M. L. Cortés, M. Dewald, B. Ding, F. Flav- 1259 igny, S. Franchoo, M. Górska, A. Gottardo, A. Jung- 1260 claus, J. Lee, M. Lettmann, B. D. Linh, J. Liu, Z. Liu, ${ }_{1261}$ C. Lizarazo, S. Momiyama, K. Moschner, S. Nagamine, 1262 N. Nakatsuka, C. Nita, C. R. Nobs, L. Olivier, Z. Pa- ${ }^{1263}$ tel, Z. Podolyák, M. Rudigier, T. Saito, C. Shand, 1264 P.-A. Söderström, I. Stefan, R. Orlandi, V. Vaquero, 1265 V. Werner, K. Wimmer, and Z. Xu, Phys. Rev. Lett. 1266 118, 032501 (2017).
[17] N. V. Zamfir and R. F. Casten, Phys. Lett. B 260, $265{ }_{1268}$ (1991).
[18] R. Casten, E. Flynn, O. Hansen, and T. Mulligan, Nucl. 1270 Phys. A 184, 357 (1972).
[19] S. Takeda, S. Yamaji, K. Matsuda, I. Kohno, N. Nakan- ${ }^{1272}$ ishi, Y. Awaya, and S. Kusuno, J. Phys. Soc. Jpn. 34, 1273 1115 (1973), https://doi.org/10.1143/JPSJ.34.1115.
[20] K. Sistemich, W. D. Lauppe, H. Lawin, H. Seyfarth, and 1275 B. D. Kern, Z. Phys. A 289, 225 (1979).

1276
21] H. Penttilä, P. Dendooven, A. Honkanen, M. Huhta, 1277 G. Lhersonneau, M. Oinonen, J.-M. Parmonen, 1278 K. Peräjärvi, J. Äystö, J. Kurpeta, and J. R. Persson, 1279 Phys. Rev. C 54, 2760 (1996).

1280
[22] F. Browne, A. M. Bruce, T. Sumikama, I. Nishizuka, 1281 S. Nishimura, P. Doornenbal, G. Lorusso, Z. Patel, 1282 S. Rice, L. Sinclair, P.-A. Söderström, H. Watanabe, 1283 J. Wu, Z. Y. Xu, H. Baba, N. Chiga, R. Carroll, R. Daido, 1284 F. Didierjean, Y. Fang, G. Gey, E. Ideguchi, N. In- 1285 abe, T. Isobe, D. Kameda, I. Kojouharov, N. Kurz, 1286 T. Kubo, S. Lalkovski, Z. Li, R. Lozeva, N. Naoki, ${ }_{1287}$ H. Nishibata, A. Odahara, Z. Podolyák, P. H. Regan, 1288 O. J. Roberts, H. Sakurai, H. Schaffner, G. S. Simp- ${ }^{1289}$ son, H. Suzuki, H. Takeda, M. Tanaka, J. Taprogge, 1290 V. Werner, O. Wieland, and A. Yagi, Acta Phys. Pol. ${ }^{1291}$ B 46, 721 (2015).
[23] T. Kubo, Nucl. Instrum. Methods B 204, 97 (2003).
[24] T. Kubo, D. Kameda, H. Suzuki, N. Fukuda, H. Takeda, Y. Yanagisawa, M. Ohtake, K. Kusaka, K. Yoshida, N. Inabe, T. Ohnishi, A. Yoshida, K. Tanaka, and Y. Mizoi, Prog. Theor. Exp. Phys. 2012, 03C003 (2012).
[25] T. Sumikama, F. Browne, A. M. Bruce, I. Nishizuka, S. Nishimura, P. Doornenbal, G. Lorusso, Z. Patel, S. Rice, L. Sinclair, P.-A. Söderström, H. Watanabe, J. Wu, Z. Y. Xu, A. Yagi, H. Baba, N. Chiga, R. Carroll, R. Daido, F. Didierjean, Y. Fang, G. Gey, E. Ideguchi, N. Inabe, T. Isobe, D. Kameda, I. Kojouharov, N. Kurz, T. Kubo, S. Lalkovski, Z. Li, R. Lozeva, N. Fukuda, H. Nishibata, A. Odahara, Z. Podolyák, P. H. Regan, O. J. Roberts, H. Sakurai, H. Schaffner, G. S. Simpson, H. Suzuki, H. Takeda, M. Tanaka, J. Taprogge, V. Werner, and O. Wieland, RIKEN Accel. Prog. Rep. 47, 9 (2014).
[26] S. Nishimura, Prog. Theor. Exp. Phys. 2012, 03C006 (2012).
[27] S. Nishimura, G. Lorusso, Z. Xu, J. Wu, R. Gernhäuser, H. Jung, Y. Kwon, Z. Li, K. Steiger, and H. Sakurai, RIKEN Accel. Prog. Rep. 46, 182 (2013).
[28] I. Nishizuka, T. Sumikama, F. Browne, A. M. Bruce, S. Nishimura, P. Doornenbal, G. Lorusso, Z. Patel, S. Rice, L. Sinclair, P.-A. Söderström, H. Watanabe, J. Wu, Z. Y. Xu, A. Yagi, H. Baba, N. Chiga, R. Carrol, R. Daido, F. Didierjean, Y. Fang, N. Fukuda, G. Gey, E. Ideguchi, N. Inabe, T. Isobe, D. Kameda, I. Kojouharov, N. Kurz, T. Kubo, S. Lalkovski, Z. Li, R. Lozeva, H. Nishibata, A. Odahara, Z. Podolyák, P. H. Regan, O. J. Roberts, H. Sakurai, H. Schaffner, G. S. Simpson, H. Suzuki, H. Takeda, M. Tanaka, J. Taprogge, V. Werner, and O. Wieland, JPS Conf. Proc. 6, 030062 (2015).
[29] J. Ha, T. Sumikama, and S. Choi, Nucl. Instrum. Methods B 463, 216 (2020).
[30] P.-A. Söderström, S. Nishimura, P. Doornenbal, G. Lorusso, T. Sumikama, H. Watanabe, Z. Y. Xu, H. Baba, F. Browne, S. Go, G. Gey, T. Isobe, H.-S. Jung, G. D. Kim, Y.-K. Kim, I. Kojouharov, N. Kurz, Y. K. Kwon, Z. Li, K. Moschner, T. Nakao, H. Nishibata, M. Nishimura, A. Odahara, H. Sakurai, H. Schaffner, T. Shimoda, J. Taprogge, Z. Vajta, V. Werner, J. Wu, A. Yagi, and K. Yoshinaga, Nucl. Instrum. Methods B 317, 649 (2013).
[31] Z. Patel, F. Browne, A. M. Bruce, N. Chiga, R. Daido, S. Nishimura, Z. Podolyák, P. H. Regan, O. J. Roberts, H. Sakurai, P.-A. Söderström, T. Sumikama, and H. Watanabe, RIKEN Accel. Prog. Rep. 47, 13 (2014).
[32] J. C. Hill, D. D. Schwellenbach, F. K. Wohn, J. A. Winger, R. L. Gill, H. Ohm, and K. Sistemich, Phys. Rev. C 43, 2591 (1991).
[33] M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X. Xu, Chin. Phys. C 41, 030003 (2017).
[34] ENSDF database, http://www.nndc.bnl.gov/ensdf.
[35] X. Rui-Qing, Z. Sheng-Jiang, J. H. Hamilton, A. V. Ramayya, J. K. Hwang, X. Q. Zhang, L. Ke, Y. Li-Ming, Z. Ling-Yan, G. Cui-Yun, Z. Zheng, J. Zhuo, X. ShuDong, W. C. Ma, J. Kormicki, E. F. Jones, J. D. Cole, R. Aryaeinejad, M. W. Drigert, I. Y. Lee, J. O. Rasmussen, M. A. Stoyer, G. M. Ter-Akopian, and A. V. Daniel, Chin. Phys. Lett. 19, 180 (2002).
[36] S. J. Zhu, J. H. Hamilton, A. V. Ramayya, P. M. Gore, J. O. Rasmussen, V. Dimitrov, S. Frauendorf, R. Q. Xu, J. K. Hwang, D. Fong, L. M. Yang, K. Li, Y. J. Chen,
X. Q. Zhang, E. F. Jones, Y. X. Luo, I. Y. Lee, W. C. Ma, 1359 J. D. Cole, M. W. Drigert, M. Stoyer, G. M. Ter-Akopian, 1360 and A. V. Daniel, Eur. Phys. J. A 25, 459 (2005). ${ }_{1361}$
[37] E. F. Jones, P. M. Gore, S. J. Zhu, J. H. Hamilton, A. V. 1362 Ramayya, J. K. Hwang, R. Q. Xu, L. M. Yang, K. Li, ${ }_{1363}$ Z. Jiang, Z. Zhang, S. D. Xiao, X. Q. Zhang, W. C. Ma, 1364 J. D. Cole, M. W. Drigert, I. Y. Lee, J. O. Rasmussen, 1365 Y. X. Luo, and M. A. Stoyer, Phys. Atom. Nucl. 69, $1198{ }_{1366}$ (2006).

1367
[38] Calculation program of $\log f t$, http://www.nndc.bnl. ${ }^{1368}$ gov/logft.

1369
[39] T. Kibédi, T. W. Burrows, M. B. Trzhaskovskaya, P. M. ${ }_{1370}$ Davidson, and C. W. Nestor Jr, Nucl. Instrum. Methods 1371 A 589, 202 (2008).
[40] B. Singh, J. L. Rodriguez, S. S. M. Wong, and J. K. Tuli, ${ }^{1373}$ Nucl. Data Sheets 84, 487 (1998).

1372
H. Behrens and W. Bühring, Electron Radial Wave Func- 1375 tions and Nuclear Beta-decay (Oxford Science Publica- ${ }^{1376}$ tions, 1982).

1377
[42] J. A. Pinston, W. Urban, C. Droste, T. Rzaça-Urban, 1378 J. Genevey, G. Simpson, J. L. Durell, A. G. Smith, B. J. ${ }^{1379}$ Varley, and I. Ahmad, Phys. Rev. C 74, 064304 (2006). ${ }^{1380}$
[43] T. Mehren, B. Pfeiffer, S. Schoedder, K.-L. Kratz, 1381 M. Huhta, P. Dendooven, A. Honkanen, G. Lhersonneau, 1382 M. Oinonen, J.-M. Parmonen, H. Penttilä, A. Popov, 1383 V. Rubchenya, and J. Äystö, Phys. Rev. Lett. 77, 4581384 (1996).

1385
44] J. Pereira, S. Hennrich, A. Aprahamian, O. Arndt, A. Be- ${ }^{1386}$ cerril, T. Elliot, A. Estrade, D. Galaviz, R. Kessler, K.-L. ${ }_{1387}$ Kratz, G. Lorusso, P. F. Mantica, M. Matos, P. Möller, 1388 F. Montes, B. Pfeiffer, H. Schatz, F. Schertz, L. Schnor- 1389 renberger, E. Smith, A. Stolz, M. Quinn, W. B. Walters, 1390 and A. Wöhr, Phys. Rev. C 79, 035806 (2009).

1391
[45] W. Urban, T. Rzaça-Urban, J. L. Durell, W. R. Phillips, 1392 A. G. Smith, B. J. Varley, I. Ahmad, and N. Schulz, Eur. ${ }^{1393}$ Phys. J. A 20, 381 (2004).

1394
[46] G. Lorusso, S. Nishimura, Z. Y. Xu, A. Jungclaus, 1395 Y. Shimizu, G. S. Simpson, P.-A. Söderström, H. Watan- 1396 abe, F. Browne, P. Doornenbal, G. Gey, H. S. Jung, 1397 B. Meyer, T. Sumikama, J. Taprogge, Z. Vajta, J. Wu, ${ }_{1398}$ H. Baba, G. Benzoni, K. Y. Chae, F. C. L. Crespi, 1399 N. Fukuda, R. Gernhäuser, N. Inabe, T. Isobe, T. Ka- 1400 jino, D. Kameda, G. D. Kim, Y.-K. Kim, I. Ko- 1401 jouharov, F. G. Kondev, T. Kubo, N. Kurz, Y. K. ${ }_{1402}$ Kwon, G. J. Lane, Z. Li, A. Montaner-Pizá, K. Moschner, 1403 F. Naqvi, M. Niikura, H. Nishibata, A. Odahara, R. Or- 1404 landi, Z. Patel, Z. Podolyák, H. Sakurai, H. Schaffner, 1405 P. Schury, S. Shibagaki, K. Steiger, H. Suzuki, H. Takeda, 1406 A. Wendt, A. Yagi, and K. Yoshinaga, Phys. Rev. Lett. 1407 114, 192501 (2015).
[47] G. Mamane, Ph.D. thesis, Weizmann Inst.Science, Re- ${ }^{1400}$ hovot (1983).
[48] B. Pritychenko, M. Birch, B. Singh, and M. Horoi, At. ${ }_{1411}$ Data Nucl. Data Tables 107, 1 (2016).
[49] E. Cheifetz, R. C. Jared, S. G. Thompson, and J. B. ${ }_{1413}$ Wilhelmy, Phys. Rev. Lett. 25, 38 (1970).

1414
[50] J. K. Hwang, A. V. Ramayya, J. H. Hamilton, Y. X. Luo, 1415 A. V. Daniel, G. M. Ter-Akopian, J. D. Cole, and S. J. 1416 Zhu, Phys. Rev. C 73, 044316 (2006). 1417
[51] E. Cheifetz, H. Selic, A. Wolf, R. Chechik, and J. Wil- 1418 helmy, in Proc. Conf. Nucl. Spectr. Fission Products 1419 (1980) p. 193.

1420
[52] S. Raman, C. W. Nestor Jr, and P. Tikkanen, At. Data ${ }^{1421}$ Nucl. Data Tables 78, 1 (2001).
[53] F. Browne, A. M. Bruce, T. Sumikama, I. Nishizuka, S. Nishimura, P. Doornenbal, G. Lorusso, P.-A. Söderström, H. Watanabe, R. Daido, Z. Patel, S. Rice, L. Sinclair, J. Wu, Z. Y. Xu, A. Yagi, H. Baba, N. Chiga, R. Carroll, F. Didierjean, Y. Fang, N. Fukuda, G. Gey, E. Ideguchi, N. Inabe, T. Isobe, D. Kameda, I. Kojouharov, N. Kurz, T. Kubo, S. Lalkovski, Z. Li, R. Lozeva, H. Nishibata, A. Odahara, Z. Podolyák, P. H. Regan, O. J. Roberts, H. Sakurai, H. Schaffner, G. S. Simpson, H. Suzuki, H. Takeda, M. Tanaka, J. Taprogge, V. Werner, and O. Wieland, Phys. Lett. B 750, 448 (2015).
[54] S. Ansari, J.-M. Régis, J. Jolie, N. Saed-Samii, N. Warr, W. Korten, M. Zielińska, M.-D. Salsac, A. Blanc, M. Jentschel, U. Köster, P. Mutti, T. Soldner, G. S. Simpson, F. Drouet, A. Vancraeyenest, G. de France, E. Clément, O. Stezowski, C. A. Ur, W. Urban, P. H. Regan, Z. Podolyák, C. Larijani, C. Townsley, R. Carroll, E. Wilson, H. Mach, L. M. Fraile, V. Paziy, B. Olaizola, V. Vedia, A. M. Bruce, O. J. Roberts, J. F. Smith, M. Scheck, T. Kröll, A.-L. Hartig, A. Ignatov, S. Ilieva, S. Lalkovski, N. Mărginean, T. Otsuka, N. Shimizu, T. Togashi, and Y. Tsunoda, Phys. Rev. C 96, 054323 (2017).
[55] G. Alaga, K. Alder, A. Bohr, and B. R. Mottelson, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 29 (1955).
[56] J. M. Eldridge, B. Fenker, J. H. Hamilton, C. Goodin, C. J. Zachary, E. Wang, A. V. Ramayya, A. V. Daniel, G. M. Ter-Akopian, Y. T. Oganessian, Y. X. Luo, J. O. Rasmussen, and S. J. Zhu, Eur. Phys. J. A 54, 15 (2018).
[57] P.-A. Söderström, G. Lorusso, H. Watanabe, S. Nishimura, P. Doornenbal, G. Thiamova, F. Browne, G. Gey, H. S. Jung, T. Sumikama, J. Taprogge, Z. Vajta, J. Wu, Z. Y. Xu, H. Baba, G. Benzoni, K. Y. Chae, F. C. L. Crespi, N. Fukuda, R. Gernhäuser, N. Inabe, T. Isobe, A. Jungclaus, D. Kameda, G. D. Kim, Y.-K. Kim, I. Kojouharov, F. G. Kondev, T. Kubo, N. Kurz, Y. K. Kwon, G. J. Lane, Z. Li, A. Montaner-Pizá, K. Moschner, F. Naqvi, M. Niikura, H. Nishibata, A. Odahara, R. Orlandi, Z. Patel, Z. Podolyák, H. Sakurai, H. Schaffner, G. S. Simpson, K. Steiger, H. Suzuki, H. Takeda, A. Wendt, A. Yagi, and K. Yoshinaga, Phys. Rev. C 88, 024301 (2013).
[58] N. Hinohara, K. Sato, T. Nakatsukasa, M. Matsuo, and K. Matsuyanagi, Phys. Rev. C 82, 064313 (2010).
[59] N. Hinohara, K. Sato, K. Yoshida, T. Nakatsukasa, M. Matsuo, and K. Matsuyanagi, Phys. Rev. C 84, 061302(R) (2011).
[60] K. Sato, N. Hinohara, K. Yoshida, T. Nakatsukasa, M. Matsuo, and K. Matsuyanagi, Phys. Rev. C 86, 024316 (2012).
[61] T. Sumikama, K. Yoshinaga, H. Watanabe, S. Nishimura, Y. Miyashita, K. Yamaguchi, K. Sugimoto, J. Chiba, Z. Li, H. Baba, J. S. Berryman, N. Blasi, A. Bracco, F. Camera, P. Doornenbal, S. Go, T. Hashimoto, S. Hayakawa, C. Hinke, E. Ideguchi, T. Isobe, Y. Ito, D. G. Jenkins, Y. Kawada, N. Kobayashi, Y. Kondo, R. Krücken, S. Kubono, G. Lorusso, T. Nakano, M. Kurata-Nishimura, A. Odahara, H. J. Ong, S. Ota, Z. Podolyák, H. Sakurai, H. Scheit, K. Steiger, D. Steppenbeck, S. Takano, A. Takashima, K. Tajiri, T. Teranishi, Y. Wakabayashi, P. M. Walker, O. Wieland, and H. Yamaguchi, Phys. Rev. Lett. 106, 202501 (2011).

[^1]
[^0]: * hjs0314@snu.ac.kr
 † sumikama@ribf.riken.jp

[^1]: ${ }_{1422}$ [62] K. Washiyama and T. Nakatsukasa, Phys. Rev. C 96, 1429 041304(R) (2017). 1430 [64] Y.-X. Liu, Y. Sun, X.-H. Zhou, Y.-H. Zhang, S.-Y. Yu, [63] Y. X. Luo, J. O. Rasmussen, J. H. Hamilton, A. V. Ra- 1431 Y.-C. Yang, and H. Jin, Nucl. Phys. A 858, 11 (2011). mayya, E. Wang, Y. X. Liu, C. F. Jiao, W. Y. Liang, 1432 [65] C. J. Gallagher Jr and S. A. Moszkowski, Phys. Rev. 111 F. R. Xu, Y. Sun, S. Frauendorf, J. K. Hwang, S. H. Liu, 14331282 (1958).
 S. J. Zhu, N. T. Brewer, I. Y. Lee, G. M. Ter-Akopian, 1434 [66] F. R. Xu, P. M. Walker, and R. Wyss, Phys. Rev. C 65, Y. Oganessian, R. Donangelo, and W. C. Ma, Phys. Rev. 1435 021303(R) (2002).

