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Background: Production of neutron-rich nuclei is of vital importance to both understanding nuclear structure
far from stability and to informing astrophysical models of the rapid neutron capture process (r-process). Mult-
inucleon transfer (MNT) in heavy-ion collisions offers a possibility to produce neutron-rich nuclei far from
stability.
Purpose: The 176Yb+ 176Yb reaction has been suggested as a potential candidate to explore the neutron-rich
region surrounding the principal fragments. The current study has been conducted with the goal of providing
guidance for future experiments wishing to study this (or similar) system.
Methods: Time-dependent Hartree-Fock (TDHF) and its time-dependent random-phase approximation
(TDRPA) extension are used to examine both scattering and MNT characteristics in 176Yb+ 176Yb. TDRPA
calculations are performed to compute fluctuations and correlations of the neutron and proton numbers, allowing
for estimates of primary fragment production probabilities.
Results: Both scattering results from TDHF and transfer results from the TDRPA are presented for different
energies, orientations, and impact parameters. In addition to fragment composition, scattering angles and total
kinetic energies, as well as correlations between these observables are presented.
Conclusions: 176Yb+ 176Yb appears to be an interesting probe for the mid-mass neutron-rich region of the
chart of nuclides. The predictions of both TDHF and TDRPA are speculative, and will benefit from future
experimental results to test the validity of this approach to studying MNT in heavy, symmetric collisions.

I. INTRODUCTION

The synthesis of neutron-rich nuclei is one of the most ex-
citing and challenging tasks in both experimental and theoret-
ical nuclear physics. From the lightest systems to the super-
heavy regime, knowledge about the nuclei at the extremes of
the chart of nuclides is vital to understanding physical phe-
nomena at multiple scales. At the foremost, neutron-rich nu-
clei are at the literal and figurative center of the rapid neu-
tron capture process (r-process). Attempts at modeling the
r-process utilize input from nuclear models to inform thresh-
old energies for the reaction types that characterize this pro-
cess [1]. Thus, strong theoretical understanding of both the
static and dynamic properties of nuclei far from stability can
give vital insight into the formation of stable heavy nuclei.

The production of neutron-rich nuclei is also of interest for
studying nuclear structure, where exploring this region of the
nuclear landscape clearly probes the edges of our current un-
derstanding of how finite nuclei form and are composed [2].
This includes studies of neutron-rich nuclei of all masses,
ranging from oxygen [3] up to the superheavy element (SHE)
region. SHEs are of particular note, as the formation and static
properties of said nuclei have been the focus of many experi-
mental [4–8] and theoretical [9–13] studies.

Over the years, many theoretical approaches to studying
neutron-rich nuclei formation have been pursued for various
reaction types. One such technique is to use models to study
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neutron enrichment via multinucleon transfer (MNT) in deep-
inelastic collisions (DIC) and quasifission reactions [14–22].
While quasifission occurs at a much shorter time-scale than
fusion-fission [23,24] and is the primary reaction mechanism
that limits the formation of superheavy nuclei, the fragments
produced may still be neutron-rich.

Quasifission reactions are often studied in asymmetric sys-
tems with, e.g., an actinide target [23,25–28]. However, quasi-
fission can also be present in symmetric systems. In fact, the
extreme case of quasifission in actinide-actinide collisions has
been suggested as a possible reaction mechanism to obtain
neutron-rich isotopes of high Z nuclei in particular as well
as a possible means to search for SHE [29,30]. Theoretically,
the investigation of collisions between very heavy nuclei has a
rich history with various approaches, including the dinuclear
system (DNS) model [31–38], relativistic mean-field (RMF)
and Skyrme HF studies [39], reduced density-matrix formal-
ism [40], Langevin equation [41–44], quantum molecular dy-
namics (QMD) [45], and improved quantum molecular dy-
namics (ImQMD) [20,46–49] calculations, as well as time-
dependent Hartree-Fock (TDHF) studies [17,19,50]. Over re-
cent years, TDHF has proved to be a tool of choice to in-
vestigate fragment properties produced in various reactions,
such as DIC [22,51], quasifission [21,28,47,52–57], and fis-
sion [58–67]. Recent reviews [68,69] succinctly summarize
the current state of TDHF (and its extensions) as it has been
applied to various MNT reactions.

In this work, we present a study of the 176Yb+ 176Yb sys-
tem using TDHF and the time-dependent random phase ap-
proximation (TDRPA) [70–77] extension that considers the
effect of one-body fluctuations around the TDHF trajectory.
As discussed before, microscopic approaches such as TDHF
and its extensions are commonly used in heavy-ion collision
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studies in different regions of the nuclear chart, positioning
TDHF and TDRPA as tools of choice for the current inves-
tigation. Symmetric 176Yb reactions were chosen because
they are considered as a potential candidate to explore the
neutron-rich region around the mass region A ∼ 170− 180
of the nuclear chart. The energies studied here correspond
to beam energies of 7.5 and 10 MeV per nucleon. Calcu-
lations at 10 MeV/A have been performed to investigate the
energy dependence of the results. The main results are dis-
cussed for the lower energy of 7.5 MeV/A, which is accessi-
ble with cyclotron beam facilities, such as, e.g., NSCL (US),
Texas A&M, GANIL (France), and the superheavy element
factory at Dubna. Specifically, an experimental investigation
of this reaction are being considered in Dubna by Oganessian
et al. and the work presented here was undertaken at their
suggestion [78]. The base theory (TDHF) and the primary ex-
tension (TDRPA) are briefly described in Section II. Results
for both scattering characteristics and transfer characteristics
are discussed in Section III A and Section III B respectively.
A summary and outlook are then presented in Section IV.

II. FORMALISM: TDHF AND TDRPA

The TDHF theory provides a microscopic approach with
which one may investigate a wide range of phenomena ob-
served in low energy nuclear physics [68,69,79,80]. Specif-
ically, TDHF provides a dynamic quantum many-body de-
scription of nuclear reactions in the vicinity of the Coulomb
barrier, such as fusion [81–96] and transfer reactions [16,51,
69,76,97–102].

The TDHF equations for the single-particle wave functions

h({φµ}) φλ (r, t) = ih̄
∂

∂ t
φλ (r, t) (λ = 1, ...,A) , (1)

can be derived from a variational principle. The principal ap-
proximation in TDHF is that the many-body wave function
Φ(t) is assumed to be a single time-dependent Slater determi-
nant at all times. It describes the time-evolution of the single-
particle wave functions in a mean-field corresponding to the
dominant reaction channel. During the past decade it has be-
come numerically feasible to perform TDHF calculations on a
3D Cartesian grid without any symmetry restrictions and with
much more accurate numerical methods [99,103–105].

The main limitation in the TDHF theory when studying
features like particle transfer, however, is that it is optimized
for the prediction of expectation values of one-body observ-
ables [106] and will under-predict fluctuations of those ob-
servables [107]. This is due to the fact that the fluctuation
of one-body operators (such as the particle number operator)
includes the expectation value of the square of a one-body op-
erator,

σXX =

√
〈X̂2〉−〈X̂〉2 , (2)

that is outside the variational space of TDHF [106].
To obtain such quantities one needs to go beyond standard

TDHF and consider the fluctuations around the TDHF mean-
field trajectory using techniques like the stochastic mean-field

theory (SMF) [108,109] or TDRPA [71]. Both of these ap-
proaches have been used to investigate MNT and fragment
production [72–77,110–114].

Methods based on solving the Langevin equation on a po-
tential energy surface, or those based on assuming a di-nuclear
system (DNS), are usually numerically much faster than fully
microscopic approaches. Nevertheless, the increase of com-
putational power and more efficient algorithms have enabled
the use of microscopic codes to investigate MNT mechanisms
even in the heaviest systems. Moreover, the main theoretical
advantage of SMF and TDRPA methods in studying MNT is
that they do not rely on empirical parameters and do not im-
pose spatial restrictions on the single-particle wave-functions.

In this work we follow a similar approach as in [76,77]
to obtain particle number fluctuations and distributions about
the outgoing fragments. The foundation of the method is to
consider an alternate variational principle for generating the
mean-field theory. In particular, the Balian-Vénéroni (BV)
variational principle provides a powerful technique that opti-
mizes the evaluation of expectation values for arbitrary opera-
tors [106]. When the operator chosen is a one-body operator,
the method produces the TDHF equations exactly, suggesting
that TDHF is the mean-field theory that is best suited for the
calculation of one-body expectation values. However, as men-
tioned above, the calculation of fluctuations and correlations
involves the square of a one-body operator. For TDHF alone,
Eq. (2) results in the following expression for two generic op-
erators X̂ and Ŷ ,

σ
2
XY (t f ) = Tr{Y ρ(t f )X [I−ρ(t f )]} , (3)

where I is the identity matrix and t f is the final time. By utiliz-
ing the BV variational principle and extending the variational
space to optimize for the expectation value of exponentials of
one-body operators of the type exp(ε â†â), one obtains an es-
timate of fluctuations and correlations in the limit of small ε

[71]

σ
2
XY (t f ) = lim

ε→0

Tr{[ρ(ti)−ρX (ti,ε)][ρ(ti)−ρY (ti,ε)]}
2ε2 (4)

which now depends on the one-body density matrices at the
initial time ti. Equation (4) also contains the density matri-
ces ρX ,Y (ti,ε) which have been transformed at t f according to
ρX (t f ,ε) = exp(iεX)ρX (t f )exp(−iεX) and evolved back to ti.

The procedure to compute Eq. (4) involves first transform-
ing the states after the collision as

φ̃
X
α (r, t f ) = exp[−iεNX ΘV (r)]φα(r, t f ), (5)

where X stands for neutron (N), proton (Z), or total nucleon
number (A). The operator NX ensures that the transformation
acts only on nucleons with the correct isospin, with NA = 1,
NZ = 1−τ3

2 , and NN = 1+τ3
2 . The operator ΘV (r̂) is a step func-

tion that is either 1 or 0 depending on whether r is within a vol-
ume of space, V , delimiting the fragment of interest. Finally,
ε is a small number that is varied to achieve convergence.

These transformed states are then propagated backwards in
time from the final time t f to the initial time ti. The trace in
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Eq. (4) can then be calculated, obtaining

σXY =

√
lim
ε→0

η00 +ηXY −η0X −η0Y

2ε2 , (6)

with ηXY describing the overlap between the states at time
t = ti,

ηXY = ∑
αβ

∣∣∣〈φ X
α (ti)|φY

β
(ti)〉

∣∣∣2 . (7)

In the case of X ,Y = 0, this refers to states obtained with ε = 0
in Eq. (5). In principle, one should recover exactly the initial
state as the evolution is unitary. However, using states that
have been evolved forward and then backward in time with
ε = 0 minimizes systematic errors from numerical inaccura-
cies [73,75].
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FIG. 1. (Color online). Static nuclear potentials for 176Yb+ 176Yb
in the side-side (blue (dark) lines) and tip-tip (cyan (light) lines) ori-
entations from FHF and DCFHF.

The SLy4d parametrization of the Skyrme functional is
used [115] and all calculations were performed in a numerical
box with 66× 66 points in the reaction plane, and 36 points
along the axis perpendicular to the reaction plane. The grid
spacing used was a standard 1.0 fm which provides an ex-
cellent numerical representation of spatial quantities using the
basis spline collocation method [116]. For the TDRPA calcu-
lations, each initial orientation, energy, and impact parameter
resulted in three additional TDHF evolutions (one for each X)
for the time reversed evolution at one value of ε = 2× 10−3

in addition to occasionally scanning ε to ensure convergence
of Eq. (6). In total, 200 full TDHF evolutions were required
for the results presented in this work with each taking on the
order of 10 ∼ 55 hours of wall time due to the large, three-
dimensional box size chosen. This corresponds to roughly
250 days of computation time split among multiple nodes for
the 176Yb HF ground state configuration with a prolate defor-
mation.

The proton and neutron numbers correlations and fluctua-
tions computed with TDRPA are used to estimate probabilities

for the formation of a given nuclide using Gaussian bivariate
normal distributions of the form

P(n,z)=P(0,0)exp
[
− 1

1−ρ2

(
n2

σ2
NN

+
z2

σ2
ZZ
− 2ρnz

σNNσZZ

)]
,

(8)
where n and z are the number of transferred neutrons and pro-
tons, respectively. The correlations between N and Z are quan-
tified by the parameter

ρ = sign(σNZ)
σ2

NZ
σNNσZZ

=
〈nz〉√
〈n2〉〈z2〉

. (9)

In principle, n and z could be very large and lead to unphysi-
cal predictions with fragments having, e.g., a negative number
of protons and neutrons, or more nucleons than available. In
practice, such spurious results could only happen for the most
violent collisions where the fluctuations are large. To avoid
such spurious effects, the probabilities are shifted so that P
is zero when one fragment has all (or more) protons or neu-
trons. The resulting distribution is then normalized.

Although the 176Yb nuclide is in a region where shape co-
existence is often found [117–121], TDHF calculations can
only be performed with one well-defined deformation (and
orientation) of each collision partners in the entrance chan-
nel. In our calculations, the ground state is found to have a
prolate deformation with β2 ' 0.33 in its HF ground state. A
higher energy oblate solution is also found with a difference
of around 5 MeV in total binding energy. A set of calcula-
tions were also performed for the oblate solution, though the
overall transfer behavior was found to be similar for both de-
formations despite the oblate one resulting in slightly lower
fluctuations. In the following, we thus only show results for
the prolate ground state.

This deformation allows for possible choices of the orien-
tation of the nuclei. Extreme orientations are called “side”
(“tip”) when the deformation axis is initially perpendicular
(parallel) to the collision axis. Although various intermedi-
ate orientations could be considered [56], we limit our study
to tip-tip and side-side orientations where the initial orien-
tations of both nuclei are identical. In addition to saving
computational time, this restriction is necessary to ensure
fully symmetric collisions and to avoid unphysical results in
TDRPA [77].

Figure 1 shows the nucleus-nucleus potentials computed
using the frozen Hartree-Fock (FHF) [85,122] and density-
constrained frozen Hartree-Fock (DCFHF) [123] methods, re-
spectively neglecting and including the Pauli exclusion prin-
ciple between the nucleons of different nuclei. Due to Pauli
repulsion in DCFHF, the inner pocket potential is very shal-
low in the side-side configuration, and disappears in the tip-
tip one. In this work, the effect of the orientation is studied
by comparing tip-tip and side-side configurations at a center
of mass energy Ec.m. = 660 MeV. In addition, calculations are
also performed at Ec.m. = 880 MeV for both orientations to
investigate the role of the energy on the reaction outcome.
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III. RESULTS

In this section we present the results of TDHF and TDRPA
studies of 176Yb+ 176Yb reactions at different center of mass
energies and initial orientations for a range of impact parame-
ters. Both scattering features and particle number fluctuation
derived quantities were calculated and are shown below.

A. Scattering Characteristics

The following section presents scattering results from the
standard TDHF calculations of 176Yb+ 176Yb collisions. The
TDRPA extension to TDHF is not needed for these results,
though this means the points can only be interpreted as the
most likely outcome for each initial condition.
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FIG. 2. (Color online). Scattering angles for 176Yb+ 176Yb col-
lisions at center of mass energies (a) Ec.m. = 660 MeV and (b)
Ec.m. = 880 MeV in the side-side (circles) and tip-tip (squares) ori-
entations. The dotted (dashed) line plots the Rutherford scattering
angle for Ec.m. = 660 MeV (880 MeV).

Scattering angles for the 176Yb + 176Yb system for both
orientations are presented in Fig. 2. A similar deviation
from Rutherford scattering is observed at impact parameters
b ≤ 8 fm for both orientations. These deviations are due to
nuclear deflection and partial orbiting of the system. Note
that no fusion is observed. The relatively flat shape of the
curve around 50−60◦ at 660 MeV and 20−40◦ at 880 MeV
implies a large number of events in these particular angular

ranges.
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FIG. 3. (Color online). Total kinetic energies of the outgoing
fragments in 176Yb + 176Yb collisions at center of mass energies
Ec.m. = 660 MeV (blue circles) and Ec.m. = 880 MeV (red squares)
in the side-side orientation.

The TKE of the outgoing fragments is plotted in Fig. 3 as a
function of the impact parameter b for side-side collisions at
the two center of mass energies. Although dissipation occurs
at different impact parameter ranges (b < 10 fm at Ec.m. =
660 MeV and b < 12 fm at Ec.m. = 880 MeV), both curves
exhibit similar behavior. In particular, the TKEs saturate at
roughly the same energy (∼ 350− 400 MeV) indicating full
damping of the initial TKE for the most central collisions.

Among the mechanisms responsible for energy dissipation,
nucleon transfer is expected to play an important role. Of
course, in symmetric collisions the average number of nucle-
ons in the fragments does not change. Nevertheless, mult-
inucleon transfer is possible thanks to fluctuations, leading
to finite widths in the fragment particle number distributions.
These fluctuations are explored in the following section.

B. Transfer Characteristics

This section focuses on the results obtained by extending
TDHF to recover particle number fluctuations and correlations
with the TDRPA.

Particle number fluctuations (σZZ and σNN) and correla-
tions (σNZ) calculated from Eq. (6) are shown in Fig. 4 as a
function of impact parameters for different initial conditions.
The fluctuations are greater in general at the smaller impact
parameters, though they do not converge to a single value.
Similar variations in fluctuations were already observed in
earlier TDRPA studies of deep inelastic collisions in lighter
systems [76,77]. Particularly large values are sometimes ob-
tained, such as at 660 MeV in tip-tip central (b= 0) collisions,
indicating approximately flat distributions around the TDHF
average.
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FIG. 4. (Color online). TDRPA predictions of correlations σNZ (a)
and fluctuations σNN (b) and σZZ (c) for 176Yb+ 176Yb collisions
for four initial configurations over a range of impact parameters.

The three quantities, σNZ , σNN and σZZ exhibit very simi-
lar behaviors and are roughly proportional to each other. The
neutron fluctuations are larger than the proton ones due to the
larger number of neutrons involved. The fact that correlations
and fluctuations behave similarly is due to the fact that the
collisions are fully damped. Indeed, for less violent collisions
such as quasi-elastic reactions, the correlations σNZ are much
smaller than fluctuations [76]. In fact, the presence of positive
correlations σNZ > 0 in deep inelastic collisions is a manifes-
tation of the symmetry energy which favors a flow of protons
and neutrons in the same direction, thus hindering the produc-
tion of N/Z asymmetric fragments.

Fragment mass-angle distributions (MADs) are a stan-
dard tool used experimentally to interpret the dynamics of
heavy-ion collisions [23,28,53,124–130]. Although TDHF
has been used to help interpret theoretically these distribu-
tions [28,53,55,131], these earlier calculations only incorpo-
rate fluctuations coming from the distribution of initial con-
ditions (e.g., different orientations). Here, we go beyond the
mean-field prediction by including the fragment mass fluctu-
ations from TDRPA. Note that we only include mass fluctua-
tions, not fluctuations in scattering angle which are still deter-
mined solely by TDHF. Calculating quantum fluctuations of

Mass Angle Distributions
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FIG. 5. (Color online). Mass angle distributions for 176Yb+ 176Yb
collisions at (a) Ec.m. = 660 MeV in the side-side orientation, (b)
Ec.m. = 660 MeV in the tip-tip orientation, (c) Ec.m. = 880 MeV
in the side-side orientation, and (d) Ec.m. = 880 MeV in the tip-tip
orientation. The colorbar represents cross sections in millibarns per
bin of mass ratio and degree.

scattering angles is beyond the scope of this work, although
they might be necessary for a more detailed comparison with
experimental MADs.

The resulting MADs for 176Yb+176Yb reactions are shown
in Fig. 5. The mass ratio MR is defined as the ratio of the
fragment mass over the total mass of the system. The distri-
butions of mass ratios are determined assuming Gaussian dis-
tributions with standard deviation σMR = σAA/A, limited and
normalized to the physical region 0≤MR ≤ 1 (see section II).
There is then an MR distribution per initial condition (defined
by Ec.m., b, and the orientations), but only a single scattering
angle θc.m.. To obtain a continuous representation of the scat-
tering angle, θc.m. is discretized into bins of ∆θ = 1 degree
and interpolated between the values obtained by TDHF.

The figures are symmetric about 90◦ as both outgoing frag-
ments are identically the same and will then travel outwards at
complimentary angles. Specific orientations such as side-side
and tip-tip will not be accessible in an experimental setting of
course. Interestingly, when investigating initial energy depen-
dence of the MAD (compare panels (a) and (c), (b) and (d) in
Fig. 5), it can be seen that different outgoing angles are pre-
ferred depending on the incoming center of mass energy with
back (and forward) scattering events being more prevalent in
the higher energy regime.

This agrees well with what is seen in Fig. 2, where many
impact parameters result in scattering angles around 50−
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Mass Energy Distributions
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FIG. 6. (Color online). Mass energy distributions for 176Yb+ 176Yb
collisions at (a) Ec.m. = 660 MeV in the side-side orientation, (b)
Ec.m. = 660 MeV in the tip-tip orientation, (c) Ec.m. = 880 MeV
in the side-side orientation, and (d) Ec.m. = 880 MeV in the tip-tip
orientation. The colorbar represents cross sections in millibarns per
bin of mass ratio and MeV.

60 degrees at Ec.m. = 660 MeV and around 20− 40 degrees
at 880 MeV. This is the case for both tip-tip and side-side ori-
entations, though the tip-tip results tend further towards the
intermediate angles than side-side at the same energy.

While the predictive capability of this method needs to be
compared with experimental results and tested, this suggests
a strong energy dependence and that detection of fragment
production will greatly benefit from large angle detectors. The
energy dependence seen in the MAD is not intuitive, and may
prove to be useful for informing experimental setups.

Useful information can also be obtained from the corre-
lations between fragment mass and kinetic energy [27,133–
136]. Figure 6 presents mass energy distributions (MED) that
detail the predicted TKE of outgoing fragments. It should
be noted here that, while the theory provides particle number
fluctuations, the values for TKE are single points (as in the
case of θc.m.) as predicted by TDHF alone. That is, widths of
the TKE distributions are currently unknown with the method
used here. This would make for an excellent extension to the
theory, bringing it more in line with what can be experimen-
tally observed.

The MEDs exhibit a continuous broadening of the mass dis-
tribution with increasing energy dissipation. The saturation
of TKE lies around 350− 400 MeV for side-side collisions
(see also Fig. 3) and around 250− 300 MeV for tip-tip. This
difference between orientations is interesting as it indicates a

larger kinetic energy dissipation with less compact configu-
rations. A possible explanation is that the nuclei overlap at
a larger distance in the tip-tip configuration, thus producing
energy dissipation earlier in the collision process than in the
side-side orientation.

In general, the MEDs show peaks around the elastic and
fully damped regions which results from the large range of
impact parameters contributing to both mechanisms.

C. Primary fragments production

Using the correlations and fluctuations shown in Fig. 4, a
map of probabilities can be made in the N–Z plane assuming
a modified Gaussian bivariate normal distribution (See sec-
tion II and Eq. (8)). This choice of using a Gaussian is the pri-
mary assumption when calculating probabilities and related
quantities and may not accurately describe the true distribu-
tion far from the center.

These probability distributions at multiple impact param-
eters can then be integrated over to produce a map of pri-
mary fragment production cross sections which is presented
in Fig. 7 overlaid atop a section of the chart of nuclides in the
region surrounding 176Yb [132]. As the probability distribu-
tions for each impact parameter will be centered around the
176Yb (Z = 70, N = 106) nuclide, the resulting cross sections
are also symmetric about 176Yb. The inclusion of correlations
between protons and neutrons via σNZ more or less aligns the
distribution parallel to the valley of stability due to the sym-
metry energy.

Subsequent decay of the fragments would inevitably bring
the final products closer to the valley of stability. Here, our
focus is on primary fragment productions and the prediction
of evaporation residue cross-sections are beyond the scope of
this work. In fact, experimental measurements of mass-angle
distributions using time of flight techniques are for primary
fragments as they assume two-body kinematics [137]. To es-
timate the evaporation residue cross-sections would require to
first compute the excitation energy of the fragments and then
predict their decay with a statistical model [51,138].

One way to minimize evaporation is to consider less violent
collisions. In terms of primary fragment productions, 660 and
880 MeV center of mass energies are quite similar (this can
be seen by the relatively similar particle number fluctuations
in Fig. 4). However, the higher energy will lead to more neu-
tron evaporation and thus to less exotic evaporation residues.
Use of relatively neutron-rich 176Yb nuclei in symmetric col-
lisions may then allow for this reaction to act as a probe of the
neutron-rich region surrounding the principal outgoing frag-
ment.

IV. SUMMARY AND DISCUSSION

Multiple TDHF and TDRPA calculations have been per-
formed for the 176Yb+ 176Yb system with various initial ori-
entations, energies, and impact parameters. Standard TDHF
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FIG. 7. (Color online). Primary fragments production cross sections for 176Yb + 176Yb collisions at Ec.m. = 660 MeV in the side-side
orientation overlaid onto the chart of nuclides. The innermost contour corresponds to a cross section of 1 millibarn, with subsequent contours
drawn every 0.2 mb. Finally, we also plot a boundary contour drawn at the microbarn level. Chart from [132].

allows for the classification of general scattering character-
istics, while the TDRPA technique extends the approach to
include correlations and fluctuations of particle numbers of
the reaction fragments. This extension provides a theoretical
framework that more closely resembles what will be seen in
experimental investigations of this (and similar) systems.

In examining figures such as the mass-angle distributions in
Fig. 5, information regarding the angular distribution of frag-
ments can be gleaned and suggest large acceptance detectors
to maximize measurement capability. Mass-energy distribu-
tions shown in Fig. 6 are also useful to investigate, e.g., the
interplay between dissipation and fluctuations. In both cases,
however, fluctuations of θc.m. and of TKE are not predicted
in the present study. The latter would require new implemen-
tations of the TDRPA to these observables, or the use of al-
ternative approaches such as the stochastic mean-field theory
[64] or an extension of the Langevin equation [139]. Both
methods have been recently used to investigate kinetic energy
distributions in fission fragments. In order to benchmark our
theoretical methods as applied to symmetric heavy nuclei, all
predictions presented in this study would greatly benefit from
experimental verification.

The methods used here provide a very powerful tool for
investigating symmetric systems, though an important caveat
should be discussed regarding the interpretation of these re-
sults. TDRPA produces only correlations and fluctuations, not

the actual distributions themselves, which are then taken to be
of a Gaussian nature. This assumption may break down when
far from the center of the distribution or if the shape at the cen-
ter itself is too flat and deviates sufficiently from a Gaussian
behavior. It is then extremely important to compare with ob-
servations made in experimental studies such that we may bet-
ter understand how to interpret the results coming from these
methods.

Regardless, the 176Yb+ 176Yb system presents itself as a
viable candidate for studies of MNT processes and produc-
tion of neutron rich nuclei in the region around A∼ 176. The
map of possible primary fragments loosely painted in Fig. 7
presents an exciting range of previously inaccessible nuclei,
with the above caveat applying the further one goes from the
center of the distribution. Another caveat is that the predicted
distribution is for primary fragments only and that statistical
decay should be included in order to predict fragment pro-
duced after evaporation, e.g., following [22,51,138].
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