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We report measurement of the g-factor for the 11/2− isomeric state at 535 keV in 133La, em-
ploying the time differential perturbed angular distribution technique (TDPAD). This isomer was
populated in the reaction 126Te(11B, 4n)133La at beam energy of 52 MeV. From the observed nuclear
spin precession, analysed through combined, magnetic dipole and electric quadrupole hyperfine in-
teractions, we obtain the g-factor for the 11/2− state as g = 1.16 ± 0.07. In addition, this analysis
provides the spectroscopic quadrupole moment |Q| = 1.71±0.34 b, yielding the deformation param-
eter β = 0.28± 0.10. Further, we have performed theoretical calculations using the large-scale shell
model and the Monte Carlo shell model. The results successfully describe the low-lying levels and
the band structures of 133La, and the calculated g-factor compares well with the values obtained
from our experiment. The dominant configuration of 11/2− isomeric state in 133La is inferred to be
π(h11/2)⊗

132 Ba(0+).

I. INTRODUCTION

The level structures of nuclei evolve from single parti-
cle to collective nature, as one goes away from the Z = 50
and N = 82 shell gaps. The transitional nuclei around
A ∼ 135 with Z > 50 and N < 82 lie between the spheri-
cal and deformed regions and show complex and rich level
structures due to interplay for single-particle and collec-
tive excitation modes [1–3]. Occupation of high-j orbitals
for protons and neutrons plays a crucial role for various
structure phenomena for nuclei in this region, such as sig-
nature splitting, signature inversion, magnetic rotation,
wobbling motion, chiral rotation and high-spin isomers.
With the advancement of large scale shell model (LSSM)
calculations [4], it is now possible to make microscopic
analysis on the high-spin structures of these nuclei, as
well as the configuration of the isomers. The electromag-
netic moment measurements of the isomers in these nu-
clei are of particular interest, as they provide a stringent
test of the LSSM calculations. Recently, the isomers in
135,136La isotopes have attracted lot of attention [3, 5, 6].
As a part of a systematic study of the isomers in this
region, we have performed experiments to measure the
g-factor of the well-known 11/2− isomer in 133La isotope
and compare the results with the LSSM calculations. In
the present investigation, combined (the magnetic and
electric) perturbations of the angular distribution pat-
tern of the de-exciting γ rays from the respective isomeric
states has been exploited for the determination of the g-
factor and quadrupole moment of 11/2

−
isomeric state

at 535-keV in 133La [7–10], using time differential per-
turbed angular distribution technique (TDPAD). There
are only two previous moment measurements for the g-
factor of the 535 keV state in odd mass La nuclei. C.

Gerschel et al. assigned the 535-keV level as 3/2− state
and reported g = 2.2 [11]. Assuming Iπ = 11/2−, the g-
factor would be 0.6. They employed the 510-keV-58-keV
angular correlation to extract the g-factor. In the recent
compilation of nuclear moments [12], the g-factor of the
535-keV isomer in 133La has been listed as 1.37 ± 0.08,
with an assigned Iπ = 11/2−. The details of the orig-
inal measurement can be found in Ref. [13], where the
g-factor of the 535-keV state was measured using 477-
keV −58-keV and 510-keV−58-keV angular correlation
from the decay data of 133Ce. However, certain experi-
mental details about the detectors and the observed Lar-
mor frequency along with spin-rotation spectrum were
not presented in Ref. [13]. Furthermore, C. Gerschel
et al. [14] reported the quadrupole moment of the 535-
keV state in 133La to be Q = 1.6 ± 0.2 b. On the other
hand, for the same state in 133La, the measurement of
B. Klemme et al. [15] reported the quadrupole moment
to be Q = 0.35 ± 0.03 b. Both these quadrupole mea-
surements assumed Iπ = 3/2− for the 535 keV state.
Considering that the quadrupole interaction frequency
ωQ = eQVzz

(4I(2I−1))~ , if one considers the I
π = 11/2− for the

535 keV state, for the same value of ωQ, the quadrupole
moment would be 18 times of the values reported in Ref.
[14, 15]. Clearly, the electromagnetic moments reported
from previous experiments are quite disparate. These
values are also in contrast to the concept of decoupling
limit or rotational alignment for the explanation of the
decoupled bands in the odd-mass 125−139La nuclei [16–
18]. It is also interesting to compare the measured g-
factor for 11/2− state in 133La (N=76) with that of 129Cs
(N=74) [19] and 141Pr (N=82) [20]. The tabulated value
of g-factor for the 11/2− state in 133La [12] is closer to the
Schmidt value and the value in 141Pr, compared to that
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in 129Cs [19]. As ∆I = 2 bands have been observed on
the h11/2 quasiproton states in 129Cs and 133La isotopes,

one expects the g-factor of 11/2− state in 133La to be
similar to that of 129Cs due to their modestly deformed
even-even cores, rather than that of 141Pr which has a
spherical core. In view of the above mentioned discrepan-
cies in the g-factor, it is important to carry out accurate
measurements of electromagnetic moments for the 11/2−

isomeric state in 133La. In this work, we present preci-
sion measurement of g-factor and quadrupole moment for
the 535-keV, 11/2− isomer in 133La using time differen-
tial perturbed angular distribution (TDPAD) technique.
The measured g-factor and the quadrupole moment have
been compared with the results obtained from theoretical
calculations performed using the LSSM.

II. EXPERIMENTAL DETAILS

The 11/2
−
isomeric level at 535-keV in 133La was pop-

ulated through the reaction 126Te(11B, 4n)133La at 52-
MeV beam energy. The 11B beam having a pulse width
of 1 ns and repetition period of 800 ns, was provided by
the BARC-TIFR Pelletron Linac Facility at TIFR, Mum-
bai. An isotopically enriched 1.2 mg/cm2-thick 126Te
was evaporated on to a 9.9 mg/cm2-thick Au backing.
From simple kinematic considerations, the recoil energy
of the La nuclei was estimated to be ≈ 4.17 MeV. Us-
ing a Monte Carlo method based on statistical model
SRIM [21, 22], we have found that the 133La nuclei stop
within the Te target, with only a negligible fraction pene-
trating in to the Au backing constituted the target. The
experiments were performed in the presence of a mag-
netic field Bext = 2 T, applied perpendicular to the beam-
detector plane. The magnetic field was produced using
a split coil superconducting magnet having field stability
of better than 0.1% and uniformity of 0.5% over a spher-
ical volume of ≈ 1 cm3. The field direction was reversed
in every 6 hours. The schematic diagram of the experi-
mental arrangement is shown in Fig. 1. This setup has
been regularly used to investigate magnetic properties
of materials and studies of hyperfine interactions using
TDPAD technique [6, 23–25].
The delayed γ rays from the 535-keV isomer were mea-

sured by large volume (≈ 143 cm3) HPGe detectors with
relative efficiency of 30% with respect to a 3 × 3 inch
NaI(Tl) scintillation detector. The detectors were placed
at a distance of 11 cm from the target center at angles
±45◦ and ±135◦ with respect to the beam direction. The
time resolution of the detectors was measured to be 5 ns
at γ energy of 1332 keV of the standard 60Co radioactive
source. The time signal from the HPGe detector was used
to start the time to amplitude converter (TAC), which
was stopped by the primary RF signal of the buncher.
The data were collected in LIST mode with eight param-
eters for energy and time signals for four detectors. In
the offline analysis, two dimensional spectra with energy
versus time were constructed for each detector. The life-

time spectra for the γ rays decaying from the isomeric
state were generated by taking energy gated time projec-
tions. Normalized counts for each detector N(θ, t) were
used to construct the spin rotation spectra defined as

R(t) =
[N ↑ (θ, t)−N ↓ (θ, t)]

[N ↑ (θ, t) +N ↓ (θ, t)]
(1)

The form of R(t) varies depending on the geometry of
experimental set up and hyperfine interactions present
e.g. due to a magnetic dipole, an electric quadrupole,
or both [26–28]. For a pure magnetic dipole interaction,
the spin rotation function for the experimental geometry
used here can be expressed as

R(t) = A2G2(t) = −3

4
A2 sin(2ωLt− φ)exp(−λt) (2)

where, A2 is the amplitude, G2(t) is the perturbation
function due to magnetic hyperfine interaction with Lar-
mor frequency ωL, and λ is a damping factor signifying
the loss of nuclear spin alignment arising from dynamic
fluctuations of electronic spin and/or inhomogeneous dis-
tribution in local environment. φ denotes a phase angle
due to finite bending of the incoming beam due to applied
magnetic field. In the case of a pure electric quadrupole
interaction, the perturbation to the angular distribution
function G2(t) is expressed as [29, 30]:

G2(t) = [S20(η) +
3∑

n=1

S2n(η)cos(ωnt)g
′(ωnδt)]exp(−λt)

(3)
In presence of combined interactions, the perturbation

FIG. 1. (Color online) Schematic drawing of the experimental
arrangement of the TDPAD set-up.

function is more complex, having the general form [31,
32]:

G2(t) = [a0(η, y, β
′) +

∑

n

an(η, y, β
′)cos(ω0t)g

′(ω0δt)]

(4)
, where S20 is a constant known as the hard core contribu-
tion, S2n are the amplitudes of the primary quadrupole
interaction frequencies ωn, η is the asymmetry param-
eter of the electric field gradient (EFG) tensor usually
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expressed as η =
Vyy−Vxx

Vzz
with Vzz > Vyy > Vxx and

0 ≤ η ≤ 1. The number of frequency components
ωn = b2n(η)ω0 and their amplitudes an depend on the
relative strength of the magnetic and quadrupole inter-
actions defined by the ratio y = ωL/ωQ and the angle β′

between the magnetic field and the EFG axis; ω0 = 3ωQ

for odd spin and ω0 = 6ωQ for even spin. The coeffi-
cient is b2n = n for η = 0 [33]. g′(ωntδ) describes the
damping due to the static distribution in ωn arising from
the random inhomogeneities in the local environment of
the probe nuclei which, conventionally, is assumed to be
either Lorentzian or Gaussian with δ being the distribu-
tion width. G2(t) for combined interactions are generally
solved numerically by varying y and β′ [34].

III. RESULTS AND DISCUSSION

A. Experimental results

The partial levels scheme of 133La relevant for the cur-
rent study is shown in Fig. 2. Figure 3 shows the life time
spectrum fitted with an exponential decay curve with en-
ergy gate on the 477-keV γ line to give a lifetime (T1/2)
of 68.01±0.41 ns, with the quoted uncertainty being only
statistical; this value is within the range [7, 10].
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FIG. 2. Partial level scheme of 133La showing the isomer at
535 keV (adopted from Ref. [10]).
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FIG. 3. (Color online) Life time decay spectrum obtained
with energy gate on the 477 keV γ-line.

The energy-gated time spectrum generated with the
477-keV transition was used to construct the spin rota-
tion spectra R(t) displayed in Fig. 4. The observed spec-
trum shows a large amplitude which suggests that most
of the 133La probe nuclei come to rest at a regular lattice
sites in the Te host, most likely to be substitutional.
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FIG. 4. (Color online) Spin rotation spectrum of 11/2− iso-
meric state of 133La with Bext = 2 T.

Let us first consider that the 133La nuclei stopped
in Te host experience pure magnetic interaction. A fit
of our experimentally observed R(t) spectra to Eq. (2)
yielded the value for ωL = 114.2 ± 5.0 Mrad/s, φ ≈
16◦ ± 5◦ and λ = 13.5± 5.5 MHz. Using the expression
~ωL = gNµNBext, and neglecting paramagnetic and/or
diamagnetic correction factors, we obtain the g-factor as
1.19± 0.06. Note, however, that the spin-rotation spec-
trum shows strong damping (see Fig. 4) with a very large
value of λ. One factor leading to a strong damping in the
R(t) spectra is the distribution in frequency, caused by
beam induced radiation damage in the Te host. It is
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worth-while to note, however, that spin rotation spectra
of 135La [35] implanted into an Fe host, measured un-
der conditions similar to the present study, did not show
much damping. This suggests that beam induced radia-
tion damage does not have significant contribution to the
damping observed in the R(t) spectra of 133La. Note that
in the present experiment, the 133La nuclei come to rest
within the 126Te target matrix. Te metal has hexagonal
close-packed (hcp) crystal structure which will produce
non-zero electric field gradient at the probe site. Thus,
the 133La nuclei in Te host will experience the combined
influence of the magnetic dipole and electric quadrupole
interaction. [36]. We therefore refined our data analysis
by considering the perturbation function due to the com-
bined interaction. A fit of the R(t) spectrum using Eq. 4
yielded ωL = 111.4 ± 6.7 Mrad/s and ωQ = 8.0 ± 1.0
Mrad/s. From the ωL value, we extract g = 1.16± 0.07
which is close to the value estimated with pure mag-
netic interaction. We note that the Schmidt value for
the single-particle g-factor for proton in h11/2 configura-
tion is estimated to be gschmidt = 1.42; the experimental
value is, thus, quenched from the Schmidt value by 18%.

To determine the spectroscopic quadrupole moment
|Q| from ωQ, one has to know the value of the EFG
at a lanthanum nucleus site in a 126Te crystal. The
EFG is a traceless second rank tensor defined by the sec-
ond derivative (in Cartesian coordinates) of the Coulomb
potential at the nuclear position. The Coulomb poten-
tial is calculated from the selfconsistently-obtained to-
tal charge distribution, by solving the Poissons equation.
The EFG can be easily calculated, once the Coulomb
potential is known. The field gradient tensor is diag-
onalized and principal components are rearranged such
that |Vxx| ≤ |Vyy| ≤ |Vzz |; the EFG is conventionally de-
fined by Vzz , while (Vxx −Vyy)/Vzz gives the asymmetry
parameter related to the point symmetry of the atomic
site. To find the EFG of a La impurity in Te host, we
have performed first principle ab-initio band structure
calculations within the framework of density functional
theory [37–39], using the augmented plane wave+local
orbital (APW+lo) method [39–41] as implemented in the
WIEN2K package [42].

The calculations were carried out using a supercell con-
sisting of 27 (3×3×3) unit cells of the pure Te structure.
One of the Te atoms within the supercell was replaced by
La. The unit cell thus contains 54 (1 La +53 Te) atoms
which is representative of a dilute alloy of LaxTe1−x with
impurity concentration, x = 0.0185. All calculations
were performed using the experimental lattice parameter
of elemental Te (a= 4.4572 Å, c= 5.9290 Å) taken from
literature [43]. In the APW+lo method, the unit cell is
divided into two regions: (i) non-overlapping muffin-tin
spheres of radius RMT around each atom; and, (ii) the
remaining interstitial region. For the wave functions in-
side the atomic spheres, a linear combination of radial
function times spherical harmonics are used, while in the
interstitial region a plane wave expansion is used. In our
calculations, we have used RMT values of 2.4 a.u. for

La and 2.4 a.u. for Te. The maximum multipolarity
l for the waves inside the atomic sphere was restricted
to lmax = 10. The wave functions in the interstitial
region were expanded in plane waves with a cutoff of
kmax = 7.5/Rmin

MT = 3.125 a.u.−1. The charge density
was Fourier expanded up to Gmax = 16

√
Ry. For the ex-

change correlation potential, we used the Perdew-Burke-
Ernzerhof (PBE) formalism of the generalized gradient
approximation (GGA) [44]. For sampling of the Brillouin
zone a dense k-mesh of 256 of size 8 × 4 × 8 was used.
Due to lattice imperfection caused by the introduction
of an impurity, the atoms at their ideal positions experi-
ence non-zero force, which was minimized by allowing the
atoms to relax to new positions until the force reduced
to less than 1 mRy/a.u. The self consistency of the cal-
culations were ascertained from the energy and charge
convergence criterion set to be 0.01 mRy and 0.0001, re-
spectively.
From the calculation performed with the above men-

tioned parameters, we obtained the EFG for the La im-
purity in Te host to be Vzz = 6.7 × 1017 V/cm2 after
considering lattice relaxation. Using this value of Vzz ,
and the expression [36], ~|ωQ| = eQVzz

4I(2I−1) , we obtained

the spectroscopic quadrupole moment of 11/2− isomer as
|Q| = 1.71 ± 0.34 b. The quadrupole moment is related
to the deformation parameter β through the relation

Qs =
3√
5π

eZβ(1 + 0.16β)R2
0A

2/3 3K
2 − I(I + 1)

(I + 1)(2I + 3)
(5)

where Z =atomic number of the nucleus, K = projec-
tion of total angular momentum or spin on symmetry
axis, I nuclear spin and R0 = 1.21 fm [45]. Considering
K = 1/2 from the Nilsson diagram, we obtain the defor-
mation parameter β = 0.28 ± 0.10, consistent with the
theoretical estimate discussed below. The uncertainties
quoted in the value of the g-factor and the quadrupole
moment |Q| are due to systematic and statistical errors.
For magnetic moment, the statistical error is dominant
and the systematic error owing to magnetic field stabil-
ity as well as uniformity has been taken as less than 1%.
The statistical error in the ωL value obtained from the
least square fit of the experimentally observed spin ro-
tation spectra has been found to be approximately 6%.
This leads to a net error budget of about 6% for the esti-
mated g-factor. For the case of the quadrupole moment,
however, the uncertainty in the calculated Vzz also con-
tributes to the overall uncertainty in the Q value. In
principle, the DFT method is exact and is expected to
provide an accurate estimate of the electric field gradi-
ent. In practice, however, the calculated EFG may differ,
depending on the choice of the exchange correlation po-
tential - the two most commonly used potentials being
the local density approximation (LDA) and Generalized
Gradient Approximation (GGA). The spread in the EFG
calculated with both these potentials was found to be less
than 2%. Other parameter settings in the DFT calcula-
tion like the size of the basis set determined by the choice
of Kmax and the k-mesh size has been found have little
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influence on the Vzz value. The choice of the unit cell pa-
rameter, on the other hand, has much stronger influence
on the calculated Vzz. A small variation ( 2%) in the
lattice parameters has been found to result in a spread
of ∼10 to 15% in the Vzz values [46]. This amount of
uncertainty in the unit cell parameters is not unrealistic,
considering that the calculation is performed with lat-
tice constants measured at room temperature while, the
DFT calculation represent the property at absolute zero
temperature. Thus, in estimating the net error budget
for the Q value we have assumed a systematic error of
15% due to the spread in Vzz arising from uncertainty
in lattice parameters over and above the statistical er-
ror of 12.5% deduced from the fit of the experimentally
observed R(t) spectra.
A comparison of the experimental results with theo-

retical calculations would allow an examination of the
nuclear structure of the 11/2− isomeric state. For this
we have performed theoretical calculations using LSSM.

B. Large-scale shell-model calculations

We have performed the large-scale shell-model (LSSM)
calculations to investigate the level scheme and the 535-
keV isomer of 133La microscopically. The model space of
the LSSM is taken as the 1d5/2, 0g7/2, 2s1/2, 1d3/2, and
0h11/2 single-particle orbits both for protons and neu-
trons. As an effective interaction, we adopted the SNV
interaction, which consists of the SNBG3 interaction
for the neutron-neutron interaction [47], the N82GYM
interaction for the proton-proton interaction [48], and
the monopole-based universal interaction for the proton-
neutron interaction [49]. The SNV interaction was
proven to be successful in describing the nuclear struc-
tures of 135La [6], 134Ba [50], and the shell evolution of
Sb isotopes [51].
Figure 5 shows the level scheme of 133La obtained by

the LSSM calculation. Its M -scheme dimension reaches
6.9 × 1010, which can be handled with the shell-model
code KSHELL [4] and recent supercomputers. In the
preceding works [16, 52], the band states built from the
11/2−1 isomeric state were interpreted as the favored
states of the decoupling limit of the particle-plus-rotor
model [53]. The present shell-model study reproduces
the experimental levels including the level spacing of
the negative-parity band, while some states appear lower
than the band members in the LSSM result. The 11/2−1
state decays to the 7/2+1 state with the M2 transition or
to the 9/2+1 state with the E1 transition. The experimen-
tal M2 transition probability is B(M2; 11/2− → 7/2+) =
3.1 ± 0.3 µ2

N fm2 [54], and shows reasonable agreement

with the LSSM value, 6.6µ2
N fm2. In the LSSM, the spin

part of the M2 transition is quenched by the factor 0.4,
which is determined to reproduce the experimental M2
values of the Sn isotopes and N=82 isotones [54]. The E1
transition probability cannot be obtained theoretically in
the present LSSM model space.
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FIG. 5. Level schemes of 133La by the experiments (left) and
by the present LSSM calculation (right). The arrows denote
the B(E2) transition between the negative parity states, and
their widths are proportional to the B(E2) strengths with
with the effective charges (ep, en) = (1.6, 0.8)e.

Our measured value of the g-factor of the 11/2−1 state
is 1.16± 0.07, which is compared with the LSSM results
to find out the mixing of different configurations for the
11/2− isomer. The calculated g-factor is 1.16 with spin
g-factor quenched 0.64 for protons and 0.74 for neutrons
[6], showing good agreement with the experimental one.
This isomeric state is considered to be the band head of
the favored band of the decoupling limit [16], and its con-
figuration is π(h11/2)⊗ 132Ba(0+). Thus, its wave func-

tion can be approximated as c†π0h11/2
|132Ba, 0+1 〉 where

c†π0h11/2
and |132Ba, 0+1 〉 denote the creation operator of

the proton h11/2 orbit and the ground-state wave func-

tion of 132Ba provided by the LSSM calculations, respec-
tively. The g-factor of this simple wave function without
any mixing of other configurations in this state is ob-
tained as 1.23, which is close to the experimental value
and supports the present interpretation.

The spectroscopic quadrupole moments and g-factors
of the 11/2−1 states of La isotopes are shown in Ta-
ble I. Those of the 135,137,139La are evaluated by the
LSSM using the same Hamiltonian without any trun-
cation with the effective charges (ep, en) = (1.6, 0.8)e.
The quadrupole moment of 139La (N = 82) is rather
small and it increases gradually as the neutron num-
ber decreases and the quadrupole collectivity increases.
The LSSM quadrupole moment of 133La is obtained as
Q = −1.25 b in comparison with the experimental value,
|Q| = 1.71± 0.34 b. On the other hand, the g factors of
the isotopes are rather constant indicating a proton h11/2

configuration. Table I also shows the single-particle spec-
troscopic factor C2S of the proton h11/2 orbit with the
ground states of the corresponding Ba isotopes. As the
neutron number increases the C2S modestly increases.
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LSSM Exp.
139La 137La 135La 133La 133La

g-factor 1.23 1.20 1.18 1.16 1.16(7)
Q-moment (b) -0.49 -0.80 -1.00 -1.25 1.71(34)
C2S(πh11/2) 0.89 0.73 0.68 0.60

TABLE I. g-factors, spectroscopic quadrupole moments, and
single-particle spectroscopic factor C2S of the 11/2−1 states of
La isotopes obtained by the LSSM calculations. The values
obtained by the present experiment are shown in the right-
most column. Note that the experimental Q-moment of 133La
is obtained as the absolute value. The C2S is obtained by the
proton h11/2 attached to the ground state of the neighboring
Ba isotopes.

The LSSM spectroscopic factor of this isomeric state with
the ground state of 132Ba is C2S = 0.60, which is large
enough to support the proton h11/2 configuration.

To discuss the intrinsic shape of the 11/2− state of
133La in terms of the shell-model framework, we show the
energy surface and the T -plot of the Monte Carlo shell
model (MCSM) calculations [55] in Fig. 6. In the figure
the contour lines represent the energy surface obtained by
the quadrupole-constrained Hartree-Fock method with
the variation after parity projection [56] utilizing the
same shell-model Hamiltonian. It shows the prolate min-
imum with modest triaxiality at Q0 = 260 fm2, which
corresponds to the deformation parameter β = 0.16 using
the potential energy surface of Fig. 6 through the relation
suggested in Ref. [57]. The LSSM value of Q = −1.25 b
provides the β = 0.19 by using Eq. 5, assuming K = 1/2.
In the MCSM framework, the resultant wave func-

tion is expressed as a superposition of the angular-
momentum-projected, parity-projected Slater determi-
nants, each of which is called an MCSM basis state. The
intrinsic quadrupole deformation and its fluctuation are
visualized utilizing the intrinsic quadrupole moments and
the importance of these basis states. For visualizing the
intrinsic deformation of the MCSM wave function, the
quadrupole deformation of each MCSM basis state is rep-
resented as the position a white circle in Fig. 6, while its
area denotes the overlap between the MCSM basis state
and the resultant wave function, namely importance of
the basis state. Such a figure is called a T -plot. The
MCSM basis states distribute around the minimum of
the energy surface, indicating that the shell-model wave
function of the 11/2−1 state is a prolate shape with a cer-
tain shape fluctuation in the γ direction.

IV. CONCLUSION

In summary, the g-factor and spectroscopic quadrupole
moment measurement for the 535-keV isomer in 133La
has been carried out using TDPAD method The mea-
sured g-factor value for this isomer has been found to
be 1.16 ± 0.07, along with the spectroscopic quadrupole
moment |Q| = 1.71 ± 0.34 b. Large scale shell model

0 100 200
⟨Q0⟩⟩fm2)

0

50

100

150

⟨Q
2⟩

⟩fm
2 )

⟨0.0

⟨0.5

⟨1.0

⟨1.5

⟨2.0

⟨2.5

En
er

gy
⟨⟩M

eV
)

FIG. 6. (Color online) T -plot of the 11/2−1 state in 133La
coordinated by the intrinsic mass quadrupole moments, Q0

and Q2. The contour line shows the energy surface obtained
by the Q-constrained Hartree-Fock method with the variation
after parity projection. The locations of the circles indicate
the intrinsic shape of the MCSM basis states. The size of
each circle denotes the overlap probability of the MCSM basis
state and the total wave function, namely its importance in
the total wave function.

calculations have been performed to calculate the level
structure of 133La as well as to understand the config-
uration of the measured isomer at 535 keV excitation
energy. The shell model results provide an excellent de-
scription of the measured level scheme. In particular, the
shell model result on the g-factor of the 11/2− isomer,
1.16, matches the measured g-factor of 1.16 ± 0.07 very
well. The g-factor provides the dominant configuration
of 11/2− isomeric state 133La as π(h11/2)⊗132Ba(0+) by
the LSSM study. The configuration is compatible with
the coupling scheme of the odd mass La nuclei for the de-
coupled band built on 11/2−1 state. For the quadrupole
moment, shell model calculation gives Q = −1.25 b, and
β = 0.19 with assuming K = 1/2. The theoretical LSSM
value of quadrupole moment is smaller than the measured
one obtained from the combined interaction. A measure-
ment of the pure quadrupole moment will be very helpful
to understand the difference between theoretical and ex-
perimental values of this quantity.
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G. Sietten, and G. Székely, Z. Phys. A 338, 125-133
(1991).

[9] Petrache, C. M. and Chen, Q. B. and Guo, S. and
Ayangeakaa, A. D. and Garg, U. and Matta, J. T. and

Nayak, B. K. and Patel, D. and Meng, J. and Carpen-
ter, M. P. and Chiara, C. J. and Janssens, R. V. F. and
Kondev, F. G. and Lauritsen, T. and Seweryniak, D. and
Zhu, S. and Ghugre, S. S. and Palit, R. Phys. Rev. C 94,
064309 (2016).

[10] S. Biswas et al., Eur. Phys. J. A 55, 159 (2019).
[11] C. Gerschel, J. P. Husson, N. Perrin, L. Valentin Contrib.

Intern. Conf. Properties Nucl. States, Montreal, Canada,
p. 85 (1969).

[12] N. J. Stone, Atomic Data and Nuclear Data Tables 90

75 (2005).
[13] M. Budzynski, M. Enikova, G. Lizurei, K. M. Muminov,

A. I. Muminov, M. Subotovich, T. Khazratov, Nguen
Kong Chang and Yu. V. Yushkevich Program and The-
ses, Proc.29th Ann. Conf. Nucl. Spectrosc. Struct. At.
Nuclei, Riga, p. 81 (1979).

[14] C. Gerschel et al., Phys. Lett. B 33, 299 (1970).
[15] B. Klemme et al., Phys. Lett. B 45, 38 (1973).
[16] F. S. Stephens, R. M. Diamond, J. R. Leigh, T. Kammuri,

and K. Nakai Phys. Rev. Lett. 29, 438 (1972).
[17] J. R. Leigh, K. Nakai, K. H. Maier, F. Pühlhofer, F. S.
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Nordström, Phys. Rev. B 64, 195134 (2001).
[42] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvas-

nicka and J. Luitz, WIEN2k: An Augmented
Plane Wave+Local Orbitals Program for Calculat-
ing Crystal Properties(Karlheinz Schwarz, Technische

Universität, Wien, Austria, 2001). ISBN 3-9501031-1-
2.(https://wiki.cse.ucdavis.edu/_media/support:
hpc:software:wien2k_usersguide.pdf).

[43] P. Cherin, and P. Unger, Acta Crystallogr., 23, 670
(1967).

[44] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett.
77 3865 (1996).

[45] S. N. Ghoshal, Nuclear Physics (S Chand And Company
Limited, New Delhi, 2018).

[46] Leonardo Errico, Kurt Lejaeghere, Jorge Runco, S. N.
Mishra, Mario Rentera, and Stefaan Cottenier, The Jour-
nal of Physical Chemistry, C120, 23111 (2016).

[47] M. Honma, T. Otsuka, T. Mizusaki, and M. Hjorth-
Jensen, RIKEN Accelerator Progress Report 45, 35
(2011).

[48] M. Honma, T. Otsuka, T. Mizusaki, and M. Hjorth-
Jensen, RIKEN Accelerator Progress Report 49, 77
(2015).

[49] T. Otsuka, T. Suzuki, M. Honma, Y. Utsuno, N. Tsun-
oda, K. Tsukiyama, and M. Hjorth-Jensen, Phys. Rev.
Lett. 104, 012501 (2010).

[50] L. Kaya et al., Phys. Rev. C 100, 024323 (2019).
[51] Y. Utsuno, T. Otsuka, N. Shimizu, M. Honma, T.

Mizusaki, Y. Tsunoda, and T. Abe, EPJ Web of Con-
ferences 66, 02106 (2014).

[52] J. Chiba, R. Hayano, M. Sekimoto, H. Nakayama, and
K. Nakai, J. Phys. Soc. Jpn, 43, 1109 (1977).

[53] P. Ring and P. Schuck, The Nuclear Many-Body Prob-
lem, (Springer-Verlag, New York, Heidelberg, Berlin,
1980).

[54] Evaluated Nuclear Structure Data File (ENSDF).
[55] N. Shimizu et al., Phys. Scr. 92, 063001 (2017).
[56] T. Togashi, N. Shimizu, Y. Utsuno, T. Otsuka and M.

Honma, Phys. Rev. C 91, 024320 (2015).
[57] Y. Utsuno, N. Shimizu, T. Otsuka, T. Yoshida, and Y.

Tsunoda, Phys. Rev. Lett. 114, 032501 (2015).


