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The adopted level densities (LD) for the nuclei produced through different reaction mechanisms
significantly impact the accurate calculation of cross sections for the different reaction channels.
Many common LD models make simplified assumptions regarding the overall behavior of the total
LD and the intrinsic spin and parity distributions of the excited states. However, very few experi-
mental constraints are taken into account in these models: LD at neutron separation energy coming
from average spacings of s- and p-wave resonances (D0 and D1, respectively) whenever they have
been previously measured, and the sometimes subjective extrapolation of discrete levels. These,
however, constrain the LD only in very specific regions of excitation energy, and for specific spins
and parities. This work aims to establish additional experimental constraints on LD through quan-
titative correlations between cross sections and LD. This allows for fitting and the determination
of detailed structures in LD. For this we use the microscopic Hartree-Fock-Bogoliubov (HFB) LD
as a starting point as the HFB LD provide a more realistic spin and parity distributions than phe-
nomenological models such as Gilbert-Cameron (GC). We then associate variations predicted by the
HFB model with the structure observed in double-differential cross sections at low outgoing neutron
energy, region that is dominated by the LD input. We also use (n, p) on 56Fe, as an example case
where angle-integrated cross sections are extremely sensitive to LD. For comparison purposes we
also perform calculations with the GC model. With this approach we are able to perform fits of
the LD based on actual experimental data, constraining the model and ensuring its consistency.
This approach can be particularly useful in extrapolating the LD to nuclei for which high-excited
discrete levels and/or values of D0 or D1 are unknown. It also predicts inelastic gamma (n, n′γ)
cross sections that in some cases can differ significantly from more standard phenomenological LD
models such as GC.

I. INTRODUCTION

As the excitation energy of a given nucleus increases,
the number of excited states rises exponentially. There-
fore, after a certain cutoff energy it becomes impractical
to handle each level individually and one has to deal with
the density of levels in order to properly determine the
nuclear properties and associated cross sections. Several
models have been proposed to describe the general behav-
ior of level densities (LD), such as the Gilbert-Cameron
[1], Generalized Superfluid Model [2, 3], Back-Shifted
Fermi Gas [4, 5], or Enhanced Generalized Superfluid
Model (EGSM) [6]. Those phenomenological models as-
sume simplified functional forms of the LD and their gen-
eral behavior (spin and parity distributions, etc.), and
they are constrained by limited availability of experimen-
tal data. For instance, resonance spacings, which are re-
lated to the LD at the neutron separation energy, have
only been experimentally measured for some nuclei, and
they constrain the LD only at a single excitation energy
point and only the LD for levels with specific spin and
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parity (this will be discussed in Section II D). The other
experimental constraint is at the intersection with mea-
sured discrete levels. Ideally, adopted LD should match
the asymptotic behavior of the cumulative number of ex-
cited discrete levels. That, however, is often overlooked
in nuclear data evaluations, favoring a LD parametriza-
tion that reproduces better an observed cross section at
the expense of a realistic and smooth transition between
discrete levels and level densities.

For a more quantitative description of LD, many mi-
croscopic models have been developed [7–13], each adopt-
ing different approaches and approximations. Such mi-
croscopic models, having a more fundamental basis, tend
to be more predictive in cases where little experimental
information are available, compared to phenomenologi-
cal alternatives. The microscopic combinatorial Hartree-
Fock-Bogoliubov (HFB) model [7] incorporated to the
RIPL-3 parameter library [14] is an example of such mod-
els, offering a more global and self-consistent description
of LD, even though in some cases it may not lead to
agreement with data as good as the GC model. Also,
while the GC model, like many phenomenological ones,
simplistically assume equal-parity and Gaussian-like spin
distributions, the spin and parity distributions predicted
by HFB are defined by the arrangement of single-particle

mailto:gnobre@bnl.gov


2

levels, although residual interaction is taken into account
only approximately. Thus they are expected to be more
reliable LD in the whole range of excitation energy, not
only near the discrete-level cutoff or at the neutron sep-
aration energy Sn.

Quite often, nuclear reaction data evaluators employ
phenomenological LD models rather than microscopic
ones due to the higher parameter-fitting flexibility of the
former. This can lead to a better cross-section agree-
ment with experiment (e.g., Ref. [15]), at the expense of
a more self-consistent description of the nuclear interac-
tion. In this work, we expand the work of Ref. [16], show-
ing how this apparent deficiency of the HFB LD model
may be overcome by extracting experimental informa-
tion from neutron double-differential spectra cross sec-
tions and other reaction channels in the case of neutron-
induced reactions on 56Fe, and using this to impose con-
straints on the LD. The relationship between spectra and
LD has been pointed out before [17]. Also, Ref. [18] dis-
cusses the relationship between LD and cross sections,
within the context of cross-section fluctuations. How-
ever, in our work we aim for establishing quantitative
correlations within the context of complete reaction eval-
uations. Adopting the microscopic HFB model leads to
a more realistic and self-consistent description of the LD
and cross sections that are in better agreement with ex-
perimental data when compared with the GC model, in
particular for the 56Fe(n, p) reaction which is both well-
known and of interest for dosimetry [19, 20]. We also
obtain an improved description of inelastic-gamma cross
sections from 56Fe(n, n′γ) reaction allowing increased re-
liability for simulations of gamma transitions. This work
represents a pathway to combine an accurate descrip-
tion of reaction observables with the predictive power
of microscopic models, which will improve model calcu-
lations for many applications, such as astrophysics and
radioactive-ion physics.

Additional constraints can be inferred in the future
by the analysis of the experimental data recently ob-
tained in the Oslo Cyclotron Laboratory [21] within the
Oslo method [22]. However, to ensure a proper com-
parison, special care must be taken considering that the
Oslo method makes model assumptions (e.g. assum-
ing equal parity distribution) in order to disentangle LD
and gamma strength function from the observable quan-
tities actually measured. This has been discussed in
Refs. [7, 23].

There are many other different LD models available
in the literature (e.g. Shell-Model Monte Carlo [8–10],
Moments-Method based Shell Model [11, 12], Extrapo-
lated Lanczos Matrix [13], etc.), each with their own ad-
vantages and simplifications. In this work we restricted
our analysis to the GC and HFB models, the former being
a well-known, widely-accepted phenomenological model,
while the latter is illustrative of a more fundamental, mi-
croscopic model. Both are representatives of their own
class of models, and replacing either by another choice
of phenomenological or microscopic model, while chang-

ing the details of calculations, would not be expected to
substantially change the overall conclusions of the present
work. Additionally, another reason for choosing the HFB
model for LD as a representation of microscopic models
in this work is the fact that it is the only one consistently
available for the whole nuclear chart while others are not
systematically applied.

II. BACKGROUND ON LD MODELS

Phenomenological LD models tend to better reproduce
average behaviors while missing detailed structure com-
ponents. We will discuss the phenomenological Gilbert-
Cameron and the microscopic HFB models, as they are
defined in RIPL-3 [14] and implemented in the reaction
code EMPIRE [24, 25]. It is worth noting that, later
in text, when we refer to Gilbert-Cameron calculations,
we mean the parametrization adopted for the fast-region
evaluation of 56Fe present in the ENDF/B-VIII.0 [26, 27]
as part of the CIELO project [28], including cutoff ener-
gies where discrete levels transition to LD. Even though
the RIPL-3 GC parametrization is based on global fits
of GC parameters, which describe reasonably well cumu-
lative level distributions and level spacings at Sn, that
does not necessarily translate into good, consistent cross-
section agreements in reaction calculations at the preci-
sion level required in evaluations. To optimize the agree-
ment with cross-section data, the GC LD parameters
were fitted in the ENDF/B-VIII.0 evaluation [26, 27].
The starting point for the HFB calculations will corre-
spond to the same overall parametrization with the ex-
ception, of course, of the parameters related to the level
densities. This ensures that the initial set of inputs lead
to calculated cross sections that are in good agreement
with experimental data for all reactions.

A. Gilbert-Cameron model

Phenomenological LD models often assume at higher
excitation energy some form of the analytical expressions
of the Fermi Gas Model [1]. Assuming the approximation
that the density of intrinsic levels with spin J , parity π
and excitation energy Ex can be factored in terms of its
excitation energy and spin and parity dependence:

ρ(Ex, J, π) = ρ̃(Ex)ρ̂(J, π), (1)

where, for the Fermi-Gas model, we have

ρ̂FG(J, π) =
2J + 1

2
√

8πσ3
exp

[
− (J + 1/2)2

2σ2

]
, (2)

and

ρ̃FG(Ex) =
π

12a1/4U5/4
exp

[
2
√
aU
]
, (3)
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where σ2 is the spin cut-off parameter, U is the effective
energy (U = Ex−∆, where ∆ is the pairing energy), and
a is the level-density parameter.

Within the Gilbert-Cameron model [1], it is assumed
that below a chosen matching excitation energy Ux the
LD can be described by a constant temperature formu-
lation, given by:

ρ̃CT(Ex) =
1

T
exp

[
Ex − E0

T

]
, (4)

where T is the nuclear temperature and E0 is a free pa-
rameter. Above Ux the Fermi Gas excitation-energy com-
ponent is given by Eq. 3, with pairing energy given by
∆ = n 12√

A
, where A is the nucleus mass number and n

is 0, 1, or 2 for odd-odd, odd-even, and even-even nuclei,
respectively. The parameter Ux is internally determined
by imposing that the total LD and its derivative are con-
tinuous at the matching point Ux. The adopted values
of Ux in the GC calculations were the same as the ones
in the ENDF/B-VIII.0 evaluation, namely 8.28 MeV for
56Fe and 6.01 MeV for 56Mn. The spin cut-off is given
by σ2(Ex) = 0.146A2/3

√
aU . One can use different sys-

tematics for the energy-dependency of the a parameter
in Eqs. 3 and 4. However, following original Gilbert-
Cameron formulation, constant a were employed in the
56Fe evaluation, fitted to reproduce experimental data.

B. HFB model

There are many different formulations of the HFB
model for nuclear LD [7, 29–31]. In our present
calculations we employed the microscopic combinato-
rial approach [7] documented in RIPL-3 [14], con-
sisting of single-particle level schemes obtained from
constrained axially symmetric Hartree-Fock-Bogoliubov
method (HFBM) based on the BSk14 Skyrme force [32]
to construct incoherent particle-hole (ph) state densities
ωph(Ex,M, π) as functions of the excitation energy Ex,
the spin projection M (on the intrinsic symmetry axis of
the nucleus) and the parity π.

Effects associated with collective degrees of freedom
are taken into account through the boson partition func-
tion as defined in Ref. [33], which provides vibrational
state densities dependent on multipolar phonon ener-
gies, while the shell corrections are the ones defined in
Ref. [34]. The adopted phonon energies, based on tab-
ulated experimental vibrational levels, for quadrupole,
octupole and hexadecapole phonons follow the ones es-
tablished in Ref. [14].

C. Spin and parity distributions

We compared the distribution of the number of levels
for each spin and parity from each model with what is ex-
perimentally observed, as stated in the levels segment of

the RIPL library [14]. The red bars in Figure 1 show the
number of levels observed experimentally as contained
in the RIPL library [14] for each spin and parity, nor-
malized by the total number of levels for each parity,
below a given energy Ecut. This cut-off excitation en-
ergy was chosen to be Ecut = 5.386 MeV because above
this excitation energy we begin to see levels with undeter-
mined, or poorly-known, spins and/or parities in RIPL.
In principle, by observing the experimental cumulative
level distribution of 56Fe (Figure 2), we see that around
4 MeV there seem to be already some missing experimen-
tal levels, bringing down the derivative of the cumulative
number of levels. However, due to the challenge of un-
ambiguously defining the exact point at which observed
levels are missing, we opted for the criterion above to
define Ecut.

The total number of levels in RIPL with positive and
negative parities were 64 and 14, respectively. This asym-
metry is ignored within the GC model, and one of the
consequences of such approximation will be discussed
in Section III B. The green bars in Figure 1 show the
spin distribution within the GC framework, which is the
Gaussian distribution shown in Eq. 2 with the variance σ
= 2.591, again normalized so that the sum of the number
of levels is 1, for each parity. The blue bars in Figure 1
display the cumulative number of levels as a function of
Jπ, normalized to the total number of levels for each
parity, as predicted according to the HFB model, by in-
tegrating the Jπ-specific HFB LD up to Ecut.

The observed spin distributions (RIPL) clearly do not
follow a Gaussian distribution like GC does by construc-
tion. This is the case for both positive (Figure 1a) and
negative (Figure 1b) parities. The HFB ones, on the
other hand are not Gaussian and clearly show structures,
favoring one spin over the other. These structures in HFB
spin distributions do not necessarily match experimental
observation. However, it is notable how well HFB de-
scribes the sharp decrease structure observed for 1+ and
3+ levels. To better visualize the different behaviors, in
the bottom panels of both Figures 1a and 1b we show the
difference between the normalized cumulative number of
levels from both models relative to RIPL. It is important
to note that, due to the adoption of a cutoff energy in
the level counting, we introduce some uncertainty in the
comparison with RIPL. Ideally, for the comparison be-
tween models and observed numbers of levels to be fair,
all levels should be considered. In practical terms the
cutoff in excitation energy should be very high, reduc-
ing the effects of the arbitrariety of the choice of Ecut.
For example, there are no observed 5+ levels in 56Fe be-
low the chosen cutoff of Ecut = 5.386 MeV, but that
does not mean that 5+ levels would not to be expected
at all above Ecut. Likewise, counting levels with only
one (Jπ=7+, 0−) or two (6+, 8+,1−,4−,5−) occurrences
below Ecut are likely more dependent on the choice of
cutoff.
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(a) Normalized spin distributions for levels with positive parity.
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(b) Normalized spin distributions for levels with negative parity.

FIG. 1. Spin distributions for levels of positive (Figure 1a)
and negative (Figure 1b) parities, up to the cut-off excitation
energy of Ecut = 5.386 MeV. Results are shown for experi-
mental discrete levels (as found in RIPL), and as predicted
by the GC and HFB models. Each distribution is normalized
by the total number of levels within each formalism. While
the bottom panels show the difference between models and
experiment.

D. LD at the neutron separation energy

The resonances observed in neutron-induced reactions
on a given target nucleus are directly related to the
excited-level scheme of the compound nucleus. The av-
erage spacing between s-wave resonances in the target
nucleus, D0, connects to the inverse of the level density
in the compound nucleus at the neutron separation en-
ergy (Sn), for levels which with Jπ obtained from the
coupling of the neutron spin and the ground state of
the target nucleus. Analogously, a similar relation can
be stablished for p-wave resonances (L = 1). Defin-

ing S̃n = Sn + ∆E/2, where ∆E is the energy interval
for which the resonances are determined (which is much
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FIG. 2. Cumulative number of levels for 56Fe. The black
curve is derived from the cumulative number of levels observed
experimentally; the green curve is the LD from the GC model
with its parameters fitted according to the ENDF/B-VIII.0
iron evaluation [26]; the red dashed curve is the LD from the
HFB model as tabulated in RIPL; the dashed blue curve is
the HFB LD re-scaled to better agree with calculated neu-
tron double-differential spectra. See text for details on the
calculations in each case.

smaller than Sn, so S̃n ≈ Sn), this relation can be gen-
eralized in the following expression:

D−1L =

Jmax∑
J=Jmin

ρ(S̃n, J, (−1)Lπ0), (5)

where I0 and π0 are respectively the spin and parity of the
target nucleus, DL is the average spacing of resonances
of angular momentum L, and

Jmin = max(0, |I0 − L| − 1
2 ) (6)

and

Jmax = I0 + L+ 1
2 . (7)

The two cases of interest within this work are the LD
for 56Fe and 56Mn, the former being the target nucleus
and the latter is the residual of the (n, p) reaction. In-
formation about such LD at Ex = Sn should be then ob-
tained from the resonance spacings of neutron-induced
reactions on the target nuclei 55Fe and 55Mn, respec-
tively. Even though Ref. [35] provides both D0 and D1

for 55Mn, there are no experimental values for 55Fe as it
is not a stable nucleus. For this reason, in the following
discussion we focus on the 56Mn LD at Sn. Approaches
such as interpolation or systematics could in principle
provide values of D0 and/or D1 for 55Fe. However, the
focus of the present work is on direct experimental con-
straints on LD.

Figure 3 shows the spin distributions of 56Mn LD at
the neutron separation energy (Sn = 7.27044 ± 0.00013
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TABLE I. Comparison between the experimental D−1
0 and

D−1
1 , in units of MeV−1 with values obtained from 56Mn level

density.

exp. [35] GC (fit) HFB (RIPL) GC (RIPL)
D−1

0 413 ± 25 1228 488 468
D−1

1 909 ± 83 2163 1203 824

MeV) for the GC and HFB models. In the case of
GC, the solid black curve represents the LD obtained
with the parametrization used in the ENDF/B-VIII.0
56Fe evaluation, i.e. the parametrization that best re-
produced 56Fe(n, p)56Mn cross sections. For comparison
purposes, the black dashed line represents the GC with
parametrization from RIPL. The spin and parity distri-
butions from the HFB model (as parametrized in RIPL)
are represented by the red (positive parity) and blue (neg-
ative parity) curves. Due to the equal-parity distribution
assumption in the GC model, the black curves represent
either parity.
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J
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ρ(
S n,J

,π
) (

M
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-1
)

GC (fitted); either parity
HFB (RIPL); π = +
HFB (RIPL); π = -
GC (RIPL); either parity

Jπ distributions of 56Mn LD at Sn

FIG. 3. Spin and parity distributions of the 56Mn level den-
sity at the neutron separation energy (Ex = Sn). Black solid
curve corresponds to the GC model with the ENDF/B-VIII.0
parametrization for either parity; red and blue curves corre-
spond to the HFB model as defined in RIPL-3 [14] for positive
and negative parities, respectively; black dashed corresponds
to GC model but with parametrization from RIPL-3. Upside
and downside triangles highlight the spins and parities that
contribute to D−1

0 and D−1
1 , respectively.

Also, considering the 5/2
−

ground state of 55Mn, we
show in Figure 3 as upside triangles the spin/parities that
contribute to D0 (Jπ = 2−, 3−) and as downside trian-
gles the ones contributing to D1 (Jπ = 1+, 2+, 3+, 4+),
following Eq. 5. From this we calculate the D−10 and
D−11 values obtained from the different approaches for
56Mn LD and compare with the experimental values from
Ref. [35]1. We present these in Table I.

1 The level spacings in 56Mn correspond to the resonance spacing

We can notice that LD of few spins and specific par-
ity contribute to D0 or D1 and, due to different model-
assumptions of spin and parity distributions, similar cal-
culated D−10 and D−11 can lead to very different total LD
at neutron separation energy. Therefore, relying solely
on resonance spacings to normalize total LD significantly
limits the accuracy of the experimental constraint im-
posed onto the LD. We also draw attention to the fact
that, by comparing the two GC approaches, we note
that in order to obtain optimal cross-section agreement,
the agreement with resonance-spacing measurements is
destroyed, leading to an inconsistency between LD and
cross section description. Another noteworthy aspect is
that, even at relatively high excitation energies, micro-
scopic LD models predict non-equal parity distributions
and “non-Fermi-Gas” spin distributions. Therefore mak-
ing those assumptions when calculating total LD from
resonance spacing introduces often-unquantified uncer-
tainties to the final values.

III. IMPACT OF LD MODELS IN CROSS
SECTIONS

As our starting point to investigate the impact and
correlations of details of LD in the cross sections, we
adopted the parametrization employed in the ENDF/B-
VIII.0 evaluation for 56Fe in neutron-induced-reactions
[26, 27]. This allowed us to begin the calculations with
a set of parametrizations that produce consistent differ-
ential and angle-integrated cross sections for all relevant
reactions that are in good agreement with experimental
data. We can directly compare the total LD from both
GC and HFB models, as seen on Figure 4. The green
curve in Figure 4 corresponds to the Gilbert-Cameron
model for the LD of all nuclei, with parameters fitted to
optimize the overall agreement with experimental data,
as explained in Section II. The red dashed curve in Fig-
ure 5 is the result of the same calculation but replacing
the LD model by the HFB one described in Section II B
and taken from RIPL-3 [14], without any modifications.

We see that, even though the LD are approximately the
same as the LD at the matching point from experimental
discrete levels (Figure 4), they differ in the asymptotic
behavior for high excitation energies Ex. Also impor-
tant is the fact that, while the Gilbert-Cameron LD is
smooth (as it comes from the constant-temperature an-
alytical forms in Eq. 4), the HFB LD fluctuates in the
range 5 . Ex . 9 MeV. Figure 2 shows the cumula-
tive number of levels for the different calculations using
the same choice of colors for the curves. Both Gilbert-
Cameron and HFB (from RIPL) models approximately
reproduce the number of levels at around 4.5 MeV which
is around where one would normally impose the transi-
tion from the discrete levels to LD. This transition point,

of neutron-induced reactions on 55Mn.
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or excitation energy cut-off, can be rather arbitrary. In
this case of 56Fe, it seems that any value between ≈ 3.7
and ≈ 4.5 MeV should be an equally good choice for the
cut-off, but this may not be the case for other nuclei.
One can clearly see from Figure 2 that the HFB pre-
dicted cumulative number of levels is in a much better
agreement with the behavior of observed discrete levels,
which makes it more independent of the choice of excita-
tion energy at which the transition to the LD is made.
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FIG. 4. Level densities for 56Fe. The meaning of the curves
is the same as of Figure 2. The dashed gray line marks the
neutron separation energy Sn of 56Fe.

We initially compare the performance of both LD mod-
els when applied to 56Fe by observing their impact on
56Fe(n,p), which is a well-measured dosimetry reaction
[19, 20]. In the incident-energy region where (n,p) is
prominent, it is the only relevant open channel apart from
elastic and inelastic channels, which are much bigger to
be significantly impacted by details of (n,p) and by fine
changes in LD [26]. The (n, 2n) channel only opens above
≈ 11.5 MeV. Neutron capture is obviously open, but its
cross section is orders of magnitude smaller than (n,p),
making the latter the ideal mechanism to probe the LD
associated with 56Fe and 56Mn.

In Figure 5 we present results for the 56Fe(n,p)56Mn
cross sections from different calculations employing dif-
ferent approaches for the LD. The colors of the curves
represent the same calculations as in Figures 2 and 4,
namely green for fitted Gilbert-Cameron and dashed-red
for default HFB model, while the other curves in Figure 5
will be explained later in the text. Clearly, blindly using
the HFB LD as they are provided in RIPL-3 produces in
this case a very poor agreement with experimental data.
It is important to mention that RIPL provides correc-
tion tables for the HFB LD, taken from Ref. [7], which
aim to improve the overall agreements with experimental
discrete level sequences and D0. Such corrections were
always taken into account in our calculations, whether
the raw HFB LD had been rescaled or not before the
corrections were applied.
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FIG. 5. Cross section for the 56Fe(n,p)56Mn reaction calcu-
lated using the different assumptions for the LD, as detailed
in text. The green curve is the LD from the GC model with
its parameters fitted according to the ENDF/B-VIII.0 iron
evaluation [26]; the red dashed curve is the LD from the HFB
model as tabulated in RIPL; the red solid curve is the result
after fitting 56Mn HFB LD parameters to optimize agreement
with (n,p) data; the blue dashed curve is the same as solid-
red but also with HFB LD for 56Fe re-scaled to better agree
with calculated neutron double-differential spectra; the solid
blue curve is the same as previous but also with 56Mn re-
scaled and re-fitted to (n,p) data. See text for details on the
calculations of each curve. Experimental data retrieved from
EXFOR [36, 37].

One can rightly claim that the comparison with the
Gilbert-Cameron result is not fair since the calcula-
tion with Gilbert-Cameron had gone through parame-
ter fitting. With this in mind we used the fitting code
KALMAN [38] within the EMPIRE package [24, 25] to
vary the two parameters associated with the 56Mn HFB
LD, finding values which minimized the χ2 of calculated
cross sections in relation to experimental data for all rel-
evant reactions. Within EMPIRE, those parameters are
basically scaling of parameters related to a from Eqs. 3
and 4 and of the excitation-energy shift. After the fit, the
optimal parametrization found was to increase one of the
parameters by 45% and the other one by 49%. This is
analogous to the procedure performed in the 54,56,57,58Fe
evaluations [26] where LD parameters, in those cases cor-
responding to the Gilbert-Cameron model, were fitted to
reproduce observed cross sections. The effect of such fits
of 56Mn HFB LD parameters can be seen in Figures 6
and 7 as the red solid curves (again, green curves corre-
spond to Gilbert-Cameron LD model and dashed-red to
HFB model as in RIPL-3).

The result of such calculations with fitted 56Mn LD is
represented by the solid-red curve in Figure 5. We can
see that, even though the fit leads to an improvement in
the 56Fe(n,p) cross section (solid-red curve compared to
dashed-red one), the agreement with experimental data is
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FIG. 6. Level densities for 56Mn. The black curve is derived
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tra. The dashed gray line marks the neutron separation en-
ergy Sn of 56Mn. See text for details on the calculations of
each curve.
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still not as good as the one from Gilbert-Cameron model
(green curve). However, the improvement in agreement
with the (n,p) cross-section data did not mean that the
56Mn LD is indeed better than the unfitted (RIPL) one,
as both fail to match the observed discrete levels, as
seen in Figure 7 (solid-red and dashed-red curves, respec-
tively). As a matter of fact, even the Gilbert-Cameron
calculation, which reproduces well the 56Fe(n,p), uses
56Mn LD which does not agree well with observed dis-

crete levels (green curves on both Figures 7 and 5). This
indicates that a better cross section agreement does not
necessarily imply that a more realistic LD was employed.
Ideally a realistic model for LD should be able to consis-
tently describe discrete levels, D0 when available, as well
as angle-integrated and differential cross sections.

A. Relation between spectra and LD

The main purpose of this Section is to develop a set of
prescriptions to adapt the HFB model to address its lim-
its as presented above and in Section II, providing cross
sections as reliable as the ones obtained from the phe-
nomenological Gilbert-Cameron LD model. To this end,
we also investigated the impact of different LD models
on the behavior of neutron double-differential spectra. In
Figure 8 we can see that while the Gilbert-Cameron cal-
culation (green curve) is in reasonable agreement with
experimental data, the HFB one (red solid curve) has
oscillations in the lower neutron-outgoing energy (Eout)
region that are not seen in data. This can be seen at
around 3 MeV < Eout < 7 MeV for the incident energies
of Einc=14.1, 14.06, and 13.35 MeV; and 1 MeV < Eout

< 3 MeV for Einc=9.1 MeV.
We note that the oscillations seen in the double-

differential (DD) neutron spectra (Figure 8) have a direct
correspondence to the structures observed in the 56Fe
HFB LD (Figure 4, red dashed curve). Therefore, we
performed a pointwise re-scaling of the 56Fe HFB LD in
the excitation energy (Ex) region below around 8 MeV
in order to reduce the oscillations in the DD spectra and
improve its agreement with data. This re-scaling of HFB
LD was performed by simply multiplying each tabulated
value of the LD by an excitation-energy-dependent fac-
tor, iteratively, so that the agreement with spectra data
obtained by the corresponding calculation would be grad-
ually improved. Even though this procedure may be re-
garded as somewhat ad hoc, this was a proof of principle
that we can establish a quantifiable direct correlation be-
tween details and structures of cross-section spectra and
LD, using the former to constrain the latter. Even though
it seems to be an arbitrary modification, it actually leads
to smoothing of the HFB fluctuating structure. The ef-
fects of missing residual interactions in HFB LD were
originally simulated via energy-broadening (smoothing)
of the fluctuations resulting from combinatorial calcu-
lations. Additional smoothing required in the present
work might indicate that the original smoothing should
be more aggressive to better account for the residual in-
teractions. A similar effect has been observed in 43Sc [39],
which was attributed to particle-vibration coupling not
properly accounted for in the HFB model. A satisfac-
tory agreement with the DD data, obtained with the
rescaled HFB LD, is shown by the dashed-blue curves
in Figure 8. This rescaled LD and the corresponding cu-
mulative number of levels are shown as the dashed-blue
curves in Figures 4 and 2, respectively.
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FIG. 8. Example of double-differential spectra for different neutron incident energies and at different scattering angles for the
different LD approaches. The green curves are the results from using the LD from the GC model with its parameters fitted
according to the ENDF/B-VIII.0 iron evaluation [26]; the solid-red curves are the results from using the HFB model and fitting
56Mn HFB LD parameters to optimize agreement with (n, p) data; the dashed-blue curve is the same as the solid-red one but
also with HFB LD for 56Fe re-scaled to better agree with calculated neutron double-differential spectra. Data retrieved from
EXFOR [36, 37].

The 56Fe LD as presented in Figure 4 is not necessar-
ily the optimal one. Rather we establish that we can use
experimental data from double-differential measurements
to impose constraints in the level densities in excitation-
energy regions where no direct experimental information
is available. This should improve the overall consistency
between the LD for the different nuclei and also improve
the model self-consistency for the calculated cross sec-
tions. As a matter of fact, if there were sufficiently well-
measured DD neutron spectra so that to confirm the exis-
tence of certain structures in the pre-equilibrium region
of the neutron spectra, these same structures could be
likely reproduced by imposing fluctuations in the LD.

It is possible that the smoothing of naturally-occurring
fluctuations in the combinatorial calculations was insuf-
ficient. Such smoothing simulates the effect of the resid-
ual interactions missing in the calculations, which in turn
correspond to the underestimation of the effect of resid-
ual interactions. This indicates that it is possible to use
such reaction data-based constraints to improve the de-

velopment of microscopic LD models, leading to more
realistic predictions.

By rescaling the 56Fe HFB LD to improve the neu-
tron DD spectra, we also improve the calculated (n,p)
cross section, as can be seen as the blue dashed curve
in Figure 5. However, this agreement does not seem to
be as good as the one obtained by the Gilbert-Cameron
LD (green curve). With this in mind, we decided to also
smooth the structures in the 56Mn LD and perform a
new fit of their corresponding HFB parameters. The re-
sult is shown as the solid-blue curves on Figures 5, 6,
and 7. We can see in Figure 5 that now the calculated
cross section is in an equally-good agreement with ex-
perimental data when compared to the Gilbert-Cameron
calculation. One could even say that, except in the re-
gion between 8 and 10 MeV where GC is better, the new
calculation agrees with experimental data as well or bet-
ter than Gilbert-Cameron. As a self-consistency byprod-
uct of this approach, the calculated final level densities
and the related cumulative number of levels are in better
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agreement with observed levels than Gilbert-Cameron, as
it can be seen when comparing the solid-blue and green
curves in Figure 7.

It is noteworthy that the final values of the LD pa-
rameters in EMPIRE were in this fit raised from the de-
fault configuration only 33% and 18% in comparison with
45% and 49%, respectively, as stated in Section III. This
means that after experimentally constraining the LD, the
fitted values need to deviate less from the original values.

B. Impact on inelastic gammas

Experimental constraints on the HFB LD coming from
double-differential cross-section data also improve the de-
scription of inelastic gamma cross sections. Recent cross-
section measurements of gamma transitions between dif-
ferent excited levels provide complementary information
to reaction cross sections. The accurate description of
inelastic gamma cross sections can be challenging from
a theoretical perspective due to structure issues and the
many reaction mechanisms involved.

In Figure 9 we compare calculations of inelastic gamma
cross sections obtained using the Gilbert-Cameron model
(red curves) with the ones obtained using the HFB model
with rescaled 56Fe and 56Mn LD as described in Sec-
tion III A (blue curves). We have done this compari-
son for all transitions measured in the work of Negret et
al. [40], and also other transitions that were not mea-
sured, but for brevity we selected only a few cases in
Figure 9. Figure 9a shows the gamma cross sections for
the transition between states #2 (first inelastic state with
Ex=846.8keV) and #1 (ground state). In this case the
results are very similar. This is expected since this tran-
sition accounts for more than 95% of the total inelastic
[40], thus most of the γ transitions ultimately decay to
this excited state before eventually reaching the ground
state. Effects arising from the details of the LD models
will be more visible in transitions above the first inelastic
state.

In Figure 9b we see the transition from level #5
(Ex=2.9415MeV, Jπ = 0+ state) to level #2. In this
example, as in many others not shown here, we can see a
difference in the calculations and that the modified HFB
model agrees better with experimental data. There are
other transitions where differences are seen but it is dif-
ficult to determine which LD model is in better agree-
ment. We show one such case in Figure 9c with the
gamma cross sections for the transition between level
#7 (Ex=3.12011MeV, Jπ = 1+) to level #2. Here, the
Gilbert-Cameron model for LD is closer to data between
around 5 and 8 MeV, while above that the modified HFB
is in better agreement.

Differences between calculations using HFB and
Gilbert-Cameron, although generally favoring the micro-
scopic approach, are not too big. However, in cases like
the one in Figure 9d, which shows the transition between
levels #31 (Ex=4.4477MeV, Jπ = 1−) and #2, we see a

large difference between the predicted gamma cross sec-
tions from the two different models. Noting that here
we have a transition between a negative-parity state to a
positive one, this large difference can likely be attributed
to the fact that the HFB model has independent level
and spin distributions for each parity value, while the
phenomenological Gilbert-Cameron assumes equal parity
distributions (see Figure 10). As we can see, there are
no measurements for this transition. However, due to the
fact that the HFB is more fundamental in its microscopic
nature, with more realistic spin and parity distributions,
and has been modified keeping internal consistency, its
predictions should be more credible than those of the
Gilbert-Cameron model. New experimental results for
the gamma-decay of negative parity states in 56Fe would
be very helpful to confirm parity distribution in 56Fe.
Considering that the incomplete picture of known lev-
els hinders the reliable determination of spin and parity
distributions, as shown in Section II C, different theoreti-
cal approaches such as those of Refs. [41–43] can provide
valuable information to improve the prediction of inelas-
tic gamma cross sections. This will be investigated in a
future work. There could also be an impact due to a bet-
ter modeling of the direct and pre-equilibrium process as
the one mentioned in Ref. [44, Figures 7 and 8], or to the
use of different gamma strengths [45].

IV. SENSITIVITY STUDIES

Even though in the particular case studied here the ex-
perimental data from double-differential spectra, as well
as (n, p) data, point towards smaller oscillations in the
LD, it does not necessarily rule them out. Some struc-
tures are seen in spectra data and the LD in an extended
region of excitation energies may affect the cross section
in the same incident energy region for a particular reac-
tion. Therefore, a change of position and shape of the
structures in LD can have similar impact in the cross
sections as the rescaling shown in Section III A. In order
to quantify this effect, we performed sensitivity studies
correlating changes in 56Fe(n, p) cross section to changes
in 56Fe and 56Mn HFB LD at specific excitation energies.
For this we define the fractional variation F for a specific
channel as:

F (Einc, E
′
x) =

σup(Einc)− σdown(Einc)

2σ0(Einc)
, (8)

where σup/down are the cross sections calculated with a
modified total LD (i.e., the sum of positive and negative
parities) ρ′up/down(Ex, E

′
x). This modified LD is rescaled

up or down by a constant factor ∆ρ only at E′x and re-
mains unmodified everywhere else. The mathematical
details of how this is done, especially considering the fi-
nite excitation-energy grid in which LD are used in nu-
merical calculations, can be found in Appendix A. The
central cross section σ0(Einc) do not have any up/down
variation in any LD. In the results to follow we adopt a
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FIG. 9. Inelastic gamma cross sections for select transitions, as measured in Ref. [40], with model calculations using Gilbert-
Cameron (red curves) and HFB (blue curve) LD models.

LD variation of ∆ρ = 30%. As we detail in Appendix A,
the fractional variation is directly related to sensitivity
matrices and covariances, allowing one relate covariances
in LD to those in the cross-section experimental data.

In Figure 11 we show the fractional variations of
56Fe(n, p) relative to changes in the LD for the target
(56Fe, Figure 11a) and (n, p) residual (56Mn, Figure 11b)
nuclei, as functions of both the neutron incident energy
and the excitation energy at which the LD is given. For
completeness we also analyzed the sensitivities associated
with LD variations in the compound nucleus 57Fe and, as
it would be expected, the (n, p) cross sections are much
less sensitive to 57Fe LD, when compared to 56Fe and
56Mn, hence we do not show the corresponding plot.

Looking at Figures 11a and 11b we see that the frac-
tional variations are spread-out in the (Einc, Ex) plane
around peaks and valleys of sensitivity. This means that
the (n, p) cross section at a given incident energy is af-

fected by LD at a certain extended region of excitation
energy. Moreover, the regions in the cross sections that
are most sensitive to variations in the LD are around Ex
= 6 MeV and 12 MeV for the 56Fe LD (Figure 11a), and
at Ex = 3 MeV and a wider peak between around 6 and
9 MeV for the 56Mn LD (Figure 11b). The sharp cutoffs
seen at low excitation energies in Figure 11 are due to
the fact that below those energies discrete levels are used
in the calculations instead of LD.

The connection between LD and cross-section allows us
to verify the existence and intensity of LD structures pre-
dicted by fundamental models like the HFB by examin-
ing experimental reaction data. This is often overlooked
in applications as phenomenological LD models assume
energy-dependent smooth functionals, even at lower ex-
citation energies when some structure coming from dis-
crete levels should be expected. Additionally, even when
indirect measurements of LD are made (e.g. using the
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Oslo method [22]) showing the existence of structure in
the LD, these data are fitted to smooth model function-
als before being applied to reaction calculations (e.g.,
Ref. [46]). The sensitivity results presented here are
qualitatively consistent with the sensitivities presented
in Ref. [47], even though Ref. [47] varies LD at the sep-
aration energy while we focus on an extended region of
LD. This analysis of sensitivities and correlations can be
extended to energy spectra. However, this analysis be-
comes more complicated by the added dimensionality.

In addition to provide important scientific insights into
the details of the LD constrained by differential and in-
tegral cross-section data, the LD sensitivities can serve
as direct input for fitting within any Bayesian approach
(e.g. KALMAN code [38]). This may allow reaction eval-
uators to describe even the minor details and structures
observed in the neutron spectra and cross sections such as
(n, p), (n,α), (n, 2n), etc. Additionally, one can reverse
the flow of probability to use measured experimental re-
action data to inform the LD along the way outlined in
Appendix A. In this work, we have presented sensitivities
by varying the total LD, which means that we have kept
the positive-to-negative parity ratio constant. However,
we did perform exploratory studies on parity-dependent
sensitivities and we were able to separate the impacts
in cross sections coming from the model-assumptions for
the different parities. Again, this can provide significant
assistance in the development of microscopic models for
LD.

As we mentioned in Section II, the starting point of
this work was the development of ENDF/B-VIII.0 eval-
uation for 56Fe. As that work was concluding, it became
known that the main experimental set that underpinned
the total inelastic reaction cross section, namely Nelson
et al. [48], should have been normalized 11.8% lower. At
some point in the future, a new evaluated file should be
released to rectify this. However, we do not expect this to
change any conclusion or qualitative result of the present
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FIG. 11. Fractional variations of 56Fe(n, p) cross sections, at
a given incident energy, relative to changes in the 56Fe (upper
panel) and 56Mn (bottom panel) LD at specific excitation
energies.

work. The major impact in the evaluated inelastic cross
sections should be in the plateau region (see Figure 9 of
Ref. [26]). This is where neutron incident energies range
between ≈5 and ≈11 MeV and where the relative impor-
tance of the inelastic channel is the greatest, below or
just around the (n, p) threshold.

To confirm this, we calculated the fractional variations
of the inelastic channel relative to the 56,57Fe and 56Mn
LD, as can be seen in Figure 12 (again, sensitivities for
57Fe LD are too small to be shown). They clearly show
that such sensitivities are overall much smaller than for
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the 56Fe(n, p)56Mn reaction. The only case where the
order of magnitude of inelastic-channel fractional vari-
ation is comparable to the (n, p) ones is for 56Fe LD
(Figure 12a), but even so, they are quite small in the
region where inelastic cross sections will change, becom-
ing larger only at higher incident energies, perhaps due
mostly to the competition with the (n, 2n) channel.

The differences in sensitivities for different reactions
at a given energy range reflect different aspects of the
reaction channels. For instance, at incident energies be-
low 10 MeV the only channels in competition with in-
elastic are neutron capture, which is small, and elastic.
Therefore, the inelastic channel exhausts most of the ab-
sorption cross section and has no possibility of growth.
Around 8-9 MeV, however, the (n, p) cross section be-
comes large enough to make some room for changing in-
elastic. This happens in spite of the fact that, even in its
peak, (n, p) is about ten times smaller than the inelastic
plateau. Between excitation energies of around 10 and 12
MeV, inelastic sensitivities (Figure 12) are positive and
then abruptly change to negative. This is possibly related
to gamma-emission channels and/or to the fact that in-
creasing LD at Ex ≈ 10-12 MeV increases the population
of 56Fe continuum. At these energies gammas leading to
(n, nγ) can still compete with emission of the second neu-
tron (n,2n). If the LD at higher energies increases, the
population of 56Fe continuum is shifted to higher energies
which favors second neutron emission. This could serve
as guidance to find relatively minor changes in target-
nucleus LD around the (n, 2n) threshold which would
allow to adjust the (n, n)/(n, 2n) ratio in reaction evalu-
ations.

V. SUMMARY AND CONCLUSIONS

We have discussed that phenomenological level-density
(LD) models assume simplifications and approximations
which are only loosely constrained by experimental data.
The constraints provided by D0 and/or D1, when they
are available, is insufficient as it only fixes the LD at
the neutron separation energy of the compound nucleus.
This leaves the rest to be described by functionals which
at best are insensitive to structure in the LDs and at
worst are stretched beyond reasonability in order to opti-
mize the cross-section agreement with experimental data.

We have demonstrated that by starting off with a mi-
croscopic, more predictive LD model, one can use ex-
perimental data from neutron spectra to constrain and
rescale the structures in HFB LD in an extended re-
gion of excitation energy. This leads to a more self-
consistent framework in which LDs that agree with ob-
served cumulative-level distribution also agree with mea-
sured cross sections. Additionally, the more realistic par-
ity and spin distributions provide better agreement with
measured inelastic gamma cross section and increase reli-
ability of the predicted (n, n′γ) when no data is available,
especially in cases involving unbalanced parity distribu-
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FIG. 12. Fractional variations of 56Fe(n,inel) cross sections, at
a given incident energy, relative to changes in the 56Fe (upper
panel) and 56Mn (bottom panel) LD at specific excitation
energies.

tions.

We have also analyzed sensitivity matrices connecting
variations in LD at a given excitation energy to cross-
section changes at a given incident energy. This allowed
us to observe peaks and valleys of sensitivity, indicating
that some excitation-energy regions of the LD impact
cross sections more than others. Turning this around,
cross-section data can constrain specific regions of LD,
leading to more realistic and predictive LD models and
reaction calculations. This may lead to structures in the
LD, or at least test predicted structures, and thus esti-
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mate how realistic are the assumptions made in funda-
mental models like HFB. Furthermore, these LD sensitiv-
ity matrices can serve as inputs for cross-section fitting,
in principle allowing to describe detailed structures ob-
served in spectra and cross-section data, being a powerful
additional tool for reaction evaluators.

Special attention was devoted to the 56Fe(n, p) reac-
tion, which was used as test case of our approach. It
was shown that by using cross-section data to constrain
a more fundamental set of LD we improve the agreement
with the precise (n, p) data while consistently producing
56Mn LD that are in agreement with observed discrete
levels, as well as more reliable inelastic gamma cross sec-
tions. It was also shown how LD/cross-section sensitivi-
ties can be used as an evaluation tool to describe details
of precise reaction measurements.

The results presented here serve as an important guid-
ance coming directly from experimental cross-section
measurements, constraining LD not only at separation
energy but rather at an extended range of excitation en-
ergy.

Appendix A: Sensitivity matrices

Both the ENDF-6 [49] format and the EMPIRE re-
action code describe the computed cross sections, model
parameters and level densities using linear interpolation.
Interpolated functions such as the cross section at a given
incident energy may be written using a spline basis:

σ(E) =
∑
m

σmBm(E). (A1)

Here we define ~σ = {σ1, ..., σM}, where σm = σ(Em)
and Bn(E) are “triangular” functions so that Eq. (A1)
is a linear spline representation of the cross section [50].
Similarly,

ρ(Ex) =
∑
n

ρnBn(Ex) (A2)

define ~ρ = {ρ1, ..., ρN} where ρn = ρ(Ex,n), and thus
~σ(~ρ).

We define the sensitivity matrix as

Sij = ∂σi/∂ρj (A3)

which has units of area times energy, e.g. barns × MeV
if σ has units of barns and ρ has units of 1/MeV. Here
we consider for simplicity only the total level density, but
the spin/parity dependency, or any other parameter de-
pendency, of the level density could also be made explicit.

1. Variations

Consider a small variation in the ith element of ~ρ, δρi.
This corresponds to a variation in the level density of

∆ρ(Ex) = δρiBi(Ex) in our linear spline basis. Note
variations of this form can easily be recast as an energy
dependent normalization factor. In terms of the sensi-
tivity matrix, this variation leads to a variation of cross
section coefficients of δσi = Sijδρj . This is equivalent to
a spline basis variation of

∆σ(E) =
∑
ij

SjiδρiBj(E) (A4)

In Eq. 8, the fractional variation is then

F (E) =
σup(E)− σdown(E)

2σ0(E)
=

∆σ(E)

σ(E)
(A5)

If we evaluate this at the spline points Ei, we see that the
fractional variation is directly related to the sensitivity
matrix:

Fi =
∆σ(Ei)

σ(Ei)
=
∑
i

Sjiδρi
σj

. (A6)

2. Covariance propagation

The final probability distribution for the cross section
P (~σ) depends on the probability distribution assumed for
the level density parameters through

P (~σ) =

∫
d~ρP (~σ|~ρ)P (~ρ), (A7)

where P (~σ|~ρ) is the conditional probability of ~σ given ~ρ.
With this we can forward propagate uncertainty from the
level density to the cross section.

In practice, this conditional probability is a delta func-
tion, P (~σ|~ρ) = δ(~σ − ~σ(~ρ)). If we assume that the prob-
ability distributions for the cross section P (~σ) and level
density P (~ρ) are multivariate normal distributions and
completely therefore characterized by the mean values
and corresponding covariances, then we have a Gaussian
Process Regression model [51] of the cross section. As-
suming the variations from the mean values are small, we
can use Eq. (A7) to determine the final covariance of the
cross section using the so-called “sandwich formula”:

∆2σij =
∑
kl

Sik∆2ρklSjl. (A8)

Using the linear spline basis, we can compute the Krig-
ing estimate [51] of the cross section covariance between
energies E and E′ as

∆2σ(E,E′) =
∑
ij

Bi(E)∆2σijBj(E
′) (A9)

=
∑
ijkl

Bi(E)Sik∆2ρklSjlBj(E
′) (A10)
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3. Likelihood back-propagation

Using Bayes’ theorem [52],

L(~ρ|~σ) = P (~ρ|~σ) =
P (~σ|~ρ)P (~ρ)

P (~σ)
(A11)

we may “reverse the flow” of probability and use mea-
sured cross section data to constrain the level densities.
Here the likelihood L(~ρ|~σ) is just the probability of ~ρ
given ~σ.

Again, assuming that all probability distributions are
characterized by the mean value of the cross section and
its corresponding covariance, we have

∆2ρij =
∑
kl

S̃ik∆2σklS̃jl. (A12)

These modified sensitivity matrices are S̃ij = ∂ρi/∂σj =

(∂σj/∂ρi)
−1. As in Eq. (A10), we can construct

∆2ρ(Ex, E
′
x) =

∑
ijkl

Bi(Ex)S̃ik∆2σklS̃jlBj(E
′
x) (A13)

Thus, we have used the likelihood to back-propagate the
covariance and to inform the level density. In this way
we can quantify level-density uncertainties, in the whole
excitation-energy range in a way directly constrained the
uncertainties in cross-section measurements.
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