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Impact of DCSB and dynamical diquark correlations on proton GPDs

Adam Freese1, ∗ and Ian C. Cloët1, †
1Argonne National Laboratory, Lemont, Illinois 60439, USA

We calculate the leading-twist, helicity-independent generalized parton distributions (GPDs) of the proton,
at finite skewness, in the Nambu–Jona-Lasinio (NJL) model of quantum chomodynamics (QCD). The NJL
model reproduces low-energy characteristics of QCD, including dynamical chiral symmetry breaking (DCSB).
The proton bound-state amplitude is solved for using the Faddeev equation in a quark-diquark approximation,
including both dynamical scalar and axial vector diquarks. GPDs are calculated using a dressed non-local
correlator, consistent with DCSB, which is obtained by solving a Bethe-Salpeter equation. The model and
approximations used observe Lorentz covariance, and as a consequence the GPDs obey polynomiality sum rules.
The electromagnetic and gravitational form factors are obtained from the GPDs. We find a D-term of −0.94
when the non-local correlator is properly dressed, and 0.97 when the bare correlator is used instead, suggesting
that within this framework proton stability requires the constituent quarks to be dressed consistently with DCSB.
We also find that the anomalous gravitomagnetic moment vanishes, as required by Poincaré symmetry.

I. INTRODUCTION

Generalized parton distributions (GPDs) appear in the cal-
culation of hard exclusive reactions such as deeply virtual
Compton scattering (DVCS) and deeply virtual meson pro-
duction (DVMP). Factorization [1–3] allows the amplitudes of
these processes to be broken down (up to power-suppressed
corrections) into the convolution of a hard scattering kernel
and a soft matrix element of quark and/or gluon fields which
contains the GPDs.

GPDs are Lorentz-invariant functions of four variables,
including the renormalization scale, that describe many in-
teresting properties of hadrons. They encode spatial light
cone distributions of partons through two-dimensional Fourier
transforms [4]. Additionally, their Mellin moments encode
the electromagnetic and gravitational properties of hadrons—
allowing, in the latter case, for such properties to be studied
through hard exclusive reactions, in lieu of the impossibility of
graviton-exchange experiments. The gravitational properties
shed light on the way that mass and angular momentum are
distributed among the quarks and gluons within the hadron,
thus directly addressing deep questions about the mass [5, 6]
and spin [7] decompositions of the proton.

In light of these considerations, calculations of protonGPDs
are to be highly desired. It is vital that any model calcu-
lation observe the symmetries and low-energy properties of
quantum chromodynamics (QCD), so that the qualitative and
quantitative effects of these phenomena manifest in the GPDs
themselves. For instance, the relationship betweenMellin mo-
ments and electromagnetic and gravitational form factors is a
consequence of Lorentz covariance [8], and the magnitude of
the gravitational form factors has an intimate relationship with
dynamical chiral symmetry breaking (DCSB) [9, 10]. For this
reason, we use the Nambu–Jona-Lasinio (NJL) model of QCD
to perform calculations of proton GPDs.

The NJL model is an effective model of quark interac-
tions based on a four-fermi contact interaction [11–13]. It
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successfully incorporates several low-energy aspects of QCD,
most notably (approximate) chiral symmetry and its dynam-
ical breaking. The breaking of chiral symmetry dresses the
quarks, causing them to propagate with a large effective mass
M ∼ 400 MeV, as is described by the gap equation. Moreover,
confinement can be simulated in the NJL model through use
of proper time regularization [14–16]. The NJL model has
been used to successfully describe many properties of both
mesons [10–12, 16, 17] and baryons [16, 18–20].
A particular aspect of proton structure we will emphasize is

the presence of diquark correlations. Quark-diquark correla-
tions have had considerable success in modeling the properties
of baryons [16, 21–23], and the presence of diquark corre-
lations is also borne out by such evidence as the Q2 depen-
dence of flavor-separated form factors [24] and an approximate
meson-baryon supersymmetry [25]. Wewill thus calculate the
proton’s GPDs in a dynamical quark-diquark model.

II. PROTON GPDS IN A DYNAMICAL QUARK-DIQUARK
MODEL

Generalized parton distributions (GPDs) are defined
through the matrix elements of bilocal light cone correla-
tors. The leading-twist, helicity-independent quark GPDs of a
hadron are defined through:

Vq
λλ′ =

∫
dκ
2π

e2ix(Pn)κ
〈
p′λ′

��ψ(−nκ)/n[−nκ, nκ]ψ(nκ)
��pλ〉 ,

(1)

where [x, y] is a Wilson line from y to x, p and p′ are the
initial and final momenta, and λ and λ′ are the initial and final
helicities (if applicable). The GPDs themselves are obtained
by decomposing Vq

λλ′ in terms of linearly independent Lorentz
structures. For a spin-half hadron such as the proton, we have:

Vq
λλ′ = ū(p′, λ′)

[
/n H(x, ξ, t) +

iσn∆

2MN
E(x, ξ, t)

]
u(p, λ) , (2)

where P = p+p′

2 , ∆ = p′ − p, ξ = −2(∆n)/(Pn), t = ∆2,
and n is a lightlike vector defining the light front. The GPDs
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FIG. 1. Diagrams contributing to the body GPDs of the proton
within the static approximation for the interaction kernel. On the left
is the direct quark diagram, and on the right is the diquark diagram.
The (red) dot signifies an elementary vertex, and the (purple) blob a
composite vertex.

H(x, ξ, t) and E(x, ξ, t) are Lorentz-invariant functions of the
Lorentz-invariant arguments x, ξ, and t. Similar correlators
are defined for helicity-dependent and helicity-flip GPDs, as
well as for gluon GPDs.

The proton can be considered as a bound state of three
constituent quarks, which are dressed amalgamations of more
elementary current quarks (and, in QCD, gluons). The bound
state amplitude can be found by solving the Faddeev equation.
It has been found in many model calculations [21] that two of
the three quarks are often bound in a diquark correlation that
is either isoscalar and Lorentz scalar, or isovector and Lorentz
axial vector. Wewill consider these configurations specifically
in the calculations to follow.

A set of “body GPDs” (named in analogy to the “body form
factors” in Ref. [16]) can be found by calculating the distribu-
tion of these dressed quarks within the proton. In momentum
space, an operator of the form Γδ(n[xP − k]) is placed on
each of the dressed quark lines, with Γ = /n (times an isospin
structure) for the helicity-independent body GPDs. Within
the quark-diquark approximation, the quark can be within or
outside of the diquark correlation, or possibly within the inter-
action kernel that binds the proton. Within the approximations
considered in this work, the latter does not contribute to the
GPDs. The diagrams that do contribute are depicted in Fig. 1.

Since GPDs describe the structure of hadrons in terms of
current quarks, the bodyGPDs are not by themselves sufficient.
Dressed quarks are not current quarks, but contain current
quarks as a more elementary substructure. One can address
this by dressing the bilocal operator defining the light cone
correlator, or, equivalently, one can combine the body GPDs
of the proton with the GPDs of the dressed constituent quarks
using a convolution formula. Such a convolution equation
would also have applicability to describing the non-elementary
vertex in the diquark diagram of Fig. 1.

Since it is of central importance to this work, we will first
consider how GPD convolution is to be done. We will then
explore the (body) GPDs and transition GPDs of the diquarks,
and subsequently the GPDs of the dressed constituent quarks.

A. The convolution equation

Let us consider a hadron X to contain a composite con-
stituent Y . The insertion of a bilocal operator onto Y can be
expanded in terms of the substructure of Y , as depicted in
Fig. 2. Since Y is in general off its mass shell, the composite

= ⊗

FIG. 2. Diagrammatic depiction of the convolution equation. The
large (purple) blob signifies a non-elementary GPD operator, while
the small (red) dot signifies an elementary operator.

operator (rightmost diagram in Fig. 2) is a function of the ini-
tial and final virtuality ofY . In specific cases where there is no
functional dependence on virtuality (or when the dependence
on virtuality can be safely neglected), a convolution formula
holds for the GPDs HX,i(x, ξ, t) of X:

HX,i(x, ξ, t) =
∑
j

∫
dy
|y |

hY/X,i j(y, ξ, t)HY, j

(
x
y
,
ξ

y
, t

)
. (3)

The indices i and j label the multiplicity of GPDs appearing
in front of the available Lorentz structures for X and Y , re-
spectively. HY, j(x, ξ, t) are the GPDs of an on-shell Y . The
functions hY/X,i j(y, ξ, t) are the body GPDs, which are de-
fined by using a Lorentz structure Γj associated with the GPD
HY, j(x, ξ, t) in place of /n in the elementary bilocal operator.
When the constituents of Y (which we call Z for

concreteness) also have non-elementary substructure, one
can simply apply Eq. (3) consecutively. It is possi-
ble to show that GPD convolution is associative, that is,(
hY/X ⊗ hZ/Y

)
⊗ HZ = hY/X ⊗

(
hZ/Y ⊗ HZ

)
, so the consec-

utive applications of Eq. (3) can be done in either order.
In Sec. II C, we will observe that the dressed quark GPD has

no functional dependence on virtuality, allowing use of Eq. (3)
without caveats. The GPD of an off-shell diquark does depend
on virtuality in general, but the use of a pole approximation for
the diquark propagator requires replacing vertices sandwiched
between the propagators by their on-shell form for consistency.

B. Diquark body GPDs

In order to determine the diquark diagram contribution to
the proton body GPDs, we must determine the body GPDs of
the diquarks themselves. We have both scalar and axial vector
diquarks to consider, in addition to the transition GPD between
the two diquark species.
In this work, we use a pole approximation for the diquark

propagators, i.e., we take

τ(p) ≈ τpole(p) =
1

p2 − M2
dq + i0

, (4)

which is the dominant contribution to the propagator. Such
approximations are ubiquitous in the baryon modeling liter-
ature [23, 26–44]. The operators Λ(x, ξ, t, v, v′) defining the
diquark GPDs in general depend on the initial and final virtu-
alities:

v = p2 − M2
dq , v′ = p′2 − M2

dq . (5)
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However, this operator is always found sandwiched between
propagators in the form:

τ(p′)Λ(x, ξ, t, v, v′)τ(p) . (6)

The pole approximation is in effect a truncated Laurent series
expansion, in v (or v′) which is truncated above v−1 (v′−1).
When multiplying truncated series expansions, the product
must be truncated at the order of the approximation, mean-
ing that any order-v (order-v′) terms in Λ(x, ξ, t, v, v′) must be
discarded. In other words, consistency with the pole approx-
imation requires neglecting the functional dependence of the
GPD vertex on virtuality. Thus, we replace the expression in
Eq. (6) with:

τ(p′)Λ(x, ξ, t, v, v′)τ(p) ≈ τpole(p′)Λ(x, ξ, t, 0, 0)τpole(p) , (7)

and proceed to consider on-shell diquark GPDs.

1. Scalar diquarks

An on-shell scalar diquark has only a single GPD1 which
is identical for up and down quarks since the scalar diquark
is isoscalar. If one evaluates the far-right triangle diagram in
Fig. 2 with a scalar Bethe-Salpeter vertex, the matrix element
decomposition is simply:

Vq
s = Hq

s (x, ξ, t) . (8)

The corresponding body GPD for the distribution of scalar
diquarks within the proton is then found by evaluating the
right diagram in Fig. 1 with (kn)δ(n[xP − k]) as the vertex.
This body GPD can be combined with Hq

s (x, ξ, t) via Eq. (3)
to obtain the scalar diquark diagram contribution to the proton
body GPDs.

The scalar diquark is isoscalar, so makes equal contribu-
tions to the up and down body GPDs. Additionally, since it
contains the proton’s valence down quark, diagrams with a
spectator scalar diquark only contribute to the up quark body
GPD (which can still contain a down current quark).

2. Axial vector diquarks

The axial vector diquark has five on-shell GPDs. The rele-
vant Lorentz decomposition is [45]:

Vq
a,λ′λ = −(εε

′∗)Hq
1a +

(ε ′∗n)(ε∆) − (εn)(ε ′∗∆)
2(Pn)

Hq
2a

+
(ε∆)(ε ′∗∆)

2M2 Hq
3a −

(ε ′∗n)(ε∆) + (εn)(ε ′∗∆)
2(Pn)

Hq
4a

+

[
M2(εn)(ε ′∗n)
(Pn)2

+
1
3
(εε ′∗)

]
Hq

5a , (9)

1 In principle, an off-shell scalar diquark has an additional T-odd GPD, but
it is suppressed by the virtuality and, within the pole approximation, should
be neglected.

where the functional dependence on x, ξ, and t has been
suppressed for compactness.
One can obtain an off-shell version of this by not including

the polarization vectors in the calculation of Vq
a,λ′λ. There ap-

pears to be an ambiguity in this, since prior to stripping the
polarization vectors, the identities (εp) = (ε ′∗p′) = 0 can be
used to rewrite (for instance) (ε∆) in terms of (εP). However,
within the pole approximation, the axial vector diquark prop-
agators are transverse, thus enforcing the similarity relations
pµ ∼ 0 and p′ν ∼ 0. We may use these similarity relations to
rewrite the uncontracted correlator Vq,µν

a,λ′λ with ∆ as the only
uncontracted momentum, giving us:

Vq,µν
a,λ′λ = −g

µνHq
1a +

nν∆µ − nµ∆ν

2(Pn)
Hq

2a +
∆µ∆ν

2M2 Hq
3a

−
nν∆µ + nµ∆ν

2(Pn)
Hq

4a +

[
M2nµnν

(Pn)2
+

1
3
gµν

]
Hq

5a . (10)

The Lorentz structures above can be used to calculate the body
GPDs for the distribution of axial vector diquarks within the
proton, provided the substitution P 7→ k is made, and the
structures are then multiplied by (kn)δ(n[xP − k]).
The axial vector diquark is isovector, meaning it comes in

uu, ud, and dd varieties. The isospin algebra necessary to
determine the weights with which diagrams involving axial
vector diquarks enter into up and down quark body GPDs has
previously been done, with the results in Eqs. (102,103) of
Ref. [16].2

3. Diquark transition GPDs

Lastly, there are scalar-to-axial and an axial-to-scalar transi-
tionGPDs. For scalar→ axial vector transitions, the correlator
takes the form:

Vq
sa =

1
(Pn)

1
Ms + Ma

iεP∆nεHq
sa(x, ξ, t) . (11)

Hermiticity and time reversal properties can be used to show
that Hq

sa(x, ξ, t) = Hq
sa(x,−ξ, t) and that the axial vector →

scalar transition GPD satisfies Hq
as(x, ξ, t) = −Hq

sa(x, ξ, t).
Neglecting virtuality dependence (as required by the pole ap-
proximation), there remains one GPD in the off-shell case,
since stripping the polarization vector ε fromVq

sa can still only
produce a single unique Lorentz structure.
As for the axial vector diquark, the isospin weights for the

transition diagrams can be found in Eqs. (102,103) of Ref. [16].

C. Dressed quark GPDs

In order to calculate any hadronic matrix element within
the NJL model, one must dress the operator in question. This

2 Although Ref. [16] is about form factors, the isospin algebra is the same,
and the relevant isospin factors are also the same.
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FIG. 3. Diagrammatic depiction of the Bethe-Salpeter equation for
the bilocal light cone operator defining leading-twist GPDs.

dressing is a result of DCSB, and is just as necessary for bilocal
light cone correlators and GPDs as it is for the electromagnetic
current and form factors. Failing to dress the operator defining
GPDs will result in its Mellin moments reproducing the incor-
rect electromagnetic and gravitational form factors [10, 46].
The need for dressing arises because the GPDs appear in a
bilocal correlator of current quark fields, while a hadron in
the NJL model is constructed from composite dressed quarks.
Dressing of the operator essentially amounts to describing the
dressed quark in terms of an elementary current quark sub-
structure.

The bilocal operator defining the leading-twist GPDs is
dressed according to a Bethe-Salpeter equation (BSE), which
is depicted in the Hartree-Fock approximation3 by Fig. 3. One
can see this by considering Mellin moments of the bilocal
operator, which define local operators that each obey a BSE
that is also depicted by Fig. 3. At leading twist, these local
operators are traceless and accordingly do not receive contri-
butions from operators inserted on the four-point vertex. Due
to the uniqueness of the inverse Mellin transform, the bilocal
operator is likewise dressed according to Fig. 3.

This BSE holds for both up and down quarks, and the NJL
interaction kernel mixes these equations. It is most straight-
forward to solve the decoupled BSEs for the isoscalar and
isovector GPDs HI (x, ξ, t), defined as:

HI=0(x, ξ, t) = Hu(x, ξ, t) + Hd(x, ξ, t) , (12a)
HI=1(x, ξ, t) = Hu(x, ξ, t) − Hd(x, ξ, t) , (12b)

and analogously for EI (x, ξ, t), which appear in Lorentz de-
compositions of the operators /nδ(n[xP − k]) and /nτ3δ(n[xP −
k]), respectively.
We find the following solutions for the dressed quark GPDs:

HI (x, ξ, t) = δ(1 − x) + H ′I (x, ξ, t) + δI,0DQ(x, ξ, t) ,

(13a)
EI (x, ξ, t) = −δI,0DQ(x, ξ, t) , (13b)

H ′I=0,1(x, ξ, t) =
Nc

4π2
1
|ξ |

Gω,ρt
(
1 − x2/ξ2)

1 + 2Gω,ρΠVV (t)
E1

(
x
ξ
, t

)
Θ(|ξ | − |x |) ,

(13c)

DQ(x, ξ, t) = −
Nc

π2
x
|ξ |

GπM2

1 − 2GπΠSS(t)
E1

(
x
ξ
, t

)
Θ(|ξ | − |x |) ,

(13d)

3 This approximation is standard for NJL model calculations [11–13], and
excludes diagrams with more than one loop.

where

E1 (z, t) = E1

(
4M2 − t(1 − z2)

4Λ2
UV

)
− E1

(
4M2 − t(1 − z2)

4Λ2
IR

)
,

(13e)

and E1(z) =
∫ ∞

1 dt t−1e−zt is the exponential integral func-
tion. These solutions are exact, and do not contain any ex-
plicit functional dependence on the quark virtuality, despite
the quark being off-shell in general. This is a consequence
of the interaction that produces the dressing being a contact
interaction.
It is worth remarking on the limit ξ → 0 in Eq. (13). It can

be shown that the integral of H ′I (x, ξ, t) over x is independent
of ξ when ξ > 0, and that all higher Mellin moments contain
an overall factor ξ, and thus vanish when ξ → 0. From the
uniqueness of the Mellin transform, we infer that when ξ → 0,
H ′I (x, ξ, t) is proportional to a Dirac delta distribution. This
was also found in Ref. [46], where it was remarked that even
in the zero-skewness limit, the GPD contains a “hidden ERBL
region” at x = 0. This hidden ERBL region persists through
GPD convolution, meaning that numerical results at ξ = 0 for
hadron GPDs in the NJL model will necessarily be missing
the delta distribution in the hidden ERBL region.

D. Support region

The support region in x of the GPDs and body GPDs is
determined during the course of evaluating the relevant dia-
grams. Each diagram’s contribution is non-zero only when
the delta function δ(n[xP − k]) is picked up by the integration
over k. We find in particular that:

−|ξ | ≤ x ≤ max(1, |ξ |) , (14)

except in the case of the GPDs of dressed quarks, for which
|x | < |ξ |, as is explicitly noted by the presence of step functions
in Eqs. (13). The condition |ξ | ≤ 1 holds for any on-shell par-
ticle by virtue of kinematics, which would strengthen Eq. (14)
to x ∈ [−|ξ |, 1]. However, it is possible to have |ξ | > 1 for
off-shell particles. To see this, consider that:

ξ =
(np) − (np′)
(np) + (np′)

. (15)

For an on-shell particle, (np) ∝ Ep+pz is strictly non-negative,
so the constraint |ξ | ≤ 1 follows from the triangle inequality.
On the other hand, off-shell particles are not required to satisfy
any such constraint, and in fact (np) can be negative. Thus ξ
is not constrained in general.
Sincewe consider off-shell particles in using the convolution

formula Eq. (3), we leave the support region in Eq. (14) as
general as possible. In particular, since y ∼ 0 is present in
the integral, the off-shell constituent Y can have arbitrarily
large skewness. We also find in numerical calculations using
Eq. (3) that having support at x > 1 for HY (x, ξ, t) is necessary
for HX (x, ξ, t) to satisfy polynomiality (see Sec. III A).
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III. PROTON GPD RESULTS

Several variations of the NJL model exist. In Ref. [16],
the electromagnetic properties of the proton were found to be
well-described within a two-flavor variant of the model. We
thus use the model variant described in Ref. [16], including the
numerical values for the model parameters and the approxima-
tions described therein, to calculate the helicity-independent,
leading-twist proton GPDs.

We begin by presenting results for the GPDs Hq(x, ξ, t) and
Eq(x, ξ, t) at two skewness values, and at a model renormal-
ization scale of µ2 = M2 = 0.16 GeV2. In Fig. 4, we have
ξ = 0, while in Fig. 5, we consider a moderate ξ = 0.5.
To help understand the results, we first give the relation-

ships that the GPDs have to more familiar observables. For
instance, we have the forward limit relation Hq(x, 0, 0) = q(x).
Additionally, Mellin moments of the GPDs are related to the
electromagnetic form factors (EMFFs):∫

dx Hq(x, ξ, t) = Fq
1 (t),

∫
dx Eq(x, ξ, t) = Fq

2 (t),

(16)

whereFi(t) =
∑

q eqFq
i (t), and to the gravitational form factors

(GFFs): ∫
dx xHq(x, ξ, t) = Aq(t) + ξ2Cq(t) , (17a)∫
dx xEq(x, ξ, t) = Bq(t) − ξ2Cq(t) . (17b)

An angular momentum form factor Jq(t) = 1
2 (A

q(t) + Bq(t))
can also be defined, and is related to Ji’s sum rule [8].

The x and t dependence of the GPDs in both Figs. 4,5 can
be seen to differ between the up and down quarks. This is due
to the presence of multiple isospin-dependent effects. Among
these is the presence of diquark correlations, whose effects can
be most easily seen in the non-skewed GPDs.

At zero skewness (ξ = 0), there is a peak in Hq(x, 0, t) for
each fixed-t slice. (See top panel of Fig. 4.) The location for
this peak can be quantified by the average momentum fraction
〈〈xq(t)〉〉 = Aq(t)/Fq

1 (t). In the forward limit, 〈〈xu(0)〉〉 =
0.34 ≈ 〈〈xd(0)〉〉 = 0.32. Each down quark thus carries about
the same momentum on average than each up quark. Were
only scalar diquarks present, we would expect 〈〈xu(0)〉〉 �
〈〈xd(0)〉〉, since a (dressed) down quark would only be found
within the diquark, thus giving the downquark a lower effective
mass. However, axial vector diquark configurations are also
present, and (due to how the recoupling coefficients work out)
the down quark is more often alone than in the axial vector
diquark. Thus, the difference between 〈〈xu(0)〉〉 and 〈〈xd(0)〉〉
is softened by the presence of axial vector diquarks.

Finite t is a novel aspect of GPDs that elaborates the roles
of different diquark species further. High −t acts as a filter
that selects for configurations where the probed parton was
already carrying most of the hadron’s momentum. One can
accordingly observe in Fig. 4 that increasing −t moves the
peaks of bothGPDs to higher x. The downquark peakmigrates
further than the up quark, with 〈〈xu(−2 GeV2)〉〉 = 0.45 and

FIG. 4. Proton GPD results at the model scale (µ2 = 0.16 GeV2),
and ξ = 0, as a function of x and t. Transparent (orange) surfaces are
up quark distributions, opaque (blue) are down quark.

〈〈xd(−2 GeV2)〉〉 = 0.50. This occurs because axial vector
diquark configurations fall more slowly with −t, so at large
−t the down quark becomes sampled more often outside a
diquark.
Despite 〈〈xd(t)〉〉 exceeding 〈〈xu(t)〉〉 at large −t, the down

quark GPD still falls faster than the up quark GPD with in-
creasing −t, as has previously been seen in measurements of
the flavor-separated electromagnetic form factors [24]. We
define the ratio Sq(x, t) = Hq(x, 0, t)/Hq(x, 0, 0), which char-
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FIG. 5. Proton GPD results at the model scale (µ2 = 0.16 GeV2),
and ξ = 0.5, as a function of x and t. Surfaces have the samemeaning
as in Fig. 4.

acterizes how quickly an x slice of a quark GPD falls with −t.
The super-ratio Sd(x, t)/Su(x, t) then characterizes how much
faster the down quark GPD falls with −t than the up quark
GPD.

Such a super-ratio is plotted in Fig. 6 for several values of
x. We find at all x values that the down quark GPD falls more
steeply than the up quark GPD, but that the steepness itself
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FIG. 6. The super-ratio Sd(x, t)/Su(x, t) for several values of x.

varies as a function of x. In particular, the relative steepness
of the down quark falloff is less extreme at large x than at
small x. Since the steeper down quark falloff is a consequence
of diquark correlations, this suggests that diquark correlations
dominate at small x, and one is more likely to observe a direct
quark outside the diquark correlation when x is close to 1.
The other GPD, Eq(x, ξ, t), does not correspond to a familiar

observable in the forward limit, but can be understood by
its relationships to the form factors Fq

2 (t), Bq(t), and Jq(t).
Unlike with Hq(x, ξ, t), the peaks for Eq(x, ξ, t) are at lower x
for the up quarks than down quarks for all values of t. (This can
be clearly seen in the lower panel of Fig. 4.) This occurs due
to axial vector diquarks having a larger impact on Eq(x, ξ, t)
than scalar diquarks.
Another novel aspect of GPDs is finite skewness. We em-

phasize that a fully covariant calculation is necessary for a cor-
rect description at finite skewness, particularly in the ERBL
region, where |x | < |ξ |. A popular non-covariant method to
calculate GPDs is the overlap representation using a truncated
light front basis expansion [47]. The truncation in particular is
not invariant under the full Lorentz group [48, 49], and more-
over leads to missing terms in the overlap representation of the
ERBL region, since the GPD in the ERBL region is generated
by the overlap of Fock states with different numbers of partons.
Since the calculations done in this work are fully covariant,

we are able to obtain self-consistent results at finite skewness,
including in theERBL region. In Fig. 5, GPD results are shown
for ξ = 0.5. The most immediately striking feature are the
jump discontinuities at x = ±ξ. These discontinuities are in-
herited from the dressed quark GPDs given in Eq. (13), and are
not present if the quark GPDs are not dressed. These jump dis-
continuities are characteristic of effective model calculations
with constant dressed quark mass, and have previously been
observed in other model GPD calculations [50–52]. These
discontinuities appear to present a problem for factorization of
the DVCS amplitude, but factorization is not expected to apply
at the model scale of µ2 = 0.16 GeV2 and evolution of the
model GPDs to a scale where QCD factorization is expected
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to apply removes the discontinuities (as we will see in Fig. 7).
Another striking feature of Fig. 5 is the drastic difference

in the x dependence of the up and down GPDs in the ERBL
region, where |x | < |ξ |. In this region, the dressed quark GPD
is no longer trivial, and accordingly it is possible to find (for
instance) a down current quark inside a dressed up quark.

At large −t, the down quark GPD Hd(x, ξ, t) is dominated
by DQ(x, ξ, t) in the ERBL region. This happens because
the down quark body GPD falls faster, due to the domi-
nance of scalar diquark configurations, causing Hd(x, ξ, t)
to be dominated by the current down quarks found within
dressed up quarks. Moreover, the GPD for a current quark
to appear within a dressed quark of the opposite flavor
goes as 1

2 (HI=0(x, ξ, t) − HI=1(x, ξ, t) + DQ(x, ξ, t)), where
HI=0(x, ξ, t) ≈ HI=1(x, ξ, t) because of the nearly degenerate
masses of the ρ and ω mesons. Thus, DQ(x, ξ, t), which is
an odd function of x and is negative for x > 0, dominates the
ERBL region of Hd(x, ξ, t) at large −t.
Many of the peculiar model features are washed out by GPD

evolution. In Fig. 7, we present results of evolving the model
scale GPDs to µ2 = 4 GeV2. Leading-order evolution ker-
nels [53] were used along with a zero-mass variable flavor
number scheme. The jump discontinuities at x = ±ξ are re-
moved, and the shape of DQ(x, ξ, t) is no longer clearly visible
in the ERBL region. Since the jump discontinuities disappear
atQ2 above the model scale, the model scale discontinuities do
not present a problem for factorization at scales where QCD
factorization is expected to be relevant.

A. Polynomiality and form factors

An especially remarkable property of GPDs is polynomi-
ality, which ensures that the sth Mellin moment of a GPD
is a polynomial in ξ of order s or less4. For the helicity-
independent GPDs of spin-half particles, the polynomials are
even in ξ 5. Polynomiality is a consequence of Lorentz co-
variance, with the reality of the coefficients following from
hermiticity of the bilocal operator and the evenness of the
polynomial from time reversal symmetry of its matrix ele-
ment. Since we have observed complete Poincaré covariance
throughout the calculation, our model GPDs exhibit polyno-
miality.

Of particular interest are the cases s = 1, which reproduce
partonic contributions (without chargeweights) to electromag-
netic form factors (EMFFs), and s = 2, which give gravita-
tional form factors (GFFs). These relationships are given in
Eqs. (16,17).

4 This is true for the gluon GPD if the Ji convention [54] is used. If the Diehl
convention [55] is used, this is true instead of the (s − 1)th Mellin moment.

5 GPDs that are odd in ξ exist, even at leading twist. H4(x, ξ, t) and
H̃3(x, ξ, t) for spin-one targets are such examples [55]. The matrix element
of the bilocal correlator must be time reversal invariant, and if it’s possible
to construct T-odd Lorentz structures in its decomposition, the Lorentz-
invariant function multiplying it must likewise be T-odd (i.e., odd in ξ) for
the product of both to be T-even.

FIG. 7. Proton GPD results at the an evolved scale (µ2 = 4 GeV2),
and ξ = 0.5, as a function of x and t. Surfaces have the samemeaning
as in Fig. 4.

The EMFFs of the proton have been previously calculated
within the NJL model (see, e.g., Ref. [16]), but the GFFs
have not been. In Fig. 8, we present numerical results for
the EMFFs and GFFs extracted from the GPDs calculated
in this work. Since pion loops have not been included in
this calculation, our EMFFs should be compared to the “bse”
results from Ref. [16].
There are several constraints that the form factors must obey
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FIG. 8. Electromagnetic and gravitational form factors of the proton
as extracted from the leading-twist, helicity-independent GPDs.

due to symmetries and conservation laws. Charge andmomen-
tum conservation require F1(0) = 1 and A(0) = 1, respectively,
and our results satisfy these relations. Conservation of angular
momentum gives the Ji sum rule [8] 1

2
(
A(0) + B(0)

)
= 1

2 , or
equivalently (when combined with momentum conservation)
B(0) = 0—a statement otherwise known as the vanishing of
the anomalous gravitomagnetic moment. We find that indeed
B(0) = 0within our results, and remark that this is an inevitable
consequence of observing Lorentz covariance throughout the
calculation.

The remaining static observables F2(0) and C(0) are not
constrained by symmetries or conservation laws. The first of
these gives the anomalous magnetic moment of the proton.
Empirically, F2(0) = κp = 1.793, but we underestimate this,
finding F2(0) = 1.49. It was observed in Ref. [16] that per-
turbatively introducing a pion cloud can significantly close the
gap between the calculated and model values. The second of
these, C(0), is commonly known as the “D-term” [51], and is
neither constrained by symmetries nor by experiment.6 We
find C(0) = −0.94.

The form factor C(t) has been interpreted as describing the
distribution of forces within hadrons [9], and the fact that
C(0) < 0 is understood as an important stability criterion.
Since C(0) is not constrained by any symmetries, it is possible
for operator dressing to change its value—in contrast to A(0) or
F1(0). InRef. [10],Cπ(t)was found to change by a factor of∼ 3
from dressing the quark-graviton vertex, and introducing the
dressing was necessary to satisfy a low-energy pion theorem.
In a similar vain, we find that dressing the nonlocal correlator
via the BSE depicted in Fig. 3 is necessary for proton stability.
If the bare nonlocal operator is used to calculate the proton

GPDs, then we obtain C(0) = 0.97 > 0, at stark odds with the
apparent stability of the proton.
To understand the necessity of operator dressing for ob-

serving proton stability, we reiterate that dressing can be seen
as accounting for the elementary current quark substructure
of the three dressed quarks that comprise the proton. In the
absence of dressing, we would be attempting to describe the
proton as being made of three current quarks, which would not
be accurate, and would account for only the leading Fock state
of the proton. That we get C(0) > 0 in this case tells us that
a hypothetical hadron with the mass and quantum numbers of
the proton that is made of only three elementary current quarks
would not be mechanically stable in this framework.
Since the NJL model contains only quarks and C(0) is not

constrained by any symmetries, it is possible that C(0) may
change significantly with the introduction of gluons. There-
fore, our finding of C(0) = −0.94 should at best be interpreted
as a prediction for the quark contribution to the D-term, rather
than for the overall D-term of the proton.

IV. SUMMARY AND OUTLOOK

We have calculated the helicity-independent, leading-twist
GPDs of the proton at finite skewness, in a confining version
of the NJL model. Dressing of non-local operator defining the
light cone correlator—which happens as a result of DCSB—
was necessary for sensible results to be obtained, including a
negative D-term compatible with the stability of the proton.
The Lorentz covariance of the model and all approximations
made ensured that polynomiality and sum rules relating to
charge, energy-momentum, and angular momentum conserva-
tion were all obeyed, giving the vanishing of the anomalous
gravitomagnetic moment as a corollary.
It will be possible in future work to apply the same formal-

ism to the helicity-dependent and helicity-flipGPDs of the pro-
ton. Moreover, the Lagrangian can be generalized to include
immersion in a finite-density medium, allowing predictions of
GPDs in nuclear matter and predictions for a generalized EMC
effect.
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6 There does however exist a recent model-dependent phenomenological
extraction of the quark contribution from JLab Hall B data [56, 57].
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