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We posit a unified hydrodynamic and microscopic description of the quark-gluon plasma (QGP)
produced in ultrarelativistic p-Pb and Pb-Pb collisions at

√
sNN = 5.02 TeV and evaluate our

assertion using Bayesian inference. Specifically, we model the dynamics of both collision systems
using initial conditions with parametric nucleon substructure, a pre-equilibrium free streaming stage,
event-by-event viscous hydrodynamics, and a microscopic hadronic afterburner. Free parameters of
the model which describe the initial state and QGP medium are then simultaneously calibrated to
fit charged-particle yields, mean pT , and flow cumulants. We argue that the global agreement of
the calibrated model with the experimental data strongly supports the existence of hydrodynamic
flow in small collision systems at ultrarelativistic energies, and that the flow produced develops at
length scales smaller than a single proton. Posterior estimates for the model’s input parameters are
obtained, and new insights into the temperature dependence of the QGP transport coefficients and
event-by-event structure of the proton are discussed.
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I. INTRODUCTION

Ultrarelativistic nuclear collisions between one light-ion and one heavy-ion, e.g. 3He-Au and p-Pb collisions, generate
dense, compact sources of nuclear matter which produce long-range multiparticle correlations that are strikingly
similar to the correlations observed in heavy-ion collisions where collectivity is commonly explained by the existence
of hydrodynamic flow [1–4]. This observation suggests that hydrodynamic behavior could be manifest in small droplets
of quark-gluon-plasma (QGP) [5, 6], and that flow even might develop at length scales smaller than a single proton
[7].

Hydrodynamic models of ultrarelativistic nuclear collisions are complicated by a number of theoretical unknowns
including the detailed geometry of the QGP initial conditions, the strength and duration of pre-equilibrium dynamics,
the temperature dependence of QGP transport coefficients, and the boundaries of hydrodynamic applicability [8–
11]. In general, these theoretical uncertainties tend to grow with decreasing system size, where emergent physics at
sub-femtometer length scales becomes important to describe bulk properties of the produced system.

One method for reducing theoretical uncertainties is to test model calculations by varying the species of colliding
nuclei at a single beam energy [12–19]. Since initial condition and hydrodynamic models generally factorize the
structure of the colliding nuclei from the subsequent time dynamics of the collision, a proposed theory framework
can be validated by testing its predictions for multiple collision systems using a single self-consistent set of model
parameters, where only the nuclear structure in the model is permitted to vary.

Typically, the macroscopic structure of heavy nuclei, characterized e.g. by an atomic mass number and set of
Woods-Saxon coefficients [20, 21], is regarded as a known input to hydrodynamic models which contributes negligible
uncertainty to simulation predictions, outweighed by large uncertainties in modeling initial energy deposition and
off-equilibrium dynamics [8, 22–25]. The geometry of light-ions, meanwhile, is naturally more sensitive to the detailed
size and shape of individual protons and neutrons inside the nucleus, which may fluctuate event-by-event and differ
significantly from the round blobs typically used to approximate nucleons in heavy-ion collisions [7, 26–29]. These
nucleon substructure properties are difficult to measure and calculate from first principles and hence contribute
significant uncertainty to model predictions of small systems.

Early substructure studies replaced round nucleons with composite nucleons, described by a few salient model
parameters, in order to investigate the effect of each parameter on simulated observables [26, 30–33]. These sensitivity
studies were able to identify cause and effect relationships between model inputs and outputs, but lacked the ability
to constrain nucleon substructure parameters in any kind of global or systematic fashion. It quickly became apparent
that numerous substructure implementations might be compatible with available data, and that additional work would
be required to identify observables which are particularly sensitive to the average size, shape, and fluctuations of the
nucleon.

Several such observables have been identified in proton-proton and proton-lepton scattering data. Measurements
by the TOTEM collaboration at

√
s = 7 TeV, for instance, found an unexpected dip in the inelasticity density of p-p

collisions at zero impact parameter [34]. It was later realized that this depression, or so-called hollowness effect, in
the p-p inelastic collision profile [35] can be explained by the existence of correlated domains inside the proton, and
that aspects of these domains, such as their size and correlation strength, may be constrained by comparing model
predictions to inelastic p-p measurements [36, 37].

Independently, studies of coherent and incoherent J/ψ production based on a color dipole picture of vector meson
production were used to simultaneously constrain both the average color charge density of the proton as well as its
event-by-event fluctuations in a saturation based framework [38–41]. Initial condition studies using the IP-Glasma
model of Color Glass Condensate effective field theory [42] simultaneously demonstrated that these color charge
fluctuations leave a lasting imprint on the small-x gluon distribution of the proton and hence the initial geometry
of QGP energy deposition [29]. In addition, it was recently shown that hydrodynamic simulations using IP-Glasma
initial conditions with color charge fluctuations calibrated to fit coherent and incoherent J/ψ diffraction measured by
the H1 and Zeus experiments at HERA [40, 41] provide a good description of collectivity in small and large collision
systems [43].

Model parameters, such as those calibrated by the aforementioned studies, are of course always in some degree of
tension. For instance, fitting one observable may require parameter values that degrade the quantitative description of
some other observable. Similarly, parameters which provide an optimal description of small-system observables may
lead to a sub-optimal description of heavy-ion observables or vice versa. It is thus import to look at the experimental
data holistically, and to use model calibration methods which (1) explore all parameter combinations and (2) compare
model predictions to all relevant experimental measurements in a statistically rigorous fashion.

With these considerations in mind, we present progress toward a fully global analysis of p-Pb and Pb-Pb bulk
observables at

√
sNN = 5.02 TeV using a model calibration framework known as Bayesian parameter estimation.

We begin in Sec. II by constructing a nuclear collision model for p-Pb and Pb-Pb collisions using initial conditions
with parametric nucleon substructure and transport dynamics described by a pre-equilibrium free streaming stage,
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viscous hydrodynamics, and microscopic Boltzmann transport. In Sec. III, we calibrate free parameters of the model
to fit charged-particle yields, mean pT , and anisotropic flow cumulants of both collision systems at

√
sNN = 5.02 TeV,

and finally, in Secs. IV and V, we present posterior results for the model input parameters and comment on the
implications for hydrodynamic descriptions of small collision systems.

II. NUCLEAR COLLISION MODEL

We employ a multi-stage hybrid transport model that uses relativistic viscous hydrodynamics to describe the QGP
medium and microscopic Boltzmann transport to simulate the dynamics of the system after hadronization [44, 45].
The hydrodynamic initial conditions are provided by a modified version of the TRENTo model [46] with additional
parameters to vary the number and size of hot spots inside the nucleon. Each initial condition profile is free streamed
to the hydrodynamic starting time and matched onto the hydrodynamic energy-momentum tensor using the Landau
matching procedure [47, 48]. Many of the components of the present model have been documented in previous studies
[45, 46, 49]; we review each component here for completeness.

A. Initial state

We model the initial state of p-Pb and Pb-Pb collisions at
√
sNN = 5.02 TeV using the boost-invariant TRENTo

model [46]. Generally speaking, the initial three-dimensional energy density deposited by relativistic nuclear collisions
is not boost-invariant. The longitudinal energy density fluctuates both locally point-to-point in the transverse plane
as well as globally event-by-event due to asymmetries in the sampled density of participant matter [50, 51]. Never-
theless, boost-invariance has been shown to be a good approximation for both large and small collision systems when
hydrodynamic observables are calculated from particles that are detected close to midrapidity [17].

The TRENTo model operates in the ultrarelativistic limit with a Lorentz factor γ � 1 such that each nucleus
appears as a thin sheet of nuclear density in the laboratory frame. The sheets of colliding nuclear density penetrate
and pass through each other in time τoverlap ∼ Dnucl/(γ βz) in the laboratory frame, where Dnucl is the diameter of the
nucleus in its rest frame, γ is the usual Lorentz factor of the accelerated ions, and βz is their velocity along the beam
axis. The resulting nuclear overlap time τoverlap . 0.1 fm/c at top RHIC and LHC energies, and thus it is reasonable
to neglect the initial transverse dynamics which occur while the nuclei pass through each other. We therefore assume
that the collision produces all secondary particles at a uniform proper time τ0 � 1 fm/c, and that it deposits energy
at midrapidity which is a function of the locally varying transverse density inside each nucleus.

Consider the collision of two nucleons, labeled A and B, with three-dimensional densities ρA and ρB in their local
rest frames. The nucleon-nucleon overlap function

Tnn(b) =

∫
d2x⊥

∫
dz1 ρA(x⊥, z1)

∫
dz2 ρB(x⊥ − b, z2) (1)

describes the eikonal overlap of the two nucleons at impact parameter b in the transverse plane x⊥, orthogonal to
the beam axis coordinates z1,2. Here we assume that each nucleon is comprised of smaller constituents—e.g. valence
quarks, sea quarks, and small-x gluons—which may collide to produce secondary particles and contribute to the
observed inelastic nucleon-nucleon cross section.

Within a picture of independent pairwise collisions between the constituents, a Glauber model model may be used
to calculate the probability Pcoll that the two nucleons collide inelastically at impact parameter b. In the limit when
the number of constituents is large, it yields the particularly simple form

Pcoll(b) = 1− exp[−σeff Tnn(b)], (2)

where σeff is the effective cross section for inelastic collisions between each pair of constituents, determined by fitting
the inelastic proton-proton cross section

σinel
pp =

∫
d2b Pcoll(b) (3)

at the specified collision energy
√
sNN. We tune σeff in the present work to fit the experimental inelastic nucleon-

nucleon cross section σinel
NN = 7.0 fm2 at

√
sNN = 5.02 TeV for comparison with our chosen datasets [52]. The resulting

TRENTo inelastic nucleon-nucleon cross section agrees with the experimental value to better than 2% accuracy, as
verified by one of the model’s standard unit tests.
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FIG. 1 Schematic of plausible nucleon shapes. The sketch on the left shows a spherically symmetric nucleon (dashed line),
while the middle and right illustrations depict a fluctuating nucleon with three and nine constituents respectively (solid lines).

The nucleon densities ρA,B in Eq. (1) are commonly modeled using a spherically symmetric distribution. For
instance, the original implementation of the TRENTo model uses Gaussian nucleons, largely because it yields a
simple analytic solution to Eq. (2). Needless to say, such approximations are admittedly crude and may have a
significant effect on the dynamics of small collision systems where the nucleon size is comparable to the size of the
produced QGP medium.

A number of previous studies have investigated the effects of deformed or “lumpy” nucleons. One common im-
plementation is a superposition of three valence quarks, typically described by Gaussian or exponential form factors
[7, 12, 26, 29, 32, 33]. The corresponding nucleon density is then assumed to be that of predominantly small-x gluons,
seeded by the distribution of color charge in each of the three valence quarks.

In this work, we pursue a less restrictive and more parametric description of the nucleon where the number of
substructure degrees of freedom is uncertain as depicted in Fig. 1. We model each nucleon’s three-dimensional density
ρA,B as a sum of nc independent constituents

ρA,B(x) =
1

nc

nc∑
i=1

ρc(x− xi), (4)

where each constituent density ρc is described by a Gaussian distribution

ρc(x) =
1

(2πw2
c )

3/2
exp

(
− |x|

2

2w2
c

)
(5)

of variable width wc. The constituent positions xi are sampled independently (ignoring correlations) from a Gaussian
probability distribution

P (xi) =
1

(2πr2
cp)

3/2
exp

(
−|xi − xn|2

2 r2
cp

)
, (6)

where rcp is a free parameter that varies the dispersion of the constituent positions xi about each nucleon position xn.
As a matter of convenience, we sample the nucleon positions before determining the constituent positions. This leads
to small discrepancies between the designated nucleon positions and the actual position of each nucleon’s center-of-
mass, owing to fluctuations in the constituent positions. The parameter rcp should thus be interpreted with care. It
is a computational sampling radius, not the Gaussian width of the sampled nucleons in their center-of-mass frame.

The two nucleons A, B are assigned a random impact parameter offset b, and Eq. (2) is used to sample their inelastic
collision probability Pcoll(b). Note, this collision probability has no direct knowledge of the individual constituent
positions; it is only indirectly sensitive to the constituent positions via their effect on the nucleon densities ρA,B . The
constituents are merely used as a mechanism to deform and fluctuate each nucleon profile.

This is an important distinction between the present model and a similar nucleon substructure implementation
known as the participant quark model, which allows for a subset of quarks (constituents) to participate inside a
single nucleon [32, 53]. The nucleon, unlike the nucleus, cannot produce semi-stable spectator fragments in a high-
energy collision. Any spectator quarks produced by a wounded quark model would be colored objects that necessarily
contribute to secondary particle production. We correspondingly require that the nucleons in Eq. (4) participate as
singular objects, such that all spectator matter discarded by the simulation is appropriately color-neutral and inert.

Hereafter, we switch to Milne coordinates (x⊥, ηs, τ), where x⊥ is a Cartesian coordinate (x, y) in the transverse

plane, ηs = 1
2 log[(t+ z)/(t− z)] is the system’s spacetime rapidity, and τ =

√
t2 − z2 its proper time. Assuming the

nucleons collide at the sampled impact parameter b, we assign each nucleon a participant thickness

T̃A,B(x⊥) ≡
∫
dz ρ̃A,B(x⊥ ± b/2, z), (7)
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which projects its fluctuated nucleon density

ρ̃A,B(x) ≡ 1

nc

nc∑
i=1

γi ρc(x− xi) (8)

onto the transverse plane x⊥ centered at midrapidity. This fluctuated nucleon density ρ̃A,B equals the nucleon density
ρA,B in Eq. (4) with additional weights γi sampled from a gamma distribution with unit mean and variance 1/k.
Such ad hoc random weights are necessary to describe the large fluctuations observed in minimum bias proton-proton
collisions, although their exact physical origin is not well understood.

The resulting nucleon fluctuation variance naturally falls like ∼1/nc, where nc is the number of constituents. This
means that the natural range for the constituent fluctuations is larger when the number of constituents is larger. We
therefore reparametrize the constituent fluctuations using

σfluct = 1/
√
k nc, (9)

where k is the shape parameter (inverse variance) of the gamma distribution weights and nc is the number of nucleon
constituents.

The energy density e deposited at midrapidity ηs = 0 and proper time τ0 � 1 fm/c is then some function

e(x⊥, ηs = 0, τ0) = f(T̃A, T̃B) (10)

of the local participant thicknesses T̃A and T̃B . A natural first guess for this mapping is an arithmetic mean

e(x⊥, ηs = 0, τ0) = const× T̃A + T̃B
2

, (11)

equal to a participant or “wounded nucleon” model for initial energy deposition up to meaningless factor of two in
the overall normalization constant. This wounded nucleon scaling was in fact one of the first such mappings used as
a proxy for initial particle production in relativistic heavy-ion collisions [54]. It was subsequently realized, however,
that the wounded nucleon model predicts the wrong scaling for charged-particle production as a function of collision
centrality [55] and hence the wrong scaling for midrapidity energy deposition as a function of participant density.1

A simple remedy is to replace the arithmetic mean of the wounded nucleon model with a more flexible parametriza-
tion

e(x⊥, ηs = 0, τ0) = const×Mp(T̃A, T̃B), (12)

where Mp is a family of functions known as the generalized means

Mp(x, y) =

(
xp + yp

2

)1/p

. (13)

This parametrization introduces a dimensionless parameter p which varies the scaling behavior of initial energy
deposition at midrapidity. For certain discrete p values, it reduces to well known functional forms such as the
arithmetic, geometric, and harmonic means:

Mp(x, y) =



max(x, y) p→ +∞,
(x+ y)/2 p = +1, (arithmetic)
√
xy p = 0, (geometric)

2xy/(x+ y) p = −1, (harmonic)

min(x, y) p→ −∞.

(14)

Note, the form of Eq. (12) differs somewhat from our previous studies [45, 46], which parametrized the system’s
entropy density using the generalized mean ansatz:

s(x⊥, ηs = 0, τ0) ∝Mp(T̃A, T̃B). (15)

1 Typically, wounded nucleon scaling is used to parametrize the entropy density s, but the shortcomings of the model are nevertheless
the same when parametrizing the system’s energy density e. Both parametrizations underpredict the steep rise of particle production
observed in central collisions.
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10 fm

FIG. 2 Effect of nucleon substructure on the nuclear thickness function T (x, y) ≡
∫
dz ρ(x, y, z) of a 208Pb nucleus. The

nucleus on the left has Gaussian nucleons of width 0.8 fm, while the nucleus on the right has composite nucleons, each
containing six constituents of width 0.4 fm.
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FIG. 3 Cartoon of the free streaming approximation for hydrodynamic initialization. The initial state is free streamed for
proper time τfs (zero coupling) before it is matched to hydrodynamics (strong coupling). This piecewise evolution
approximates the more realistic scenario expected in nature where the medium’s coupling strength smoothly changes as a
function of time.

Our motivation for reinterpreting the left-side of this equation as an energy density in the present work is to enable
the application of pre-equilibrium free streaming equations (described shortly) which require the system’s initial
energy density as input. This modification is permissible since the TRENTo model is formulated using particle yield
observations and the approximate scaling relation dNch/dη ∝Mp(T̃A, T̃B), which remains valid for both static entropy
density and free streamed energy density initialization.

Up to this point we have restricted our attention to a single nucleon-nucleon collision. Equation (12) is a purely
local function of nuclear density in the transverse plane and hence it should, in principle, be equally valid for any pair
of colliding nuclei at sufficiently high beam energy. The TRENTo model readily generalizes from individual nucleon-
nucleon collisions to arbitrary nucleus-nucleus collisions by summing the participant thicknesses T̃A,B in Eq. (7) over
all nucleons which participate in one or more inelastic collisions. The only modeling difference between p-p, p-Pb,
and Pb-Pb collisions is the number and the position of the nucleons. Figure 2 shows the effect of adding nucleon
substructure to a generic lead nucleus. Additional fluctuations emerge over the length scale of a nucleon, but the
macroscopic geometry of the nucleus is largely unchanged.

When applying the model to heavy-ions, we sample nucleon positions from a Woods-Saxon density distribution
subject to a minimum distance criteria |xi − xj | > dmin between all pairs of nucleons i, j. The minimum distance
algorithm, first described in Ref. [49], uses a simple trick to resample the nucleon positions without modifying the
target Woods-Saxon radial distribution. We first presample the radii of all nucleons in a given nucleus and sort them
in ascending order. We then sample the solid angles of each nucleon one-by-one, starting with the nucleon closest
to the center of the nucleus and working our way outwards. If a sampled nucleon position is too close to any of its
previously placed neighbors, its solid angle is resampled—but not its radial coordinate—until the minimum distance
criteria is satisfied. Similar methods could be used to model correlations between individual constituents inside each
nucleon, although the implementation would be somewhat tedious.
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B. Pre-equilibrium dynamics

There are of course two limiting cases for the strength of interactions inside the QGP medium immediately after
the collision: infinitely weak coupling where the secondary partons free stream without interacting, and infinitely
strong coupling where the fluid’s inter-particle mean-free-path effectively vanishes. Realistically, one expects the
initial parton interactions to lie somewhere between these two extremes. We therefore choose to model the QGP’s
initial off-equilibrium dynamics using a simple step-function approximation, depicted in Fig. 3, which free streams
the initial state for proper time τfs (zero coupling) before instantaneously switching to viscous hydrodynamics (strong
coupling) [24, 47]. The free parameter τfs allows us to parametrically vary the time averaged coupling strength during
the initial stage of the collision.

The parametric energy deposition ansatz in Eq. (12) does not provide any information about the initial masses or
momenta of particles produced in the collision. In general, these details will affect the dynamics predicted by the
collisionless Boltzmann equation

pµ∂µf(x, p) = 0 (16)

through its dependence on the underlying distribution function f(x, p). Equation (16), however, simplifies for a boost-
invariant gas of massless noninteracting partons with locally isotropic transverse momentum distributions. Subject
to these assumptions, the energy-momentum tensor Tµν(x⊥, ηs = 0, τ) at transverse coordinate x⊥ and time τ > τ0
equals [24, 47]

Tµν(x⊥, ηs = 0, τ) =

τ0
τ

∫ π

−π
dφp p̂

µp̂νe(x⊥ − (τ − τ0)p̂⊥, ηs = 0, τ0), (17)

where p̂µ = (1, cosφq, sinφq, 0) and p̂⊥ = (cosφq, sinφq) are momentum unit vectors. Here we assume that the time
τ0 � 1 fm/c is small and define τfs ≡ τ − τ0 ∼ τ . We also combine the unknown constant in Eq. (12) with the
pre-factor τ0 in Eq. (17) to produce a single normalization factor Norm = const × τ0 with units of energy. The
solution (17) is then decomposed in hydrodynamic form

Tµν = euµuν − (P + Π)∆µν + πµν , (18)

where e and P are the energy density and pressure in the local fluid rest frame, uµ is the local fluid velocity,
∆µν = gµν − uµuν is the projector onto the space orthogonal to uµ, and Π and πµν are the bulk pressure and shear
stress tensor respectively. We then solve for the energy density e and fluid velocity uµ using the Landau matching
condition which defines the fluid rest frame velocity as the time-like eigenvector of Tµν with energy density e as its
eigenvalue

Tµνuν = euµ. (19)

The initial bulk and shear corrections are finally solved for by subtracting the ideal pressure from the total pressure
to find Π, then solving for πµν using Eq. (18):

Π = −1

3
Tr(∆µνT

µν)− P, (20)

πµν = Tµν − euµuν + (P + Π)∆µν . (21)

This procedure provides initial values for Tµν , uµ, Π, and πµν which conserve energy and are consistent with the
underlying hydrodynamic equation of state. We therefore expect it to provide a more realistic description of the initial
stages of the collision as compared to a previous study using the TRENTo initial condition model which set Π, πµν ,
and uµ initially to zero [45].

C. Hydrodynamics

After free streaming for proper time τfs, we transition to viscous hydrodynamics which solves the conservation
equations

∂µT
µν = 0 (22)
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FIG. 4 Degrees of freedom in the temperature dependent shear and bulk viscosity parametrizations. Lines are chosen for
illustrative purposes only and do not represent all possible variability. For instance, η/s could have a large slope and negative
curvature, or ζ/s could have a large max and narrow width, neither of which are depicted above.

for the hydrodynamic energy-momentum tensor Tµν expressed in Eq. (18) using a set of second-order Israel-Stewart
equations formulated in the 14-moment approximation [56–59]. This produces a pair of relaxation-type equations

τΠΠ + Π̇ = −ζθ − δΠΠΠθ + λΠππ
µνσµν , (23a)

τππ̇
〈µν〉 + πµν = 2ησµν − δπππµνθ + φ7π

〈µ
α π

ν〉α

− τπππ〈µα σν〉α + λπΠΠσµν , (23b)

for the bulk pressure Π and shear-stress πµν . We model the shear viscosity η and bulk viscosity ζ as unknown
temperature dependent quantities and fix the remaining transport coefficients {τΠ, δΠΠ, λΠπ, τπ, δππ, φ7, τππ, λπΠ}
using analytic results derived in the limit of small but finite masses [60].

The hydrodynamic equations of motion are necessarily closed using an equation of state (EoS) to relate the energy
density e and pressure P of the produced medium. We use a parametrization for P (e) that matches a hadron resonance
gas EoS at low temperature to a lattice QCD EoS at high temperature by smoothly connecting their trace anomalies
in the interval 165 ≤ T ≤ 200 MeV [49]. For the lattice EoS, we use a calculation by the HotQCD collaboration
for (2+1)-flavor QCD which was extrapolated to the continuum limit [61]. Recent developments in lattice QCD now
enable calculations in (2+1+1)-flavors [62], i.e. with thermalized charm quarks, and the additional charm flavor has
been shown to visibly affect predictions of pT -differential flow observables [63]. Investigating this sensitivity would
thus be a natural target for future improvements to the present work.

We parametrize the temperature dependence of the QGP viscosities in order to marginalize over their uncertainty
when calibrating to data. For the specific shear viscosity η/s, we use a modified linear ansatz

(η/s)(T ) = (η/s)min + (η/s)slope · (T − Tc)
(
T

Tc

)(η/s)crv

, (24)

where (η/s)min, (η/s)slope, and (η/s)crv are tunable parameters, and Tc = 0.154 GeV is the pseudocritical transition
temperature of the HotQCD EoS. Meanwhile, for the specific bulk viscosity ζ/s, we use an unnormalized Cauchy
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distribution

(ζ/s)(T ) =
(ζ/s)max

1 +

(
T − (ζ/s)Tpeak

(ζ/s)width

)2 , (25)

described by a tunable maximum (ζ/s)max, temperature width (ζ/s)width, and temperature location parameter
(ζ/s)Tpeak

. Figure 4 shows several of the possible curves parametrized by Eqs. (24) and (25), although infinitely
more are possible.

The aforementioned hydrodynamic equations are solved numerically using the boost-invariant VISH2+1 viscous
hydrodynamics code [44, 64]. We vary the spatial grid’s maximum width xmax event-by-event to accommodate
systems of varying size and determine the optimal spatial step dx and time step dτ for each set of model parameters
to balance trade-offs between numerical accuracy and computation time (see Appendix A). Although these details
are somewhat mundane, they are critically important to the present study, since the computation time scales with
the number of spacetime cells ncell ∼ n2

x nτ , and this quantity grows rapidly when nx and nτ are large, as is typically
the case for simulations with nucleon substructure.

D. Particlization and Boltzmann transport

We evolve the system hydrodynamically down to a pre-specified switching isotherm Tswitch at which point the
medium is converted into particles using the Cooper-Frye formula [65]

E
dNi
d3p

=
gi

(2π)3

∫
Σ

fi(x, p) p
µ d3σµ, (26)

where i is an index over species, fi is the distribution function of that species, and d3σµ is a volume element of the
isothermal hypersurface Σ defined by Tswitch. Thermal particles are then sampled in the rest frame of each fluid cell
according to a Bose-Einstein or Fermi-Dirac distribution at zero baryon chemical potential

f(m, p) =
1

exp(
√
m2 + p2/T )∓ 1

, (27)

where m is the mass of the sampled particle, p is its momentum, and T is the temperature of the fluid cell.
Traditionally, particlization models have sampled resonances using each particle’s pole mass in Eq. (27). This

approximation, however, is somewhat crude and has been known to underpredict pion production, particularly at low
pT [66–68]. We thus follow Ref. [49], and sample particles with a distribution of masses

f(p) =

∫
dmP(m) f(m, p), (28)

where P(m) is modeled by a Breit-Wigner distribution

P(m) ∝ Γ(m)

(m−m0)2 + Γ(m)2/4
. (29)

Here m0 is the resonance’s Breit-Wigner mass, and Γ(m) is its mass-dependent width, for which we use the simple
form

Γ(m) = Γ0

√
m−mmin

m0 −mmin
, (30)

where Γ0 is the usual Breit-Wigner width, and mmin is a production threshold equal to the total mass of the lightest
decay products. We tabulate the values of {Γ0,m0,mmin} for all particles and sample the masses of each particle
during particlization [69]. The resonances are then passed to a hadronic transport model, described shortly, which
simulates subsequent scatterings and decays.

When the viscous terms πµν and Π are nonzero in Eq. (18), the distribution function f must be modified to
preserve the continuity of Tµν as the system transitions from hydrodynamics to Boltzmann transport. We perform
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the appropriate modification using a general method which transforms the momentum vector inside the distribution
function [70]

pi → p′i = pi +
∑
j

λij pj , (31)

λij = (λshear)ij + λbulk δij , (32)

where λij is a linear transformation matrix consisting of a traceless shear part and a bulk part which is proportional
to the identity matrix.

We use for the shear viscous correction the form [70]

(λshear)ij =
τ

2η
πij , (33)

with a value for η/τ obtained from the noninteracting hadron resonance gas model

η

τ
=

1

15T

∑
sp

g

∫
d3p

(2π)3

p4

E2
f0(1± f0), (34)

where the sum runs over all species in the hadron gas, and g and f0 are the degeneracy factor and equilibrium
distribution function of each species respectively.

For the bulk viscous correction, we use a novel procedure developed in Ref. [49]. The total kinetic pressure of the
system is

P + Π =
∑
sp

g

∫
d3p

(2π)3

p2

3E
f(p). (35)

For a given bulk pressure, we rescale the momentum p inside the distribution function f(p) → f(p + λbulk p) and
adjust the parameter λbulk to match the total pressure on the left side of Eq. (35). This substitution of course also
modifies the energy density

e =
∑
sp

g

∫
d3p

(2π)3
Ef(p), (36)

and so a fugacity term zbulk is introduced which modifies the yield of all particles by the same overall factor to
compensate. The full transformation is then given by f(p) → zbulk f(p + λbulk p), where the parameters λbulk and
zbulk are determined numerically for each value of the bulk pressure.

Once the fluid is converted into particles, we simulate its subsequent microscopic dynamics using the Ultra-
relativistic Quantum Molecular Dynamics (UrQMD) transport model [71, 72]. It solves the microscopic Boltzmann
equation

dfi(x, p)

dt
= Ci(x, p), (37)

where fi is the distribution function for species i, and Ci is its microscopic collision kernel. The model propagates all
produced hadrons along classical trajectories and simulates their scatterings, resonance formations, and decays until
the last interactions cease.

One primary advantage of using a microscopic transport model such as UrQMD as an afterburner, is that it
realistically simulates the system break-up when the mean-free-path becomes large relative to the system size. This
dilute limit is expected to play a significant role in small collision systems where the produced medium is smaller and
shorter lived.

III. PARAMETER ESTIMATION

The nuclear collision model constructed in Sec. II includes a number of free parameters x which describe the initial
state, pre-equilibrium dynamics, and hydrodynamic medium. Given values for the parameters x, the model may be
used to predict a vector of simulated observables ymodel. For example, ymodel might be a vector consisting of charged-
particle yields in different centrality bins. The physics model thus represents a vector-valued function ymodel = f(x)
which maps the parameter values x to the model observables ymodel.

The goal of this work is to estimate the true model parameters x? provided some evidence that our model predictions
ymodel describe experimental measurements yexpt. The problem involves three distinct components:
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TABLE I Input parameter ranges for the physics model.

Parameter Description Range

Norm Normalization factor 9–28 GeV

p Energy deposition parameter −1 to +1

σfluct Nucleon fluctuation std. dev. 0–2

rcp Constituent position radius 0–1.2 fm

nc Number of constituents 1–9

wc Width of constituents 0.2–1.2 fm

dmin Minimum inter-nucleon dist. 0–1.7 fm

τfs Free streaming time 0.1–1.5 fm/c

(η/s)min Minimum value of η/s (at Tc) 0–0.2

(η/s)slope Slope of η/s above Tc 0–8 GeV−1

(η/s)crv Curvature of η/s above Tc −1 to +1

(ζ/s)max Maximum value of ζ/s 0–0.1

(ζ/s)width Width of ζ/s peak 0–0.1 GeV

(ζ/s)Tpeak Temp. of ζ/s maximum 0.150–0.200 GeV

Tswitch Switching/particlization temp. 0.135–0.165 GeV

1. Hf : the hypothesis that the nuclear collision model f formulated in this work provides a realistic description of
reality,

2. Hx: the hypothesis that the model parameters x are the true model parameters x? of f , and

3. E: the evidence provided by the model ymodel, the experimental data yexpt, and their corresponding uncertainties.

As a practical matter, we always assume that hypothesis Hf is correct, meaning there are no glaring flaws in our
chosen theoretical framework. This is a significant assumption; the application of hydrodynamic simulations to small
collision systems is speculative, and our conclusions are conditional on the framework making sense.

Subject to this assumption, we can apply Bayes’ theorem to evaluate the hypothesis Hx, given the evidence provided
by E. Simplifying notation and writing Hx as just x, Bayes’ theorem yields

P (x|E) ∝ P (E|x)P (x). (38)

The left-side of this expression is the posterior : the probability of x = x? given the experimental evidence E. On the
right-side there are two separate terms. The first term P (E|x) is the likelihood function: the probability of observing
the evidence E provided that x = x?, and the second term P (x) is the prior : an estimate of the probability of
hypothesis x = x? in the absence of evidence E.

We assume that the likelihood function in Eq. (38) is described by a multivariate normal distribution

P (E|x) =
1√

(2π)m det Σ
exp

(
−1

2
∆yᵀΣ−1∆y

)
, (39)

where ∆y = ymodel(x) − yexpt is a vector of size m, equal to the discrepancy of the model and experiment, and
Σ = Σmodel(x) + Σexpt is the total covariance matrix, equal to the sum of a modeling component Σmodel(x) and an
experimental component Σexpt which account for all known sources of uncertainty in the simulated and measured
observables.

A. Parameter design and observables

For the prior P (x), we specify ranges, i.e. minimum and maximum values, for each parameter which are listed in
Table I. We assume the prior distribution is constant and nonzero within each specified range and zero otherwise. The
selected parameter ranges are intentionally wide to avoid clipping the calibrated posterior. For example, a previous
analysis of the TRENTo model [45] found p ≈ 0, but we use a prior range p ∈ [−1, 1] to account for differences in the
present model, e.g. nucleon substructure, which could modify its posterior. One exception is the constituent number
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TABLE II Experimental data used to calibrate the model.

Pb-Pb
√
sNN = 5.02 TeV p-Pb

√
sNN = 5.02 TeV

Charged-particle multiplicity dNch/dη, |η| < 0.5 [73] Charged-particle multiplicity dNch/dη, |η| < 1.4 [74]

Two-particle flow cumulants vn{2} for n = 2, 3, 4, |η| < 0.8, Two-particle flow cumulants vn{2} for n = 2, 3, |η| < 2.4,

charged-particles, |∆η| > 1, 0.2 < pT < 5.0 GeV [75] charged-particles, |∆η| > 2, 0.3 < pT < 3.0 GeV [76]

Charged-particle mean pT , 0.15 < pT < 10 GeV, |η| < 0.3 [77]

nc which we limit for practical considerations. Recall that each constituent fluctuates independently, weighted by a
gamma random variable. Hence for constituent numbers nc � 1, the fluctuations average out, and the resulting nu-
cleon fluctuations vanish. To counteract this effect, the constituent fluctuation variance must increase as nc increases.
Eventually, these required fluctuations become unreasonably large. We find that for nc < 10, the energy density
fluctuations are reasonable, and hence we limit nc to this prior range.

The likelihood function (39) provides evidence for (or against) the model parameters x by comparing the model
predictions ymodel to experimental data yexpt. We focus on simple experimental observables in the present study
which are sensitive to the bulk properties of the produced medium. We calculate for each set of model parameters
the following observables at midrapidity:

• Charged-particle multiplicity dNch/dη.

• Identified particle yields dN/dy of pions, kaons, and protons.

• Transverse energy production dET /dη.

• Charged-particle mean transverse momentum 〈pT 〉 (0.15 < pT < 10 GeV).

• Identified particle mean transverse momentum 〈pT 〉 of pions, kaons, and protons.

• Mean transverse momentum fluctuations δpT /〈pT 〉 (charged-particles, 0.15 < pT < 2.0 GeV).

• Two-particle flow cumulants vn{2} for n = 2, 3, 4
(charged-particles, 0.2 < pT < 5.0 GeV for ALICE, and 0.3 < pT < 3.0 GeV for CMS).

• Four-particle flow cumulant v2{4}
(charged-particles, 0.2 < pT < 5.0 GeV).

• Symmetric cumulants SC(4, 2) and SC(3, 2).

Each observable is calculated from the list of final state particles produced by UrQMD using the same methods
applied by experiment. We generally match the kinematic cuts of all measurements with two exceptions: we use a
larger rapidity interval |η| < 0.8 than experiment for some boost-invariant observables to improve our finite particle
statistics, and we do not apply a rapidity gap, e.g. |∆η| > 1, between pairs of particles when calculating the two-
particle cumulant vn{2} since we already oversample particles from each hydrodynamic event, and this oversampling
suppresses non-flow correlations.

At the time of this writing, many of the aforementioned experimental observables are not yet published for p-
Pb and Pb-Pb collisions at

√
sNN = 5.02 TeV. We therefore restrict our calibration to the subset of measured

and published observables listed in Table II. Notably absent from this list are the four-particle cumulants vn{4}
at
√
sNN = 5.02 TeV despite being measured and published. Unfortunately, the four-particle cumulants require

minimum-bias event statistics an order of magnitude larger than those used in this work. We therefore refrain from
calibrating on the four-particle cumulants, although we do show calculations of the Pb-Pb four-particle cumulant
v2{4} later in the text, using a single set of calibration parameters.

Most of the calibration observables listed in Table II are calculated as a function of collision centrality, where
centrality is defined using some measure of the underlying event activity, e.g. the charged-particle yield in a given
rapidity window. When calculating these observables, we generate O(104) minimum-bias events at each design point
and divide the events into centrality bins using the charged-particle yield at midrapidity, similar to the procedure
used by experiment.

However, for some observables such as p-Pb mean pT [77] and flow cumulants vn{k} [76], the experiments use
a special high-multiplicity trigger to select rare, ultra-central events according to the number of charged-particles
produced Nch or detector tracks offline Noffline

trk . These high-multiplicity bins are too selective for our modest minimum
bias event sample, and so a different procedure is required. We exploit, for this purpose, the approximate monotonic
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FIG. 5 Visualization of the Pb-Pb correlation matrix corr(yi, yj) = cov(yi, yj)/(σiσj) for the model (emulator) at a random
point in parameter space (left-side) and for the experimental data (right-side). Each cell represents an observable in a single
centrality bin. Experimental statistical and systematic errors are from ALICE [73, 75]. The experimental correlation
structure is modeled using Eq. (48).

relation between each event’s initial energy density

dE

dηs

∣∣∣∣
ηs=0

= τ0

∫
d2x⊥e(x⊥, ηs = 0, τ0) (40)

and its final charged-particle density (dNch/dη)|η=0 at midrapidity.

Consider, for example, a single multiplicity bin [N low
ch , Nhigh

ch ] which selects events from a minimum bias event sample
with pmin

T < pT < pmax
T and |η| < ηmax. Let 〈Nch〉 denote the average charged-particle multiplicity of these events.

We first rescale the experimental multiplicity bin edges

[N low
ch , Nhigh

ch ]→

[
N low

ch

〈Nch〉
,
Nhigh

ch

〈Nch〉

]
(41)

in order to reexpress each bin edge as a unitless variable. These bin edges are then associated with a pair of energy
bin edges [

Emin

〈E〉
,
Emax

〈E〉

]
↔

[
N low

ch

〈Nch〉
,
Nhigh

ch

〈Nch〉

]
, (42)

where E ∝ (dE/dηs)|ηs=0 is the midrapidity energy of a single event in the desired kinematic range, and 〈E〉 is the
corresponding average energy over the full minimum bias event sample.

Finally, we mimic the method used by experiment and apply Eq. (42) to select rare high-multiplicity events from a
continuous stream of minimum-bias TRENTo events satisfying the correct bin edges. This of course means that, in
addition to running a large sample of minimum-bias events for centrality binned observables, we must also generate
(much like experiment) a separate sample of multiplicity triggered events. In practice, we use a few hundred to a few
thousand events per multiplicity bin, depending on the type of observable.

B. Experimental uncertainties

We also take stock of the statistical and systematic errors reported by each experiment and incorporate their
uncertainty into the likelihood covariance matrix

Σ = Σmodel + Σexpt (43)
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appearing in Eq. (39), which includes uncertainty contributions from both the model Σmodel and experimental data
Σexpt. The experimental contribution to the covariance Σexpt is further broken down into statistical and systematic
components

Σexpt = Σstat
expt + Σsys

expt. (44)

The statistical errors in Σstat
expt are uncorrelated, and thus its covariance matrix is diagonal

Σstat
expt = diag[(σstat

1 )2, (σstat
2 )2, . . . (σstat

m )2], (45)

where σstat
i is the statistical uncertainty of observable yi in the observable vector yexpt = (y1, . . . , ym). The systematic

errors, meanwhile, are typically correlated, but the correlation structure is not reported by the experiments so we
assert a reasonable form. We can expand the systematic covariance as

(Σsys
expt)ij = ρijσiσj , (46)

where σi and σj are the systematic errors of observables yi and yj respectively, and ρij is the Pearson correlation
coefficient

ρij =
cov(yi, yj)

σiσj
(47)

between observable yi and yj , which satisfies ρij = 1 for i = j and |ρij | ≤ 1 for i 6= j. We assume that each observable
is correlated across different centrality/multiplicity bins, and uncorrelated with observables of a different type, e.g.
correlations between yields and flows. This is a crude simplifying assumption, but it is better than neglecting the
correlation structure of the experimental data entirely.

For the correlation structure between different observable bins, we assert the simple Gaussian form

ρsys
ij = exp

[
−1

2

(
bi − bj
`

)2
]
, (48)

where bi and bj are the midpoints of two observable bins of a single type (centrality or relative multiplicity), and `
is a correlation length which describes how quickly the observable bins decorrelate as the distance between the bins
increases. We use centrality correlation lengths ` = 100 for all of the centrality binned Pb-Pb observables and ` = 30
for the centrality binned p-Pb charged-particle yield dNch/dη. The p-Pb mean pT and flow observables, meanwhile,
use relative multiplicity bins Nch/〈Nch〉 and Noffline

trk /〈Noffline
trk 〉 which necessitate a smaller correlation length ` = 5.

We show an example correlation matrix

corr(yi, yj) = cov(yi, yj)/(σiσj) (49)

for the Pb-Pb experimental data constructed using Eq. (48) on the right-side of Fig. 5. Here yi denotes an element
of the experimental data yexpt and σi its corresponding uncertainty.

C. Model emulator

In principle, one could calculate the likelihood function in Eq. (39) directly, e.g. by running the model a large
number of times at a given parameter point x to calculate the model observables ymodel(x) from the ensemble of
simulated events, but in practice such a procedure would be intractable. The model is computationally intensive
to evaluate, and thousands of events are required to calculate the simplest observables at a single parameter point.
Moreover, we need to evaluate Eq. (39) numerous times in order to sample the multidimensional posterior distribution
so that the samples may be histogrammed and visualized.

We therefore follow an established framework for computationally intensive models and train an emulator to act
as a fast surrogate for the full physics simulation [78–80]. The emulator enables essentially instantaneous predictions
for ymodel = f(x) and allows us to sample the posterior distribution millions of times. In order to train the emulator,
we first generate a scaffolding of the parameter space using a maximin Latin hypercube design [81] to distribute
500 points throughout our 15-dimensional parameter space according to the parameter ranges in Table I. We then
run minimum-bias and multiplicity triggered p-Pb and Pb-Pb events at each design point and calculate the model
observables from the ensemble of events.
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Specifically, let X denote the d× n design matrix of d = 500 training points, where each training point is a vector
x = (x1, x2, . . . , xn) of the n = 15 model parameters in Table I. Similarly, let Y denote the corresponding d×m
observables matrix, where each row of Y is a vector ymodel = (y1, y2, . . . , ym) of m model observables. The emulator
operates strictly on model outputs, so let’s temporarily drop the subscript on ymodel to declutter the notation. Our
goal is to train an emulator for the physics model f using the discrete observations f : X 7→ Y .

We use for this purpose a specific type of emulator known as a Gaussian process (GP) emulator [82]. The advantage
of using GPs is that they provide an estimate of their own uncertainty which allows us to account for this uncertainty
when constructing the covariance matrix Σ in Eq. (39). One quirk of GPs is that they are restricted to scalar-valued
functions, i.e. functions of one output, whereas we require an emulator for vector-valued functions with multiple
outputs. This restriction is commonly circumvented using principal component analysis (PCA): a general procedure
which transforms a set of correlated variables y = (y1, y2, . . . , ym) into a new basis representation z = (z1, z2, . . . , zm)
where the linear correlations between zi, zj vanish for all i 6= j ∈ m [83]. Independent GPs can then be used to
emulate each z ∈ z since the variables (z1, . . . , zm) are linearly uncorrelated. The emulated vector z is then easily
reexpressed in the basis of y through its inverse transformation.

We first preprocess our model observables by centering and scaling each column of Y (single observable) to zero mean

and unit variance to generate a standardized observable matrix Ŷ . PCA is then used to reexpress each row-vector ŷi
of Ŷ (all standardized observables at a single design point) in the new principal component basis

ŷi =

m∑
j=1

zijvj, (50)

where ŷi are the standardized observables of the i-th row-vector (design point) of matrix Ŷ , and zij and vj are the
coefficients and vectors of its j-th principal component.

The principal components are reported in order of explained variance, with the first principal component vector v1

accounting for the most variance in Ŷ , and the last principal component vector vm accounting for the least. We then
train a set of independent GPs {zi = gpi(x)} to predict the first k principal components (z1, . . . , zk) as a function of
the model parameters x which vary across the design X. For the present study, we use k = 7 principal components
when emulating the p-Pb system and k = 8 principal components when emulating Pb-Pb, chosen to describe 99.5%
of the total observed variance of each system.

The GPs are essentially fancy interpolators applied to the model’s training points and PCA transformed observables.
Each GP reports a mean value z(x) as well as an estimated error δz(x) which accounts for statistical noise in the
training data and interpolation error between the design points. Once the GPs are trained, we can predict the
observables ymodel at parameter point x by transforming the vector of principal components

z(x) = [z1(x), z2(x), . . . , zk(x)] (51)
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back to physical space.
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FIG. 6 Simulated observables compared to experimental data for Pb-Pb collisions at
√
sNN = 5.02 TeV. Top row: explicit

model calculations (no emulator) for each of the d = 500 design points; bottom row: emulator predictions for n = 100 random
samples drawn from the posterior. Points with error bars are experimental data from ALICE with statistical and systematic
errors added in quadrature [73, 75].
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FIG. 7 Same as Fig. 6 but for p-Pb collisions at
√
sNN = 5.02 TeV. Note that multiplicity bins are used for mean pT and

flow cumulant observables to match the bins used by experiment. Experimental data are from ALICE [74, 77] and CMS [76].
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Similarly, we can construct the covariance matrix of
the observables in PCA space

cov(zi, zj) = diag[(δz1)2, (δz2)2, . . . , (δzk)2], (52)

and transform it back to physical space as well to obtain
the covariance matrix Σmodel of the model observables at
parameter point x.

The resulting emulator therefore predicts both a mean
prediction ymodel(x) and an uncertainty covariance ma-
trix Σmodel(x) which accounts for multiple sources of
model and emulator uncertainty, including the trunca-
tion error expected from using a finite number of prin-
cipal components k < m. The model covariance matrix
Σmodel includes so-called known-unknowns such as sta-
tistical error and emulator interpolation error, but not
unknown-unknowns such as the overall validity of small-
system hydrodynamics, i.e. things which lack a unified
consensus or are difficult to quantify. We show in Fig. 5
the resulting Pb-Pb correlation matrix corr(yi, yj) for the
model (emulator) at a random parameter point x in the
design space (left-side), along side the same correlation
matrix for the experimental data (right-side) discussed
previously. For additional information on the model em-
ulator, we direct the reader to Appendix B which includes
several validation tests of the emulator prediction accu-
racy.

D. Bayesian calibration

In order to calibrate the model on two different colli-
sion systems, we expand the likelihood function (39) into
a joint likelihood

P (E|x) = P (EPb-Pb|x) · P (Ep-Pb|x), (53)

where E subsumes all evidence from the p-Pb and Pb-Pb
collision systems. We then perform Markov-chain Monte
Carlo (MCMC) importance sampling on the posterior
distribution P (x|E) in Eq. (38) to draw random samples
of the “true” model parameters x?, given the evidence
provided by the model predictions and the experimental
data [84, 85]. For this we use an affine-invariant sampler
which uses a large ensemble of interdependent walkers
[84, 85] and allow the MCMC chain to burn-in before
generating O(107) posterior samples.

IV. RESULTS

We show the simulated and emulated model observ-
ables (thin colored lines) for Pb-Pb collisions in Fig. 6
and for p-Pb collisions in Fig. 7 at

√
sNN = 5.02 TeV

compared to experimental data from the CMS [76] and
ALICE collaborations [73–75, 77]. The top row of each
figure shows explicit model calculations at each of the

d = 500 design points (training data), while the bot-
tom row shows emulator predictions for n = 100 random
parameter samples drawn from the Bayesian posterior
(sampled from the MCMC chain). Each column shows a
different class of observable. The charged-particle yield
dNch/dη is shown on the left, mean pT is in the mid-
dle, and two-particle flow cumulants vn{2} for n = 2, 3, 4
are on the right. The Pb-Pb mean pT and p-Pb v4{2}
datasets are missing and hence are omitted from the
present calibration.

Notice the large spread of the observables calculated
at the training points (top row of each figure). The de-
sign is constructed to vary each parameter across a wide
range of values, specified in Table I, and hence the cor-
responding model calculations are equally uncertain. We
also point out that there is considerably more variance
in the p-Pb training data than the Pb-Pb training data.
The p-Pb yields, mean pT , and flow cumulants all vary
wildly within the chosen parameter ranges. For instance,
we can turn the p-Pb flows completely off with suitably
chosen parameters which is not possible in the Pb-Pb sys-
tem. Evidently the p-Pb model predictions are far more
sensitive to modeling uncertainties.

Conversely, the calibrated (posterior sampled) emula-
tor predictions (bottom row of Figs. 6 and 7) are far bet-
ter constrained and nicely track the experimental data
points. We emphasize here that the posterior parameter
values are obtained from a simultaneous calibration to
p-Pb and Pb-Pb data, and thus they are self-consistent
between the two systems. The spread in the posterior
samples reflects different sources of model and experi-
mental uncertainty as well as tension in the optimal fit
parameters which describe each observable. We demon-
strate later in the text that a single set of model parame-
ters well describes all of the calibration data, and thus we
believe that much of the spread in the posterior samples
is uncertainty contributed by our emulator.

We also note that although the p-Pb posterior samples
have a somewhat larger spread than the Pb-Pb samples,
the percentage uncertainty of the p-Pb emulator is similar
to that of the Pb-Pb emulator, and thus the difference is
likely due to the larger variance of the p-Pb training data.
The uncertainty in the posterior distribution could thus
be improved by running the calibration with more design
points or with a narrower range of parameter values to
increase the density of the training points and reduce
interpolation uncertainty.

We now direct our attention to Fig. 8 which shows
the main result of this work, the posterior distribution
of the model input parameters. Recall that the posterior
P (x|E) is the probability that our hypothesis x = x? is
correct, given the evidence E provided by the predictions
of the model and the experimental data. The present pos-
terior has 15 dimensions, one for each parameter listed
in Table I, and thus its joint distribution cannot be sum-
marized by one figure alone. We therefore sample the
distribution and histogram the samples to project the
distribution onto one or two dimensions at a time.



19

9.0
18.5
28.0

N
o
rm

(G
eV

)

20.0+2.6
−2.5

1
0
1

p

0.002+0.157
−0.180

0
1
2

σ
fl
u
ct

0.90+0.31
−0.34

0.0
0.6
1.2

r c
p

(f
m

)

0.88+0.26
−0.23

1
5
9

n
c

6.0+3.0
−3.4

0.2
0.7
1.2

w
c

(f
m

)

0.53+0.28
−0.20

0.0
1.3

1.7

d
m

in
(f

m
)

1.12+0.57
−0.50

0.1
0.8
1.5

τ
fs

(f
m
/c

)

0.48+0.55
−0.38

0.0
0.1
0.2

η/
s

m
in

0.08+0.07
−0.07

0
4
8

η/
s

sl
op

e

(G
eV

−
1
)

1.23+1.45
−1.23

1
0
1

η/
s

cr
v

−0.09+0.80
−0.91

0.00
0.05
0.10

ζ/
s

m
ax

0.026+0.033
−0.026

0.00
0.05
0.10

ζ/
s

w
id

th

(G
eV

)

0.035+0.043
−0.035

9.0 18.
5
28.

0

Norm
(GeV)

0.15
0.17
0.20

ζ/
s
T

p
ea

k

(G
eV

)

1 0 1
p

0 1 2
σ fluct

0.0 0.6 1.2
rcp

(fm)

1 5 9
nc

0.2 0.7 1.2
wc

(fm)

0.0 1.3 1.7
d min
(fm)

0.1 0.8 1.5
τ fs

(fm/c)

0.0 0.1 0.2
η/s min

0 4 8
η/s slope

(GeV−1)

1 0 1
η/s crv

0.0
0
0.0

5
0.1

0

ζ/s max

0.0
0
0.0

5
0.1

0

ζ/s width

(GeV)

0.1
5
0.1

7
0.2

0

ζ/s Tpeak

(GeV)

0.174+0.020
−0.024
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TABLE III Posterior parameter estimates corresponding
to Fig. 8. The reported values are for the distribution
median and 90% highest posterior density credible interval.

Initial condition / Pre-eq QGP medium

Norm 20.0
+2.6
−2.5 GeV (η/s)min 0.08

+0.07
−0.07

p 0.002
+0.157
−0.180 (η/s)slope 1.23

+1.45
−1.23 GeV−1

σfluct 0.90
+0.31
−0.34 (η/s)crv −0.09+0.80

−0.91

rcp 0.88
+0.26
−0.23 fm (ζ/s)max 0.026

+0.033
−0.026

nc 6.0
+3.0
−3.4 (ζ/s)width 0.035

+0.043
−0.035 GeV

wc 0.53
+0.28
−0.20 fm (ζ/s)Tpeak 0.174

+0.020
−0.024 GeV

dmin 1.12
+0.57
−0.50 fm Tswitch 0.148

+0.013
−0.013 GeV

τfs 0.48
+0.55
−0.38 fm/c

Each diagonal panel is the distribution of a single
model parameter (marginalized over all others), and each
lower-diagonal panel is the joint distribution of a pair of
model parameters (marginalized over all others). We
also report numeric estimates for each parameter’s me-
dian value and 90% credible interval and annotate their
values along the distribution diagonal (see Table III). For
example, the fictitious parameter estimate q = 2.45+0.20

−0.15

reports a median value q̃ = 2.45 and 90% credible interval
2.30 < q < 2.65.

A. Initial condition properties

The TRENTo normalization factor Norm = 20.0+2.6
−2.5

and energy deposition parameter p = 0.002+0.157
−0.180 are well

constrained by the present analysis. Moreover, Figs. 6
and 7 show that the model predictions using these val-
ues nicely describe both the p-Pb and Pb-Pb calibration
observables. While it would not be surprising to fit one
or two of these observables using a narrow range of pa-
rameter values, the quality of the combined fit (more
on this later) and the number of observables described
is highly non-trivial. For example, consider the ratio of
the p-Pb charged-particle yield to the Pb-Pb charged-
particle yield. As the energy deposition parameter p
trends toward positive (negative) infinity, particle pro-
duction scales like the maximum (minimum) of the two
nuclear thickness functions. This has a much stronger ef-
fect on the highly asymmetric p-Pb system than it does
on the Pb-Pb system; hence the parameter p strongly
affects the ratio of the two average yields.

It is therefore compelling that p ≈ 0 correctly describes
the charged-particle yield dNch/dη of both systems, while
simultaneously describing the centrality dependence of
vn{k}, an observable which is also known to strongly de-
pend on p [49]. Specifically, this value p ≈ 0 corresponds
to an energy deposition mapping proportional to the ge-
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FIG. 9 Posterior distribution (blue histogram) for the
constituent position sampling radius rcp and constituent
width wc. The prior for rcp and wc spans the full plot range.

ometric mean of participant nuclear thickness

e(x⊥, ηs = 0, τ0) ∝
√
T̃A T̃B . (54)

We caution, however, that this specific analytic form
should not be interpreted too literally. For instance, a
generalized mean described by p = 0.05 is well within
our 90% credible interval, but it does not equal the geo-
metric mean of Eq. (54). We also note that this scaling is
somewhat different than the scaling obtained from previ-
ous analyses of the TRENTo model, which parametrized
the entropy density using a framework which assumed in-
stant thermalization and zero pre-equilibrium flow. Evi-
dently, both prescriptions prefer geometric mean scaling,
but each prescription leads to a somewhat different in-
terpretation of the initially produced quantity.

Continuing down the diagonal in Fig. 8, we see that the
constituent position sampling radius rcp = 0.88+0.26

−0.23 fm,

and the constituent width wc = 0.53+0.28
−0.20 fm. Figure 9

shows the joint posterior distribution of both parameters,
illustrating the constraining power of the Bayesian anal-
ysis. While the sampling radius rcp varies the size of the
nucleons, we caution that its specific meaning should be
interpreted with care; it specifies a computational sam-
pling radius, not a physical nucleon width. Consider,
for instance, a single nucleon with nc = 2 constituents.
If the two constituents positions land on the same side
of the nucleon, the effective nucleon size will be smaller
than the Gaussian sampling radius rcp. Despite this id-
iosyncrasy, one can easily define a physical nucleon width
in the nucleon center-of-mass frame ex post facto, given
specific values for the sampling radius rcp, constituent
width wc, and constituent number nc.

For example, using the posterior distribution’s median
values, rcp = 0.88 fm, nc = 6, and wc = 0.53 fm, we
can generate a large ensemble of random nucleon con-
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figurations and average their density in each nucleon’s
center-of-mass frame. The resulting ensemble-averaged
nucleon density

〈ρn(x)〉 =
1

(2πw2)3/2
exp

(
− |x|

2

2w2

)
(55)

is described by a single Gaussian of width w = 0.96 fm.
This nucleon width is consistent with a previous estimate
w = 0.96+0.04

−0.05 fm obtained by a similar Bayesian analysis
of Pb-Pb collisions at

√
sNN = 2.76 and 5.02 TeV using

a physics model without nucleon substructure [49].
This is perhaps the single largest difference between

our work and the conclusions of recent saturation-based
calculations which constrained the event-by-event fluctu-
ations of the proton using a color dipole picture of vector
meson production [38, 39]. Those studies find that the
measured coherent and incoherent J/Ψ spectra at HERA
prefer a compact gluon distribution inside each nucleon,
with a Gaussian width wg ≈ 0.4 fm which is roughly half
the Gaussian width preferred by our analysis. Evidently,
it may be necessary to place an informative prior on our
nucleon substructure parameters in order to resolve the
apparent tension between our parameter values and those
needed to describe DIS measurements at HERA.

Additional constraints on the proton size and shape
are provided by the proton-proton inelasticity density
Ginel(b) = d2σinel(b)/d

2b, which measures the proton-
proton inelastic collision probability as a function of its
impact parameter. We compare in Fig 10 the normal-
ized proton-proton inelasticity density Ginel(b)/Ginel(0)
at
√
sNN = 5.02 TeV predicted by TRENTo using the

present study’s posterior median parameters with a cal-
culation that extracted the proton-proton inelasticity
density using a parametrization fit to proton-proton dif-
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FIG. 10 Estimates of the normalized proton-proton
inelasticity density Ginel(b) = d2σinel/d

2b at two different
LHC beam energies. Blue line: Inelasticity density obtained
by fitting a parametric form to LHC data at

√
sNN = 7 TeV

[37]. Orange line: TRENTo predictions at
√
sNN = 5.02 TeV

using median parameters from the present study’s Bayesian
posterior.

1 3 5 7 9
Constituent number nc

FIG. 11 Posterior distribution for the number of nucleon
constituents nc determined by the analysis. The parameter
nc is an integer (discrete) variable at every design point, but
the emulator interpolation produces a posterior distribution
which is continuous.

ferential scattering data at
√
sNN = 7 TeV [37]. Our

Bayesian median estimate (orange line) prefers a larger
width for the proton-proton normalized inelasticity den-
sity compared to that of reference [37], and this trend is
opposite what one would expect based on the difference
in beam energy alone. This suggests that our posterior
estimate for the proton radius is somewhat oversized.
Nevertheless, it is fascinating that the present Bayesian
estimate is as close as it is, given that the model is fit
to quantities which are not typically used to extract the
proton-proton inelasticity density.

Moving on, we direct our attention to the constituent
number nc, shown enlarged in Fig. 11. The distribu-
tion is not sharply peaked, and hence we refrain from
quoting a distribution median and 90% credible interval.
Note, however, that the posterior clearly favors nc >
1 constituents. This is not surprising. The TRENTo
model mimics saturation-based initial condition models
[45], and saturation models tend to produce proton-sized
fireballs in p-Pb collisions [86]. When the proton is spher-
ically symmetric, the resulting QGP is also largely sym-
metric and thus produces very little anisotropic flow.
Saturation-based models are therefore unable to describe
the significant anisotropic flow measured in central p-Pb
collisions without nucleon substructure, or alternatively,
some other source of additional correlations [87].

B. Transport properties

In this section, we compare several of our posterior esti-
mates to those obtained from a similar Bayesian analysis
in Ref. [49] which used an (almost) identical version of
the present physics model. The only modeling difference
is the inclusion of nucleon substructure in the present
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FIG. 12 Left figure: estimated temperature dependence of the QGP specific shear viscosity (η/s)(T ) determined by the
present Bayesian analysis of p-Pb and Pb-Pb collisions at

√
sNN = 5.02 TeV (orange line/band) compared to a previous

Bayesian analysis of Pb-Pb collisions at
√
sNN = 2.76 and 5.02 TeV (blue line/band) [49]. The lines are the medians of each

posterior distribution, and the bands are their 90% credible regions. Right figure: same as before, but for the temperature
dependence of the QGP specific bulk viscosity (ζ/s)(T ).

study which was absent in Ref. [49]. Several calibration
details, however, are different between the two analyses.
This work used a modest number of p-Pb and Pb-Pb ob-
servables at

√
sNN = 5.02 TeV (limited by availability),

whereas Ref. [49] calibrated on a much larger number of
Pb-Pb observables at

√
sNN = 2.76 and 5.02 TeV.

The posterior free streaming time τfs = 0.48+0.55
−0.38 fm/c

obtained in this work is significantly smaller than the pre-
vious estimate τfs = 1.16+0.29

−0.25 fm/c quoted in Ref. [49].
We point out that the present study is missing several
important observables which could affect the estimated
free streaming time, e.g. the Pb-Pb mean pT and mean
pT fluctuations at

√
sNN = 5.02 TeV. Nevertheless, it

appears that the inclusion of nucleon substructure sig-
nificantly reduces the maximum allowed free streaming
time, although more work is needed to establish if this is
indeed the case.

We also compare in Fig. 12 our estimates for the tem-
perature dependence of the QGP specific shear viscos-
ity (η/s)(T ) and bulk viscosity (ζ/s)(T ) with those of
Ref. [49]. The lines are the distribution medians, and
the bands are their 90% credible regions. The results of
this work are shown in orange, and the results of Ref. [49]
are shown in blue. In general, our estimates are broader
and less certain but otherwise self-consistent. Evidently,
the combined analysis of Pb-Pb data at

√
sNN = 2.76

and 5.02 TeV in Ref. [49] provides a better constraint on
the QGP viscosities which is not surprising given the ad-
ditional observables and multiple beam energies studied.
The p-Pb data, meanwhile, does not appear to provide
strong viscous constraints.

C. Verification of high-probability parameters

We verified the emulator and tested the accuracy of
our physics model framework using a single set of high-
probability parameters selected from the Bayesian pos-
terior. These parameters, listed in Table IV, are the ap-
proximate “best fit” values of the calibrated model, com-
monly referred to as the maximum a posteriori (MAP)
estimate

xMAP ≡ arg max
x

P (x|E). (56)

We then ran O(106) minimum-bias and multiplicity trig-
gered events using the MAP estimate xMAP and com-
puted all of the model observables listed in Sec. III A.
The resulting model calculations are shown in Fig. 13
alongside experimental data from CMS [76] and ALICE
[73–75, 77]. The left and right columns show the results
for the p-Pb and Pb-Pb collision systems respectively,
and each row shows a different group of related observ-
ables.

The global agreement of the MAP model calculations
with the experimental data is generally quite good. The
largest tension is observed in the two-particle cumulants
v2{2} and v3{2} of the p-Pb system, although even that
tension is only about 10–15%. Quite remarkably, the
model perfectly describes the shape of the p-Pb and Pb-
Pb two-particle correlations which is strong evidence that
these correlations are hydrodynamic in origin.

Moreover, we obtain an excellent description of the
p-Pb mean pT , although this fit is somewhat less mean-
ingful since we are unable to calibrate on the Pb-Pb mean
pT simultaneously (data is not yet available). Addition-
ally, the model provides a simultaneous description of the
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TABLE IV Maximum a posteriori (MAP) parameters
determined from the posterior distribution and used to
generate Fig. 13. The posterior distribution on the
particlization temperature Tswitch is flat (agnostic), so we fix
it’s value using Ref. [49].

Initial condition / Pre-eq QGP medium

Norm 20. GeV (η/s)min 0.11

p 0.0 (η/s)slope 1.6 GeV−1

k 0.19 (η/s)crv -0.29

nc 6 (ζ/s)max 0.032

rcp 0.81 fm (ζ/s)width 0.024 GeV

wc 0.43 fm (ζ/s)Tpeak 0.175 GeV

dmin 0.81 fm Tswitch 0.151 GeV

τfs 0.37 fm/c

p-Pb and Pb-Pb charged-particle yields using a single en-
ergy deposition parameter p = 0. This is the exact same
generalized mean p-value supported by multiple previous
studies [45, 46, 49, 50]. Evidently, this scaling continues
to hold for initial conditions with sizable nucleon sub-
structure.

We also present calculations for several observables
which were omitted from the calibration due to miss-
ing experimental data and the statistical limitations of
our training data. Here our MAP event sample is several
orders of magnitude larger so the statistics are no issue.
The bottom-right panel of Fig. 13 shows our model calcu-
lation for the Pb-Pb four-particle elliptic flow cumulant
v2{4} along with the measured data points from ALICE
[75]. We see that the MAP estimate nicely describes the
measured v2{4} data which is encouraging since this par-
ticular observable was never used to calibrate the model.

The relative mean pT fluctuation δpT /〈pT 〉 is another
important bulk observable to test the predictions of the
calibrated model. It measures the dynamical component
of event-by-event mean pT fluctuations, quantified by the
two-particle correlator

(δpT )2 = 〈〈(pT,i − 〈pT 〉)(pT,j − 〈pT 〉)〉〉. (57)

The inner-average in Eq. (57) runs over all pairs of parti-
cles i, j in the same event, the outer average runs over all
events in a given bin (centrality or multiplicity), and the
symbol 〈pT 〉 denotes the usual mean transverse momen-
tum of particles in the bin. The observable is typically
presented in terms of the dimensionless ratio δpT /〈pT 〉,
which quantifies the strength of the dynamical fluctua-
tions in units of the average transverse momentum 〈pT 〉.

We show the MAP estimate predictions for the p-Pb
and Pb-Pb relative mean pT fluctuations δpT /〈pT 〉 at√
sNN = 5.02 TeV in the third row of Fig. 13. For the

Pb-Pb system, we use centrality bins and for the p-Pb
system we use the same relative multiplicity bins used for
the p-Pb charged-particle mean pT . The relative mean pT
fluctuations have been shown to be particularly sensitive

to the existence of nucleon substructure [88], and thus it
would be interesting to ultimately include this observable
in the calibration when the data becomes available.

Lastly, we compute the symmetric cumulants SC(m,n)
for the Pb-Pb collision system at

√
sNN = 5.02 TeV which

quantify correlations between event-by-event fluctuations
of the flow harmonics of different order [89, 90]

SC(m,n) = 〈〈cos[m(φ1 − φ3) + n(φ2 − φ4)]〉〉
− 〈〈cos[m(φ1 − φ2)]〉〉〈〈cos[n(φ1 − φ2)]〉〉
≈ 〈v2

mv
2
n〉 − 〈v2

m〉〈v2
n〉. (58)

We show these model predictions in Fig. 14 along with
the normalized symmetric cumulants

NSC(m,n) = SC(m,n)/〈v2
m〉〈v2

n〉, (59)

which are expected to be less sensitive to the medium
response and more sensitive to the properties of the initial
state. The solid lines are the MAP estimate of the present
study, and the dashed lines are the MAP estimate of
Ref. [49] which did not include nucleon substructure and
was calibrated on Pb-Pb collisions at

√
sNN = 2.76 and

5.02 TeV. We observe that the gap between SC(3, 2) and
SC(4, 2) is generally wider in the present analysis than in
Ref. [49], as is the gap between the normalized symmetric
cumulants NSC(3, 2) and NSC(4, 2).

We emphasize that multiple aspects of the two analyses
are different such as the collision systems and beam en-
ergies considered, the observables which were included in
each calibration, and the existence of nucleon substruc-
ture in the model. Thus we can only speculate what
might have caused the large difference in the MAP esti-
mate for the symmetric flow cumulants. Two reasonable
culprits would be the inclusion of nucleon substructure
and the large difference in the preferred pre-equilibrium
free streaming time determined by the two studies.

V. SUMMARY AND CONCLUSIONS

Relativistic heavy-ion collisions produce long-range
multiparticle correlations which are commonly explained
by the existence of hydrodynamic flow [9]. This nar-
rative is evidenced by the global, self-consistent, and
highly non-trivial quantitative agreement of hydrody-
namic models with a large number of heavy-ion bulk
observables [45, 91, 92]. Naturally, such descriptions
rely on the validity of hydrodynamic approximations,
and these approximations begin to break down in the
so-called dilute limit where discrete particle degrees-of-
freedom dominate and continuous field descriptions of
the medium cease to make sense. Tell-tale signatures of
hydrodynamic collectivity were thus generally expected
to vanish in smaller nuclear collision systems, e.g. p-p
and p-Pb collisions, where the number of produced par-
ticles is orders of magnitude smaller than a typical Pb-Pb
collision.
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FIG. 13 Model calculations using the maximum a posterior (MAP) parameters compared to experiment. Colored lines are
model calculations for p-Pb collisions (left) and Pb-Pb collisions (right) at

√
sNN = 5.02 TeV. Points with error bars are the

experimental data with statistical uncertainties, and gray bands their corresponding systematic uncertainties, from CMS [76]
and ALICE [73–75, 77]. The sub-axes show the ratio of model over data where available with gray bands indicating ±10%.
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FIG. 14 Model calculations of the symmetric cumulants
(top) and normalized symmetric cumulants (bottom) for
Pb-Pb collisions at

√
sNN = 5.02 TeV using the maximum a

posteriori (MAP) parameters. The solid lines are the MAP
estimate of the present analysis (with nucleon substructure),
and the dashed lines are the MAP estimate of Ref. [49]
(without nucleon substructure) which was calibrated on
Pb-Pb observables at

√
sNN = 2.76 and 5.02 TeV. In general,

most model parameters are somewhat different between the
two studies.

These expectations were upended, however, when long-
range multiparticle correlations were detected in high-
multiplicity p-Pb collisions and found to be similar in
magnitude to those observed in Pb-Pb collisions [1–3].
Nuclear collision systems which were previously thought
to be too small for hydrodynamic flow, were subsequently
found to generate the same collectivity used to justify hy-
drodynamic flow in heavy-ion collisions. It is thus natu-
ral to wonder if a single unified hydrodynamic framework
might be able to describe p-Pb and Pb-Pb bulk observ-
ables simultaneously.

In this work, we performed a semi-exhaustive search
for a unified description of p-Pb and Pb-Pb collisions at√
sNN = 5.02 TeV using Bayesian methods to rigorously

calibrate and constrain free parameters of a flexible nu-
clear collision model based on viscous hydrodynamics.
The goal of our study was two fold. First, we aimed to
establish whether or not our hydrodynamic framework
was able to describe both collision systems simultane-
ously. And second, in the event that the former was true,
we wished to obtain estimates for the true parameters of
our model given the assumptions of our framework and

the evidence provided by the model predictions and the
experimental data.

We built, for this purpose, a flexible multi-stage nu-
clear collision model characterized by a number of free
parameters which vary theoretically uncertain aspects of
the framework such as the QGP initial conditions and
hydrodynamic transport properties. For the QGP ini-
tial conditions, we employed a modified version of the
TRENTo model [46] which adds new parameters to vary
the fluctuating size and shape of each nucleon. Specif-
ically, we modeled each nucleon as a cluster of nc con-
stituents (hot spots), where each constituent is described
by a Gaussian density of width wc. The constituent posi-
tions were each sampled randomly (without correlations)
from a Gaussian radial distribution of width rcp centered
about each pre-defined nucleon position.

The transport dynamics of the collision were simulated
using a pre-equilibrium free streaming stage followed by
boost-invariant viscous hydrodynamics for hot and dense
regions of the fireball and a microscopic hadronic after-
burner for the relatively dilute corona. We parametrized
various sources of uncertainty in each stage of the col-
lision including the duration of the pre-equilibrium free
streaming stage, the temperature dependence of the QGP
shear and bulk viscosities, and the particlization temper-
ature used to switch from a hydrodynamic description to
microscopic Boltzmann transport.

With the full evolution model in hand, we applied
Bayesian methods which were developed to estimate the
parameters of computationally intensive models [78–80].
We first constructed a scaffolding of n = 500 parameters
points distributed throughout our 15-dimensional param-
eter space and evaluated the nuclear collision model using
O(104) events at each parameter point. The ensemble
of events was then used to calculate a large number of
experimental observables at each design point and train
Gaussian process emulators to interpolate the model pre-
dictions as a function of the input parameters. Finally,
we used Markov chain Monte Carlo (MCMC) impor-
tance sampling to explore the parameter space and draw
samples from the Bayesian posterior distribution for the
true values of the model parameters, given our emulated
model predictions, the experimental data, and their as-
sociated uncertainties. The model calibration process is
summarized by Figs. 6 and 7, and the resulting posterior
distribution for the model input parameters is shown in
Fig. 8. We also evaluated the model predictions using a
single set of high-probability parameters in Fig. 13. With
these results, we are able to address the two primary goals
of the study.

First, we demonstrated in Fig. 13 the existence of a
single set of model parameters which can simultaneously
describe p-Pb and Pb-Pb charged-particle yields, mean
pT , and flow cumulants at

√
sNN = 5.02 TeV. The excel-

lent quantitative agreement of the model calculation with
the experimental data is strong evidence for a unified
hydrodynamic description of p-Pb and Pb-Pb collisions
at ultrarelativistic energies. Moreover, the modifications
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to the physics model which were required to obtain this
agreement are generally modest; one must simply replace
Gaussian nucleons with composite nucleons of several or
more constituents.

Second, we obtained a posterior distribution for the
model input parameters in Fig. 8 and reported quantita-
tive estimates for these parameters in Table III. Here we
summarize our key findings about the model:

1. Using TRENTo initial conditions followed by a pre-
equilibrium free streaming stage, we find that the
initially produced energy density scales like the ge-
ometric mean of participant nuclear thickness; see
Eq. (54). Previous Bayesian studies have reported
similar scaling for the initially produced entropy
density [45, 50], although these studies assumed
static initialization, an approximation which ne-
glects the initial values of uµ, πµν and Π at the
hydrodynamic starting time.

2. We find that nucleon substructure is necessary to
simultaneously describe p-Pb and Pb-Pb bulk ob-
servables. However, we observe no strong preference
for a specific number of constituents nc (hot spots)
inside the nucleon. In particular, we find no evi-
dence to support the specific number nc = 3 which
is commonly used in the literature.

3. The present Bayesian analysis prefers larger nucle-
ons, w ≈ 1 fm, in agreement with a similar Bayesian
analysis calibrated to Pb-Pb data at

√
sNN = 2.76

and 5.02 TeV using a hybrid model without nucleon
substructure [49]. We note that our result is in sig-
nificant tension with an estimate for the effective
nucleon width based on the gluon distribution ex-
tracted from HERA data [93]. Our model calcula-
tions also predict a broader proton-proton inelastic-
ity density at

√
sNN = 5.02 TeV than supported by

the data [37]. This suggests that our reconstructed
protons are somewhat oversized.

4. We obtain an estimate wc = 0.53+0.28
−0.20 fm for the

Gaussian width of the constituent hot spots inside
each nucleon. This width is considerably larger than
the length scales typically associated with nucleon
substructure. However, it is natural to wonder if
this estimate is oversized, given the aforementioned
comments regarding our extracted nucleon width.

5. We report an estimate τfs = 0.48+0.55
−0.38 fm/c for the

model’s pre-equilibrium free streaming time. This is
significantly shorter than the estimate obtained from
a similar Bayesian study in Ref. [49], which found
τfs = 1.16+0.29

−0.25 fm/c. It is not clear whether the
difference is a result of nucleon substructure or the
different observables used to calibrate each analysis.

6. We compare in Fig. 12 our estimate for the tempera-
ture dependence of the QGP specific shear and bulk
viscosities to those of Ref. [49], which performed a
Bayesian calibration to Pb-Pb bulk observables at√
sNN = 2.76 and 5.02 TeV using a physics model

without nucleon substructure. The two studies are
in good agreement, although Ref. [49] obtains a more
precise estimate for (η/s)(T ), likely due to the addi-
tional beam energies and observables included and
an enhanced sensitivity of larger collision systems to
the QGP viscosity.

7. We make predictions in Figs. 13 and 14 for several
quantities which were not included in the model cal-
ibration, including the identified yields, transverse
energy, symmetric cumulants, and mean pT fluc-
tuations at

√
sNN = 5.02 TeV. Interestingly, our

MAP estimate for the Pb-Pb symmetric cumulants
at
√
sNN = 5.02 TeV are significantly different than

those estimated in Ref. [49]. This could be a direct
(or indirect) result of including nucleon substructure
in the model calibration.

The present study would benefit from a number of im-
provements. Perhaps the most obvious target for im-
provement is the absence of several important experimen-
tal datasets. Specifically, we are missing the transverse
energy, identified particle yields, and the mean pT fluc-
tuations of both collision systems, as well the charged-
particle mean pT for the Pb-Pb system. These observ-
ables would certainly influence the quality of the com-
bined fit and correspondingly our estimates for the model
parameters.

Similarly, the results would greatly benefit from addi-
tional beam energies and collision systems. For example,
future studies should incorporate proton-proton collisions
at top LHC energies, as well as the numerous collisions
systems studied at top RHIC energy. Such data would
undoubtedly improve constraints on the model parame-
ters and would enable more stringent tests of the cali-
brated model predictions. The RHIC data may also help
elucidate the beam-energy dependence of the model pa-
rameters which would be worth investigating. We leave
these improvements for future studies.

All software used in this work is open source:

• TRENTo with nucleon substructure (C++) [94]

• Pre-equilibrium free streaming (Python) [95]

• VISH2+1 hydrodynamics (Fortran) [96]

• FRZOUT particle sampler (Python) [97]

• UrQMD microscopic transport model (Fortran) [98]

• DukeQCD event generator wrapper (Python) [99]

• Bayesian parameter estimation (Python) [100]
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Appendix A: Event-by-event grid resizing
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specified by a maximum grid size xmax and grid step width dx which fix the transverse grid extent −xmax < x < xmax

and number of grid cells along each dimension nx = 2xmax/dx. In general, the maximum grid size xmax should be
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energy density cutoff emin for which the matter e < emin can be effectively discarded without significantly modifying the
simulation observables. We then fix the maximum grid size xmax such that it fully encloses the isotherm T = T (emin)
for the full lifetime of the fireball.

We find that we can quickly estimate the maximum transverse radius Rmax of the spacetime hypersurface
T = T (emin) by running the event on a coarse-grained spatial grid with one-third the spatial resolution we would
otherwise require to resolve typical hydrodynamic observables such as mean pT and flows. The simulation time of a

FIG. 15 Diagram of the adaptive grid resizing algorithm (not drawn to scale). Each initial condition event is first run on a
very large coarse-grained mesh (large gray grid) of one-third the spatial resolution otherwise required to measure
hydrodynamic observables. We then measure the maximum transverse radius Rmax (blue circle) of the hypersurface defined by
the temperature isotherm T = T (emin), where emin is the largest energy density which can be truncated without modifying the
hydrodynamic observables calculated from the event. Finally, the initial condition event is rerun on a smaller and finer mesh
(smaller black grid) with three-times the cell density of the pre-run event and a smaller transverse extent −Rmax < x < Rmax.
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FIG. 16 Example emulator validation for one observable, the Pb-Pb charged-particle yield dNch/dη in the 20-30% centrality
class. We use the k-fold cross validation method (explained in the text) to partition the model inputs X and outputs Y into
training and validation data. The scatter plot on the left shows the emulator predictions and one sigma error bars (x-axis)
against explicit model calculations (y-axis). Perfect emulator/model agreement is indicated by the black like ypred = yobs.
The histogram on the right shows that the errors are properly accounted for, i.e. the normalized residuals follow a normal
distribution with unit variance and zero mean.

single VISH2+1 event scales like ∼n3
x since dx ∝ dτ , and thus our “pre-run” event requires only ∼1/27th the time

of a production event. We therefore start by running a coarse-grained event on an excessively large grid for every
minimum-bias event to estimate Rmax, then rerun the same event on a thrice finer grid with a trimmed spatial extent
xmax = Rmax. See Fig. 15 for a simple diagram of the procedure.

In practice, we find that event-by-event grid resizing leads to a massive speed increase for minimum bias events
compared to using a single fixed grid for the entire minimum bias sample. This is because the maximum transverse
size of each event varies dramatically, from a few fm in peripheral Pb-Pb collisions to 50 fm or more in central Pb-Pb
collisions. The procedure should generalize to other hydrodynamic codes.

Appendix B: Emulator validation

The emulator is a surrogate for the full physics simulation which generates probabilistic predictions for the model
observables ymodel at a given point x. Here we validate these probabilistic predictions using a method known as
k-fold cross validation. We first randomly partition our d = 500 training points into k = 20 equal sized subsamples or
“folds”. One of the subsamples is used to validate the emulator and the remaining k− 1 subsamples are used to train
it. The process is then repeated for each of the subsamples so that we end up validating on all of the training data.

Figure 16 shows a scatter plot of the emulator predictions with one-sigma error bars (x-axis) against explicit
model calculations (y-axis). Perfect emulator and model agreement is indicated by the black line ypred = yobs. If
the emulator errors are properly accounted for, then the normalized residuals z = (ypred − yobs)/σpred sample a unit
normal distribution

P (z) ∼ N (µ = 0, σ = 1). (B1)
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FIG. 17 Emulator validation for the Pb-Pb collision system (top) and p-Pb collision system (bottom) at
√
sNN = 5.02 TeV.

The “piano keys” in the top row of each figure are horizontally stacked box plots for the normalized residuals of each model
observable. The boxes are 50% interquartile ranges and whiskers are the 90% interquantiles. The bottom row of each figure is
the RMS fractional error defined by Eq. (B1).

This comparison is shown by the histogram and box plot on the right side of Fig. 16. The emulator error is clearly
significant, but it is also properly modeled, as indicated by the agreement between the normalized residuals and
the unit normal distribution on the right (black curve). Moreover, since we include this uncertainty in the likelihood
covariance matrix (39), we expect our results to be robust to the emulator limitations. This is an important point that
bears repeating. The emulator uncertainty does not erode the veracity of the posterior distribution if it is correctly
modeled and accounted for.

More generally, we can perform the validation test in Fig. 16 for every observable y ∈ y and check that each
observable’s normalized residuals z = (ypred − yobs)/σpred follow a unit normal distribution. This test is applied to
the p-Pb and Pb-Pb collision systems in Fig. 17. The top row of each figure shows a box-plot for the normalized
residuals of each observable compared to the quantiles of a unit normal distribution. The thin horizontal black lines
correspond to the 10th and 90th percentiles of a unit normal distribution, and the gray band its interquartile range.
These visual references should be compared to the whiskers and interquartile range respectively of each box plot,
analogous to the comparison test of Fig. 16. The emulators generally behave as expected, although the validation is
better for the Pb-Pb system than the p-Pb system. For instance, the p-Pb charged-particle yield dNch/dη uncertainties
are over predicted. It is not immediately clear why this would be the case, but the MAP observables in Fig. 13 are
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in good agreement with their emulator predictions which suggests it should not be a grave concern.
We also show in Fig. 17 an estimate of the emulator error magnitude. This error is expressed in terms of the unitless

variable

ẑ =
ypred − yobs

(∆y)99%
, (B2)

where (∆y)99% is 99% of the full variability of y across the design. Thus ẑ can be thought of as a fractional emulator
error relative to the full design variability. The bottom row of each figure shows the root-mean-square (RMS) value
of ẑ. We see that RMS ẑ ranges from a few percent for most observables to a maximum value of 15% for the p-Pb
triangular flow v3{2} in the lowest multiplicity bin. This suggests that the present analysis would benefit the most
from more p-Pb events, in particular, from more multiplicity triggered events which are used to calculate the flows.
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