This is the accepted manuscript made available via CHORUS. The article has been published as:

Low-Z boundary of the $\mathrm{N}=88-90$ shape phase transition: ^ \{148\}Ce near the critical point
P. Koseoglou et al.

Phys. Rev. C 101, 014303 - Published 6 January 2020
DOI: 10.1103/PhysRevC.101.014303

Low-Z boundary of the $N=88-90$ shape phase transition: ${ }^{148}$ Ce near the critical point

P. Koseoglou, ${ }^{1,2}$ 用 V. Werner, ${ }^{1,3}$ N. Pietralla, ${ }^{1}$ S. Ilieva, ${ }^{1}$ T. Nikšić, ${ }^{4}$ D. Vretenar, ${ }^{4}$ P. Alexa, ${ }^{5}$ M. Thürauf, ${ }^{1}$
C. Bernards, ${ }^{3}$ A. Blanc, ${ }^{6}$ A. M. Bruce, ${ }^{7}$ R. B. Cakirli, ${ }^{8}$ N. Cooper, ${ }^{3}$ L. M. Fraile, ${ }^{9}$ G. de France, ${ }^{10}$
M. Jentschel, ${ }^{6}$ J. Jolie, ${ }^{11}$ U. Köster, ${ }^{6}$ W. Korten, ${ }^{12}$ T. Kröll, ${ }^{1}$ S. Lalkovski, ${ }^{13}$ H. Mach, ${ }^{14}$ N. Mărginean, ${ }^{15}$
P. Mutti, ${ }^{6}$ Z. Patel, ${ }^{13}$ V. Paziy, ${ }^{9}$ Zs. Podolyák, ${ }^{13}$ P. H. Regan, ${ }^{13,16}$ J.-M. Régis, ${ }^{11}$ O. J. Roberts, ${ }^{7}$
N. Saed-Samii, ${ }^{11}$ G. S. Simpson, ${ }^{17}$ T. Soldner, ${ }^{6}$ C. A. Ur, ${ }^{18,19}$ W. Urban, ${ }^{6,20}$ D. Wilmsen, ${ }^{10}$ and E. Wilson ${ }^{21}$
${ }^{1}$ Institute for Nuclear Physics, Technische Universität Darmstadt, Schlossgartenstr. 9, 64289 Darmstadt, Germany
${ }^{2}$ GSI Helmoltzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt, Germany
${ }^{3}$ Department of Physics, Yale University, P.O. Box 208120, CT 06520-8120 New Haven, U.S.A.
${ }^{4}$ Physics Department, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
${ }^{5}$ Department of Physics and Institute of Clean Technologies, VŠB-Technical University Ostrava, 17. listopadu 15, CZ-708 00 Ostrava, Czech Republic
${ }^{6}$ Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble Cedex 9, France
${ }^{7}$ SCEM, University of Brighton, Lewes Road, Brighton, BN2 4GJ, United Kingdom
${ }^{8}$ Department of Physics, Istanbul University, Vezneciler, 34134 Istanbul, Turkey
${ }^{9}$ Universidad Complutense, Grupo de Fisica Nuclear,
Fisicas Avda. Complutense, 28040 Madrid, Spain
${ }^{10}$ Grand Accélérateur National d'Ions Lourds (GANIL),
CEA/DRF-CNRS/IN2P3, Bvd Henri Becquerel, 14076 Caen, France
${ }^{11}$ IKP, University Cologne, Zülpicher Str. 77, 50937 Cologne, Germany
${ }^{12}$ Irfu, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
${ }^{13}$ Department of Physics, University of Surrey, Surrey GU2 7 XH Guildford, United Kingdom
${ }^{14}$ National Centre for Nuclear Research, ul. Hoża 69, Warsaw, Poland
${ }^{15}$ Horia Hulubei NIPNE, 77125 Bucharest, Romania
${ }^{16}$ Nuclear Metrology Group, National Physical Laboratory, Teddington, TW11 OLW, United Kingdom
${ }^{17}$ LPSC, Université Grenoble Alpes, 38026 Grenoble Cedex, France
${ }^{18}$ Dipartimento di Fisica, Universita di Padova, Via F. Marzolo 8, 35131 Padova, Italy
${ }^{19}$ ELI-NP, National, IFIN-HH30, Reactorului, 077125 Bucharest-Magurele, Romania
${ }^{20}$ Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093, Warszawa, Poland
${ }^{21}$ INFN - Laboratori Nazionali di Legnaro, Vialle dell Universita 2, 35020 Legnaro, Italy

(Dated: November 22, 2019)
Excited states of the neutron-rich nucleus ${ }^{148} \mathrm{Ce}$ have been populated by neutron-induced fission of ${ }^{235} \mathrm{U}$ and ${ }^{241} \mathrm{Pu}$ samples. Their electromagnetic decays were studied by means of γ-ray coincidence spectroscopy with fast-timing capabilities. Lifetimes of the 2_{1}^{+}and 4_{1}^{+}states of ${ }^{148} \mathrm{Ce}$ were obtained and their E 2 decay rates deduced. The $B_{4 / 2}=B\left(E 2 ; 4_{1}^{+} \rightarrow 2_{1}^{+}\right) / B\left(E 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)$ratio indicates that ${ }^{148} \mathrm{Ce}$ is a transitional nucleus while the $N=88 / 90$ shape phase transition evolves into a gradual change of nuclear deformation for proton numbers $Z<60$.

I. INTRODUCTION

A quantum shape phase transition (QSPT) in atomic nuclei is characterized by a sudden change of the shape of the nucleus as a function of the control parameter, such as nucleon number or excitation energy. It occurs due to changes in the location of the nuclear potential minimum [1]. The shape phase transition from spherical to prolate deformed rotational nuclei in the even-even $N=90$ isotones with $Z=56-66$ attracted a lot of attention during the last fifteen to twenty years [1-9].

The $\mathrm{E}(5)$ and the so-called $\mathrm{X}(5)$ critical-point symmetries (CPSs) are solutions of the geometrical BohrHamiltonian describing nuclei at the critical points of the second- and first-oder QSPTs, respectively [10, 11. E(5)

[^0]is the CPS between the quadrupole vibrator and the soft triaxial roto-vibrator and $\mathrm{X}(5)$ between the quadrupole vibrator and the axially-symmetric rigid rotor.

The $\mathrm{X}(5)$ approximate solution for the CPS of the vibrator-to-rotor transition neglects the barrier between the two minima and considers the potential as a squarewell in the variable β and a harmonic oscillator in γ. The $R_{4 / 2}=E\left(4_{1}^{+}\right) / E\left(2_{1}^{+}\right)=2.9$ and the $B_{4 / 2}=B\left(E 2 ; 4_{1}^{+} \rightarrow\right.$ $\left.2_{1}^{+}\right) / B\left(E 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)=1.58$ values are benchmarks for a nucleus at the $\mathrm{X}(5)$ critical point [11]. Using the adopted experimental data [12 for even-even nuclei in the nuclear region with neutron number $N \approx 90$, the discussed phase transition can be observed in a $\mathrm{R}_{4 / 2}$ plot of these isotopes over the neutron number (Figure 1(a)). The transitions from spherical nuclei $\left(R_{4 / 2}=2-2.4\right)$ to deformed ones $\left(R_{4 / 2}=3-3.33\right)$ around $N=90$ are less sharp in the neodymium and cerium chains as compared to the gadolinium and samarium isotopic chains [1, 3, 4].

To gain additional information on the shape of the nu-
clei, another fingerprint, the $\mathrm{B}_{4 / 2}$ ratio $\left(B_{4 / 2}=2.0\right.$ for spherical symmetry, $B_{4 / 2}=1.4$ for γ-rigid and γ-soft deformed), is shown in Figure 1(b) as a function of the neutron number for gadolinium, samarium and neodymium isotopes. In agreement with the picture from the $\mathrm{R}_{4 / 2}$ ratios, the transition from $N=88$ to $N=90$ from near spherical symmetry to quadrupole deformed shapes is sharp for gadolinium and samarium and less so for neodymium. As indicated in Figure 1, all fingerprints for quadrupole deformation of these $N=90$ isotopes lie near the $\mathrm{X}(5)$ model [11], hence near the critical point of the QSPT.

Since the $\mathrm{R}_{4 / 2}$ ratio evolution in the cerium isotopic chain is the most gradual in Figure 1(a) it is of interest to study if $\mathrm{X}(5)$ is still imprinted in the $\mathrm{B}_{4 / 2}$ value at $N=90$, i.e. for ${ }^{148} \mathrm{Ce}$. Unfortunately, no $\mathrm{B}_{4 / 2}$ values are available experimentally in cerium isotopes with neutron number exceeding 84. It is the goal of this article to provide first experimental information on this structural key observable for ${ }^{148} \mathrm{Ce}$.

II. EXPERIMENT AND ANALYSIS

Experimental data were provided from the EXILL\&FATIMA campaign [13, 14] which took place at the high-flux reactor at the Institut Laue-Langevin (ILL) in Grenoble, France. A well-collimated cold neutron beam was used to induce fission of ${ }^{235} \mathrm{U}$ and ${ }^{241} \mathrm{Pu}$ targets respectively. The neutron flux at the target position was approximately $9 \times 10^{7} \mathrm{n} / \mathrm{cm}^{2} \mathrm{~s}$ [15, 16]. Prompt γ-rays from the fission fragments were detected using a hybrid array of HPGe and Ce-doped LaBr_{3} detectors, the EXILL\&FATIMA spectrometer [17, 18]. The EXILL array [19] was composed of 8 BGO-shielded EXOGAM Clover detectors [20], each one consisting of 4 HPGe crystals. The target-to-detector distance was 14.5 cm . FATIMA [21] consisted of 16 (5% Ce-doped) LaBr_{3} detectors in two rings, at 40° and 140° relative to the beam direction. For optimum efficiency the FATIMA detectors were placed as close as possible to the target, at 8.5 cm . Several results for lifetimes in the picosecond and nanosecond region have already been published from the EXILL\&FATIMA campaign 22 26]. A more detailed description of the experimental setup can be found in Ref. [17.

All fission fragments were stopped within few ps by the thick beryllium backing of the targets. More than 100 different isotopes were produced from the fissions. This large number of isotopes produced enforced the usage of multiple coincidences to select clean spectroscopy signals from the isotopes of interest. Ge- $\mathrm{LaBr}_{3}-\mathrm{LaBr}_{3}$ triple coincidences were used to gate on the cascade of interest. Because of the low energy resolution of the LaBr_{3} detectors, the purity of the LaBr_{3} gates had to be verified. Ge-Ge double coincidences or Ge-Ge-Ge and Ge-LaBr 3^{-} Ge triple coincidences were studied for this purpose.

The $16 \mathrm{LaBr}_{3}$ detectors were connected to 15 Time-to-Amplitude-Converters (TACs). The connection scheme
allowed to know which of the two prompt gammas (decay or feeder of the state of interest) was the one providing the start signal and which providing the stop signal. Two time-difference spectra were produced depending on whether the transition decaying from the intermediate state of interest provided the start (anti-delayed spectrum) or stop (delayed spectrum) signal.

In the case of a long-lived state, in the few-nanoseconds region, a slope appears on one side of the spectrum corresponding to the lifetime. For lifetimes in the order of some picoseconds the "center of gravity" [27], centroid, can be used. In the start spectrum the centroid (Cstart) is shifted to smaller times by the lifetime of the intermediate state, while in the stop spectrum the centroid (Cstop) is shifted correspondingly to larger times. In the generalized centroid difference method (GCDM) 28] the lifetime of the intermediate state derives from the centroid difference (ΔC),

$$
\begin{equation*}
\Delta C=P R D+2 \tau \tag{1}
\end{equation*}
$$

Where the prompt response difference (PRD)

$$
\begin{align*}
P R D & =P R D\left(E_{\text {feeder }}-E_{d e c a y}\right) \tag{2}\\
& =P R F\left(E_{\text {feeder }}\right)-P R F\left(E_{\text {decay }}\right)
\end{align*}
$$

and, in particular, the prompt response function (PRF) are reflecting the different time that the setup requires to record gammas with different energies (the so-called "time walk"). The PRD was determined with known cascades from a ${ }^{152} \mathrm{Eu}$ source and the neutron-capture reaction ${ }^{48} \mathrm{Ti}(\mathrm{n}, \gamma)^{49} \mathrm{Ti}$. A precise description of the procedure is given in Ref. [29].

A. 2_{1}^{+}lifetime using the slope method

To derive the lifetime of the order of ns of the 2_{1}^{+}state of ${ }^{148} \mathrm{Ce}$, the slope method [30, 31] was used. In order to pre-select the isotope of interest an energy gate was set in the $6_{1}^{+} \rightarrow 4_{1}^{+}$transition in the EXILL Ge detectors. To obtain the time-difference spectra between the $4_{1}^{+} \rightarrow 2_{1}^{+}$and $2_{1}^{+} \rightarrow 0_{1}^{+} \gamma$-rays, coincidence gates, A and B, as shown in Figure 2(a), were set on the respective transitions. Using this method, the lifetime was measured to be $\tau_{2+}=1.466(50) \mathrm{ns}$, the average of the fitted slopes in both, the delayed and the anti-delayed spectra.

The gates used include γ-rays from the background, e.g. Compton-events from higher-lying transitions. Therefore, the assumption must be made that lifetimes of states creating this background are in the ps region and do not affect the slope which has been fitted far away from the prompt response region. In order to check if that assumption is true, the method from Ref. 31] was used to exclude the time background contribution. The corresponding background-gates, A^{\prime} and B^{\prime}, are shown in Figure 2(a). This method results in a lifetime of $\tau_{2^{+}}^{\text {sub }}=1.430$ (83) ns, hence, within error, in the same value as τ_{2+} and reassures that no long-lived states contributed to the

FIG. 1: (a) $\mathrm{R}_{4 / 2}$ ratio for $\mathrm{Gd}, \mathrm{Sm}, \mathrm{Nd}$ and Ce isotopic chains as a function of neutron number. The sharp transition of Gd and Sm from spherical nuclei $\left(R_{4 / 2}=2\right)$ to deformed ones $\left(R_{4 / 2}=3.33\right)$ is not present in Nd and Ce chains. (b) $\mathrm{B}_{4 / 2}$ ratios for Gd , Sm and Nd isotopic chains as a function of neutron number. The transition from $N=88$ to $N=90$ from near spherical symmetry to γ-rigid and γ-soft symmetry is sharp for Gd and Sm but not for Nd. Data taken from 12.
background. In Figure 2(b) the time-difference spectra (sum of delayed and anti-delayed), for both methods are shown. The measured lifetime is in agreement with the literature values of 1.457 (87) ns 32 and 1.371 (29) ns [33.

B. 4_{1}^{+}lifetime using the Generalized Centroid Difference method

For the 4_{1}^{+}state the GCDM was used to determine the lifetime (in the ps range). The energy gate in the EXILL Ge detectors was set to the $2_{1}^{+} \rightarrow 0_{1}^{+}$transition of ${ }^{148} \mathrm{Ce}$. In this case the FATIMA gates were set on the $6_{1}^{+} \rightarrow 4_{1}^{+}$and $4_{1}^{+} \rightarrow 2_{1}^{+}$transitions. The centroid difference of the delayed and anti-delayed spectra was measured to $\Delta \mathrm{C}_{\text {exp }}=66(3) \mathrm{ps}$. The spectra are shown in Figure 3(a).

As it can be seen in the inset spectra of Figure 2(a), generated by setting an energy gate on the EXILL detectors on the $2_{1}^{+} \rightarrow 0_{1}^{+}$transition and an energy gate on the FATIMA detectors on the $6_{1}^{+} \rightarrow 4_{1}^{+}$transition, there is a Compton-edge underneath the full-energy peak of the $4_{1}^{+} \rightarrow 2_{1}^{+}$transition. The exact location of the Comptonedge is not known. Therefore, two extreme background assumptions $\left(\mathrm{BG}_{\max }, \mathrm{BG}_{\min }\right.$ in Figure $2(\mathrm{a})$ were made, and an average of both $\left(\mathrm{BG}_{a v}\right.$ in Figure $2(\mathrm{a})$ used for the analysis, including a systematic error from the deviation to the extremes.

The contribution of the background in the time spectrum on the location of the full-energy peak can be found by the interpolation of the timing of the Compton background [17. With this time background correction the
$\Delta \mathrm{C}$ in equation (1) has to be corrected by a correction factor $\left(t_{c o r}\right)$. It will be

$$
\begin{equation*}
\Delta C=\Delta C_{e x p}+t_{c o r}=P R D+2 \tau \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
t_{c o r}=\frac{t_{c o r}\left(E_{\text {feeder }}\right)+t_{c o r}\left(E_{\text {decay }}\right)}{2} \tag{4}
\end{equation*}
$$

with

$$
\begin{equation*}
t_{c o r}\left(E_{f / d}\right)=\frac{\Delta C_{e x p}-\Delta C_{B G}^{f / d}}{P / B\left(E_{f / d}\right)} \tag{5}
\end{equation*}
$$

where $\Delta C_{B G}$ is the interpolated background timing in the location of the full-energy peak and P / B is the peak-to-background ratio of the full-energy peak. In Figure $3(\mathrm{~b})$ the interpolation of the time-background for the $t_{\text {cor }}\left(E_{\text {decay }}\right)$ is shown. Using the equation (3) the lifetime of the 4_{1}^{+}state of ${ }^{148} \mathrm{Ce}$ was measured to be $\tau_{4^{+}}=58$ (4) ps.

III. RESULTS AND DISCUSSION

From the measured lifetimes the $B\left(E 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)$and $B\left(E 2 ; 4_{1}^{+} \rightarrow 2_{1}^{+}\right)$transition strengths were determined to be 85.2 (29) W.u. and 129.7 (86) W.u. respectively, which results in a ratio of $\mathrm{B}_{4 / 2}=1.52$ (11). All experimental results are summarized in Table The ratio deviates from both the vibrational and the rotor's values, setting the nucleus, together with its heavier $N=90$ isotones, in the transitional region as it is shown in Figure 4(a).

FIG. 2: (Color online) (a) Energy spectra from the EXILL\&FATIMA array gated on the $6_{1}^{+} \rightarrow 4_{1}^{+}$transition of ${ }^{148} \mathrm{Ce}$ in EXILL, Ge (blue (lower)) and LaBr_{3} (red (upper)). The gates in FATIMA detectors are marked with light gray. Combinations of those were set in order to get the time-difference spectra for the life-time. The inset spectra $\left(\mathrm{LaBr}_{3}\right)$ is generated by setting an energy gate on the EXILL detectors on the $2_{1}^{+} \rightarrow 0_{1}^{+}$transition and an energy gate on the FATIMA detectors on the $6_{1}^{+} \rightarrow 4_{1}^{+}$transition. Three possible backgrounds under the full-energy peak are shown. (b) The black curve corresponds to the time-difference spectrum obtained from gates A and B, with the delayed and reflected anti-delayed spectra summed in order to accommodate the full statistics. The red curve depicts the background-subtracted time-difference spectrum, with the delayed and the reflected anti-delayed spectra summed up. Note that the black curve is multiplied by a factor of 10 for better visibility.

FIG. 3: (a) The time-difference spectra (delayed and anti-delayed) for the life-times of the 4_{1}^{+}states of ${ }^{148} \mathrm{Ce}$. (b) The time-background under the full-energy peak of the $4_{1}^{+} \rightarrow 2_{1}^{+}$transition was interpolated from background areas around the peak (see text).

In order to understand the QSPT, in the following paragraphs the experimental data for ${ }^{148} \mathrm{Ce}$ will be compared with (a) several geometrical models approximating the transitional region around $\mathrm{X}(5)$, and (b) microscopic calculations for this nucleus using the five-dimensional quadrupole collective Hamiltonian, Eq. (9). Additionally the whole transitional region is being investigated with interacting boson model (IBM)-1 calculations. The trajectories of cerium, neodymium and samarium isotopic
chains in the IBM symmetry triangle are showing the different crossing of the phase boundary of the QSPT.

A. Geometrical models

Beside $\mathrm{X}(5)$ there are other analytical solutions of the Bohr Hamiltonian with soft potentials in the deformation variable β. The $\mathrm{X}(5)-\beta^{2 n}$ model [34 was intro-

TABLE I: Lifetimes and transition strengths in ${ }^{148} \mathrm{Ce}$ obtained from the present work.

duced to describe the spherical side of the QSPT. With $n=1, \mathrm{X}(5)-\beta^{2}$, the nuclear potential is the harmonic oscillator (vibrator) and with increasing n the potentials of the model approach the infinite square-well of $\mathrm{X}(5)$. The confined β-soft model (CBS) [4] considers an infinite square-well potential between minimum and maximum deformation, $\beta_{<}$and $\beta_{>}$, with its structural parameter $r_{\beta}=\beta_{<} / \beta_{>}$. For different widths of the potential well the model describes nuclei between $\mathrm{X}(5)$ and the rigid-rotor.

The adopted experimental data for ${ }^{148} \mathrm{Ce}$ are presented in Table $\overline{I I}$ together with the observables of the $\mathrm{X}(5)$ and $\mathrm{X}(5)-\beta^{8}$. The calculations were taken from Ref. [11, 34]. One can perceive the good agreement of ${ }^{148} \mathrm{Ce}$ with the $\mathrm{X}(5)-\beta^{8}$ model. This agreement can also be clearly seen in Figure 4(b) where the energy ratios $E\left(J^{+}\right) / E\left(2^{+}\right)$, with $J \leq 14$, are plotted for a vibrator, a rigid-rotor, $\mathrm{X}(5)$ and $\mathrm{X}(5)-\beta^{8}$ models and the experimental data of ${ }^{148} \mathrm{Ce}$. The experimental data fit with high precision with the $\mathrm{X}(5)-\beta^{8}$ model.

TABLE II: Comparison between experimental data of
${ }^{148} \mathrm{Ce}$ with geometrical models, the $\zeta_{Q S P T}(8,-0.943)$ from the IBM (see Sect. IIIB) and microscopic calculations (see Sect. IIIC).

	$\mathrm{X}(5) \mathrm{X}(5)-\beta^{8}$		$\zeta_{Q S P T}$ $(8,-0.94)$	5 DQCH	148 Exp.
$R_{4 / 2}$	2.90	2.85	2.59	2.99	2.86
$E_{0_{2}^{+}} / E_{2_{1}^{+}}$	5.65	5.09	3.29	5.21	4.86
$E_{2_{\gamma}^{+}} / E_{2_{1}^{+}}$			5.59	5.85	6.24
$B_{4 / 2}$	1.6	1.63	1.55	1.54	$1.52(11)$

The comparison of the experimental data for ${ }^{148} \mathrm{Ce}$ with the geometrical models places the nucleus before the critical point of the QSPT where the spherical minimum still dominates the structure. In all above mentioned models ($\mathrm{X}(5), \mathrm{X}(5)-\beta^{2 n}$ and CBS) the γ-degree of freedom is separated and approximated by an harmonic oscillator centered around $\gamma=0^{\circ}$. None of these geometrical models have predictive power for the excitation energy of the 2_{γ}^{+}state. In the next paragraphs the γ-dependence of ${ }^{148} \mathrm{Ce}$ will be investigated within the IBM-1.

B. IBM-1 model

In the context of the present discussion we adopt the standard extended constant Q formalism (ECQF) 35, 36]
of the IBM-1 with the Hamiltonian

$$
\begin{equation*}
H=c\left[(1-\zeta) \hat{n}_{d}-\frac{\zeta}{4 N_{B}} \hat{Q}^{\chi} \cdot \hat{Q}^{\chi}\right] \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{Q}^{\chi}=\left(s^{\dagger} \tilde{d}+d^{\dagger} \tilde{s}\right)+\chi\left(\tilde{d} d^{\dagger}\right)^{(2)}=T(E 2) / e_{B} \tag{7}
\end{equation*}
$$

is the quadrupole operator, $\mathrm{T}(\mathrm{E} 2)$ is the electric quadrupole transition operator with the effective boson charge e_{B}, c is a scaling factor and N_{B} the number of valence bosons. In Eq. (6) the quadrupole-quadrupole interaction drives deformation and the parameter ζ controls the competition between the spherical-driving and deformed-driving forces 3. With the parameters ζ and χ the standard IBM symmetry triangle 37] can be mapped, with $\zeta \in[0,1]$ and $\chi \in[-\sqrt{7} / 2,0]$, see Figure 5 . The parameter ζ mainly controls the β deformation whilst γ has a strong χ dependence. Spherical nuclei are described by small ζ. As ζ increases the nucleus can undergo a spherical-to-deformed QSPT 38.

Following the concept of the Ehrenfest classification 39 in Ref. 40 derivatives of observables were used to determine the critical points (CPs) of the QSPT in a finite-N system, over different/constant χ parameters. In the present work the CPs are determined by the second derivative of the binding energy. The slope of the binding energy is the order parameter of the many-body system. The calculations have been made with the code IBAR which performs interacting boson model-1 (IBM-1) calculations 41].

For each boson number and χ parameter the maximum of the second derivative of the binding energy defines the location of the shape phase transitional point as a function of $\zeta: \zeta_{Q S P T}\left(N_{B}, \chi\right)$ 42. These trajectories as a function of χ, for now on referred to as Phase Transition-lines (PT-lines), are plotted for various boson numbers of interest over the IBM symmetry triangle in Fig. 5. Note that for small N_{B} and to a lesser extent for small χ values the maximum in the second derivative of the binding energy is less pronounced indicating that the spherical-to-deformed transition is less sudden. The trajectories divide the triangle in two areas each. Take note of the fact that this division into the spherical region and the deformed region depends on the boson number.

The IBM-1 calculations for various ζ and χ parameters provide observables along the triangle including those in Table III. These experimental data can be used for the placement of isotopes in the triangle 43-46]. It is known that the $\mathrm{R}_{4 / 2}$ ratio is very sensitive to the stiffness of the potential in the quadrupole deformation parameter β. For a given stiffness in β, the stiffness of the potential as a function of the γ deformation parameter is correlated with the energy difference between the first excited 0^{+} state and the 2_{γ}^{+}state. The $R_{4 / 2}$ contours have a vertical trajectory (with respect to the base of the triangle), and

FIG. 4: (a) The $\mathrm{B}_{4 / 2}$ ratio for $N=90$ isotones. All isotopes lie near the QSPT with the exception of ${ }^{152} \mathrm{Sm}$ which deviates towards the rigid rotor. Data taken from [12.*The CBS line is adjusted to the experimental $\mathrm{R}_{4 / 2}$ ratio of ${ }^{152} \mathrm{Sm}$ with $r_{\beta}=0.14$ [4]. (b) Energy ratios of ${ }^{148} \mathrm{Ce}$. Comparison of experimental data with vibrator, rigid rotor, $X(5)$ and $X(5)-\beta^{8}$ models.

FIG. 5: (Color online) PT-lines for several boson numbers, $5-12,50$ and 250 . For increasing boson number the PT-line moves towards smaller values of ζ (from right to left for increasing boson number).
the

$$
\begin{equation*}
R_{0 \gamma}=\frac{E\left(0_{2}^{+}\right)-E\left(2_{\gamma}^{+}\right)}{E\left(2_{1}^{+}\right)}, \tag{8}
\end{equation*}
$$

proposed in Ref. [45, have a more horizontal trajectory. For all the isotopes in the QSPT region the crossing of the two contours is unique and allows their unique placement in the triangle.
In Figure 6 the placement of ${ }^{148} \mathrm{Ce}$ is shown. For ${ }^{148} \mathrm{Ce}$ the experimental data for the two observables are:
$R_{4 / 2}=2.86$ and $R_{0 \gamma}=-1.38$ simultaneously corresponding to the coordinates $\zeta=0.64$ and $\chi=-0.94$. The same method has been used in order to define the trend of the Ce isotopic chain within the triangle. In Figure $7(\mathrm{a})$ the placement of the even-even Ce isotopes with $\mathrm{N}=86-90$ is shown together with the PT-lines for the corresponding valence boson numbers $\mathrm{N}_{B}=6-8$. For ${ }^{144}$ Ce the energy of the 0_{2}^{+}state is not known experimentally, so the curve inside the triangle where it is placed was defined only by $\mathrm{R}_{4 / 2}$. The ${ }^{146} \mathrm{Ce}$ isotope is placed on the spherical side of the PT-line for $\mathrm{N}_{B}=7$ and ${ }^{148} \mathrm{Ce}$ on the deformed side of the PT-line for $\mathrm{N}_{B}=8$. Note the dependence of the nucleus' shape assignment on the finite boson number for which the PT-line was calculated. The experimental data for ${ }^{148} \mathrm{Ce}$ are compared in Table II to the IBM-1 observables for the CP obtained as a function of ζ for the fixed structural parameter $\chi=-0.94$. Indeed, the observed $\mathrm{R}_{4 / 2}\left(\mathrm{~B}_{4 / 2}\right)$ ratio for ${ }^{148} \mathrm{Ce}$ exceeds (is smaller than) the value expected at the PT point for this appropriate structural parameter and boson number $\mathrm{N}_{B}=8$, unambiguously placing ${ }^{148} \mathrm{Ce}$ in the deformed part of the IBM symmetry triangle. We conclude that the spherical-to-deformed phase transition in cerium isotopes happens between ${ }^{146} \mathrm{Ce}$ and ${ }^{148} \mathrm{Ce}$. The locations of the cerium isotopes evolving to larger values of χ as a function of mass imply an increasing role of the γ degree of freedom.

For a further analysis of the proton number dependence of the $N \approx 90$ QSPT we apply this procedure to the neodymium and samarium isotopic chains. The placement of the even-even samarium isotopes (with $\mathrm{N}=86-92$) into the triangle (see Figure $7(\mathrm{~b})$ reveals the lower dependence on the γ degree of freedom of these isotopes. Again the crossing from the spherical side to the

FIG. 6: (Color online) Placement of ${ }^{148}$ Ce into the IBM symmetry triangle of the IBM. The two contours $\left(R_{4 / 2}\right.$ and $R_{0 \gamma}$) fitting the experimental data are shown.

TABLE III: Coordinates of isotopes in the IBM symmetry triangle. ${ }^{*}$ The placement of ${ }^{144} \mathrm{Ce}$ in one spot was not possible in the procedure adopted here, because the energy of the 0_{2}^{+}is not known experimentally. The isotope was placed on a curve instead, using only the energy ratio $\mathrm{R}_{4 / 2}$.

Isotope	ζ	χ	$\mathbf{N}=\mathbf{9 0}$ isotones	ζ	χ
${ }^{144} \mathrm{Ce}^{*}$	0.5 to 0.6	0 to $-\sqrt{7} / 2$	${ }^{146} \mathrm{Ba}$	0.69	-0.78
${ }^{146} \mathrm{Ce}$	0.59	-1.02	${ }^{148} \mathrm{Ce}$	0.64	-0.94
${ }^{146} \mathrm{Nd}$	0.50	-1.17	${ }^{150} \mathrm{Nd}$	0.62	-1.08
${ }^{148} \mathrm{Nd}$	0.56	-1.04	${ }^{152} \mathrm{Sm}$	0.61	-1.13
${ }^{148} \mathrm{Sm}$	0.43	-0.68	${ }^{154} \mathrm{Gd}$	0.63	-0.93
${ }^{150} \mathrm{Sm}$	0.51	-1.14	${ }^{156} \mathrm{Dy}$	0.62	-0.87
${ }^{154} \mathrm{Sm}$	0.65	-1.23			

deformed side of the PT-line is between the $\mathrm{N}=88$ and $\mathrm{N}=90$ isotopes, like in the cerium isotopic chain. The QSPT in the samarium chain occurs at smaller values of χ than in the cerium chain. The same picture occurs for the neodymium chain. In this case the χ parameter at the QSPT lies between the one for cerium and samarium (see Figure 7(c)). It seems that by decreasing Z, from samarium to cerium, the dependence on the γ degree of freedom increases at the $N \approx 90$ QSPT. The coordinates of all isotopes discussed before are included in Table III.

Both in the limit of the large boson number and in the small finite boson number the QSPT has a pronounced phase transition behavior only for small χ parameters. As χ increases, approaching zero, the phase transition washes out. The samarium isotopic chain is crossing the PT-lines (for $\mathrm{N}_{B}=9$ and 10, corresponding to ${ }^{150} \mathrm{Sm}$ and ${ }^{152} \mathrm{Sm}$) almost perpendicularly at small χ parameters.

This implies a more sudden change in the shape of the nuclei in the samarium isotopic chain than in the cerium chain. The cerium isotopic chain is crossing the PT-lines (for $\mathrm{N}_{B}=7$ and 8 , corresponding to ${ }^{146} \mathrm{Ce}$ and ${ }^{148} \mathrm{Ce}$) at larger and increasing χ parameters thus the transition from spherical to deformed shapes is smoother and involves higher dependence on the γ degree of freedom.

All the $N=90$ isotones are placed on the deformed side of their corresponding PT-line as seen in Figure 5 . In Figure 8 the energy spectra of the $N=90$ isotones are plotted, the 0_{2}^{+}state and the 2_{γ}^{+}state are also included. The energy of the 2_{γ}^{+}level peaks in ${ }^{152} \mathrm{Sm}$, indicating its highest degree of axial symmetry, also reported in Ref. 47.

C. Microscopic calculations

The contradicting shape assignment of ${ }^{148} \mathrm{Ce}$ when its level scheme is compared with the observables of the geometrical models and when it is compared with the IBM calculations motivate further microscopic calculations for the nucleus. Axial Skyrme-Hartree-Fock-Bogolyubov (Skyrme-HFB) 48] calculations (Skyrme interaction parameterization SVmin [49, 50]) were performed resulting in a shallow minimum $\beta_{2}=0.248$ with a potential energy curve bump characteristic for nuclei close to $\mathrm{X}(5)$ [51. Beyond mean field full-Skyrme Random Phase Approximation (RPA) calculations predict correct 2_{1}^{+}energy of $158 \mathrm{keV}\left[52\right.$ and $B\left(E 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)=84$ W.u. in agreement with the experimental value.

Another, recently introduced 53] approach, makes use of the five-dimensional quadrupole collective Hamiltonian (5DQCH)

$$
\begin{equation*}
\hat{H}_{\text {coll }}=\hat{T}_{v i b}+\hat{T}_{\text {rot }}+V_{\text {coll }} \tag{9}
\end{equation*}
$$

as described in Ref. 53. In the past the microscopic framework of the 5 DQCH was used for the analysis of the QSPT in the $N=90$ isotones for neodymium, samarium and gadolinium 7, 8.

In Figure 9(a) the potential energy surface of ${ }^{148} \mathrm{Ce}$ is plotted. The equilibrium minimum (red dot) is located at $\beta \approx 0.25$ (and $\gamma=0$, prolate). In comparison with the results, in Ref. [53], for ${ }^{152} \mathrm{Sm},{ }^{154} \mathrm{Gd}$ and ${ }^{156} \mathrm{Dy}$ the β-deformation is the smallest in ${ }^{148} \mathrm{Ce}$. The extended potential minimum indicates significant γ-softness. Additionally, the collective wave functions, plotted in Figures 9(b) 9(f), appear to display mixing in the γ direction. So the scenario of the γ-softness in ${ }^{148} \mathrm{Ce}$ is supported by the microscopic calculations.

The agreement with the experimental data can bee seen in Table II where the observables emanating from the calculations are shown next to the experimental values for ${ }^{148} \mathrm{Ce}$. The transition strengths, $B\left(E 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)$ and $B\left(E 2 ; 4_{1}^{+} \rightarrow 2_{1}^{+}\right)$, agree with the experiment: The 5 DQCH approach results in $B\left(E 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)=80 \mathrm{~W} . u$. and $B\left(E 2 ; 4_{1}^{+} \rightarrow 2_{1}^{+}\right)=123$ W.u. (cf. Table I).

FIG. 7: (Color online) Trajectories of (a) cerium and (b) samarium isotopes in the IBM symmetry triangle. For ${ }^{144}$ Ce the observable R_{γ} is unknown hence its $\mathrm{R}_{4 / 2}$ contour is shown with a dashed line which is located entirely on the spherical side of the PT-line. ${ }^{144} \mathrm{Ce}$ is classified as spherical. The PT-lines corresponding to the valence boson number of the isotopes are also plotted (from right to left for increasing boson number). (c) Comparison of the trajectories of the cerium, neodymium and samarium isotopic chains inside the triangle as a function of neutron number.

FIG. 8: Comparison of energy spectra of the adopted experimental data for $\mathrm{N}=90$ isotones. The energies of the levels of each isotope are normalized to the energy of the 2_{1}^{+}state which is shifted to 100 keV . The 0_{2}^{+} states are plotted with light blue and the 2_{γ}^{+}states are plotted with green. The trend of the 2_{γ}^{+}shows an decreasing γ-softness around ${ }^{152} \mathrm{Sm}$.

IV. CONCLUSION

The lifetimes of the 2_{1}^{+}and 4_{1}^{+}states of ${ }^{148} \mathrm{Ce}$ were measured with Fast Electronic Timing. The $\mathrm{B}_{4 / 2}$ value was extracted for the first time. It agrees with a new view on the structure of the nucleus and the evolution
of the QSPT along the $N=90$ line. Although the basic structural observables, in particular energy ratios, compare favorably to the $\mathrm{X}(5)-\beta^{8}$ model mimicking dominant sphericity of ${ }^{148} \mathrm{Ce}$, a deeper analysis which takes the finite size of the quantum system and the γ-degree of freedom into account implies that ${ }^{148} \mathrm{Ce}$ is actually deformed. The evolution of the QSPT at $N=90$ is smoothed out as a function of decreasing proton number due to finite- N effects and increasing γ-softness.

ACKNOWLEDGMENTS

We are grateful to F. Iachello, R. F. Casten and D. Bonatsos for useful discussions. The EXILL\&FATIMA campaign would not have been possible without the support of several services at the ILL and the LPSC. We are grateful to the EXOGAM collaboration for the loan of the detectors, to GANIL for assistance during installation and dismantling, and to the FATIMA collaboration for the provision of $\mathrm{LaBr}_{3}(\mathrm{Ce})$ detectors and analogue electronics. This work was supported by the cooperation between TU Darmstadt and the GSI Helmholtz Center for Heavy Ion Research and by the Helmholtz Graduate School for Hadron and Ion Research for FAIR, by the QuantiXLie Centre of Excellence, a project co-financed by the Croatian Government and European Union through the European Regional Development Fund - the Competitiveness and Cohesion Operational Programme (KK.01.1.1.01), by US DOE under No. DE-FG02-91ER-40609, by STFC (UK) under Nos. ST/L005743/1 and ST/G000751/1, by Istanbul University Scientific Research Project No. 54135, by DFG under Nos. KR 1796/2-1,2 and SFB1245 and by BMBF under Nos. 05P12RDNUP, 05P(15/19)RDFN1, $05 \mathrm{P}(15 / 19)$ PKFNA and 05P12PKNUF. This work was partially supported by the UK Science and Technologies

FIG. 9: (Color online) (a) Self-consistent triaxial quadrupole constrained energy surfaces in the $\beta-\gamma$ plane ($0 \leq \gamma \leq 60^{\circ}$). (b-f) Probability distributions in the $\beta-\gamma$ plane for the wave function of the lowest collective 0^{+}and 2^{+}states of ${ }^{148} \mathrm{Ce}$.

Facilities Council (STFC) via grants $\mathrm{ST} \backslash \mathrm{L} 0057 \backslash 1$ and $\mathrm{ST} \backslash \mathrm{P} 005314 \backslash 1$. PH Regan acknowledges partial support from the UK Department of Business, Energy and Industrial Strategy (BEIS) via the National Measurement System (NMS). PA acknowledges support from SP2018/84
and LO1406 projects.

REFERENCES

[1] R. F. Casten and N. V. Zamfir, Physical Review Letters 87, 052503 (2001).
$[2]$ D. Warner, Nature 420, 614 (2002)
[3] R. F. Casten, Nature Physics 2, 811 (2006)
[4] N. Pietralla and O. M. Gorbachenko, Physical Review C: Nuclear Physics 70, 011304(R) (2004)
[5] R. Krücken, B. Albanna, C. Bialik, R. F. Casten, J. R. Cooper, A. Dewald, N. V. Zamfir, C. J. Barton, C. W. Beausang, M. A. Caprio, A. A. Hecht, T. Klug, J. R. Novak, N. Pietralla, and P. von Brentano, Physical Review Letters 88, 232501 (2002).
[6] D. Tonev, A. Dewald, T. Klug, P. Petkov, J. Jolie, A. Fitzler, O. Möller, S. Heinze, P. von Brentano, and R. F. Casten, Physical Review C: Nuclear Physics 69, 034334 (2004)
[7] T. Nikšić, D. Vretenar, G. A. Lalazissis, and P. Ring, Physical Review Letters 99, 092502 (2007)
[8] Z. P. Li, T. Nikšić, D. Vretenar, J. Meng, G. A. Lalazissis, and P. Ring, Physical Review C: Nuclear Physics 79, 054301 (2009)
[9] J. Wiederhold, R. Kern, C. Lizarazo, N. Pietralla, V. Werner, R. V. Jolos, D. Bucurescu, N. Florea, D. Ghita, T. Glodariu, R. Lica, N. Marginean, R. Marginean, C. Mihai, R. Mihai, I. O. Mitu, A. Negret, C. Nita, A. Olacel, S. Pascu, L. Stroe, S. Toma, and A. Turturica, Physical Review C: Nuclear Physics 94, 044302 (2016)
[10] F. Iachello, Physical Review Letters 85, 3580 (2000)
[11] F. Iachello, Physical Review Letters 87, 052502 (2001)
[12] "Nuclear Data Sheets," http://www.nndc.bnl.gov/ ensdf/
[13] D. Biswas, E. Clement, G. de France, L. M. Fraile, J. Jolie, T. Kröll, S. Lalkovski, S. Leoni, R. Lozeva, P. Regan, and et al., ILL-DATA (2013), 10.5291/ill-data.bag-

03-3
[14] D. Balabanski, D. Biswas, I. Celikovic, E. Clement, G. de France, F. Drouet, G. Gey, J. Kurpeta, S. Leoni, O. Litaize, and et al., ILL-DATA (2013), 10.5291/ill-data.bag-03-4
[15] H. Abele, D. Dubbers, H. Häse, M. Klein, A. Knöpfler, M. Kreuz, T. Lauer, B. Märkisch, D. Mund, V. Nesvizhevsky, A. Petoukhov, C. Schmidt, M. Schumann, and T. Soldner, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 562, 407 (2006)
[16] W. Urban, M. Jentschel, B. Märkisch, T. Materna, C. Bernards, C. Drescher, C. Fransen, J. Jolie, U. Köster, P. Mutti, T. Rzaca-Urban, and G. S. Simpson, Journal of Instrumentation 8, P03014 (2013)
[17] J.-M. Régis, G. Simpson, A. Blanc, G. de France, M. Jentschel, U. Köster, P. Mutti, V. Paziy, N. SaedSamii, T. Soldner, C. Ur, W. Urban, A. Bruce, F. Drouet, L. Fraile, S. Ilieva, J. Jolie, W. Korten, T. Kröll, S. Lalkovski, H. Mach, N. Mărginean, G. Pascovici, Z. Podolyák, P. Regan, O. Roberts, J. Smith, C. Townsley, A. Vancraeyenest, and N. Warr, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 763, 210 (2014)
[18] J. Jolie, J.-M. Régis, D. Wilmsen, N. Saed-Samii, M. Pfeiffer, N. Warr, A. Blanc, M. Jentschel, U. Köster, P. Mutti, T. Soldner, G. Simpson, G. de France, W. Urban, F. Drouet, A. Vancraeyenest, A. Bruce, O. Roberts, L. Fraile, V. Paziy, A. Ignatov, T. Kröll, D. Ivanova, S. Kisyov, S. Lalkovski, Z. Podolyák, P. Regan, E. Wilson, W. Korten, C. Ur, R. Lica, and N. Marginean, Nuclear Physics A 934, 1 (2015)
[19] M. Jentschel, A. Blanc, G. de France, U. Köster, S. Leoni, P. Mutti, G. Simpson, T. Soldner, C. Ur, W. Urban, S. Ahmed, A. Astier, L. Augey, T. Back, P. Baczyk, A. Bajoga, D. Balabanski, T. Belgya, G. Benzoni, C. Bernards, D. Biswas, G. Bocchi, S. Bottoni, R. Britton, B. Bruyneel, J. Burnett, R. Cakirli, R. Carroll, W. Catford, B. Cederwall, I. Celikovic, N. CieplickaOryczak, E. Clement, N. Cooper, F. Crespi, M. Csatlos, D. Curien, M. Czerwiski, L. Danu, A. Davies, F. Didierjean, F. Drouet, G. Duchne, C. Ducoin, K. Eberhardt, S. Erturk, L. Fraile, A. Gottardo, L. Grente, L. Grocutt, C. Guerrero, D. Guinet, A.-L. Hartig, C. Henrich, A. Ignatov, S. Ilieva, D. Ivanova, B. John, R. John, J. Jolie, S. Kisyov, M. Krticka, T. Konstantinopoulos, A. Korgul, A. Krasznahorkay, T. Kröll, J. Kurpeta, I. Kuti, S. Lalkovski, C. Larijani, R. Leguillon, R. Lica, O. Litaize, R. Lozeva, C. Magron, C. Mancuso, E. R. Martinez, R. Massarczyk, C. Mazzocchi, B. Melon, D. Mengoni, C. Michelagnoli, B. Million, C. Mokry, S. Mukhopadhyay, K. Mulholland, A. Nannini, D. Napoli, B. Olaizola, R. Orlandi, Z. Patel, V. Paziy, C. Petrache, M. Pfeiffer, N. Pietralla, Z. Podolyak, M. Ramdhane, N. Redon, P. Regan, J. M. Régis, D. Regnier, R. J. Oliver, M. Rudigier, J. Runke, T. Rzaca-Urban, N. Saed-Samii, M. Salsac, M. Scheck, R. Schwengner, L. Sengele, P. Singh, J. Smith, O. Stezowski, B. Szpak, T. Thomas, M. Thürauf, J. Timar, A. Tom, I. Tomandl, T. Tornyi, C. Townsley, A. Tuerler, S. Valenta, A. Vancraeyenest, V. Vandone, J. Vanhoy, V. Vedia, N. Warr, V. Werner, D. Wilmsen, E. Wilson,
T. Zerrouki, and M. Zielinska, Journal of Instrumentation 12, P11003 (2017)
[20] J. Simpson, F. Azaiez, G. de France, J. Fouan, J. Gerl, R. Julin, W. Korten, P. Nolan, B. Nyakö, G. Sletten, and P. Walker, Acta Physica Hungarica, Series A: Heavy Ion Physics 11, 159 (2000).
[21] "FATIMA - FAst TIMing Array," http://nuclear.fis. ucm.es/fasttiming/index.html
[22] J.-M. Régis, J. Jolie, N. Saed-Samii, N. Warr, M. Pfeiffer, A. Blanc, M. Jentschel, U. Köster, P. Mutti, T. Soldner, G. S. Simpson, F. Drouet, A. Vancraeyenest, G. de France, E. Clément, O. Stezowski, C. A. Ur, W. Urban, P. H. Regan, Z. Podolyák, C. Larijani, C. Townsley, R. Carroll, E. Wilson, L. M. Fraile, H. Mach, V. Paziy, B. Olaizola, V. Vedia, A. M. Bruce, O. J. Roberts, J. F. Smith, T. Kröll, A.-L. Hartig, A. Ignatov, S. Ilieva, M. Thürauf, S. Lalkovski, D. Ivanova, S. Kisyov, W. Korten, M.-D. Salsac, M. Zielińska, N. Mărginean, D. G. Ghită, R. Lică, C. M. Petrache, A. Astier, and R. Leguillon, Physical Review C: Nuclear Physics 90, 067301 (2014).
[23] S. Ilieva, T. Kröll, J.-M. Régis, N. Saed-Samii, A. Blanc, A. M. Bruce, L. M. Fraile, G. de France, A.-L. Hartig, C. Henrich, A. Ignatov, M. Jentschel, J. Jolie, W. Korten, U. Köster, S. Lalkovski, R. Lozeva, H. Mach, N. Mărginean, P. Mutti, V. Paziy, P. H. Regan, G. S. Simpson, T. Soldner, M. Thürauf, C. A. Ur, W. Urban, and N. Warr, Physical Review C: Nuclear Physics 94, 034302 (2016)
[24] P. Spagnoletti, G. S. Simpson, R. Carroll, J.-M. Régis, A. Blanc, M. Jentschel, U. Köster, P. Mutti, T. Soldner, G. de France, C. A. Ur, W. Urban, A. M. Bruce, F. Drouet, L. M. Fraile, L. P. Gaffney, D. G. Ghită, S. Ilieva, J. Jolie, W. Korten, T. Kröll, C. Larijani, S. Lalkovski, R. Lică, H. Mach, N. Mărginean, V. Paziy, Z. Podolyák, P. H. Regan, M. Scheck, N. Saed-Samii, G. Thiamova, C. Townsley, A. Vancraeyenest, V. Vedia, A. Gargano, and P. Van Isacker, Physical Review C: Nuclear Physics 95, 021302(R) (2017)
[25] J.-M. Régis, J. Jolie, N. Saed-Samii, N. Warr, M. Pfeiffer, A. Blanc, M. Jentschel, U. Köster, P. Mutti, T. Soldner, G. S. Simpson, F. Drouet, A. Vancraeyenest, G. de France, E. Clément, O. Stezowski, C. A. Ur, W. Urban, P. H. Regan, Z. Podolyák, C. Larijani, C. Townsley, R. Carroll, E. Wilson, L. M. Fraile, H. Mach, V. Paziy, B. Olaizola, V. Vedia, A. M. Bruce, O. J. Roberts, J. F. Smith, M. Scheck, T. Kröll, A.-L. Hartig, A. Ignatov, S. Ilieva, S. Lalkovski, W. Korten, N. Mărginean, T. Otsuka, N. Shimizu, T. Togashi, and Y. Tsunoda, Physical Review C: Nuclear Physics 95, 054319 (2017)
[26] S. Ansari, J.-M. Régis, J. Jolie, N. Saed-Samii, N. Warr, W. Korten, M. Zielińska, M.-D. Salsac, A. Blanc, M. Jentschel, U. Köster, P. Mutti, T. Soldner, G. S. Simpson, F. Drouet, A. Vancraeyenest, G. de France, E. Clément, O. Stezowski, C. A. Ur, W. Urban, P. H. Regan, Z. Podolyák, C. Larijani, C. Townsley, R. Carroll, E. Wilson, H. Mach, L. M. Fraile, V. Paziy, B. Olaizola, V. Vedia, A. M. Bruce, O. J. Roberts, J. F. Smith, M. Scheck, T. Kröll, A.-L. Hartig, A. Ignatov, S. Ilieva, S. Lalkovski, N. Mărginean, T. Otsuka, N. Shimizu, T. Togashi, and Y. Tsunoda, Physical Review C: Nuclear Physics 96, 054323 (2017)
[27] Z. Bay, Physical Review 77, 419 (1950)
[28] J.-M. Régis, H. Mach, G. Simpson, J. Jolie, G. Pascovici, N. Saed-Samii, N. Warr, A. Bruce, J. Degenkolb, L. Fraile, C. Fransen, D. Ghita, S. Kisyov, U. Köster, A. Korgul, S. Lalkovski, N. Mărginean, P. Mutti, B. Olaizola, Z. Podolyak, P. Regan, O. Roberts, M. Rudigier, L. Stroe, W. Urban, and D. Wilmsen, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 726, 191 (2013)
[29] J.-M. Régis, M. Rudigier, J. Jolie, A. Blazhev, C. Fransen, G. Pascovici, and N. Warr, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 684, 36 (2012).
[30] P. C. Simms, N. Benczer-Koller, and C. S. Wu, Physical Review 121, 1169 (1961)
[31] V. Werner, N. Cooper, J.-M. Régis, M. Rudigier, E. Williams, J. Jolie, R. B. Cakirli, R. F. Casten, T. Ahn, V. Anagnostatou, Z. Berant, M. Bonett-Matiz, M. Elvers, A. Heinz, G. Ilie, D. Radeck, D. Savran, and M. K. Smith, Physical Review C: Nuclear Physics 93, 034323 (2016)
[32] N. Nica, Nuclear Data Sheets 117, 1 (2014)
[33] R. Lică, G. Benzoni, A. I. Morales, M. J. G. Borge, L. M. Fraile, H. Mach, M. Madurga, C. Sotty, V. Vedia, H. D. Witte, J. Benito, T. Berry, N. Blasi, A. Bracco, F. Camera, S. Ceruti, V. Charviakova, N. Cieplicka-Oryńczak, C. Costache, F. C. L. Crespi, J. Creswell, G. FernándezMartínez, H. Fynbo, P. Greenlees, I. Homm, M. Huyse, J. Jolie, V. Karayonchev, U. Köster, J. Konki, T. Kröll, J. Kurcewicz, T. Kurtukian-Nieto, I. Lazarus, S. Leoni, M. Lund, N. Marginean, R. Marginean, C. Mihai, R. Mihai, A. Negret, A. Orduz, Z. Patyk, S. Pascu, V. Pucknell, P. Rahkila, J. M. Regis, F. Rotaru, N. SaedSami, V. Sánchez-Tembleque, M. Stanoiu, O. Tengblad, M. Thuerauf, A. Turturica, P. V. Duppen, and N. Warr, Journal of Physics G: Nuclear and Particle Physics 44, 054002 (2017)
[34] D. Bonatsos, D. Lenis, N. Minkov, P. P. Raychev, and P. A. Terziev, Physical Review C: Nuclear Physics 69, 044316 (2004)
[35] D. D. Warner and R. F. Casten, Physical Review Letters 48, 1385 (1982).
[36] D. D. Warner and R. F. Casten, Physical Review C: Nuclear Physics 28, 1798 (1983)
[37] R. F. Casten, Nuclear Structure from a Simple Perspective (Oxford University Press, 2000).
[38] J. Jolie, P. Cejnar, R. F. Casten, S. Heinze, A. Linnemann, and V. Werner, Physical Review Letters 89, 182502 (2002)
[39] L. D. Landau and E. M. Lifshitz, Statistical Physics, Course of Theoretical Physics, Vol. V (ButterworthHeinemann, Oxford, 2001).
[40] V. Werner, P. von Brentano, R. Casten, and J. Jolie, Physics Letters B 527, 55 (2002)
[41] R. Casperson, Computer Physics Communications 183, 1029 (2012)
[42] E. Williams, R. J. Casperson, and V. Werner, Physical Review C: Nuclear Physics 82, 054308 (2010)
[43] W.-T. Chou, N. V. Zamfir, and R. F. Casten, Physical Review C: Nuclear Physics 56, 829 (1997)
[44] E. A. McCutchan, N. V. Zamfir, and R. F. Casten, Physical Review C: Nuclear Physics 69, 064306 (2004).
[45] E. A. McCutchan and R. F. Casten, Physical Review C: Nuclear Physics 74, 057302 (2006).
[46] P. Cejnar, J. Jolie, and R. F. Casten, Reviews of Modern Physics 82, 2155 (2010).
[47] A. J. Mitchell, C. J. Lister, E. A. McCutchan, M. Albers, A. D. Ayangeakaa, P. F. Bertone, M. P. Carpenter, C. J. Chiara, P. Chowdhury, J. A. Clark, P. Copp, H. M. David, A. Y. Deo, B. DiGiovine, N. D'Olympia, R. Dungan, R. D. Harding, J. Harker, S. S. Hota, R. V. F. Janssens, F. G. Kondev, S. H. Liu, A. V. Ramayya, J. Rissanen, G. Savard, D. Seweryniak, R. Shearman, A. A. Sonzogni, S. L. Tabor, W. B. Walters, E. Wang, and S. Zhu, Physical Review C: Nuclear Physics 93, 014306 (2016)
[48] J. Dobaczewski, H. Flocard, and J. Treiner, Nuclear Physics A 422, 103 (1984)
[49] P. Klüpfel, P.-G. Reinhard, T. J. Bürvenich, and J. A. Maruhn, Phys. Rev. C 79, 034310 (2009)
[50] P.-G. Reinhard, "Computer code SKYAX, (unpublished),".
[51] R. Fossion, D. Bonatsos, and G. A. Lalazissis, Physical Review C: Nuclear Physics 73, 044310 (2006)
[52] M. Abolghasem, P. Alexa, A. Repko, and P.-G. Reinhard, Acta Physica Polonica B50, 555 (2019)
[53] Z. P. Li, T. Niki, and D. Vretenar, Journal of Physics G: Nuclear and Particle Physics 43, 024005 (2016).

[^0]: * pkoseoglou@ikp.tu-darmstadt.de

