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Following the idea of nucleon clustering and light-nuclei production in relativistic heavy-ion col-
lisions close to the QCD critical-end point, we address the quantum effects affecting the interaction
of several nucleons at finite temperature. For this aim we use the K-harmonics method to 4-nucleon
states (α particle), and also develop a novel semiclassical “flucton” method at finite temperature,
based on certain classical paths in Euclidean time, and apply it to 2- and 4-particle configurations.
To study possible effects on the light-nuclei production close to the QCD critical point, we also
made such calculations with modified internuclear potentials. For heavy-ion experiments, we pro-
pose new measurements of light-nuclei multiplicity ratios which may show enhancements due to
baryon preclustering. We point out the special role of the O(50) 4-nucleon excitations of α-particle,
feeding into the final multiplicities of d, t, 3He and 4He, and propose to directly look for their 2-body
decays.

I. INTRODUCTION

In the last decade the physics of heavy-ion collisions
has significantly widened its scope. Traditional studies
of Au+Au and Pb+Pb collisions at the highest energies
of the RHIC (Relativistic Heavy-Ion Collider) and the
LHC (Large Hadron Collider) have quantified the un-
usual properties of the quark-gluon plasma. A significant
progress was reached in studies of “small systems”, cen-
tral p + A and high-multiplicity p + p, in which radial,
elliptic and triangular flows have been observed, confirm-
ing hydrodynamical explosions at sufficiently large mul-
tiplicities [1]. The final particle composition is well de-
scribed close to the phase transition line by the so-called
statistical hadronization models [2].

With these progresses at the high-energy frontier, there
is a growing interest in better understanding the lower
collision energies, related to larger baryonic densities.
The suggestion of the possible existence of the QCD crit-
ical point and therefore increased event-by-event fluctua-
tions [3] has lead to the RHIC Beam-Energy Scan (BES)
program. Complementing it, dedicated low-energy col-
liders are under construction in Germany (FAIR-GSI,
Darmstadt) and Russia (NICA, Dubna), with similar
projects under consideration in China (HIAF) and Japan
(J-PARC-HI).

At this time, experiments show two particular intrigu-
ing observations which might be related to the QCD criti-
cal point. One is the significant modification of the shape
of net-proton multiplicity distribution (large scaled kur-
tosis) at the lowest RHIC collision energies observed by
STAR collaboration [4]. Another (to be shown in Fig. 11)
is an apparent increase at

√
sNN = 20 − 30 GeV of the

tritium production relative to deuterium and to the sta-
tistical hadronization model in the same experiment [5].

In our previous paper [6] we put forward the idea that
a sizeable scaled kurtosis of the proton distribution is an-
other aspect of the preclustering of nucleons (or prenu-

clei) at the freeze-out stage, due to the modification of
NN potential. This effect would also lead to an increase
of light-nuclei production with respect to the statistical
model expectations. Let us present some qualitative ar-
guments emphasizing the main points made in [6].

To begin with let us compare the situation at the
freeze-out of high-energy heavy-ion collisions with other
known situations in which various nuclear fragments—
and especially light nuclei—are known to be produced [7,
8]. In particular, their natural production is known to oc-
cur in the Big Bang, and later in stars. In these cases the
temperature T is much lower than the binding energy of
the states, T � B1, and the corresponding Boltzmann
factors exp(B/T ) are large and play a crucial role. In
heavy-ion collisions at semirelativistic energies, one has
T ∼ B and the production of nuclear fragments.

Unlike these conditions, the freeze-out temperatures
we will consider are large compared to the binding energy

B ∼ few MeV � T = 100− 150 MeV ,

and therefore the binding energies of the resulting light
nuclei are basically irrelevant.

The preclusters we discuss are statistical correlations
of several nucleons at relative distances 1− 2 fm induced
by the interbaryon potential V (r). The phenomenolog-
ical (unmodified) nuclear potential that we considered
in [6] (called VA′ in that paper) was the Serot-Walecka
potential [9],

V (r) = −ασ
e−mσr

r
+ αω

e−mωr

r
, (1)

with ασ = 6.04, mσ = 500 MeV, αω = 15.17, mω = 782
MeV. The potential with these parameters is shown in
Fig. 1 with a black solid line.

1 We will use natural units in this paper, ~ = c = kB = 1. In some
places of this paper we will make ~ explicit.
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FIG. 1. The effective nuclear potential in Eq. (1) with vacuum
σ mass (solid line) and with a reduced mass supposedly to
happen close to the critical region (dashed line). Those we
consider to be the minimal and maximal possible magnitude
for near-critical line potential.

However, the relevant ratio for precluster formation is
not B/T but the Boltzmann factor with the maximal
depth of the potential to temperature exp (−V (rmin)/T ).
For the potential (1) this ratio is

|V (rmin)|
T

∼ 1

3
− 1

2
,

and thus clustering is relatively scarce.
However, there are two important regimes in which

this simple conclusion can be reversed, and rather large
correlations can be achieved. The first regime is when
the effective mass of the σ mode is strongly reduced be-
cause of the closeness of chiral symmetry restoration at
T > Tc ≈ 155 MeV. According to studies of chiral tran-
sition at µ = 0 [10], and to the discussion in our previous
paper [6], the initial NN potential the σ mass can be re-
duced from 500 MeV down to mσ ∼ 285 MeV. As shown
in dashed line in Fig. 1 this modification results in crucial
changes of the effective potential, inverting the situation
to

|V (rmin)|
T

∼ 2− 3 .

This situation becomes more evident in the vicinity of
the QCD critical point (if it exists) since the hypothetical
critical mode becomes (nearly) massless, making appear
long-range forces associated with its exchange.

These large Boltzmann factors exp(|V (rmin)|/T ) play
much more important role when several nucleons are in-
volved. For example, the system composed by N = 4
nucleons in an approximate tetrahedral configuration has
six relative potentials, so the Boltzmann factor enters
with the sixth power.

In Ref. [6] the real-time dynamics has been quantified
by means of classical Molecular Dynamics (MD) simula-
tions. While we studied specific clusters with 4–13 nucle-
ons, our main focus in that paper was on skewness and
kurtosis of the baryon number distribution, in connec-
tion with the results of the BES program at RHIC. We
have demonstrated that even modest modifications of the
nuclear potentials at the freeze-out conditions may sig-
nificantly enhance the baryon correlations.

However, the Boltzmann factor describes only classi-
cal thermodynamics, and the MD simulations account
only for the classical dynamics of nucleons. In the onset
of clustering, one needs to include also quantum effects,
expected to reduce the formed correlations. This is the
question we focus on in this paper, where we continue
the study of preclusters.

More specifically, we will focus on quantum corrections
of pairwise potentials between nucleons, and introduce a
semiclassical method at finite temperature giving rise to
the “flucton” configuration. This method will be also
applied to states with 3 and 4 particles with a very spe-
cific symmetry. In addition, we will focus on 4-nucleon
preclusters of the ppnn (or α-particle) type. Only in this
case one may think of all four particles as distinguishable
(all in different spin-isospin states), without account for
effects of Fermi-Dirac statistics. Its ground state is the
only light nuclei which is relatively strongly bound. In
fact, it is well known that 12C, 16O and perhaps even
24Mg have strong α-particle correlations, and their low-
est states are consistent with few α-particle Bose-Einstein
condensation [11]. The 4-nucleon preclusters are quali-
tatively different from 2- and 3-body clusters. While the
latter have only one (barely) bound states, the former has
one deeply-bound ground state and ∼ 50 states incorpo-
rating next-shell excitations near zero energy. While this
fact is experimentally known, it has been overlooked in
any discussion (we are aware of) of the d, t,3He produc-
tion. We use this novel semiclassical method, as well as
the K-harmonics method, to correctly include quantum
effects. Finally, we will comment on how experiments
can access an overproduction of light nuclei, and propose
new experimental measurements of light-nuclei ratios (in
the same lines of the recently proposed tp/d2 ratio) with
an increased ability to signal the presence of the QCD
critical point.

In Sec. II we study the 2- and 4-nucleon systems us-
ing a genuine quantum mechanical method by solving
the 2-body Schrödinger equation and the K-harmonics
method, respectively. We will see that important quan-
tum corrections appear when the interaction potential
dominates over thermal effects. In Sec. III we introduce
the “flucton” method at finite temperature as a semiclas-
sical approximation to the full quantum solution. We ap-
ply it to 2- and 4-nucleon systems at finite temperature,
and consider the effect of a modified NN potential due to
the critical-point dynamics. In Sec. IV we propose sev-
eral observables in the form of light-nuclei ratios in which
the critical correlations could be observed in experiment.
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Some discussions on the connection between preclusters
and light-nuclei are presented in Sec. V, where we also
comment on the experimental situation of the 4He spec-
tra and the need to account for its excited states. Finally,
in Sec. VI we present our conclusions.

II. THEORY OF FEW-NUCLEON QUANTUM
SYSTEMS IN A THERMAL ENVIRONMENT

Before we begin the theory part of this paper, let us
recapitulate its main goals:

(i) develop the necessary tools to evaluate the density
matrices for few-nucleon systems at finite temper-
ature;

(ii) quantify clustering probabilities, focusing on the 4-
nucleon system;

(iii) study how the clustering phenomenon depends on
possible in-matter potential modifications.

The standard textbook definition of the density
matrix—the probability to find quantum/thermal sys-
tem at a (multidimensional) coordinate x0—is straight-
forward to compute as

P (x0) =
∑

i

|ψi(x0)|2 e−Ei/T , (2)

by combining probabilities in all stationary states, bound
and unbound, with their subsequent weighting with the
Boltzmann factor. ψi(x0) and Ei are the wave functions
(eigenfunctions) and energies (eigenvalues) of the state i.
We will be applying this definition in this section, first
for two and then for four nucleons. An alternative semi-
classical approach to this problem at finite temperature
will be developed in the next section.

A. The density matrix for two nucleons

The two-nucleon problem is essentially a one-
dimensional (radial) problem, so the density matrix at
finite T can be calculated using a complete set of so-
lutions of the Schrödinger equation. Simplifying the
situation to central forces, without spin/isospin depen-
dence and without electromagnetism, one combines the
pn, nn, pp pairs into one generic NN case. In this case
one should find with sufficient accuracy that there is one
(near) bound state with essentially zero energy.

The original Serot-Walecka potential in Eq. (1), while
it can lead to reasonable properties for infinite nuclear
matter [6], does not possess any bound state. For the
shake of illustration let us reduce the repulsion, and use
αω = 9.42, to increase the depth of the potential. This
is the value we are using in this section only.

In addition to the NN potential one needs to sepa-
rately consider the centrifugal potential,

∆V Lrot =
L(L+ 1)

2mRr2
, (3)

for various nonzero values of L = 0, 1, 2, ... (mR = mN/2
is the reduced mass, with mN being the nucleon mass).
In order not to deal with a continuous spectrum of scat-
tering states we use a standard method: put a system in
a confining “cup” potential, chosen in a form

Vcup =

(
r

Rcup

)8

, (4)

with large enough Rcup = 10 fm.
With all these ingredients we numerically solve

− u′′L(r)

2mR
+ (VNN + Vcup + ∆V Lrot)uL(r) = ELuL(r) ,

(5)

with uL(r) = rRL(r) and the radial wave-function RL(r)
has been factorized from the total one together with the
spherical harmonics [ψ(r) = R(r)Y (θ, φ)]. The normal-
ization of ψ(r) imposes, as usual,

∫
dr|uL(r)|2 = 1 . (6)

We find 60 energies and wave functions for each L. The
beginning of the energy spectrum at L = 0 is (in units of
fm−1 ≈ 197 MeV)

EL=0
i =− 0.0113, 0.0749, 0.204, 0.369, 0.564, 0.786...

The only bound state is “Walecka deuteron” with an
energy of −2.2 MeV and a r.m.s. radius of

√
〈r2〉 ' 2.6

fm (the physical deuteron also contains a small admixture
of L = 2 component, which we do not obtain in this
simple example with a central potential).

Using this set of states one can find the quantum-
thermal density matrix

P (r, T ) =
∑

i,L

(2L+ 1)|ψL,i(r)|2e−βE
L
i , (7)

where β = 1/T , and i runs over all states with a given
quantum number L. We consider L = 0, 1 and 2 (in all
our examples the angular dependence is included in the
wave functions ψL,i(r) and conveniently integrated over).
In our approximation with an external Vcup all states
are bound. Otherwise, the continuum version of Eq. (7)
should be used to account for the unbound states [12].

Examples at two different temperatures are shown in
Fig. 2, for T ' 20, 100 MeV for different angular mo-
menta. We sum over the first 60 levels for each value
of L. It is important to note that in the results of this
figure, the NN potential itself is not yet modified by the
temperature. The difference between the curves is en-
tirely given by thermal excitation of states other than
the ground one.
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FIG. 2. The density matrix (7) for the Serot-Walecka po-
tential with mσ = 500 MeV at T = 20 MeV (upper panel)
and T = 100 MeV (lower panel) for different values of the
quantum number L. The units of the OY axis are fm−3.

From these plots one observes that states with nonzero
angular momentum L > 0 contribute only minimally
at low temperatures (upper plot), even including their
larger degeneracy 2L + 1. At high temperatures (lower
plot) these states contribute substantially to the density
matrix. However, at such temperature one also expects
the in-medium modification of the NN potential. Using
a Serot-Walecka potential with mσ = 285 MeV we get
the result at T = 100 MeV in Fig. 3. Again, the higher-
partial waves are subdominant with respect to L = 0 in
the density matrix. Later in Sec. V we will come back to
the deuteron example and comment about the wave pack-
age interpretation of the cluster from this density matrix,
and introduce the Wigner distribution of the deuteron.

B. K-harmonics method and four-nucleon clusters

In this section we study the 4-body system using a pure
quantum mechanical method, the K-harmonics, which
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FIG. 3. The density matrix (7) at T = 100 MeV with a
medium-modified Serot-Walecka potential with mσ = 285
MeV at T = 100 MeV for several values of L. The units
of the OY axis are fm−3.

goes back to the 1960’s [13]. Its main idea is to focus
on quantum mechanics along the “hyperdistance” axis in
the 9-dimensional space, while other coordinates can be
treated via corresponding angular harmonics. We present
more details in appendix A. Historically, this method was
applied only to the ground states of light nuclei, which it
describes well. In particular, it correctly reproduced the
binding of 4He [14].

As usual, we start with the lowest, most symmetric
ground states, obtained from a 1D radial Schrödinger
equation for the hyperdistance ρ, defined in Eq. (A3) as
a sum over Jacobi coordinates squared. We briefly indi-
cate in appendix A the derivation of the corresponding
Schrödinger-like equation in the case of 4He [14] here we
only note that the squared hyperdistance is related to
r coordinate, the distance between any 2 nucleons in a
tetrahedral configuration, via the simple relation

ρ2 =
6

4
r2 . (8)

Solving the eigenvalue problem in Eq. (A5) we have ob-
tained 40 lowest eigenstates using the simplest potential
V1 from Ref. [14] and the Coulomb term between the two
protons. The ground state energy we find is E0 = −27.8
MeV, close to the experimental value of Eexp

0 = −28.3
MeV.

Rather unexpectedly, we also find the second bound
state missed by our predecessors in [14], with JP = 0+

with energy E1 = −2.8 MeV. To determine whether this
state is physical, we show in Table I a compilation of the
excited states of 4He. Among them there is just one 0+

state, with a binding energy of

B = −28.3 MeV + 20.2 MeV = −8.1 MeV , (9)

which is close enough to the one we found to identify
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them, as the same second radial excitation. A plot with
both 0+ wave functions χ0(ρ), χ1(ρ) is shown in Fig. 4.
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FIG. 4. Two radial bound state JP = 0+ wave functions
for 4He, which are solutions of Eq. (A5) as a function of the
hyperdistance variable ρ. Their energies are discussed in the
text.

At finite temperature, we also use the unbound states
to weight them with the corresponding Boltzmann fac-
tor and calculate the thermal density matrix. The results
are shown in Fig. 5 for T = 100 MeV. In the upper plot
we present the results using the potential V1 given in
Ref. [14]. The solid line is the weighted density matrix
at T = 100 MeV compared to the contribution of the
lowest bound state only (blue dashed line). For this (un-
modified) potential the contribution of excited state to
the density matrix is important as can be seen from the
difference between the two curves.

C. Modification of the internucleon potential

In order to see what happens if the interaction poten-
tial is medium-modified, we repeat the calculation with
the same form of the potential, but with the coefficient
of the attractive term double. In this case the minimum
of the potential reaches ∼ −400 MeV, similarly to what
happens in Fig. 1.

This modified potential now has six radial bound
states: their energies in MeV are

E = −226.1,−120.1,−52.6,−17.3,−3.4,−0.1 .

The corresponding density matrix and the lowest bound
state wave function squared are shown in the lower panel
of Fig. 5. In contrast to the upper plot (for unmodified
potential) the lowest state dominates the density matrix.
It is not surprising (we already saw this for the N = 2
case), since its binding is more than twice the temper-
ature. In that figure we can read the magnitude of the
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FIG. 5. Solid lines: Boltzmann-weighted density matrix, at
T = 100 MeV, using 40 lowest states of the K-harmonics
radial equation, for the unmodified nuclear potential V1 used
in Ref. [14] (upper plot) and a modified one (lower plot). In
both cases the blue dashed lines show the contribution of the
lowest bound state. The units of the OY axis are fm−1.

correlation, relative to the constant asymptotic distance
(the thermal contribution of propagating positive energy
states) increases from ∼ 0.4 to ∼ 12, a huge factor.

Finally we comment about the normalization of the
density matrix in the N = 4 case. The wave function
ψ(ρ) in 9 dimensions is normalized as

1 =

∫
|ψi(ρ)|2d9ρ =

∫
|χi(ρ)|2dρ , (10)

with all the angular dependence factorized and integrated
out. So the integrated density matrix has dimension of
9 or volume cube: respectively the effect is to be multi-
plied by the baryon density cubed n3

B . Virial expansion
of statistical mechanics call such term the fourth virial
coefficient.
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III. SEMICLASSICAL “FLUCTON” METHOD
AT NONZERO TEMPERATURES

In this section we introduce a novel semiclassical
method to approximate the calculation of the thermal
density matrix for 2-, 3- and 4-nucleon systems. It is
the generalization of the “flucton” path [15] to few-body
systems at finite temperature.

A. Semiclassical theory at nonzero temperature

Semiclassical approximations are well-known tools,
both in quantum mechanics and quantum field the-
ory. Standard textbooks of quantum mechanics usually
start with Bohr-Sommerfeld quantization conditions, and
semiclassical Wentzel-Kramers-Brillouin (WKB) approx-
imation for the wave function [16]. Unfortunately, ex-
tending such methods beyond the one-dimensional case
(or multidimensional with separable variables) proved to
be difficult. Also already the first WKB correction to
classical term, 1/

√
p(x) is not correct and contains a

nonphysical singularity at the turning point.
As shown by Feynman [12, 17, 18], the density matrix

for any quantum system can be expressed by the path
integrals, over paths passing through the point x0. Ana-
lytic continuation to Euclidean (Matsubara) time defined
on a circle τ ∈ [0, β = ~/T ] lead to its finite temperature
generalization

P (x0) =

∮
Dx(τ) e−SE [x(τ)]/~ , (11)

taken over the periodic paths which start and end at
x = x0. This expression has led to multiple applica-
tions, perturbative (using Feynman diagrams) or numer-
ical (e.g. lattice gauge theory).

Another interesting usage of this expression is devel-
opment of a novel semiclassical theory. Its main idea is
that in certain conditions the path integral is dominated
by minimal action (classical) path, called “flucton”. The
idea was introduced in [15] (it was also later suggested
independently in [19].). Unlike the WKB approximation,
this approach works for multidimensional and quantum-
field-theory settings. It also leads to a systematic per-
turbative series based on Feynman diagrams, with clear
rules for each order.

Systematic application of this method at zero temper-
ature (β → ∞) for a number of quantum mechanical
problems has been developed in [20–22]. The quantum
corrections have been calculated to 3 loops, and shown
to be in exact agreement with asymptotic expansion of
the ground state wave functions at large distances. The
reader can find all the details in these references. We
present a minimal content of the “flucton” method in
App. B.

At T = 0 quantum systems are in their ground states,
and therefore studies of the density matrix are related to

�V (x)

x

x0
xturn

x0
xturn

⌧ = 0⌧ = ±�/2

�V (x)

x

x0
xturn

x0
xturn

⌧ = 0⌧ = ±�/2

FIG. 6. Two sketches explaining properties of the flucton
classical paths. The upper one shows the (flipped) potential
−V (x) versus its coordinate. The needed path starts from
arbitrary observation point x0 (red dot), goes uphill, turns
back at the turning point xturn (blue dot), and returns to x0

during the required period β = ~/T in imaginary time. The
lower plot illustrates the same path as a function of Euclidean
time τ defined on a “Matsubara circle” with circumference β.

semiclassical description of the ground state wave func-
tions. It has been shown in the above mentioned papers
how path integral semiclassical higher-order corrections
correspond to the asymptotic expansion of solutions to
Schrödinger equation.

At finite temperatures the path integral is modified,
but it can still be dominated by certain “flucton” paths,
which should satisfy a number of conditions. They should

(i) have minimal action, thus satisfy classical equation
of motion with Euclidean time τ = it;

(ii) be still periodic, starting and ending at the desig-
nated observation point x = x0;

(iii) have a specific time period β in τ , the “Matsubara
time”, related to the temperature by β = ~

T .

In Fig.6 we provide two sketches explaining how these
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paths look like.
The semiclassical theory at nonzero temperature will

be the subject of a separate paper [23]. Some results, for
harmonic and anharmonic oscillators, are briefly sum-
marized in Appendix B. Applications of this method to
nucleon systems with N = 2, 4 are given in the following
sections.

B. 2-nucleon system as a thermal flucton

In this section we apply for the first time the flucton
method described in App. B to a 2-body potential at
finite temperature. Before we start let us remind two
limits, in which the method leads to some obvious results:

1. At large T (β → 0) the periodic paths have no time
to propagate, so the system stays at x(τ) = x0. The
action is SE → βV (x0) which corresponds to the
usual classical Boltzmann factor.

2. At small T the system is mostly in the ground state
and the density matrix P → |ψ(x0)|2. The flucton
method obviously yields the semiclassical version of
ψ(x0).

For two particles the Euclidean action for their relative
motion reads

SE [r(τ)] =

∫
dτ
(mN

4
ṙ2 + V (r)

)
, (12)

where r is the internucleon distance, ṙ = dr/dτ , V (r) is
the pairwise (inverted) potential VNN , and the coefficient
1/4 in the kinetic energy appears because of the use of the
nucleon mass instead of the reduced mass mR = mN/2).
The classical equation of motion is

r̈ =
2

mN

∂V (r)

∂r
, (13)

whose solution is the required flucton path r(τ) = rfluc(τ)
as a function of the observation point r0. The density
matrix is proportional to the action of this solution,

P (r0) ∼ e−SE [rfluc(τ)] . (14)

The observation point will be simply denoted as r in our
plots.

In Fig. 7 we compare the probabilities (not normalized)
of two nucleons being at distance r from each other at
a temperature T = 100 MeV, calculated by both meth-
ods: the flucton method (dots) and a classical Boltzmann
factor (solid and dashed lines). We use two potentials,
the original Walecka-like potential (1) with mσ = 500
MeV, and another with mσ = 285 MeV, with increased
attraction. As one can see, for the unmodified poten-
tial the effect is rather modest, and classical thermody-
namics (solid line) coincides with the semiclassical result
(squares). At small values of r the potential presents a
steep repulsive wall, which makes the classical solution
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FIG. 7. The probability for two nucleons being at distance
r (fm) from each other at temperature T = 100 MeV. In
symbols we plot the semiclassical probability distribution cal-
culated via the flucton method, while lines are Boltzmann
factors with the Walecka potential in (1). We used two dif-
ferent values of the σ mass.

go quick to zero, whereas the flucton case presents larger
probability due to the quantum barrier penetration. The
comparison between methods is however very different
for the modified potential, for which the correlation is
significant as VNN it is not small compared to T . Again,
quantum penetration into the potential to the right of
the minimum makes the probability for the flucton larger
than the classical expectation. This is a clear illustration
of how quantum effects can be taken into account in a
classical calculation.

The probability P (r) is not directly normalizable. This
happens because the potential has the asymptotic limit
to zero when r → ∞, and therefore P (r) → 1. This is
similar to the pair correlation function of infinite systems
(we comment on these in our Ref. [6]) which tends to 1 at
large distances, the value of the ideal gas. Similarly here,
one should normalize P (r) to the ideal gas value, e.g. to
quantify the effect between potentials, we calculate the
so-called correlation volume

veff = 4π

∫
drr2 (P (r)− 1) . (15)

For the two Boltzmann cases shown in Fig. 7, they are
veff = 5.3 and 151 fm3, respectively. The nucleon density
under freeze-out conditions is a fraction of the nuclear
matter density n0 ≈ 0.16 fm−3. Multiplying it by veff one
finds that while the original potential leads to probability
of pair correlations less than one, the modified potential
instead predict strong pairing of the nucleons.
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C. Tetrahedral thermal fluctons

Let us now study the N = 4 flucton case at finite tem-
perature. To reduce the number of dimensions we will
assume a particular equilibrium configuration (tetrahe-
dron) and consider unidimensional trajectories along the
mutual distance r. As a warm-up exercise let us work
out the equations for the N = 3 case.

For three particles we also consider a simplified config-
uration to reduce the difficulty of the problem. Based on
symmetry, one expects that classical flucton would cor-
respond the particles to be at the corners of a equilateral
triangle, with the (time-dependent) side r(τ). Without
loss of generality, this is achieved when 3 locations are

{~x1, ~x2, ~x3} =

{(
r√
3
, 0

)
,

(
− r

2
√

3
,
r

2

)
,

(
− r

2
√

3
,−r

2

)}
.

(16)

The length of each coordinate squared is ~x2
i = r2/3 and

the sum of the three adds to r2, so the action is

SE =

∫
dτ




3∑

i=1

mN

2
~̇x2
i +

∑

pairs

V (r)




=

∫
dτ
(mN

2
ṙ2 + 3V (r)

)
, (17)

and the classical EOM for the relative distance is

r̈ =
3

mN

∂V (r)

∂r
. (18)

In a similar manner we can directly proceed to the ac-
tion and the equation of motion for 4 nucleons, assuming
a tetrahedral shape with side r (interparticle distance).
In this case we have N = 4 coordinates, which can be
parametrized without loss of generality as

~x1 =

(
0, 0,

√
3

8
r

)
, ~x2 =

(
r√
3
, 0,− r

2
√

6

)
,

~x3 =

(
− r

2
√

3
,
r

2
,− r

2
√

6

)
, ~x4 =

(
− r

2
√

3
,−r

2
,− r

2
√

6

)
,

(19)

with ~x2
i = 3/8r2. The action and the equation of motion

are,

SE =

∫
dτ




4∑

i=1

mN

2
ẋi

2 +
∑

pairs

V (r)




=

∫
dτ

(
3mN

4
ṙ2 + 6V (r)

)
, (20)

and the EOM to be solved for the flucton solution is

r̈ =
4

mN

∂V (r)

∂r
. (21)

As a side remark, it is curious that the equation of
motion in Euclidean time for the three cases N = 2, 3, 4
follows the general expression

r̈ =
N

mN

∂V (r)

∂r
. (22)

Unfortunately there are no more configurations with N >
4 in which all particles stay at the same distance between
each other so this result cannot be generalized for N > 4
(for results with polyhedra with N > 4 see our paper [6]).

After explaining the setup for 4 nucleons, we show the
results of semiclassical flucton calculation, paying special
attention to the sensitivity of the particular NN poten-
tial used. In Fig. 8 we compare the semiclassical result
for the density matrix and the classical Boltzmann dis-
tribution, for unmodified (mσ = 500 MeV) and strongly
modified σ meson mass (mσ = 285 MeV) in the Serot-
Walecka potential.

In the former case the difference is not so large, as for
the N = 2 example, and Boltzmann expression provides
a fair description. With a deeper potential the situation
is quite different (see lower panel of Fig. 8). Notice that
the clustering is huge for the modified potential: it hap-
pens because its depth of ∼ −400 MeV is multiplied by
6 pairs. Again, quantum effects (included only in the
flucton solution) are important in those areas where the
classical probability is suppressed.

To deepen a bit more the temperature dependence, in
Fig. 9 we compare the exponent in the density matrix
from classical statistical mechanics (solid lines) with the
results of the semiclassical flucton method, for different
temperatures T = 100, 50, 25 MeV without modifying the
potential. Note that as the temperature decreases, the
quantum fluctuations make the width of the distribution
significantly wider than that predicted by the Boltzmann
factor. Formally, the semiclassical approximation should
be reliable when the flucton action is large, SE � 1.
In this respect the models considered in App. B, the
harmonic and anharmonic oscillators, differ from nuclear
potentials. In the former cases the potential grows indef-
initely away from its minimum, so the action also grows,
and semiclassical approximation is improving for large
distances. However nuclear potentials are short ranged,
at they get small at large distances: with them SE gets
small as well. As a result, semiclassical approximation is
reliable only in some interval of distances.

Note the curious loop in the flucton points at T = 25
MeV. That means that for certain values of the observa-
tion point r0 (remember that in the plots the subindex
0 has been removed) the classical equations of motion
provide up to 3 independent solutions in some region of
the potential. Existence of multiple paths leading to the
same final point x0 and requiring the same propagation
time is of course a phenomenon well known in mechanics.
In fact, already in 1659 Huygens discovered the isochrone
curve, a cycloide, sliding along which to the bottom from
any initial point (at zero initial velocity) takes the same
time. While several paths may satisfy the requirements



9

●

●

●

●

●

●

●

●

●

●

●
●
●
●●●●●

●
●
●
●
●
●
●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

T=100 MeV

Classical

● Flucton

0.5 1.0 1.5 2.0 2.5 3.0
0.5

1

5

10

r(fm)

e
-
S
E
(r
)

●●
●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

T=100 MeV

Classical

● Flucton

0.5 1.0 1.5 2.0 2.5 3.0

100

10
5

10
8

r(fm)

e
-
S
E
(r
)

FIG. 8. The exponential part of the 4-nucleon density matrix
exp(−SE) calculated by the flucton method (dots) versus the
classical Boltzmann exponent exp(−6βV ) (lines) at T = 100
MeV. The upper and lower plots are for Walecka-type poten-
tial with σ mass mσ = 500, 285 MeV, respectively.

needed for a “finite temperature fluctons” with the right
period, it is not clear a priori which of these solutions
should contribute to the path integral. One could select
the ones with the smallest action (the largest contribu-
tion to the path integral). In this case, all points be-
longing to the loop should simply be disregarded, and
the semiclassical density matrix simply has a jump in
the derivative, a kind of first-order transition (notice the
formal similarity with the Maxwell construction for the
determination of the thermodynamical potential across
a first-order transition cf. Fig. 12 in Ref. [24] by one of
us). However, other solutions to the classical equation of
motion might contribute as well. We plan to study this
effect in detail in a future paper [23].

The exponent of the action, shown in Fig. 9 is huge,
especially in the case of small temperatures. The
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FIG. 9. The density matrix for 4 nucleons in the tetrahedral
configuration as a function of internucleon distance r, for tem-
peratures T = 50, 25 MeV, from top to bottom. The continu-
ous lines show the classical Boltzmann factor exp(−6V (r)/T )
while the dots correspond to the semiclassical flucton config-
uration. The NN potential used is the Serot-Walecka poten-
tial (1) with mσ = 500 MeV.

pre-exponent effects due to quantum/thermal fluctua-
tions, not yet calculated, are expected to modify it
strongly. While classical motion preserves the tetrahe-
dral shape, quantum fluctuations do not, they happen
in full 3(N − 1) = 9-dimensional space and they are not
scale-invariant.

D. N = 4 fluctons in the hyperdistance
representation

Another—and as it turns out much more realistic—
approach to semiclassical theory is to combine it with
quantum mechanics along the hyperdistance ρ axis. As
mentioned in the appendix A, it leads to appearance of
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effective repulsive potential Veff(ρ) = 12/(2mNρ
2), com-

peting with the attractive nuclear forces. Without it one
would not be able to reproduce light nuclei binding by a
simple one-dimensional equation.

It is therefore reasonable to apply the semiclassical
methods, at zero or nonzero T , in the hyperdistance rep-
resentation including this potential. As shown in the
appendix the effective potential for the 1D Schrödinger
equation is (given as a function of the hyperdistance ρ)

Veff(ρ) = W (ρ) +
12

2mNρ2
+ VC(ρ) , (23)

where VC is the Coulomb potential.
We solve the semiclassical equations of motion to find

the flucton solution for two temperatures T = 25, 100
MeV, using the potential Veff(ρ) and its version with a
double attraction, to see the effect of the critical point
on the NN potential.

In Fig. 10 we present our results in four panels, for the
four combination of temperatures and potentials.
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FIG. 10. e−SE for the K-harmonics potential of 4He. Top
panels: The Veff(ρ) used is the one shown in Eq. (23) with
NN potential in Eq. (A7). Bottom panels: same potential
but with doubled attraction. Left panels: T = 100 MeV.
Right panels: T = 25 MeV.

In the top left panel we start with a temperature of
T = 100 MeV and the potential in Eq. (23), where the
NN pairwise potential is given in (A7) as used in [14].
In this case the system is classical and the Boltzmann
factor account for all dynamics. For lower temperatures,
where the potential is well suited, we can see the result in
the top right panel. One can already see some quantum
deviations from Boltzmann expectations. In the bottom

left panel we present the NN potential (A7) with in-
creased attraction by a factor of 2 at T = 100 MeV. In
this example the temperature is still dominating over the
potential, and a sizable deviation from Boltzmann is only
obtained for T = 25 MeV.

IV. PRECLUSTERS AND PRODUCTION OF
LIGHT NUCLEI

The main motivation for this paper is that the possible
modification of the NN potential close to the freeze-out
time, will lead to a preclustering effect of nucleons in
heavy-ion collisions. Furthermore, this effect is signifi-
cantly enhanced if the internucleon potential is modified
due to the σ mass modification near the QCD critical
point [6].

Before proceeding to discuss potential observables, let
us start by reminding once more what we call the preclus-
tering phenomenon. It is very important to keep in mind
that the preclusters we study are very different from “nu-
clear fragments”, and also light nuclei (cf. Table I in
Ref. [6]).

The light nuclei we will be discussing, with N = 2, 3
nucleons, d, t,3ΛH,3He, typically have only one bound
state. Furthermore, they all have very small binding en-
ergies, even in nuclear standards. The deuteron binding
is only Bd = 2.2 MeV. An extreme case is the hypertriton
3
ΛH= pnΛ [25]: its binding energy is only [26]2

BΛ(3
ΛH) = 0.13± 0.05 MeV . (24)

Clearly the physical sizes of these states are very large,
comparable or larger than fireballs they come from.

These objects are therefore very fragile, easily de-
stroyed in any collision due to large cross section, and
the cascade codes typically predicted strong suppression
of their production. And yet, as shown in [2], their pro-
duction rate is in good agreement with the prediction of
statistical thermal model based on “resonance gas” ther-
modynamics. This model knows only vacuum masses
of these particles, entirely ignoring their small binding.
To reconcile the data with codes, in literature [28] some
so-far unobserved “resonances” were introduced, which
have small sizes and “reasonable” destruction cross sec-
tion, decaying into light nuclei after freezeout. The ex-
planation we suggest is that one does not need such hypo-
thetical resonances: their role is played by preclusters we
study. They are not bound states or resonances, just sta-
tistical correlations, with an energy uncertainty ∆E ∼ T
and relatively compact in coordinate space.

Basically, there are two experimental signatures of
preclusters. One, discussed in detail in [6] is a modi-
fied proton multiplicity distribution. Another one, which

2 A recent measurement by STAR collaboration gives a value 3
times larger [27].
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we will address below, is a certain modification of light-
nuclei production.

As we already mentioned, overall production of light
nuclei (and antinuclei) is well reproduced by the sta-
tistical thermal model, see e.g. [2]. By “overall” we
mean that each extra nucleon (antinucleon, upper sign)
is suppressed by the same factor exp[−(mN ± µB)/Tch].
The fitted values of chemical freezeout temperature and
baryon chemical potential are key parameters, which give
us ideas about matter as enters the hadronic world, and
their dependence on the collision energy is well docu-
mented in [2]. From the experimental results of the NA49
collaboration [29] one can also see the good agreement be-
tween the 3He and t multiplicity and the thermal model
at different collision energies. However, recent prelimi-
nary results of STAR collaboration [30] do not show a
similar agreement. It will be important to study in the
future the origin of this discrepancy with the thermal
model.

However, behind this (overall successful) description
one can observe some “finer structure”. It becomes vis-
ible in ratios, where the mentioned suppression factors
cancel out. One observable ratio is the tritium-proton-
deuterium combination defined as

Otpd =
NtNp
N2
d

, (25)

has been previously discussed in [31].
In this work we also propose the following ratios in-

volving 4He (= α)

Oαp3Hed =
NαNp
N3HeNd

, Oαtp3Hed =
NαNtN

2
p

N3HeN
3
d

. (26)

All these ratios have the same powers of fugacity in de-
nominators and numerators, which thus cancel, eliminat-
ing the trivial dependence on baryonic chemical poten-
tial. Furthermore, in classical statistical mechanics the
momentum and coordinate partition functions factorize,
simplifying the discussion. Mean kinetic energy per nu-
cleon, either a single one or inside any precluster, is the
same, 〈K〉 = 3T/2. So, in all ratios the kinetic parts of
the Boltzmann factor, exp(−K/T ) for each nucleon, do
cancel as well. Volume factors also cancel. What is left
are factors from statistical weights, powers of masses in
the preexponent, and potential energies:

Otpd =
4

9

(
3

4

)3/2 〈e−3V/T 〉t
〈e−V/T 〉2d

≈ 0.29〈e−V/T 〉 (27)

the factor 3 in the exponential reminds that in tritium
there are three nucleon pairs, and the right-hand side is
simplified under approximation that the averaged rela-
tive potential is the same. Analogously,

Oαp3Hed =
1

3

(
2

3

)3/2 〈e−6V/T 〉α
〈e−3V/T 〉3He〈e−V/T 〉d

≈ 0.18〈e−2V/T 〉 (28)

where 6 is the number of nucleon pairs in 4He, and

Oαtp3Hed =
8

54
23/2 〈e−6V/T 〉α〈e−3V/T 〉t
〈e−3V/T 〉3He〈e−V/T 〉d

≈ 0.42〈e−3V/T 〉 . (29)

Related to this last example, if one has an approximate
isospin symmetry, one can also consider the simpler ratio

Oαpd =
NαN

2
p

N3
d

=
4

27
2−3/2eµQ/T

〈e−6V/T 〉α
〈e−V/T 〉3d

≈ 0.05eµQ/T 〈e−3V/T 〉 , (30)

where µQ is the charge chemical potential signalling a
possible breaking of the isospin symmetry. Notice that
STAR collaboration has performed statistical thermal
fits in the BES completely neglecting this chemical po-
tential [32], whereas NA49 collaboration has extracted
this parameter in their fits getting values µQ/T ' −0.05
MeV [29], so one can safely neglect it in what follows.

After introducing all these ratios let us look at exper-
imental results of the first of them, Otpd.

Triton/proton/deuteron ratio

g�1NtNp

N2
d

⇠
D

e�V
T

E
(g = 0.29)

*Sun, Chen, Ko, Xu 2017,
based on NA49 Coll. data

STAR Collaboration,
preliminary 0%-10%
(QM2018)
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 (GeV)NNs
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 / 
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Juan M. Torres-Rincon (SBU) Modification of the NN potential...due to the QCD critical point 20FIG. 11. The ratio (25) as a function of collision energy. The
ratio is normalized by the corresponding statistical weight g =
0.29. Note that the high-energy RHIC point at the right side
of the plot gives the ratio value consistent with 1. Deviation
from 1 is related to nonzero interaction potential as shown in
Eq. (27).

In Fig. 11 we show available experimental data on the
energy dependence of the combination (27), normalized
by relevant statistical weights in g = 0.29. Ignoring the
t and d bindings in a statistical model, one would expect
this combination to be equal to unit value. It is indeed
the case at

√
sNN = 200 GeV (the most-right point),

with good accuracy.
Focusing on the specific ratios of α, t, p, d production,

in which many kinematical factors drop out, one should
expect their non monotonous energy dependence. The
status of experimental measurements of these ratios is
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as follows. A maximum in t − p − d combination was
originally reported, by NA49 [29], to be around

√
sNN ≈

9 GeV. Very recent preliminary data [5] from STAR BES
also see a maximum, although at

√
sNN = 20− 30 GeV.

However, at collision energies
√
sNN ∼ 10 − 40 GeV

the value of the ratio observed is larger than one, roughly
by the factor 2. If correct, this enhancement implies that
under such conditions the potential and the temperature
are comparable V/T ∼ O(1) as indicated in the rela-
tion (27). We suggest that this extra tritium production
comes from the preclustering phenomenon we discuss.

With the current data accuracy it is not possible to
tell whether Fig. 11 show a one-maximum or a double-
hump distribution. Let us note, that apart of hypotheti-
cal QCD critical point, the non monotonous behavior can
be caused by the onset of other (perhaps less exciting but
still very important) phenomena are also expected in the
same energy range.

One of them is the maximum fireball lifetime as a
function of

√
sNN , well documented by recent femtoscopy

data [33], located at
√
sNN ≈ 47 GeV. As indicated

already on the early study [34] of hydrodynamical ex-
pansion, there are two reasons for its existence, playing
together in this energy range. Those are: (i) the “softest
point” in the equation of state, a minimum in the speed
of sound c2s = (dP/dε)s or maximal compressibility
of matter. (ii) the maximal re-scattering rate at the
freeze-out. When the densities of pions and nucleons are
comparable Nπ ∼ NN , the largest relevant cross section
(reaching σπN ∼ 200 mb at the ∆ peak) is most effective.

Focusing only on STAR data, and assuming that the
deviation from 1 and the corresponding peak of the Otpd
ratio is due to the modification of the NN potential, it
is very tantalising to consider the ratios (28,29,30), as
heavier nuclei (with a larger number of nucleon pairings)
would produce an enhanced effect. These ratios involving
4He would increase the power in the exponential by a
factor 2 or 3.

Assuming the effect is entirely ascribed to the modifi-
cation of VNN , it is very easy to generate an approximate
prediction for each of these ratios, using experimental ra-
tio Otpd [5] as input. We plot the results in Fig. 12 for
each of the ratios (notice that the result for Oαtp3Hed has
been divided a factor of 5). While the absolute value of
these ratios depend on spin degeneracies and other factor,
the important feature is the relative difference between
the peak and the values at low and high energies.

If the experimental reconstruction of α particles [35]
can be performed in these low-energy collisions, and their
multiplicity measured with certain level of confidence,
these ratios would prove the sensitivity of the NN po-
tential to the presence of a near-by critical point.

It is important to mention that on top of the purely
thermal production, the particle yields suffer from feed-
down of hadron resonances which must be taken into ac-
count, being the most relevant to this study those de-
caying into protons. While we have not considered this
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FIG. 12. The ratios (28,29,30) as a function of the collision
energy computed from the ratio (27) in [5] assuming the only
effect of the NN potential modification.

effect, we assume that this proton feed-down is constant
enough around the critical region, so that a maximum of
these ratios can still be sensible indicators of the critical
behavior.

V. FROM PRECLUSTERS TO LIGHT NUCLEI

The understanding of the formation of various nuclear
species is among the central topics of nuclear physics, ex-
tensively studied in cosmological and astrophysical set-
tings. As commented in the introduction, what is com-
mon to the regimes in which nuclei are produced in cos-
mos is that the available temperatures are much lower
than the binding energies, T � |B|. The nuclear bind-
ing therefore dominates the respective Boltzmann factors
exp(−B/T ).

The setting we discuss here—the freeze-out of high-
energy heavy-ion collisions—is in the opposite regime, in
which light-nuclei bindings are few MeV and negligible,
B � T . One might therefore think that such fragile
objects cannot be produced. In other words, “snow flakes
do not jump out of hot oven”. We already mentioned
that experiments show this conclusion to be wrong, and
we now propose and explanation.

There are basically two ideas which we try to develop
in this work. One is that this pessimistic conclusion does
not hold for systems of four and more nuclei. First of
all, the ground state binding of 4He is no longer small,
even for unmodified potential. Second, starting with 4-
nucleon clusters, multiple (∼ 50) states exist near zero
binding, with interesting decay modes. Furthermore, let
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us emphasize, once again, that one should not be looking
at the stationary states or their binding, but for preclus-
tering phenomenon. Therefore, one has to compare 3T/2
(the average thermal energy per nucleon) to the value of
the total potential energy per particle,

Vi =
1

2

∑

j 6=i

Vij

produced at the location of particle i by all other par-
ticles. For 4 particles there are 3 terms in the sum,
and even for an unmodified potential at 1 fm distance
3|V (1 fm)| ∼ 100 MeV, comparable to T . For a modified
potential like the one shown by blue line in Fig. 1, the
value is one order of magnitude larger than T . For an in-
creasing number N of particles Vi ∼ (N − 1)/2〈V (r)〉 �
3T/2, and the corresponding Boltzmann factor would
lead to very a strong clustering. Of course, this argu-
ment does not hold for very large N with the standard
nuclear potential, because due to its short-range nature,
nucleons start to become blind to those far away from
them. Nevertheless the values of N when this happen in-
crease with the criticality of the potential, as it becomes
more long-ranged.

Potential deviations of the nuclear ratios from the sta-
tistical predictions imply that interaction strength V and
T are comparable, in the specific collision energy range.
This is only possible when the distances between nucleons
are 1–2 fm/c, which we called “preclusters” [6]. Our dy-
namical studies in [6] have shown that the corresponding
correlations can be large, especially if the nuclear forces
are modified as expected.

In this section we comment on the differences between
the precluster formation and the final, observable, light-
nuclei production. While the former at produced in the
hot regime B � T , where a potential modification of the
nuclear interactions are expected, the later are only ob-
served in a situation with vanishing temperature where
the standard NN potential dominates the nuclear dy-
namics.

A. Precluster decay into stationary states

When discussing preclusters we have so far calculated
the thermal density matrix in coordinate space P (x;T ),
see e.g. Figs. 5, 7 and 8. This function typically has
the form of a peak, centered at distances ∼ 1 fm be-
tween particles (or hyperdistance ρ ∼ 2 fm) tending to
a constant at large distances. Let us introduce the no-
tion of precluster wave package, which by definition is
proportional to the square root of the density peak in
coordinate density matrix

|ψcluster(x)|2 ∼ (P (x)− P (x =∞)) . (31)

Because the asymptotic value at large distances is sub-
tracted, this wave package is by definition well localized.
For the 4He case, this would be the wave package in

which four nucleons are at freeze-out. When the ther-
mal medium rapidly disappears after that, this preclus-
ter wave package evolves further. Its decomposition into
stationary states |Ψn〉, with the appropriate phases,

ψcluster(t, x) =
∑

n

〈Ψn(x)|ψcluster(0, x)〉e−iEntΨn(x)

(32)

takes a time ∆t ∼ ~/∆E, where ∆E ∼ En+1 − En is
the level spacing. As we will see, for the excited states
of 4He this ∆E is of the order of few MeV, so this de-
composition takes long time, much longer than explosion
itself. Therefore, there is no paradox of “fireball creating
objects larger than itself”: the stationary states (with
large sizes) do appear much later in time, basically at
zero density! Furthermore, these states are also unstable
and decay into smaller systems: this also takes similarly
long time ∆t ∼ 1/Γ ∼ 50 fm (see further discussion in
section V C).

B. On Wigner function projection

If one would like to refine the previous picture, one can
use a more precise procedure. Note that so far we focused
on spatial locations of the nucleons in the precluster, ig-
noring the momentum distribution. That was possible
because in a thermal state of nonrelativistic particles the
kinetic and potential energy are simply additive, and mo-
menta distributions are just Maxwell-Boltzmann’s ones
(with the corresponding effective mass for relative mo-
tion, Meff).

The product of this Maxwell distribution and the spa-
tial density matrix should be projected to the Wigner
function of the corresponding stationary states W0(x, p),
the quantum analogue of the phase space distribution,

∫
d3x

d3p

(2π)3
e
− q2

2MeffTf P (x, T )W0(x, p) , (33)

where x is the relative coordinates and q is relative mo-
menta. Let us also note that for the temperature we
should use the so-called kinetic freeze-out temperature
Tf ∼ 100 MeV. After the stage with Tf , there are—
by definition—effectively no collisions, as witnessed by
mesonic and baryonic p⊥-spectra well explained by a
convolution of hydrodynamic flow and thermal distribu-
tions [32].

This Wigner projection is not a new idea, and people
using cascade or molecular dynamics codes for the de-
scription of heavy-ion collisions have been using it. How-
ever, this projection is customary done by an oversimpli-
fied Gaussian form of the Wigner function [36]

W0(r,p) = 8 exp

(
− r

2

d2
− p2d2

)
, (34)
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normalized to

1 =

∫
d3r

d3p

(2π)3
W0(r,p) =

∫
d3r

d3p

(2π)3
W 2

0 (r,p) .

(35)

The form (34) has only one parameter d, related to
the r.m.s. radius. For the deuteron d = 1.7 fm is usually
used, corresponding to the r.m.s. deuteron radius of 2.1
fm. Furthermore, it was claimed that even dependence
on the specific value of d is rather weak, and that all
what matters is that the phase space volume has the
right magnitude, corresponding to a single state.

We call this approach “oversimplified” because it ig-
nores the fact that wave functions have at least two very
different parts, “in” and “out” of the potential well. Even
the original approach to deuteron, by Bethe [37], via a
rectangular attractive potential well, illuminated clearly
existence of two distinct components of the wave func-
tion. An appropriate parametrization should have, at
least, two Gaussians to be somewhat realistic. The “in”
component possesses large momenta related to the po-
tential well depth V , the “out” has large size related to
binding. Since B � V they have different properties and
do not correspond to the single Gaussian. Even larger
difference should be present for multi-nucleon case.

In Fig. 13 we illustrate the “Walecka deuteron”
wave function squared, |ψL=0,i=1(r)|2 =
|uL=0,i=1(r)|2/(4πr2), obtained in Sec. II which is
normalized as

∫
d3r|ψL=0,i=1(r)|2 = 1 . (36)

We plot together the quantity [38].

ρ(r) =

∫
d3p

(2π)3
W0(r,p) =

exp
(
−r2/d2

)

π3/2d3
, (37)

using the Gaussian Wigner function in Eq. (34). This
probability density is, in fact, equal to the squared wave
function [38] of the deuteron. With the chosen normal-
ization for the Wigner function one has

∫
d3rρ(r) = 1 , (38)

so it makes sense to compare the square wave function ob-
tained from Walecka potential and this probability den-
sity for a Gaussian wave function. We show the compar-
ison in Fig. 13.

C. Possible observation of preclusters and
statistical treatment of nuclear resonances

Preclusters do not have fixed energy, as they are su-
perposition of physical states in certain energy strip
∆E ∼ T . Being left alone, the preclusters decay into
many physical states of the corresponding number of nu-
cleons or light nuclei. In the previous section we focused

|ψL=0,i=1(r)
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FIG. 13. Ground state wave function (squared) for the
“Walecka deuteron” obtained numerically from (5), and prob-
ability density (37) for the Gaussian Wigner function (34) of
Ref. [36].

on the precluster decay into the ground state. Now we
discuss other decays (which of course dominate in terms
of the total probability).

Let us consider as an example a ppnn precluster. Apart
of forming a single bound state, the α particle or 4He, it
can also decay into (i) 4 individual nucleons; (ii) 1+3
channels p + t, n+3He; (iii) 2+2 channel d + d. The
question then is whether one can experimentally infer
the existence of preclusters by looking at these two-body
channels.

One feature expected would be a peak at small relative
momentum (rapidity). In the invariant mass distribution
(p1+p2)2 one also should find low-mass enhancement, re-
lated to feed-down from 4-nucleon resonances. While we
have not yet derived all of them from quantum mechan-
ics, one can use those which were found experimentally.

In Table I we list such resonances occupying the strip
of energies of width ∆E = 10 MeV above the bind-
ing threshold, shown with their quantum numbers and
branching ratios for their decay modes.

Note that already in this strip the resonances are
strongly overlapping, as the decay widths and energy dif-
ferences are comparable. A growing density of states and
widths above this strip makes their separation/discovery
hard. However one does not need finding them one-by-
one, but rather look for a collective enhancement near-
zero effective mass .

In the spirit of statistical thermal model, one may as-
sume that all

Nstates =
∑

i

(2Ji + 1) = 49

states in this energy strip are populated equally in the
quantum decomposition of preclusters which in our clas-
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E (MeV) JP Γ (MeV) decay modes, in %

20.21 0+ 0.50 p = 100

21.01 0− 0.84 n = 24, p = 76

21.84 2− 2.01 n = 37, p = 63

23.33 2− 5.01 n = 47, p = 53

23.64 1− 6.20 n = 45, p = 55

24.25 1− 6.10 n = 47, p = 50, d = 3

25.28 0− 7.97 n = 48, p = 52

25.95 1− 12.66 n = 48, p = 52

27.42 2+ 8.69 n = 3, p = 3, d = 94

28.31 1+ 9.89 n = 47, p = 48, d = 5

28.37 1− 3.92 n = 2, p = 2, d = 96

28.39 2− 8.75 n = 0.2, p = 0.2, d = 99.6

28.64 0− 4.89 d = 100

28.67 2+ 3.78 d = 100

29.89 2+ 9.72 n = 0.4, p = 0.4, d = 99.2

TABLE I. Low-lying resonances of the 4He system, from BNL
properties of nuclidesa. JP are the total angular momentum
and parity, Γ is the decay width. The last column is the decay
channel branching ratios, in percent. p, n, d correspond to the
emission of proton, neutron or deuterons.

a https://www.nndc.bnl.gov/nudat2/getdataset.jsp?nucleus=

4HE&unc=nds

sical simulation have corresponding energies. With this
assumption, and using the decays indicated in the table
(interpreted as p + t, n+3He, d + d exclusive channels),
one further finds that decays of a single ppnn preclus-
ter should produce, on average, 0.30 (p + tritium), 0.22
(n + 3He) and 0.96 deuterons (0.48 dd pairs). Detector
resolution permitting, one should search for evidences of
these p+t, d+d resonances in heavy-ion datasets. In par-
ticular, these evidences can only show up in the nuclear
ratios we have been considering, as this “feed-down” is
just a tiny effect in the absolute yields of nuclei. Should
such “feed down” be found, it would obviously be a di-
rect evidence for the 4-nucleon preclustering we advocate
in this work.

VI. SUMMARY

In our previous paper [6] we studied clustering of nucle-
ons, at the freeze-out conditions of heavy-ion collisions,
especially close to a possible critical point of QCD. The
method used to simulate the real-time dynamics of nucle-
ons, was a classical molecular dynamics code. Although
for calculations in nuclear matter it was augmented by
some phenomenoloical “Fermi potential” to mimic quan-
tum effects, it was clear that a more quantitative study
of few-body quantum mechanics was needed, as is indeed
explored in the present paper.

Before we come to their description, let us remind the
main finding of Ref. [6]. It was shown that the clustering

phenomenon and its rate are extremely sensitive to even
small modifications of the internucleon potential. The
observable on which we focused in that paper was the
scaled kurtosis of the (net-)proton multiplicity distribu-
tion, which was shown to be substantially increased by a
reduction of the σ-mode mass.

Let us now come to the results of this paper, aiming
first at experiment-oriented readers. The available data
on NtNp/N

2
d ratio versus the collision energy, shown in

Fig. 11, are intriguing. At the highest RHIC energy this
ratio is compatible with the ratio of statistical weights of
a noninteracting gas (unit value on that plot). However
at lower energies it is about twice larger, perhaps with
one (or two) maximum at certain collision energy. Since
the main Boltzmann factors exp[(µB−mN )/T ] cancel in
the ratio, as well as thermal kinetic energy of 4 nucle-
ons in numerator and denominator, any deviation from
1 should be assigned to some interaction. In particu-
lar, a stronger attraction in the three-nucleon system as
compared to the two-nucleon one would bring this ratio
to values larger than 1. An enhanced production of t is
thus interpreted above as a contribution from preclusters.

If so, we propose that similar effects, but enhanced,
should be observed in other ratios including 4He like

NαNp
N3HeNd

,
NαNtN

2
p

N3HeN
3
d

,
NαN

2
p

N3
d

. (39)

The main object of this study, the four-nucleon
preclusters, were found to be very interesting, even for
the unmodified T = 0 nuclear forces. Out of ∼ 50
bound states, only one—the ground state—is the observ-
able 4He. All others have known decay channels as listed
in Table I. We suggest that feed-down from them is also
part of the reason for the enhanced t production at low
RHIC energies. One should study this suggestion experi-
mentally, looking for explicit two-body decay channels of
preclusters, as an enhancement at low invariant mass in,
say p+t, d+d channels. We also propose that the preclus-
ter decay into 4 protons is contributing to the enhanced
kurtosis of the net-proton multiplicity distribution.

Now we turn to summary for readers interested in
many-body theory. Among the goals of this paper are:

(i) development of a novel semiclassical method for fi-
nite temperature density matrix, based on path in-
tegrals, called the thermal flucton;

(ii) comparing its results with classical Boltzmann dis-
tribution at high temperature, and with quantum
ground state wave functions at low T ;

(iii) obtaining reliable estimates for precluster decay
probabilities into d for two nucleons, and 4He for 4
nucleons;

(iv) obtaining estimates for two-body precluster decays,
such as ppnn→ p+ t, n+3He, d+ d.

We used first (rather traditional) method to calcu-
late the density matrix for four-nucleon system, via solv-
ing Schrödinger equation for multiple energy levels, and
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weight them by the Boltzmann factor. We did so for
the two-nucleon system with a Serot-Walecka potential,
and using K-harmonics method for 4 nucleons. The re-
sults, shown in Fig. 5, show modest ∼ 1.4 correlation for
the unmodified potential, but ∼ 10 enhancement for the
modified one with increased attraction.

A part of this paper is devoted to the methodical de-
velopment of the semiclassical “flucton” method [15], so
far developed for T = 0 only [20, 21]. We have shown
how to use it for nonzero temperatures. It does work
well for standard toy models such as the anharmonic os-
cillator (see Fig. 16), and it is also applicable to 2- and
4-nucleon problem at finite temperatures. The flucton
method (see Fig. 8) predicts somewhat larger effects
than K-harmonics do, ∼ 4 for the unmodified poten-
tial, and really huge enhancement for the modified one.
The difference may be related to the fact that we only
calculated the leading semiclassical part of the 4-nucleon
density matrix, exp(−Sflucton), without the one-loop pre-
exponent (determinant) or other corrections. It may also
indicate that the action is not large enough to fully trust
the semi classical approach.
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Appendix A: Wave function of 4He using
K-harmonics

The so-called method of K-harmonics was developed
in Ref. [13]. Its main idea is that the multi-dimensional
Schrödinger equation can be treated with a single “ra-
dial” coordinate plus “angular variables”, for which a
complete set of functions is known. In certain cases a
rather good approximation can be obtained using a sin-
gle lowest angular function, with trivial angular depen-
dence. Such cases include in particular A = 3 nuclei and
also 4He, which is the case we will discuss here following
Ref. [14]. Since these papers are rather old, we indicate
in this appendix their main points.

As a preliminary information, let us note that 4He is
a surprisingly compact nucleus, with a r.m.s. radius of
only R(4He) ≈ 1.6 fm. Its binding energy may appear
to be large B(4He) = 28.3 MeV, but since there are 6
nucleon pairs the “binding per pair” is rather small and
only about twice that of the deuteron.

The first standard step in many-body physics is the
separation of the center of mass motion from the relative
coordinates. It is usually done using Jacobi coordinates,

which for the A = 4 case are

~ξ1 =
~x1 − ~x2√

2
, ~ξ2 =

~x1 + ~x2 − 2~x3√
6

, (A1)

~ξ3 =
~x1 + ~x2 + ~x3 − 3~x4

2
√

3
. (A2)

The radial coordinate, or hyperdistance, is defined as

ρ2 =

3∑

m=1

(~ξm)2 =
1

4


∑

i6=j

(~xi − ~xj)2


 . (A3)

The radial part of the Laplacian in these Jacobi coordi-
nates is ψ′′(ρ) + 8ψ′(ρ)/ρ, and using the substitution

χ(ρ) = ψ(ρ)ρ4 , (A4)

one arrives to the conventional-looking Schrödinger equa-
tion for K = 0 harmonics

d2χ

dρ2
− 12

ρ2
χ− 2mN

~2
[W (ρ) + VC(ρ)− E]χ = 0 ,(A5)

where W is the projection of the potential to this har-
monic. According to [14],

W (ρ) =
315

4

∫ 1

0

VNN (
√

2ρx)(1− x2)2x2dx , (A6)

where VNN (r) is the two-body nuclear potential.
We consider the simplest nuclear potential in Ref. [14]

(called V1 there)

VNN (r) = −83.34 e−r
2/1.62

+ 144.86 e−r
2/0.822

,(A7)

with the prefactors given in MeV while the radii in the
exponents in fm. In Eq. (A5) also appears a Coulomb
repulsion between the two protons, which adds VC(ρ) =
2.23 MeV· fm/ρ. The discussion of the solutions of this
equation is given in the main text, where not only the
ground state but also the first JP = 0+ excitation can
be identified with physical states.

For the application of the problem (A5) into the semi-
classical flucton solution, it is easy to realize that it is
equivalent to a 1D Schrödinger equation,

− ~2

2mN

d2χ

dρ2
+ Veff(ρ)χ = Eχ , (A8)

with the effective potential,

Veff(ρ) = W (ρ) +
6~

mNρ2
+ VC(ρ) . (A9)

Therefore we can apply the standard flucton method
described in the text to obtain the flucton solution to
the inverted potential −Veff(ρ). The potentials W (ρ)
and Veff(ρ), for the special case of the NN potential in
Eq. (A7), are plotted in Fig. 14.
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FIG. 14. W (ρ) and Veff(ρ) potentials used in [14] for the
solution of Eq. (A5). The second potential is also used in the
semiclassical solution in Sec. III D using the flucton path.

Appendix B: Semiclassical theory at finite
temperature

In this appendix we illustrate how the flucton method
is applied for the 1D harmonic oscillator problem, with
the Euclidean action

SE [x(τ)] =

∫
dτ

(
ẋ2

2
+
x2

2

)
, (B1)

where three mechanical units are chosen to have ~ = m =
ω = 1. The dot indicate derivative over the Euclidean
time τ = it, and the circle at the integral reminds us
that it is defined on a Matsubara circle. Note that the
sign of the potential in the action is reversed, which is
the consequence of i2 = −1 in the kinetic term.

The flucton is a classical path which: (i) passes
through some observational point x0; and (ii) is periodic
with the period β in τ . At zero temperature, because in
Euclidean time the potential is inverted, the particle is
“sliding” from the maximum at x = 0 to x = ±∞. Most
of the previous applications were at T = 0 (β =∞) and
the slide was always started from the maximum, at zero
energy.

At nonzero T such slides also start with zero velocity
but from a certain “turning point” xturn and proceed to-
ward the observational point x0. The turning point, by
symmetry, should be separated from x0 the time equal to
half period β/2. For any one-dimensional motion there
is no need to use the Newton’s equation of motion. Ex-
pressing the velocity from the energy conservation on the
path, this condition can be put into the general form

β

2
=

∫ x0

xturn

dx√
2(V (x) + E)/m

. (B2)

For the harmonic oscillator, with V (x) = x2/2, it is easy

to find the turning point by solving

E = V (xturn) =
x2

turn

2
, (B3)

and calculate the integral for the period

β

2
= arccosh

(
x0√
2E

)
. (B4)

The classical flucton path is therefore given by

xfluc(τ) = x0
cosh(τ − β/2)

cosh(β/2)
, (B5)

and at both τ = 0 and τ = β it returns to the desired
point x0. Now, substituting this solution into the Eu-
clidean action one finds that

SE [xfluc(τ)] = x2
0 tanh

(
β

2

)
, (B6)

and the density matrix is therefore Gaussian at all tem-
peratures

P (x0) ∼ e−SE [xfluc(τ)] = e−x
2
0 tanh( β2 ) . (B7)

This reproduces the result obtained by Feynman [12] via
the explicit calculation of the Gaussian path integral. As
it happens for any Gaussian path integral, this semiclas-
sical formula is, in fact, exact.

Let us now proceed to illustrate the first nontrivial
problem, the anharmonic oscillator, defined by

SE [x(τ)] =

∫
dτ

(
ẋ2

2
+
x2

2
+
g

2
x4

)
. (B8)

The tactics used in the previous example are not easy
to implement: in particular, the period condition (B2)
defining the energy E needs to be solved numerically for
each value of the x0. Furthermore, using energy conser-
vation leads naturally to τ(x) representation of the path,
rather than the conventional x(τ).

After trying several strategies we concluded that the
simplest way to solve the problem is:

(i) solve numerically the second-order equation of mo-
tion,

ẍ =
∂V (x)

∂x
= x+ 2gx3 , (B9)

starting not from the observation point x0 but from
the turning point xturn at τ = −β/2. This is easier
because the velocity vanishes at this point, and a
numerical solver can readily be used;

(ii) follow the solution for half period β/2 and thus find
the location of x0 = x(τ = 0);

(iii) calculate the corresponding action and double it,
to account for the other half period τ ∈ (0, β/2).
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Notice that this method provides x0 as an output af-
ter solving the equations of motion with initial conditions
x(−β/2) = xturn and ẋ(−β/2) = 0. One could also tweak
a bit the method to use x0 it as an input by using the
constraints x(0) = x0 and ẋ(−β/2) = 0. The details of
this procedure and its comparison with the numerical re-
sults based on the definition Eq. (2) for the anharmonic
oscillator will be provided in a separate methodical pa-
per [23].

-0.4 -0.2 0.0 0.2 0.4

1.2

1.4

1.6

1.8

2.0

τ

x
(τ
)

FIG. 15. Flucton path for the anharmonic oscillator with
g = 1 and T = 1 (in units of the mass), for the observation
point x0 = 2. Notice that, as expected, τ ∈ (−β/2, β/2) with
β = 1/T = 1 and x(τ = 0) = x0.

In Fig. 15 we show the numerical solution of the fluc-
ton path for the anharmonic oscillator with g = 1 and
T = 1 (in units of the mass). We choose the observation
point x0 = 2, which is reached as expected, at τ = 0 (cf.
Fig. 6). The flucton is periodic in τ with period β = 1/T .

Here we present the upper panel of Fig. 16 compar-
ing the summation over 60 squared wave functions, and
Boltzmann weighted (solid line), with the result of the
flucton method (points) at T = 1 (in units of the mass).
The coupling is set to g = 1. For additional compari-
son we also present the numerical results of a path inte-
gral Monte Carlo calculation with the same parameters
which simulates quantum paths of one particle in the an-
harmonic oscillator potential. The method is inspired by
the nice reference [39] and will be reviewed in [23].

As a semiclassical approach one expects that the fluc-
ton solution works better when the action is large, i.e. for
large values of x0. However, one observes that the fluc-
ton systematically overestimates the solution based on

the Schrödinger solution. Part of the discrepancy comes
from normalization issues as described in [21]. To remove
those it is enough to compare the logarithmic derivative
of the density matrix d logP (x0)/dx0. In the bottom
panel of Fig. 16 we show the logarithmic derivative of
the density matrix in linear scale. While the agreement

-4 -2 0 2 4
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-20
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x0
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0
)

0 1 2 3 4

-30

-25

-20

-15
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-5

0

x0

d
lo
g
P
(x
0
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d
x
0

FIG. 16. Top panel: Density matrix P (x0) vs x0 for an-
harmonic oscillator with the coupling g = 1, at temperature
T = 1, calculated via the definition (2) (line) and the flucton
method (points). The line is based on 60 lowest state wave
functions found numerically. Bottom panel: Comparison of
the logarithmic derivative of the density matrix of the upper
panel.

is nearly perfect, a small difference can still be detected.
We ascribe it to the loop corrections of the thermal fluc-
ton solution [21].
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