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We propose a microscopic description for the polarization from the first principle
through the spin-orbit coupling in particle collisions. It is based on scatterings of
particles as wave packets, an effective method to deal with particle scatterings at
specified impact parameters. The polarization is then the consequence of particle
collisions in a non-equilibrium state of spins. The spin-vorticity coupling naturally
emerges from the spin-orbit one encoded in polarized scattering amplitudes of colli-

sional integrals when one assumes local equilibrium in momentum but not in spin.

I. INTRODUCTION

A very large orbital angular momentum (OAM) can be created in peripheral heavy ion
collisions [IH7]. Such a huge OAM can be transferred to the hot and dense matter produced
in collisions and make particles with spins polarized along the direction of OAM [I, [6-8].
Recently the STAR collaboration has measured the global polarization of A and A for the
first time in Au+Au collisions at /syy = 7.7 — 200 GeV [9H1I]. The global polarization
is the net polarization of local ones in an event which is aligned in the direction of the
event plane. The results show that the magnitude of the global A and A polarization is of
the order a few percent and decreases with collisional energies. The difference between the
global polarization of A and A may possibly indicates the effect from the strong magnetic
field formed in high energy heavy ion collisions.

Several theoretical models have been developed to study the global polarization. If the
spin degree of freedom is thermalized, one can construct the statistic-hydro model by includ-

ing the spin-vorticity coupling S,,w" into the thermal distribution function [I12H14]. Here



S, is the spin tensor, w*” = —(1/2)(0" " — 0¥ 5") is the thermal vorticity, the macroscopic
analog of the local OAM, and p* = fu* is the thermal velocity with § = 1/T being the
inverse of the temperature and u* being the fluid velocity. It turns out that the average
spin or polarization is proportional to the thermal vorticity if the spin-vorticity coupling
is weak. One can also derive an ideal spin hydrodynamics from the spin dependent phase
space distribution functions which are 2 x 2 matrices [I5HI7]. The spin polarization tensor
wH” is no longer the thermal vorticity but is treated as a set of independent hydrodynamic
variables [I5HI7]. For a review of the spin-hydrodynamic approach, see Ref. [18].

Similar to the statistic-hydro model, another approach to the global polarization assuming
local equilibrium is the the Wigner function (WF) formalism. The WF formalism for spin-
1/2 fermions [I9H25] has recently been revived to study the chiral magnetic effect (CME)
[26-29] (for reviews, see, e.g., Ref. [29431]) and chiral vortical effect (CVE) [32H37] for
massless fermions |36, 38-44]. The Wigner functions for spin-1,/2 fermions are 4 x 4 matrices.
The axial vector component gives the spin phase space distribution of fermions near thermal
equilibrium [45H48|. Tt can be shown that when the thermal vorticity is small, the spin
polarization of fermions from the WF is proportional to the thermal vorticity vector. So the
WEF can also be applied to the study of the global polarization of hyperons.

In order to describe the STAR data on the global A/A polarization, the hydrodynamic
or transport models have been used to calculate the vorticity fields in heavy ion collisions
[49-55]. Then the polarization of A/A can be obtained from vorticity fields at the freezeout
when the A/A hyperons are decoupled from the rest of the hot and dense matter [56-59).

Most of these models are based on the assumption that the spin degree of freedom has
reached local equilbrium. But this assumption is not justified. The recent disagreement
between some theoretical models and data on the longitudinal polarization indicates that
the spins might not be in local equilibrium [IT} [60) 61], or the form of the spin-vorticity
coupling in local equilibrium might be different from that in global equilibrium [62, [63], or
any other mechanisms. Although one model of the chiral kinetic theory can explain the
sign of the data [64], it is based on massless fermions and cannot reproduce the magnitude
of the data. To clarify the above situations, one needs to answer the question: how is
the polarization generated in miscroscopic collision processes? This is related to the role
of the spin-orbit coupling which is regarded as the microscopic mechanism for the global

polarization. The need for particle collision processes is also supported by an observation



in the Lagrangian formulation of relativistic hydrodynamics for spin fluids: the ideal limit
of hydrodynamics with spin is generally acausal [65], hence non-equilibrium spin degrees of
freedom are necessary. In one particle scattering such as a 2-to-2 scattering at fixed impact
parameter the effect of spin-orbit coupling in the polarized cross section is obvious [1l, 6],
but how does the spin-vorticity coupling naturally emerge from the spin-orbit one? It is
far from easy and obvious as it involves the treatment of particle scatterings at different
space-ime points in a system of particles in randomly distributed momentum. To the best
of our knowledge, this problem has not been seriously investigated due to such a difficulty.
In this paper we will construct a microscopic model for the global polarization based on
the spin-orbit coupling. We will show that the spin-vorticity coupling naturally emerges
from scatterings of particles at different space-time points incorporating polarized scattering
amplitudes with the spin-orbit coupling. This provides a microscopic mechanism for the
global polarization from the first principle through particle collisions in non-equilibrium.

The paper is organized as follows. In Section II we will introduce scatterings of two
wave packets for spin-0 particles. The wave packet method is necessary to describe particle
scatterings at different space-time points. In Section III we will study collisions of spin-0
particles as wave packets which take place at different space-time in a multi-particle sys-
tem. In Section IV we will derive the polarization rate for spin-1/2 particles from particle
collisions. As an example, we will apply in Section V the formalism to derive the quark
polarization rate in a quark-gluon plasma in local equilibrium in momentum. In Section VI
we will discuss the numerical method to calculate the quark polarization rate, a challenging
task to deal with collision integrals in very high dimensions. We will present the numerical
results in Section VII. Finally we will give a summary of the work and an outlook for future
studies.

Throughout the paper we use natural units A = ¢ = kg = 1. The convention for the
metric tensor is g = diag(+1,—1,—1,—1). We also use the notation a*b, = a - b for the
scalar product of two four-vectors a*, b* and a - b for the corresponding scalar product of
two spatial vectors a, b. The direction of a three-vector a is denoted as a. Sometimes we

denote the components of a three-vector by indices (1,2,3) or (x,y, 2).



II. SCATTERINGS OF WAVE PACKETS FOR SPIN-0 PARTICLES

In this section we will consider the scattering process A + B — 1 + 2--- 4+ n, where
the incident particles A and B in the remote past are localized in some region and can
be described by wave packets. The details of this section can be found in the textbook
by Peskin and Schroeder [66]. The purpose of this section is to give an idea of how the
wave packets displaced by an impact parameter are treated in the scattering process, and to
provide the basis for the discussion in the next section. We work in the frame in which the
central momenta of two wave packets are collinear or in the same direction which we denote
as the longitudinal direction. We assume that the wave packet B is displaced by an impact
parameter vector b in the transverse direction, so the in state can be written as

|6405)m = / Bl Bl dalka)dp(kp)e P
APB)in = (27)3 (27)3 NEI

Here we see that the incident particles are treated as two wave packets |¢4) and |¢p) defined

|kAkB>in : (1)

in Appendix[A] The definition of the single particle states |k) and |kg) can also be found in
Appendix [A] As we have mentioned that the amplitudes ¢;(k;) center at p; = (0,0, p;.) for
i = A, B. We assume that the out state is a pure momentum state |p1pz - - - Pn)ous in the far
future. This is physically reasonable as long as the detectors of final-state particles mainly
measure momentum or they do not resolve positions at the level of de Broglie wavelengths.
Taking into account the normalization factors for the in-state and out-state, the scattering

probability is given by
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where the normalization of single particle states and wave packets is given in Appendix [A]

Since P(AB — 12---n) depends on the impact parameter b, we can rewrite it as P(b).

This probability gives the differential cross section at the impact parameter b,

o = P(b). 3)



The total cross section is then an integral over the impact parameter

o = / d*vP(b)
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where Ey; = /|ki|? +m?, B, = |K|>+m? with ¢« = A, B, kg denotes the trans-

verse part of the momentum, M denotes the invariant amplitude of the scattering pro-

cess. We can integrate out six delta functions involving k; and Kj, i.e. 6@ (ki | —kp 1)
and 0@ (k’;‘ + ki — Z;ﬁ:lpf) By integrating over kK | to remove 6@ (ki | —kp 1),
we can replace k’z |, by kp in the integrand. By integrating over k/y | to remove
5@ <k’A7L +kp =2 pf,L>, we can replace Ky | by —kp 1 + > 7_ ks in the inte-
grand. Then we can integrate over kjp  to remove 6(kly , + ki, — p1.. — p2,z), in which kj
is replaced by Z?leﬁz — k), .. The last variable that can be integrated over is £/, , in the
delta function for the energy conservation §(E’y + Ep — Ej — Epp). We can solve £, | as the

root of the equation E'y + E; = E,; + E,». Note that £’; and E’; are given by

Ey = | (~kpoi+ ) kpi)?2+ k3. +m?,
\ =
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The delta function can be rewritten as
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where k), _ ; are the roots of the equation £y + Ep = Ej1 + Ep.



If we assume that the incident wave packets are narrow in momentum and centered at
momenta p4 and pg, i.e. ¢;(k;) are close to delta functions §(k; — p;), we can approximate
(Ep 4 KY) = (Exa, ka) = (Ea,pa) and (B K5) =~ (Exp, k) = (Ep,pp). We can also
approximate v; = p; ./ E; = k; ,/E; with i = A, B. Then we obtain

~ ’py Pka |9paka)® [ kg |op(ks) _
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Here we have used the normalization condition for the wave amplitude . We note
that the above formula is derived in the frame in which incident particles are collinear in
momemtum. We can boost the frame to the center-of-mass frame of the incident particles
and the cross section is invariant.

If the number densities of A and B in coordinate space are ny and npg respectively, the

collision rate, i.e. the number of scatterings per unit time and unit volume is given by

R = nanplva — vplo
nanpg
4F 4 Ep

4EAEB|UA—UB’0', (8)

where we have rewritten the rate in a Lorentz invariant way by making use of the fact that

AEAEg|lva — vgl, na/FE4 and ng/Ep are Lorentz invariant along the collision axis.

IIT. COLLISION RATE FOR SPIN-0 PARTICLES IN A MULTI-PARTICLE
SYSTEM

In this section we will derive the collision rate in a system of spin-0 particles of multi-
species. We will generalize the result of the previous section by treating the incident particles
as wave packets. The emphasis is put on the collision of two particles at two different space-

time points.



We will frequently use two frames in this and the next section: the lab frame and the
center-of-mass system (CMS) of one specific collision. In the lab frame, the movement
of one species of particles follows their phase space distribution f(z,p). There are many
collisions taking place in the system. Figure [1] shows one collision of two incident particles
at x4 = (ta,x4) and g = (tp,xp) in the lab frame and CMS. We see that p,4 and pp are
not aligned in the same direction in the lab frame. When boosted to the CMS of this collision
with the boost velocity determined by vis = (pa+pg)/(Ea+ Eg), we have p.a+pes =0
as shown in the right panel of Fig. [T, see Appendix [C] for more details of such a Lorentz
transformation. Hereafter we denote the quantities in the CMS by the index 'c’. There is an
inherent problem in the collision of incident particles located at different space-time points:
the collision time is not well defined. If we assume that the collision takes place at the same
time in the lab frame, i.e. t4 = tpg, after being boosted to the CMS, the time will be mis-
matched, i.e. .4 # t.p, since x4 and xp are different. The reverse statement is also true:
if tea = tep then t4 # tp due to X, 4 # X . Such an ambiguity in the collision time cannot
be avoided but can be constrained by the requirement that the difference At, =t. 4 —t. 5
should not be large, otherwise the incident particles are irrelevant or the collision is un-causal
in the CMS. In the calculation of this paper, we will put a simple constraint At. = 0. In
the right panel of Fig. [T} we also see that the impact parameter b is given by the distance
of x. 4 and x.p in the transverse direction which is perpendicular to p. 4 or p.p. In the
longitudinal direction or the direction of p. 4 or p. g, two space points are also different in
general, i.e. Pea - Xea 7# Pea - Xep. In the calculation we also require that the distance
between two space points in the longitudinal direction, Az, = Pea - (Xc,a — X.5), should
not be large, otherwise the incident particles as wave packets lose coherence and cannot
interact in the CMS. In the calculation, we will also put a simple constraint Az, = 0. The
CMS constraint At. = 0 and Az, = 0 is equivalent to the condition At = s - Ax and
(va —vp) - Ax = 0 in the lab frame, see Appendix |C| for the derivation.



Figure 1: A collision or scattering in the Lab frame (left) and center-of-mass frame (right).

Lab Frame Center of Mass Frame

Since we will work in the CMS of incident particles in each collision, for notational
simplicity, we will suppress the index ¢’ (standing for the CMS) of all quantities in the rest
part of this section. So all quantities are implied in the CMS if not explicitly stated here.

We know that the momentum integral of the distribution function gives the number
density in the coordinate space. Similar to Eq. , the collision rate in corresponding

momentum and space-time intervals can be written as

_ d’pa d’pp A
Rap 12 = 2r)? (27T)3fA($AapA)fB(13B;pB)‘UA —vp|Ao, (9)
where v4 = |pa|/E4 and vg = —|pp|/Ep are the longitudinal velocities with p4 = —pp

in the CMS, f4 and fp are the phase space distributions for the incident particle A and B

respectively, and Ao denotes the infinitesimal element of the cross section given by

Ao = Ld4x,4d4IB6(At)5(ij;)
Cas

> d®ps 1
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Here we have assumed that the scattering takes place at the same time and the same longi-
tudinal position in the CMS, so we put two delta functions to implement these constraints.

The constant C'yp is to make Ao have the right dimension of the cross section and will be



defined later. In Eq. K is given by

K = (2E4)(2EB)|owt(p1p2]0a(x4,04)05(25,0B))im|”
4FE4F
= (%—)j(}leg / Elad kpd K,k
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V16E 1 Ep i EawEp
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XM ({ka, ks} = {p1,p2}) M* ({K}s, kp} — {p1.p2}), (11)

where ¢;(k; — p;) and ¢;(k; — p;) for i = A, B denote the incident wave packet amplitudes
centered at p;, E;r = \/|ki|? +m?, Eip = \/W and E; = \/m are energies
for i = A, B. In Eq. G; (i = 1,2) denote distribution factors depending on particle
types in the final state, we have G; = 1 for the Boltzmann particles and G; = 1 + f;(p;) for
bosons (upper sign) and fermions (lower sign). Note that f;(p;) can be in any other form
in non-equilibrium cases. In we have taken the following form for |¢;(z;, p;))im with
i=A, B,

— dng 1 —ik;-x;
|0i(xi,Di))in = /W\/T—i,k@(ki_pi)e

Here we take the Gaussian form for the wave packet amplitude ¢;(k; — p;) as in (A10),

¢i(ki - Pi) = @;,—)/ZMGXP {_M} ) (13)

Qg
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where «; denote the width parameters of the wave packet A or B. For simplicity we will set
equal width for two incident particles (even for different species), ax = ap = a.

We can also make the approximation of narrow wave packets, so we have |k;| =~ |K;| ~ |p;|
for i = A, B and then EA,kE;x,k ~ F4 and 1/EB,kE/B7k ~ Fp, and the energy factors in
drop out. By taking the integral over x4 and xg and then the integral over on-shell
momenta p4, pr, p1 and ps, we obtain the scattering or collision rate per unit volume,

I’pa  dpp Pp Ppy
Rapnz = / (27)32E,4 (27)32Ep (2m)32E; (27)32E,
d*rad*rpo(At)S(Axy)

><_
Cap
X fa(xa,pa)fe(xp, pe)G1Galva — vB|K. (14)
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Now we use new variables to replace x4 and xp,

1
X = 5(114 +xB),

Yy = To—TpB. (15)
We can rewrite the integral over x4 and zp in Eq. as

I = /d4xAd4$B5<At)5(A$L)fA(anpA)fB(xBJ)B)
X exp (—ika - x4 — ikp - xp + 1Ky - x4 + 1Ky - xp)

~ /d4Xd2bfA (X + y?T,pA> I <X - y?TypB>

x exp [i(k); —ka) - b], (16)
where we have used ks +kp —k/y — ks = 0 and —k,+kp+Kk/, —k; = 2(k/; —k,) implied by
two delta functions in Eq. . In Eq. we have integrated over y° = At = t4 —tp and
yr = Axp = pa- (x4 —xp) to remove two detla functions, then we are left with the integral
over the transverse part ¥ = (0,b) with b being in the transverse direction. Because we
work in the CMS in which all kinematic variables depend on the incident momenta in the
lab frame, the impact parameter b in the CMS depends on (z4,xp) as well as (pa, pg) in
the lab frame through a boost velocity.

Now we define the constant C45 in @ as Cup = [d*X = txOin so that the final
results have the right dimension. Here ¢ty and 2, are the local time and space volume for
the interaction respectively. Note that C'j5 [ d*X (---) plays the role of the average over X
or ((--+))x- If we take the limit ¢x iy — 0, we obtain the local rate per unit volume from
Eq. ,

d'Napor 1 / d*pa cpp d®py d®ps
dx4 2r)4 | (2r)P2E4 (27)32Ey (27)32E, (21)32E;

x[va — v5|G1Ga / Ploadkpd* K, K,

xpa(ka —pa)op(ks — pp)oa(Ky — Pa)op(ks — PB)
x0W (k) + K — p1 — p2)8 (ka + kg — p1 — pa)

XM ({ka, kp} — {p1,p2}) M* ({K, kp} — {p1,p2})

< [ @ra (6 ) g (X = B pa) exp iy~ k)b (17)

where Nap_,1o is the number of scatterings. We emphasize again that all quantities in Eq.

are defined in the CMS of two incident particles (we have suppressed the index 'c’).
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IV. POLARIZATION RATE FOR SPIN-1/2 PARTICLES FROM COLLISIONS

In this section we will generalize the previous section for spin-0 particles to spin-1/2
ones. Our purpose is to derive the polarization rate from collisions in a system of particles
of multi-species. We assume that particle distributions in phase space are independent of
spin states, so the spin dependence comes only from scatterings of particles carrying the
spin degree of freedom.

As a simple example to illustrate the idea of the polarization arising from collisions, we
consider a fluid with the three-vector fluid velocity in the z direction v, that depends on
x, which we denote as v,(x). We assume dv,(x)/dz > 0. In the comoving frame of any
fluid cell in the range [z — Az /2, x + Az /2] where Az is a small distance, the fluid velocity
at x + Az/2 is +(dv,(x)/dx)Az, forming a rotation or local orbital angular momentum
(OAM) pointing to the —y direction. Due to the spin-orbit coupling, the scattering of two
unpolarized particles with velocity +(dv,(x)/dx)Ax and impact parameter Az will polarize
the particles in the final state along the direction of the local OAM. It has been proved
that the polarization cross section is proportional to s - n., where s is the spin quantization
(polarization) direction and n, = b, x P, is the direction of the reaction plane (the local
OAM) in the CMS of the scattering, where b, and p. are the direction of the impact
parameter and the incident momentum respectively. This is what happens in one scattering.
In a thermal system with collective motion, there are many scatterings whose reaction planes
point to almost random directions, but in average the direction of the reaction plane points
to that of the local rotation or vorticity. To calculate the polarization in a thermal system
with collective motion, we have to take a convolution of distribution functions and polarized
scattering amplitudes similar to .

In this section we will distinguish quantities in the CMS and lab frame, i.e. we will resume
the subscript 'c¢’ for all CMS quantities, while quantities in the lab frame do not have the
subscript ¢’

Now we consider a scattering process A + B — 1 + 2 where the incident and outgoing
particles are in the spin state labeled by sa, sp, s1 and so (s; = £1/2, i = A, B,1,2)
respectively. The quantization direction of the spin state is chosen to be along the direction

of the reaction plane in the CMS of the scattering. The polarization rate per unit volume
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for particle 2 in the final state is given by

d4PAB%12(X) _ 1 / ngc,A d3pc,B dgpc,l d3p0,2
dX4 (2m)* ) (2m)32E, 4 (27)32E, g (27m)32E,1 (27)32E,5

X|Ve,a — Ve, B|G1G2 / d?’kc,Ad?’kc,Bd?’ké,Ad?’ é’B
X¢A (kc,A - pc,A)¢B (kc,B - pr)QSZ(k/qA - pc,A)QS*B(k/qB - pc,B)
X6(4)(ké,A + ké,B - pc,l - pc,2)5(4) (kc,A + kc,B - pc,l - pc,2>

X /dzbcfA (Xc + yCT’Tapc,A> fB (Xc - yCT’Tapc,B> exp [Z(k,c,A - kc,A) : bc}

x> 25meM ({54, kens 5B, kst = {51, Pet; 52, Pe2})

54,58,51,52

XM ({54, ki a3 58,k g} — {51, Pe; 52,De2}) s (18)
where P 4p_.12 denotes the polarization vector and n, = b, x Pc.4 is the direction of the
reaction plane in the CMS of the scattering which is also the quantization direction of the
spin. In the second to the last line of Eq. (18), the summation of 25y M(- -+, s9) M*(- -+ , 52)
over sy = +1/2 gives the polarized amplitude squared for particle 2 in the final state, and
the factor 2 arises from the normalization convention for the polarization that makes it in

the range [—1, 1] instead of [—1/2,1/2]. Equation (18) is one of our main results.

V. QUARK/ANTIQUARK POLARIZATION RATE IN A QUARK-GLUON
PLASMA OF LOCAL EQUILIBRIUM IN MOMENTUM

In this section we will calculate the quark/antiquark polarization rate from all 2-to-2
parton (quark or gluon) collisions in a quark-gluon plasma (QGP) of local equilibrium in
momentum but not in spin. We assume that the QGP is a multi-component fluid with the
same fluid velocity u(z) as a function of space-time for all partons. The partons in a fluid cell
follow a thermal distribution in momentum in its comoving frame with the local temperature
T'(x). We assume that the phase space distribution f(x,p) depends on x* = (t,x) through
the fluid velocity v*(x) in the form f(x,p) = f[5(z)p-u(z)] where p* = (E,, p) is an on-shell
four-momentum of the parton and §(x) = 1/T(z).

We consider the scattering, A+ B — 1+ 2, where A and B denote two incident partons
in the wave packet form localized at x4 and xp respectively, and 1’ and 2’ denote two
outgoing partons in momentum states. In order to calculate the polarization rate from the

collision of two wave packets displaced by an impact parameter by Eq. , we must work
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in the CMS of the incident partons for each collision. Note that many collisions take place
in the system at different space-time, the CMS of each collision depends on the momenta
of incident partons which vary from collision to collision. In one collision, the phase space

distributions for incident partons (denoted as i = A, B) can be written in the form

fi('J;C;pC) = fl[ﬁ(xc)pc : uc(xc)]
= [filB(z)p - u(z)]
= fi(x>p)7 (19)

where z, p are the space-time and momentum in the lab frame respectively, while z., p. are
their corresponding values in the CMS of A and B in this collision which depend on p4 and
pp in the heat bath (lab frame) through the boost velocity, and u#(x.) denotes the fluid

velocity in the CMS as a function of the space-time in the CMS.

A. Polarization rate

We now apply Eq. to 2-to-2 parton scatterings. For simplicity we assume that
the phase space distributions of incident partons follow the Boltzmann distribution, i.e.
f(z,p) = exp[—5(z)p - u(z)], so we have G1G5 = 1 in . Also we assume that y.r is
small compared with X, so that we can make an expansion in y.r for the distributions, the
details are given in Appendix @ The relevant contribution in the linear or first order in y.

involves the term y. [0(Buc,,)/0X¥]p! 4 which can be rewritten as

I(Buy) Lo Lt o} d(Buc,) +8(6Uc,u)

?JZTPZA aX(/:L - _§L€Lc)w/(;;)) + Zyc,Tpc,A 8Xé1 ach ) (20)
where L{} = yL‘pr’c)}A is the OAM tensor, w') = —(1/2)[0; (Buc,) — 07(Bucy)] is the

thermal vorticity tensor, and yifr}pg};‘ = ylopi o + YerPh 45 all in the CMS. The derivation

of Eq. 1} is given in Eq. . Note that the OAM-vorticity coupling Lét C‘;wl(fp) shows
up in the y.r expansion, which can be converted to the spin-vorticity coupling through
polarized parton scattering amplitudes encoding the spin-orbit coupling effect, as we will
show shortly. The second term in Eq. invloves the symmetric part of the thermal
velocity derivatives in space-time, which is assumed to vanish in thermal equilibrium for the

spin, known as the Killing condition [12HI4} 17]. In this paper, however, we do not assume
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the thermal equilibrium for the spin degree of freedom, so we keep this symmetric term in
the calculation.

Keeping the first order term in the y.7 expansion and neglecting the zeroth order term

which is irrelevant, Eq. can be simplified as

d'P ap12 (X) o 1 / d*pa *pp d3pc,1 d3pc,2
(

dX*  (2n)t ) (2n)32E4 (27)32Ep (27)32E.; (27)32E, 5

X |V, a4 — Ve B /d3kc,Ad3kc,Bd3ké7Ad3 é,B
X¢A (kc,A - pc,A)¢B (kc,B - pC,B)QSZ(k/qA - pC,A)QS*B(k/qB - pc,B)
X6(4)(kj::,A + k;B - pc,l - pc,2)5(4) (kc,A + kc,B - pc,l - pc,2)
1 . “170 0(Buy)
><§ /dzbC exp [z(k’qA —ke4) - bc} b, ;[A 1 f 8X’f
X [pi - p%] fA (vaA) fB (vaB) A]]1\443—>12nca (2]‘)

where we have used d*p..;/ E.; = d*p;/E; for i = A, B, the Lorentz transformation matrix
is defined by 0X"/0X} = [A~']", = A”, the minus sign in the right-hand side comes from
dfi (X, p;) /d(Bu - p;) for i = A, B, and AI#712 is defined by

A[]\IL}B_)12 == Z Z 282M ({SA; kc,A; SB; kc,B} — {Slapc,l; 327]70,2})
SA,8B,51,52 color
XM* ({SAa kf;,A; 5B, k/’f;,B} — {51, Pe1; 82,]%,2}) ) (22)

where the factor 2 arises from the normalization convention for the polarization. Note that
in the above formula there is a sum over color degrees of freedom of all incident and outgoing

AB—12
IM

partons. We may write A n. as

AB—12 AB—12 (1. ~
AIM l'lc - AIM (bC X pC,A)
(b e
- Z(bc : Ic)ec,ieikhbc,kpc,A

. ~h A
= Zec,iEikhpc,AIc,lbc,lbc,k7 (23)

where e.; (i = z,vy,2) are the basis vectors in the CMS, and AI{#~1? can be put into the
form b, - I, in this way we can single out the direction b, out of AT4B~12 see Eq. (40) for
an example of what I, looks like.

Substituting Eq. into Eq. , completing the integration over b., and removing

delta functions by integration, we obtain
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d4PAB—>12(X) R a(ﬁ“p)/ dgpA d3pB
dX* C(2m)t 0Xv | (27m)32E4 (27)32E5

X ‘UC,A - UC,BHAil]Vjec,ieikhpZA
xfa(X,pa) f5(X,p5) (P — Pb)

dgp 1 d3p 9
c, c, koT d2k/T
x/ (27)32E,, (21)32E, 5 oA7 oA

1 1
j1,j§=:1,2 [Ja(kl, ()] [Ta(ky(d2)]

XPa(kea — Pe,a)OB(Kep — Pe,s)Oa(K. 4 — Pe,a)0p(ke 5 — Pe)

1
XICJE [Q]Lkl (—2 + 2J0(w0) + w0J1<’lU0) + U)(Z)JQ('U}O>)

+Q?k:l (2 - 2J0<U}0) - U)()Jl (wo))} . (24)
Here we have used
L alajak
jkl — a3 )
1
?kl = 5 (azak&j + &2al(Sjk + a2aj51k - 3alajak) s (25)

with a = k|, 4, — k.4 and a = |a|, wp = aby with by being the upper limit or cutoff of b, J;

for i = 0,1, 2 are Bessel functions, k. p = Pc1 +Pe2 — Kea, K. 5 = Pe,i +Pe2 — K, 45 Ja(kéA)

and Ja(k/",) are Jacobians for the longitudinal momenta k?, and k", and are given by

1 1 1
Ja(kE ) —kf,A( . )— (bE1 + pLy),

Ec,A EC,B EC,B
Ja(kl) = K* S 1(L+L) (26)
c,A) — M A E/A E,B E/B Dey T Pe2)s

Eca+ E.p—E.1 —Eep =0and E, , + E 3 — E.y — E.» = 0 respectively. In and
Latin indices label spatial components in the the CMS. The derivation of is given
in Appendix [D}

In a system of gluons and quarks with multi-flavors, there are many 2-to-2 parton scat-

and k% ,(j1) and k" (j2) with ji, j = 1,2 are two roots of the energy conservation equation

terings with at least one quark in the final state. The quark polarization rate for a specific

flavor reads
d4Pq(X) _ Z d4PAB_>1q(X)
dX* dX* ’

A,B,1={qa,da,9}
where d*Pap_,1,(X)/dX* is given by Eq. , and 2-to-2 parton scatterings are listed in

(27)

Table 2l The antiquark polarization rate can be similarly obtained.
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B. Polarized amplitudes for quarks/antiquarks in 2-to-2 parton scatterings

In this subsection we will derive the polarized amplitudes for quarks in 2-to-2 parton
scatterings. The Feynman diagrams of all 2-to-2 parton scatterings at the tree level with
at least one quark in the final state are shown in Table[2] For anti-quark polarization, we
can make particle-antiparticle transformation in all processes listed in Table [2| for example,
Qo> — GaQy becomes @oGo — Galvs Gals — GaGp DeCOMES oo — GaGp, 99 — Jada Decomes
99 — GaGa, etc.. In this subsection, we discuss polarized amplitudes for quarks, those for
antiquarks can be easily obtained.

In order to obtain the quark polarization, we sum over the spin states of all partons
in the scattering except one quark in the final state. For simplicity of the calculation, we
assume that the quark masses are equal for all flavors and the external gluon is massless.
We introduce a small mass in the gluon propagator in the t-channel to regulate the possible
divergence.

In this subsection, all variables are defined in the CMS, for notational simplicity we will

suppress the subscript 'c’, for example, p4 actually means p.4.
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Figure 2: The Feynman diagrams of all 2-to-2 parton scatterings at the tree level with at least one
quark in the final state. We calculate the polarization of the quark (the second parton) in the final
state. Here a and b denote the quark flavor, s; = £1/2 (i = A, B,1,2) denote the spin states, k;
(i = A, B, 1,2) denote the momenta, ¢, q1, g2, g3 denote the momenta in propagators. The processes

for antiquark polarization can be obtained by making a particle-antiparticle transformation.

Qa ; : Qo - .
\E\'/j/ ch qa
ka 84 = P4, 5 i i

A» SA E 1,51 ka, Si ) ] .
?3 f‘h —_ 000000000+ v Sl
1=} kA: SB Pz; 2

k.5 5 po s koG 1

We take the quark-quark scattering ¢,q, — ¢agp With a # b (different flavor) as an example
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to demonstrate how to derive the polarized scattering amplitude which depends on the spin
state of the quark in the final state. The Feynman diagram of this process is shown in Table
2l The spin-momentum configurations are shown in the diagram. We can then write down

the corresponding amplitudes following the Feynman rule

I = —iM ({sa,ka;sB, kg} — {s1,p1; S2,p2})

. c yc L —
= Zggtjitlk?[u<81’p1>7“u(514; ka)l[u(se, p2)vuu(ss, kg)l,

I, = —iM ({sa,ky; s, kgt = {51,01; 52, p2})
. I y _
= zg?t?itfkﬁ[u(sl,pl)v u(sa, Ky)][u(s2, p2)vou(sp, k)] (28)

where g, is the strong coupling constant, 7, 7, k,l = 1,2, 3 denote the fundamental colors of
quarks, ¢,d = 1,--- , 8 denote the adjoint colors of gluons, ¢ and t¢ are generators of SU(N,)
in fundamental representation satisfying [t?, %] = i fat¢, q = k4 — p1, and ¢/ = k/; — p1. We

obtain the product [, as

Ig;(Ib‘)(IaQb <S2>

ST 0N M{sakassp ks — {51,015 52,2})

SA,8B,S1 4,7,k,l

XM* ({54, ky; s, k5t — {51,015 52, p2})
1

q2q/2
XTr [ (pr - + )y Aaja(—Ka) (o + DAL (—K4)7]

XTr |TU(s3,2)(p2 - 7 + m)3uha/a(—Kp) (0 + DAL (—Kp)w| . (29)

_ 4,2
= Clupy—gaqy Js™M

In Eq. we have used the notation p -y = p,7*, a sum over all spins except s, and over
all colors of quarks and gluons have been taken, and Cj,4,—q.q, iS the color factor for this
process given in Table . In the last two lines of Eq. 7 Ayjo and Al’/l2 are the Lorentz
transformation matrices for spinors defined in Eq. (EL0), II(s2,n) = (1 + s275n77,)/2 is
the spin projector where n? = (0,n) is the spin quantization four-vector in the CMS with

n=>bx P4, and we have applied Eq. (E13) and Eq. (E18]). From Eq. 1} we obtain the
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difference of I'5%7%% hetween the spin state sy = 1/2 and s, = —1/2 for g,
Alg/;qb%qwb — ]K;Qb%%qb (82 — 1/2) _ ]Jf{;%%q(z% (82 — _1/2)
1
42
= Ci]aQbﬁQangsm qzq,g

KT [ (pr - + )7 Aaja(—Ka) (o + DAL (— K )]

XTr [35(n - 2) (P2 - 7+ m)vAa(—ks) (0 + DATL(Kp)% | (30)
The expansion of A" %% gives about 200 terms. In accordance with Eq. (E10), Ay /2(p)
depends on the repidity 71, and the momentum direction p, where 7, is related to the

energy-momentum by £, = mcosh(n,) and |p| = msinh(7,). So the contracted trace part

of AT%%™%% can he expressed as a function of (ka, Ky, kp, k) and (1ka, i kB Neg)-

Table I: Color factors for all 2-to-2 processes with at least one final quark. The constants which

appear in color factors are: dp = N, dqg = N2—1, Cp = (N?—1)/(2N,), and C4 = 3 with N, = 3.

color factors Color factors in scattering processes
BC2da  |Cruaoanan Caoaysdoans C o OO aate s Clago s
de’% nggl])—njaqav nggzb%gqa
(Cr —Ca/2)drCF Cg()gaeqaqaa Cfgfzza%qaqaa Cg)—mqav CS%ZL—W%
%dACA Cégl—mqav ngz)—ﬂiaqa
dpCrCy C&JZ —9qa> Cé?])—ﬂia‘h.

The polarized amplitudes for quarks in all 2-to-2 parton scatterings listed in Table [2| are
given in Appendix [F] which results in more than 5000 terms. Here we give an estimate of
how many terms there are in each process: AIT7 %% gives 136 terms, AI# 9% gives 2442
terms, AJfa% %% gives 874 terms, Al %% gives 40 terms, AIL® %% gives 210 terms,
AT %% gives 210 terms, AI{;% %% gives 1156 terms. It is hard to see the physics

behind such huge number of terms unless we make an appropriate approximation.

C. Evaluation of polarized amplitudes for quarks/antiquarks

The evaluation of contracted traces of quark polarized amplitudes are very complicated.

This has been done with the help of FeynCalc [67, 68]. There are about 10* terms in the
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expansion of contracted traces for 2-to-2 parton scatterings.

In this subsection, all variables are defined in the CMS, for notational simplicity we will
suppress the subscript 'c¢’ if not explicitly specified, for example, p4 actually means p.4.

In order to show the physics in the midst of the huge number of terms, we have to
make an appropriate approximation. As we know that the incident particles are treated as
wave packets in order to describe scatterings displaced by impact parameters. A realistic
approximation is that the wave packets are assumed to be narrow, i.e. the width is much
smaller than the center momenta of the wave packet in Eq. . In the extreme case that
the width of the wave packet is zero, we recover the normal scattering of plane waves. Since
the positions of incident particles can be anywhere in plane waves, in average the relative
OAM of two incident particles is zero, leading to the vanishing polarization of final state

particles. This fact can be verified by setting

k, = A’A:IaA,
lA{B - lA{lB:_f)Aa
P1 = —DPg,

/ /

na = N =1n4 =g, (31)

in the trace part in Eq. (30), then we have AI{;# %% = 0.

The above result is of the zeroth order, now we turn to the first order in the deviation from
momenta in . We expand (ku, K/, kg, k/3) about their central values (P4, P, —Pa, —Pa)
and (Mga, M4, kB M.p) about their central values (1,4, Mpa, Mpa, Mpa) to the first order in the

differences,

ka — Pa+Au kg — —patAg,
K, — pa+ AL, Ky — —pat Al
kA = Tpa + Anga,
Mha = Tpa + Ana,
kB = Mpa + Ankp,

77/213 = TpAa + AU;;& (32)

where the first order quantities are denoted with A (for example, A, Anga). We also



expand (E1, p1, B2, p2) at (Eo, Po, Eo, —Po),

E1 — E0+A1, E2—>E0+A2,

P1 — Po+ A1, p2 =~ —po+ Ay
The delta functions in Eq. lead to
ki +kp = K, + ki = p1 + pa.
So A in can be determined by
1
Al - E(kA —l— kB>7

and pg determined by
1
Po = §(P1 — P2)-

Note that once pg and A; are given, Fy, Ay, Ay satisfy

(E0+A1)2 = (p0+A1)2+m§7

(Eo+A2)? = (—po+ A1)* +m3.

21

(34)

(35)

(36)

(37)

So we have a freedom to choose the value of Ey. Then we use and in the contracted
trace part in Eq. and expand it to the first order in A-quantities. Still, the final result

has many terms but all terms of A, Ay and A, cancel out.

In order to further simplify the contracted trace part in Eq. , we use the property

that the first order contributions do not have terms of Aj, Ag, A; by setting
P1 = Po;
P2 = —DPo,

which leads to ks + kp = k/; + k; = 0 and then

~

ky = —kp, k) = Kk},

MkA = NMkB, 772,4 = 772,-3-

(39)

Using and in the contracted trace part in Eq. for q.q» — qu.q», We obtain a
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shorter series of 31 terms

Tr?wb_mldqb — 16i(n X py) - kyu
X [5cAsAcf43£4p1 Ky 4 TE 3¢y ka - Ky + 2meqsac?
—QmCAsAsﬁ + 4E10A5Acﬁ + EchsAsﬁ — Sis'jpl . IEA]
+16i(n X py) - 1;14 [4chsAs'le<A . lAc'A — 5E10A3Asﬁf<,4 . 1214
—2mcA s’y — AB Al Sy — Beasacys'pr - ka — 2msdysy
3154y — s4572py - Ky 4 25452 (p1 - ka)(ky - l;;l)}
+16i(n x ky) - K4 [4msicf43'Ap1 Ky + 8mPcasacysy
+4Emsy s ky - Ky — 5352 (p1 - p1)(ka - K
—3E1cas452py - Ky — Ey154¢s'p1 - ka
—3casacysyp1 - 1 — 8ETcasacys'y]
+16i(p1 x ka) - Ky |s55%(p1 - ka)(n- Ky) — s3s5(n - ka)(pr - k)
5252 m - p1)(ka - Ky) + dmeasas n - K, + Bisicdystn -k,
+3E1c 54850 - lAc’A +3casacysym - pl} , (40)

where we denote the contracted trace part for ¢,qp, — ¢aqp as Tr?Jlaqb Cquqys €A = cosh(mga/2),

dy = cosh(n,4/2), sa = sinh(n;,,4/2), and s, = sinh(n, 4/2). We see in that there are
four typical terms proportional to (n x p;) K4, (nxpq) -lAc’A, (n x RA) . A;l and (py X RA) . A;l,
in which the first three terms are from the spin-orbit coupling and the last one corresponds
to the non-coplanar part of pq, k4 and 1;14 We will show in the next section that is a
good approximation for the contracted trace part to the exact result.

It can be proved that AI{#712 for all 2-to-2 parton scatterings in Table [2| have the same
structure as in for ¢,q» — g.q» under the approximation in .

Note that AI&E~12 depends linearly on the direction of the scattering plane n = b x P,
we can write the contracted trace part in the form of b- I, as is done in Eq. . We take
the term (n X pq) - k4 in as an example, which can be rewritten as

~

(b X Pa) X p1] - ka=b-[(Pa-ka)p1 — (Pa-p1)kal. (41)

Therefore I contains the term inside the square brackets on the right-hand side of Eq. .

Another example is the term proportional to (p; X k 4) -1A<f4, we see that all terms have factors
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of the formn -V (V = K., 1214, p1) inside the square brackets, these terms can be rewritten

asn-V =Db-(pax V), solI contains the term p4 X V.

VI. NUMERICAL METHOD TO CALCULATE QUARK/ANTIQUARK
POLARIZATION RATE

In this section we will calculate the polarization rate for quarks in a QGP from Eq. .
Here we assume a local equilibrium in particle momentum but not in spin. We will consider
two cases: the approximation as in and the exact result without any appoximation.
The main parameters are set to following values: the quark mass m, = 0.2 GeV for quarks
of all flavors (u,d, s, ,d,5), the gluon mass mg = 0 for the external gluon, the internal
gluon mass (Debye screening mass) m, = mp = 0.2 GeV in gluon propagators in the t and
u channel to regulate the possible divergence, the width a = 0.28 GeV of the Gaussian wave
packet, and the temperature T' = 0.3 GeV.

Although the 2-to-2 processes for anti-qaurk polarization are different from those for
quarks, it can be shown that the polarization rate for anti-quarks is the same as that for
quarks, because all 2-to-2 scatterings for anti-quark polarization can be obtained from those
in Table [2| by making a particle-antiparticle transformation. In the following we discuss
only the quark polarization. The same discussion can also be applied to the antiquark
polarization.

The local polarization rate in Eq. for quarks involves a 16-dimensional integration,
which is a major challenge in the numerical calculation. In the Monte Carlo integration,
the number of sample points grows exponentially with the dimension, so even a very rough
calculation in high dimensions would need huge number of sample points.

To overcome this difficulty, we split the integration into two parts: a 10-dimension (10D)
integration over (pe,1, Pe2, k¢ 4, k.,) and a 6-dimension (6D) integration over (pa,ps). We
carry out the 10D integration and store the result as a function of p. 4 (and p.p = —pc.a).
Then we carry out the 6D integration using the pre-calculated 10D integral.

The 10D integral, the last five lines of Eq. , depends on p. 4 and p. g = —p¢.4 Which
appear in the wave packet function ¢4 and ¢p respectively. So we denote the 10D integral

as O,(pc,a), from Eq. the polarization rate per unit volume for one quark flavor can
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be rewritten as

d*P,(X) 1 9(Bu,) Z/ dpa dpp

dX* (2m)* OXV 2m)32F 4 (27)32E
X ‘UC,A - UC,BH ] jec,iEikhpcyA
X fa (X,pa) f5(X,pB) 0% — 05) Ojk(Pe,a)
a(ﬁ“p)
= —_EWPY 42
oxXv ’ (42)

where the second equality defines W*” and the sum of A, B, 1 is over all 2-to-2 processes in

Table 2L

A. The 10D integration

The 10D integral @Jk(PcA) is calculated in the CMS by assuming p = (0,0, |pc.a|) and
pé ])3 = (0,0, —|pc,a|), where |p. 4| is determined by the momenta of two incident particles
in the lab frame as in Eq. . We can obtain O;(p..4) by carrying out the rotation
operation on the tensor @jk(p(zi) in accordance with the rotation matrix from pr(:i& t0 Pe,a-

For the Monte Carlo integration we have to sample kC A> k’QTA, Pc1, and p.o. First we
sample k! 4 and k’ 4, Where the main contribution comes from the Gaussian distribution
(13). Here we draw samples of k!, = (ke keay,0) and k' = (K. 4 .,k 4,,0) inside
the 30 (0 = a/+/2) region of the Gaussian distribution around the center point P, 21. The
longitudinal momentum k. 4. and £/, , , can be determined by the energy conservation once
Pc,1 and p.2 are given.

Then we sample p.; and p.2. In order to increase the efficiency of the sampling, we
should determine the range of p.; and p.2. We can first determine the ranges of lengths
|Pc1| and |p.2| by a numerical search. Then we determine the ranges of directions p.; and
Pc2. For a given p.;, which can be randomly chosen, we find that the largest value of
0 = arccos(—Pe1 - Pe2) between p.o and —p,; occurs when

keal = [ke.s| = [Pea| = [Pl
— \JrEa+ By (43)
Hence we obtain the range of 6 as
30

0 = arccos(—Pe1 - Pe2) € |0, — 2arccos : (44)
Pea+ (30)°
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The azimuthal angle ¢ of p.o around —p,; is in the range [0, 27].

With the given values of p.,; and p.2, the values of k. 4. and k[ 4 . can be obtained by
solving Eq. (D9). Then k. p and ki 5 can be determined by k.5 = pc,1 + Pe2 — k4 and
k| p = Pc1 + Pe2 — ki, 4 respectively.

The 10D integral is done by ZMCintegral-3.0, a Monte Carlo integration package, that
we have newly developed and runs on multi-GPUs [69]. The ZMCintegral package is able
to evaluate 15'° sample points within a couple of hours depending on the complexity of the
integrand. For our integrand with all 2-to-2 processes for quarks of all flavors and gluons,
it takes about 5 hours on one Tesla v100 card. We scan the values of |p, 4| from 0.1 to 2.2
GeV and those of by from 0.1 to 3.5 fm, then we store the integration results of @jk(pg) for
later use. It takes a couple of days to finish the calculation. We find that when |p. 4| > 2.5
GeV, the 10D integral is almost zero. This is due to the fact that if @ < |p. |, the incident

wave packets can be almost regarded as plane waves which give vanishing polarization.

B. The 6D integration

Now we carry out the remaining 6D integration over p4 and pp in . As we have
mentioned in Section |V| that we assume partons with pfy = (F4,pa) and pls = (Ep, ps)
in the lab frame follow the Boltzmann distribution, f;(X,p;) = exp[—8(X)p; - u(X)] for
i=AB.

The energy-momentum p. ; = (E¢ 4, Pe,a) and p.. 3 = (Ee 5, Pe,p) in the CMS of two scat-
tering particles are given by Eq. , where the boost velocity and the Lorentz contraction
factor are given by Eq. and respectively. The impact parameter b, in the CMS
is given by Eq. .

In the preceding subsection, we calculated the 10D integral ©;;(p,4) where P. Is in

the z direction. We have to transform the tensor @jk(piz) to ©,k(Pc,a) so that pga is

(2)

G,

(2)

rotated to the real direction of p.4 determined by Eq. (C1)). The rotation matrix R;;

(2)
C7A7j )

Ok (Pe,a) = Rjj,Rkk,@j,k,<p£f) ).

Our numerical results show that the tensor W*¥ has the form

is defined by p¢a;, = Ri;p with which we define the transformation for the tensor

W = Wi, (45)
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where we see that p and v should be spatial indices or W% = W?" = 0. The form of
(47)) will be verified in the numerical results in Section [VII} Then from (42)) we obtain the

polarization rate per unit volume for one quark flavor

d'Py (X v OBU
o(X) _ EOJPVMWejZQEjleleej

dx* oXV
= 2WVx x (Bu), (46)
where w,, = —(1/2)[0 (Bu,) — 0 (Bu,)], and for spatial indices we have the 3D form

wi = (1/2)[V¥ (Bu;) — V¥ (Buy)] with u being the spatial part of the four-velocity u”.

VII. NUMERICAL RESULTS

In this section we will present our numerical results. The approximation in is
inspired by the first order contribution in the narrow wave packet approximation. In order
to see how effective the approximation is, we compare in Fig. the results of the 10D
integral @jk(pg‘) for the scattering processes ¢(q) + ¢ — q(q) + ¢ and g + ¢ — g + ¢ in two
cases: with and without the approximation. Here the process ¢(7) + ¢ — ¢(q) + ¢ stands
for a sum over 5 different processes in Table 2l Note that we do not show the results for
g+ g — q+q for which all elements of G)jk(pfi) are almost zero in contrast to processes with
at least one incident quark. We see in the figure that the results with the approximation are
in agreement with the exact ones in 20% precision. In the figure we see that all elements of
@(pg’i) fluctuate around zero for ]pgl\ = 0, which leads to vanishing polarization. When
|p£22‘| is non-vanishing, the off-diagonal elements of @(pg’z) are still zero within errors, but

all diagonal elements take positive values which are almost equal to each other.
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Figure 3: Comparison of the results of the symmetric tensor @jk(pgl) for (a) ¢(q) + ¢ — q(q) + ¢

and (b) g + ¢ — g + ¢ in two cases, with the approximation in and exact calculation
of the integral without any approximation. The unit of @jk(p((:ié) is GeV~1. The results for
g+ g — q+ G are not shown because they are negligibly small (almost zero). Here we choose
bop = 0.5 fm and ]pﬂ =0, 0.5, 1.0, 1.5, 2.0 GeV. The solid symbols are the exact results without
any approximation, while the dashed symbols are the results with approximation in . All
off-diagonal elements are around zero and bounded inside two dashed lines: ©19,013 and O3 are
represented by circles, squares and triangles in dark red, respectively. All diagonal elements are

non-vanishing: ©11, Og2 and O35 are represented by circles, squares and triangles in dark blue,

respectively.
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We then work out the rest 6D integral and obtain W** in Eq. . In the 6D integration
we have to determine the maximum value of |p4| and |pg| or the integration range of |pa|
and |pp|. In Fig. , as an example, we show the dependence of W3 on [palmar = |PBlmar
for q¢(q) + ¢ — q(q) + ¢, where we choose by = 2.2 fm, z = 0 fm and 7' = 0.3 GeV. We see in
the figure that the value of W3 is very stable when [palmac = |PB|maz > 8T

Figure 4: The dependence of the results of ng on the integral ranges |PA|lmaz = |PB|maz for

q(q) + ¢ = q(q) + q. We choose by = 2.2 fm, z =0 fm, T' = 0.3 GeV.

o Vo ra\ o o o L.
= < A4 - A4 A4 A4 V‘e

1.4x107
1.2x107
x 107}
x 1077}
x 1077}
x 1077}
x 1077|
0

(GeV*)
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Wy
N A OO O -

2 4 6 8 10 12 14 16 18 20 22 24
|pA|max/T

The numerical results for W*¥ show the structure of . We can write W#” in an

explicit matrix form

0 0 0 0

0 0 We, —We,
0 —We, 0 We,
0 We, —We, 0

W = (47)

As an example, we show in Fig. |5| the results for all components of W?3! as functions of the
cutoff by for the quark polarization. We see in the figure that W3! and W3! are two or three
orders of magnitude smaller than the positive values of Wzl, which gives the polarization

in the y direction. As we can see in the figure that ng increases with the cutoff by. The
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reason for such a rising behavior is due to the Taylor expansion of fa(x. 4, pea) f5(Zc.B, Pe.B)
to the linear order in y.7 = (0, b.) as in App. . There should exist an upper limit for by
above which the coherence of the incident wave packets is broken and the results are not
physical. Such an upper limit can be set to be the order of the hydrodynamical length scale
~ 1/0%u” and should be larger than the interaction length scale 1/mp.

It can be proved that W3! for the anti-quark polarization is the same as that for the
quark one. The numerical results show that the magnitude of all element W*” are equal so

we denote it as W.
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Figure 5: Results for (a) W2l (b) W3l and (c) W3! as functions of the cutoff by in fm. There

are large fluctuations in W3 and W3! above by = 1.5 fm due to the strong oscillation of Bessel

functions.
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VIII. DISCUSSIONS

We have constructed a microscopic model for the global polarization from particle scat-
terings in a many body system. The core of the idea is the scattering of particles as wave
packets so that the orbital angular momentum is present in scatterings and can be converted
to spin polarization. As an illustrative example, we have calculated the quark/antiquark
polarization in a QGP. The quarks and gluons are assumed to obey the Boltzmann distri-
bution which simplifies the heavy numerical calculation. There is no essential difficulty to
treat quarks and gluons as fermions and bosons respectively.

To simplify the calculation, we also assume that the quark distributions are the same
for all flavors and spin states. As a consequence, the inverse processes that one polarized
quark is scattered by a parton to two final state partons as wave packets are absent. So
the relaxation of polarization cannot be described without inverse processes and polarized

distributions. We will extend our model by including the inverse processes in the future.

IX. SUMMARY AND CONCLUSIONS

The global polarization in heavy ion collisions arises from scattering processes of partons
or hadrons with spin-orbit couplings. However it is hard to implement this microscopic pic-
ture consistently to describe particle scatterings at specified impact parameters in a thermal
medium with a shear flow. On the other hand the statistic-hydro model or Wigner function
method are widely used to calculate the global polarization in heavy ion collisions. These
models are based on the assumption that the spin degrees of freedom have reached a local
equilibrium. So there should be a spin-vorticity coupling term in the distribution function to
give the global polarization proportional to the vorticity when it is small. However it is un-
known if particle spins are really in a local equilibrium. In this paper we aim to construct a
microscopic model for the global polarization from particle collisions without the assumption
of local equilibrium for spins. The polarization effect is incorporated into particle scatterings
at specified impact parameters with spin-orbit couplings encoded. The spin-vorticity cou-
pling naturally emerges from particle collisions if we assume a local equilibrium in particle
momenta instead of particle spins. This provides a microscopic mechanism for the global

polarization from the first principle through particle collisions in non-equilibrium.
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As an illustrative example, we have calculated the quark polarization rate per unit volume
from all 2-to-2 parton (quark or gluon) scatterings in a locally thermalized quark-gluon
plasma in momentum. Although the processes for anti-quark polarization are different from
those for quarks, it can be shown that the polarization rate for anti-quarks is the same as
that for quarks because they are connected by the charge conjugate transformation. This
is consistent with the fact that the rotation does not distinguish particles and antiparticles.
The spin-orbit coupling is hidden in the polarized scattering amplitude at specified impact
parameters. The polarization rate involves an integral of 16 dimensions, which is far beyond
the capability of the current numerical algorithm. We have developed a new Monte-Carlo
integration algorithm ZMCintegral on multi-GPUs to make such a heavy task feasible. We
have shown that the polarization rate per unit volume is proportional to the vorticity as
the result of particle scatterings, a non-equilibrium senario for the global polarization. So
we can see in this example how the spin-vorticity coupling emerges naturally from particle

scatterings.
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Appendix A: Single particle state as a wave packet in relativistic quantum mechanics

In this appendix, we will give definitions and conventions for the single particle state in

coordinate and momentum space and those for the wave packet.
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1. Single particle state in coordinate and momentum space

For simplicity we first consider the single particle state of spin-0 particles, then we gen-
eralize it to spin-1/2 particles.
A position eigenstate is denoted as |x) and satisfies following orthogonality and complete-

ness conditions

(x'Jx) = 0¥ (x' —x),

1 = /d?’x 1x) (x]. (A1)

The normalization of the state |x) is then

(x[x) = 5(3)(X -Xx) = / (;lﬂ_];g - %Z’ (A2)

where () is the space volume.

A momentum eigenstate is denoted as |p) and satisfies following orthogonality and com-

pleteness conditions

(p'lp) = 2E,(27)*6® (p — p'),
1= /(ZZT];BQ—;)IW (p|, (A3)

where E, = /|p|? + m? is the energy of the particle. Note that (p’|p) is Lorentz invariant.

The normalization of |p) is then
(plp) = 2E,(2)*6®) (p — p) = 2E,9. (A4)
From Eq. and we can define the inner product (x|p) as
(xIp) = v/2E,e™ (45)

With the above relation we can check

¥ x—x) = (¥|x) :/%%@ﬂm (plx)
_ ﬂeip-(X’*x)

where we have inserted the completeness relation in (A3]). We can express |x) in terms of

|p) and vice versa,
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2 = [ g 0 ek = [ Gl ),

) = [ dlx) (xip) = V2B, [ daem ). (A7)

2. Single particle state as a wavepacket

In the real world a particle is always localized in some finite region, so its state can be

represented by a wavepacket |¢) which is a superposition of plane wave states,

Bk 1
0= [ G aeto . (A8)

and ¢(k) is the amplitude and can be normalized to unity,

(016) = [ Gsloil = 1. (49

The energy dimension of |¢) is 0. A typical form for ¢(p) satisfying Eq. (A9) is the Gaussian

wavepacket
8m)3/* (P — Po)°
(P —Ppo) = oA P {—T 7 (A10)
which is centered at py. The wavepacket function in coordinate space is
d3k ik-x
P(x) = (x|¢) = so(k)e™, (Al1)
(2m)

where we have used Eq. (A5]).

If we displace the particle state by b in coordinate space, the new wavepacket function

is given by .
d’k ,
¢/(X) = ¢(X — b) = / (27T)3(/b<k)€lk-(xfb) — <X|Q§/> ’ (A12)
where the new wavepacket state is
Bk 1 ,
) = [ G Tagoioe ™ k). (A13)

For spin-1/2 particles, the single particle state |k, A\) has a spin index A which is the spin

along a quantization direction. The orthogonality and completeness conditions in (A3]) now
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become

K, Nk, \) = 2E,(27)%6®) (k — K)o v,
1—/ﬁLZ| ) (p A (A14)
- (27T>32Ep - p? p7 .

The wavepacket has the form

A3k 1
6,0) = / G Tt ). (A15)

and satisfies the normalization condition (¢, A|¢, A) = 1 similar to Eq. (A9).

Appendix B: Expansion of f4 and fp in impact parameter

We can make an expansion of fa (X. + yer/2,pc.4) 8 (Xe = Yer/2, pe.s) in yer = (0, b.)
if |b.| is small compared with the range in which f4 and fp change slowly. The variables
with the subscript ¢’ are defined in the CMS of the scattering, while those without ¢’
are defined in the lab frame. We assume that the system has reached local equilibrium in
momentum and the phase space distributions depend on the space-time through the fluid
velocity u*(z) and temperature T'(x) in the form f(x,p) = f[B(x)p - u(x)].

To the linear order in y. 7, we have

fA <Xc + ycT’T?pc,A) fB (Xc - yCT’Tapc,B>

~ fA (Xcapc,A) fB (Xcapc,B)
1 0fa (X, pe
+§ ZT [ fA( P ’A) fB (X07pc,B) - fA (Xcapc,A>

oxX?
= fa(Xe,pea) f5(Xepe) + %yﬁTag;Zp)
%if?ﬁ(u)fc-}icf)) ~Peafa o pes) dgchﬁiLXzfj}
= fa(X,pa) fp (X,pB) + %yé”Tg))g; aéi?,,p)
dfa (X, pa) (X, pa) df (X7PB)} 7

d(Bu - pa) d(Bu - pp)
where in the second equality we have boosted to the lab frame using fa (X,pa) =

fa(Xe,pea) and  fe(X,pp) = [f(Xe, pen) We look closely at the term

afB (Xc7 pc,B>
oOXE

X pZAfB (XC7 pc,B)

X {pifB (X,p5) (B1)
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Yer[0(Buc,) /OXEIPL 4,
p 0(Bu,) 1 w  pl {a(ﬂuc,p) a(ﬁuc,u)]

Yerlea—g 5w

s | Toxz ~ Toxe
ot | o+ S
- Bty + ol [Ae) 2]
= —5 L5 + }ly%pﬁ}A [af;‘;p) + 8((5;2“)} : (B2)

where [up] and {up} denote the anti-symmetrization and symmetrization of two indices
respectively, LELC‘; = ykapg]A is the OAM tensor, and w') = —(1/2)[0; (Buc,p) — 05 (Bucy))
is the thermal vorticity. We see that the coupling term of the OAM and vorticity appear
in Eq. (Bl]). The second term in last line of Eq. (B2)) is related to the Killing condition
required by the thermal equilibrium of the spin.

Using X* = A* X” and X* = [A7!]* XV, so we have g%; = [A7']Y, = AY and then Eq.
(B1)) becomes

fA (Xc + yc_7T7pc,A> fB <Xc - yc_yT’pr)

2 2
= fa(X,pa) f5(X,pB) + %yZT[A_I]Vuaéégyp)
dfa (X, oo (X,

In Appendix |C| we give the exact form of A¥ and [A~1]*

v

Appendix C: Lorentz transformation

In the lab frame two colliding particles have on-shell momenta ps = (E4,pa) and pp =
(Eg,pB). The Lorentz transformation for the energy-momentum from the lab frame to the

CMS of two colliding particles is

Pci = DPi + (Vbst - 1)‘}bst(\7bst : pz) - ’YbstvbstEia
Ec,i = ’7bst(Ei — Vhst - pl) (Cl)

where i = A, B, v is the boost velocity or the velocity of CMS in the lab frame and is

given by
PA + PB

Vst = =
bt R+ By

(C2)
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and
Tost = (1 - |Vbst|2)_1/2u (C?’)

is the Lorentz contraction facror corresponding to vis. Equation (C1)) defines the Lorentz
transformation matrix A*. The reverse transformation to (Clf) from the CMS to the lab

frame can be obtained by flipping the sign of vy,

Pi = DPcy + <7bst - 1){’bst (‘A’bst : pc,i) + foStVbStEC,%
Ei = f}/bst(Ec,i + Vst - pc,i)- (04)

The above defines the Lorentz transformation matrix [A~']~.

The Lorentz transformation for x4 = (t4,x4) and zp = (t,xp) is

Xc,i = Xj + (/Ybst - 1)‘7bst(</bst : Xi) - /Ybstvbsttiy

tc,i = rYbst(ti — Vbst Xi>‘ <C5)
The difference of two space-time points in the CMS are expressed in lab frame variables,

Atc = tc,A - tc,B = ’Ybst(At — Vbst ° AX),

AXc - AX + (/Vbst - 1)‘7bst (‘A/bst : AX) - rbetVbStAtu <C6)
where At =1, —tp and Ax = x4 — xg. We then express the impact parameter as
bc = AXC : (1 - ﬁc,Af)c,A)~ <C7)

Let us look at the CMS constraint 0(At.)d(Az. ) in Eq. (we have recovered the
subscript ’c’). The condition At, = 0 leads to

At = Vi - AX, (C8)
while the condition P, 4 - Ax. = 0 leads to
(va—vp) Ax =0, (C9)

where we have used

AXC = Ax + (P)/b_si - 1){,bst({’bst : AX)? (ClO)

which is the result of Egs. (C6J[C8). The condition in Eq. (C9) means that (x4—xp) L (va—
vg). Equation (C8) and (C9)) are the lab frame version of the constraint 6(At.)0(Ax.r).
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Appendix D: Integration over impact parameter and Delta Functions in Eq. (21))

We carry out the integration over the impact parameter and show how to remove the
delta functions by integration in Eq. .

Substitute Eq. 23] into Eq. we have the integration of b, in the following form
1
bz

1
= ——— — [ &b, a-b,.) —
Oa; Oa; Oay, / exp (ia ) b2

C

I(b,) = i/d2bcexp (ia-b.) 5beberbe

o 0 0 bo 1
= 27— db.— b D1
7T@al Oa, aak/o Cbcjo(a ) (D1)

where b, = |b.|, by is the cutoff of b., a = k|, ; — ke 4, and

Jo(ab.) = L /27r d¢ exp (iab. cos ¢) . (D2)
0

27
Then we carry out the derivatives on a;, a; and ay,

1 wo
I(b,) = _QWEQ;;M dww? J)" (w)
0

wo

2 Ql [ dwlwdjw) + Siw)] (D3)

where we have used wy = aby with by being the upper limit or cutoff of b., J; (i = 0,1,2)

are Bessel functions, and

L aia;ag
Jkl — ad
1
T 2 2 2
Qin = = (a a,0;; + a0, + a“a;oy — 3alajak,) ) (D4)

Note that the overall minus sign of Eq. (D3] cancels the one in Eq. .
We carry out the integration to remove the delta functions. First we integrate over k. p
and k;, p to remove six delta functions in three momenta, the result is to make following

replacement in the integrand

kc,B = Pec,1 + Pec2 — kc,A7

k.5 = Peq + P2 —kia (D5)

We are left with two delta functions for energy conservation which can be removed by the

integration over k%, and k7, where L’ means the longitudinal direction along p, 4. To this
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purpose, we express the energies in terms of longitudinal and transverse momenta

Bea = \J(kEA2 + (KL,)? +m?,
E.p = \/(pZJ + Pz,z - ch,A>2 + (ch,l +p£2 - kcL,A)z +m?,
By = \J (K502 + ()2 + m2,

Ep = \/(PZ,l + Py — ka)Q + (pf,l +PCL,2 - kf;j,:A)z +m?. (D6)

So two delta functions for energy conservation become

I(0F) = 6(Bea+ Eep — E.q — E.»)

1 1
= e — koDl + oy 0lkea — koa(2)]
[Ja(kE (1) et e [Ja(kE (2)] et e
I(0E") = 6(E, s+ E. g — Ecq — Ep)
1 1
= ————— Ok — KB (D] + = ORI — K (2 D7
TaGrz, ) er ~ eI g gy hea ~ @l (D7)
where the Jacobians of two delta functions are given by
0
Ja(kcf:A) = akLA (EC,A + EC,B - Ec,l - Ec,2)
1 1 1
_ L _ L L
- kc,A (EC,A + EQB) EQB (pc,l +pc,2>7
0
Ja(kia) = m(Eé,A + B, g — Eea — Eep)
1 1 1
= ké,LA (Eé’A + EéB) - Eé’B (ch,l +p£2)7 (DS)

and k% ,(1 = 1,2) and K (i = 1,2) are two roots of the energy conservation equation
Eea+Eep—Eey — Ecp =0and E, y + E, 5 — E.1 — E.2 = 0, respectively. The explicit

forms of k% (i = 1,2) and k(i = 1,2) are

kcL,A(LQ) = (O £y,

ké,LA(la 2) kcL,A(lv 2)[ch,A - k’c,TA]a (D9)

where C and C are given by

1 . p£1 + pg,z

2 (Ee1+E.2)?— (ch,1 +PCL,2)2
X [(ECJ + E.9)® — (PcL,l + Péz)g

"’2(1321 + ng) ) ch,A - (PZl + PZz)Q] )

1 Ec 1 + EC 2
o= L 1+ Ee, VI, D10
2 2 (Ec,l + Eﬂc,2>2 - (pél +p£2)2 ( )

C, =
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with H being defined by

H = (Ec,l + Ec,2)4 + 4m2(pf,1 + p£2)2 + (pc,l + pc,2)4
+4(k2 1) (et + Pe2)® — 4(Pet + Pe2) [kl 4 - (PL) + PLy)]
_Z(Ec,l + Ec,Q)2

x[2m® +2(k )% — 2K. 4 - (PLy 4+ PLa) + (Pt + Pe2)’]- (D11)

Appendix E: Some formula for Dirac spinors

The Hamiltonian for a Dirac fermion with the mass m is given by

H = a-p+ym
m o-
- P, (E1)
o-p —m
where v* = (90,7) are Dirac gamma-matrices, o = 797y, and & = (01,09,03) are Pauli

matrices. The energy eigenstate can be found from the equation

gl Y=+ "], (E2)

¢ ¢
where £, = \/p? + m?, the sign + in the right-hand side corresponds to positive/negative
energy state, xy and ¢ are Pauli spinors which form a Dirac spinor (x, ¢). We can express y

in terms of ¢ and vice versa,

_ _o'p
X = nEp—m¢’
o-p
= - 3 E3
¢ nEp—i—mX (E3)

where n = +1 correspond to the positive and negative energy state respectively. So the

positive energy solution becomes

e Xs
U(87 p) = Ep + m op ) <E4)
Ep+mX5
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where s = £1 is the spin orientation of the Pauli spinor and n = (sin 6 cos ¢, sin 6 sin ¢, cos 6)

is the spin quantization direction. The spin eigenstates along n are given by

e~ cos g
X-‘r = .9 )
Sin )
—e % gin g
X- = . : (E5)
cos 3
which satisfy
cosf e ®sind
g-n — ) )
e®sinf — cosf
(0 m)xs = 5. (E6)

The negative energy solution can be put into the form

__op
3s,p) = VE, +m | BN (E7)
Xs

The Dirac spinor for anti-particles can be defined by

op
v(s,p) =0(—s,—p) =V E, +m EptmX—s 7 (E8)

or defined in terms of the positive energy solution,
- 2, % . %UQX:
v(s,p) =iy u*(s,p) = —iVE, + m P . (E9)
02X

The two Dirac spinors in (E8) and (E9)) are actually the same up to a sign.
Now we rewrite the Dirac spinor of a moving particle in the way of a Lorentz transfor-
mation of the one in the particle’s rest frame. The Lorentz transformation matrix for the

Dirac spinor is given by

1 .
A1j2(p) = exp (—5%04 : p)

1 . 1
= cosh (énp) — (a . p) sinh (5771;) )

1 .
A1_/12(P) = Ayj2(—p) = exp <§77pa ' P) ; (E10)
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where p = p/|p| is the momentum direction, 7, is the rapidity satisfying E, = m cosh(n,),
Ip| = msinh(n,), v, = tanh(n,), E, + m = 2mcosh® (3n,), E, — m = 2msinh® (1n,). So

u(s,p) can be expressed by a Lorentz boost of u(s,0) for the particle at rest,

u(s,p) = VE,+m A = A12(=p)u(s, 0)

op
Eerme

_ \/% cosh (%np) Xs ‘ (Ell)
(o - p)sinh (37,) X5

In the same way we can rewrite v(s,p) as

X —s
U(‘Svp) = vV Ep+m vt :A1/2(—p>?}<870)
X—s
-D)sinh (% s
N IO (E12)

cosh (57) X

With Egs. (E11JE12) we have following formula

> u(s,p)u(s,a) = Aija(—p) ZU(&O)U(&O)] Ayjy(—a)

s L s

= mA12(=P)(1 +70)AT5(—a

)
ZU(S’p)@(&q) - Al/z(_p) ZU(S,O)U(S,O)] Al_/IZ(_q)
)

s L s

where we have used u(s,q) = u(s, O)A;/é(—q), u(s,q) = o(s, O)Al’/g(—q),
Yo u(s,0)a(s,0) = m(l+ ) and >, v(s,0)v(s,0) = m(—1+ 7).
The spin projector is defined by

1
(s,n) = 5(1 + s75n77,) (E14)

where n? is the Lorentz boost of the polarization vector (0,n) in the particle’s rest frame

satisfying n - p = 0 and n? = —1. In the particle’s rest frame, we have
1
Hrest(s,n) = 5(1 + sn - 2)
1[{14+sn-o 0
= - (E15)
2 0 l—sn-o
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We have following properties for the spin projector

II(s,n)u(s,p) = u(s,p),
II(s,n)v(s,p) = v(s,p),
II(s,n)u(—s,p) = 0,
I1(s,n)v(—s,p) = 0. (E16)

As an example, we can explicitly verify the first one as

(s, m)u(s,p) = 51 a(~p)u(s, 0)

F55n735A2(~PIA (D) a(~p)u(s, 0

_ %Al/g(—p)u(s,O)
+%SA1/2(—p)%n"A§ (=p)yu(s,0)

= ZAus(-p)u(s,0)
+5shua(~p)o(n - Dus,0)

= A1)2(—P)iest (5, n)u(s, 0)

= u(s,p), (E17)

where we have used A;/z(—p)%/\l/g(—p) = AY(—p)y, and AY(—p) = A% (p). Using the

spin projector, we have the following relation
H(807 n) Z U(SJ p)a(87 p) = H(807 n) (p -y + m)lp#:(E‘mp)
= U(So, p)ﬂ(So, p)’ (E18)

where p - v = p,y*.

Appendix F: Polarized amplitudes for quarks in 2-to-2 parton scatterings

In this appendix, we give polarized amplitudes for quarks in all 2-to-2 parton scatterings
listed in Table |2, We assume the same quark mass m for all flavors and that the external
gluon is massless. We introduce a mass into internal gluons or gluon propagators in the t

and u channel to regulate the possible divergence.
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All kinematic variables are defined in the CMS in this appendix, for notational simplicity
we will suppress the subscript 'c’ for all variables, for example, p4 actually means p.4. The

values of color factors, denoted as Cyp_,cp for the process A+ B — C + D, are given in

Table [l

1. qguqp — qaqy With a £ b

Following the Feynman diagram in Table 2] we obtain the difference in the squared
amplitude between the spin state s, = 1/2 and sy = —1/2 for ¢, in the final state,

Ajggqb%qa% — Z’]({;Qb‘)(IaQb (82 — 1/2) _ [g;qbﬁqa% (52 — _1/2)
1
4 2
= Clrupy—gaq Js™M 272

XTr [ (pr - + M)y Asja(—Ka) (o + DAL (—K4)7]

XTI 35(n ) (P2 - 7 + M) (k) (o + DAL (-Kp)% | (F1)

where ¢ = k4 — p1 and ¢’ = K’y — p; are momenta in the propagators.

2. GaQp — Gaqp With a £ b

For the polarization of ¢, we obtain

1
q2q/2
xTr [’Y“(pl = m)y Ay (=K (0 — 1)AI/12(—kA)]

XTI 35(n ) (P2 - 7 + M) o(—k) (o + DAL (-Kp)% | (F2)

Gaqb—+Gaqy __ 4 2
AI]\/I - C‘jaQb_ﬂjaqngm

where ¢ = k4 — p1 and ¢’ = K’y — p; are momenta in the propagators.
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3. Qu9a — Qula

For the polarization of ¢, in the final state, we obtain

Gaga—qala (1) 4 2 1
A‘[]\4 CQaQa_)QaQagSm 2 12

9141
xTr [%(n V) (P2 -y +m)y Aya(—kp) (0 + DA (= kﬁg)v”]

T [ (15 = m) s ya(=Ky) (0 = DA(Ka)]

) 1
_anqaﬁqaqagsm 2 .12

q19s
xTr [75(71 ) (D2 -y +m)y Arja(—kg) (Y0 + 1A 5 (—Kp)

X Auya(—K) (0 = DATS(=ka)(pr -7 = m)y |

1
_c® g'm
Ga9a—>GaqaJs q%q?

xTr [ys(n - 7)(p2 -y + m)yulpr -y — m)w
% Aaja (=K (30 = DAL (=Ka)7 Ao (k) (90 + DAL (—Kp)r|

1

1

Céa()la_ﬂ]a‘hgs q%qu

XTr | Ara(=K4) (70 = DAL 5 (=ka)y"Arya(—kg) (o0 + DAL (=) }
XTr [ys(n-v) (P2 - v+ m)yu(pr - v — m)n), (F3)

where ¢ = ka — p1, @@ = ka + kg, ¢ = Ky — p1 and ¢, = Kk} + Kz are momenta in the

propagators.

4. a9 — GaYa

For the polarization of ¢, in the final state, we obtain



AIQ&QaHQaQa
M

— oM 4,02
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1
qaqa‘)anags q%q/f

xTr [(pl cy 4+ m)yH Ao (—ka) (o + 1)1\1/2( k) V}

X Ir [%m )27+ M)y a(—ke) (0 + DATA(—Kp))

(2) g2
daq9a—9aqa’ S q%q?

xTr [(pl -y —+ m)")/’uAl/Q(_kA)(PYO + 1)A1/2( k/ ),YV

X 5 7) (P2 -+ m)yhsa(—Kn) (o + DATL(—Kp)
2) 21

qaqa_NIELQagS q/12q§

XTr |1 As2(—Ka) (0 + DAL (=KW (1 - +m)

X A 2(—ks) (0 + DA (—Kp)ws(n - 1) (b2 -y +m)

1
+oW . m?——
qaqa (IH.Qag ng%
XTI' [’)/5(71 . '7)(]92 -y —+ m)’}/'uAl/Q( kA)(’VO + 1)A1/2( k’ ) Vi|
X Tr [ Auya(—ki) (90 + DAL (—Kp) (1 -7 +m)y (F4)

where ¢1 = ka—p1, g2 = ka—p2, ¢} = k/y —p1 and ¢4 = K’y — ps are momenta in propagators.

5. 99 —* GaYa

In principle, the ghost diagrams should also contribute. However, its contribution is

canceled when we calculate ATl ngg_)q“q“. For the polarization of ¢, in the final state, we



obtain
AJ99Gada _ 1) gt 1 I
. e (g — ) g = )
) 4 1
T =)

1
_ 0(3) 4 _[3

w3 (g m2)gg
+Hoogtsand! (47 — mQ)l(qg —m?) i
+Coh! (g5 — mz)l(%2 -
+Closaaa s ml 6

3) 4 1
- QQQQaQagS ( /2 [

7

ar — m2)q3
(3)

+C

4
gg_ﬂjaQa‘gS ( 12
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(4) 4 1
+C5953.909s =573 195
99—7aq q§ qéz
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(F5)

where ¢1 = ka—p1, @@ = pa—ka, g3 =ka+kp, ¢, =ky—p1, ¢ =p2— K,y and ¢4 = K/, + kg

are momenta in propagators, and the terms I? for i = 1,2,--- ,9 are given by

I = Tr[ys(n-v)(p2 -y + m)v (qr - v + m)y*

X (pr -y — mV (q) -y + )Y |G Gonr

Iy = Te[ys(n-v)(p2 -y +m)v (g1 - v + m)y*

x(pr -y —m)V (gh -y + M)V |Gy Gonr

Iy = Trlys(n-v)(p2 -y +m)y (g1 -y +m)Y" (1 - ¥ — M) Vor | G G
x[g7 " (=g — k)Y + g™ (Ky — k)7 + 77 (Kl + ¢5)"]

Iy = Te[ys(n-7)(p2 -y + m)y*(q2 - v +m)y”

x(pr -y —m)V" (q) - v + M)V |Gy G

(F6)

(F7)

(F8)

(F9)



Is = Tr[ys(n-7)(p2 - v + m)v*(q2 - v +m)y”

x(pr -y —m)V (gh -7 + M)V |Gyt Gor

Is = Tr[ys(n-7)(p2 -y +m)y"(q2 - v +m)y" (1Y — M) Vol Gy G
X9 (—gy — Ky + g (Ky — ki)™ + g (K + ¢b)"]

I = Trlys(n )2y +m) e (01 -y — )V () -y + )Y |G G
X9 (—qs — ka)” + g""(ka — kB) + "7 (kB + g3)"]

Is = Trlys(n-9) (2 -y + M) (1 -y — m)V (g5 - v + M)V |Gy G
X[g7"(—q3 — ka)” + 9" (ka — k)7 + ¢"7 (kB + q3)"]

Iy = Tr[ys(n-9)(p2 - v +m)ve(p1 - v — m)vor]
X[g7"(—q3 — ka)” + g™ (ka — kp)° + ¢"7 (ks + q3)"]
(g7 (=g — k)Y + g (Ky — Kg) + " (K + d4)" ]

X G Guv'

6. 99 — 94
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(F10)

(F11)

(F12)

(F13)

(F14)

In principle, the ghost diagram should also contribute. However, its contribution is

canceled when we calculate AJ§l 9%,

For the polarization of ¢, in the final state, we



obtain

AL = Cg}zzﬁgqagsmﬂfl
a4y

+nga—>gqags q%(qfl— mQ)IZ

~Char 90,95 2 (g2 1_ m?) I3
+C§Qa‘>g(1a‘gs q?(qgl mz)Lx
T
it
o éggﬁgqaggmmb
P
o, 4m(q32, - m2)1(CJé2 - mQ)I9
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(F15)

where ¢y = ka —p1, o =p2—ka, 3 = ka+kp, ¢y = ky —p1, ¢o = p2 — Ky and ¢5 = Ky + ki

are momenta in propagators, and the terms I/ for i = 1,2,--- ,9 are given by

I = Te[ys(n-9)(p2 - v+ m)veArye(—ks) (Yo + 1)AT ) (—Kkp )]
X G G [97 (ka + p1)” + 67 (0 — p1)" + 97" (=1 — ka)"]

X[g"" (K +p)7 + 977 (g — )" + g7 (—q) — k)]

Iy = Te[ys(n-9)(p2 - v +m) e A1 e(—ks) (v + 1A, (—kf)
X’YV/ (g -7+ m)Vul]guu’QW’

x[g" (ka+p1)” + 97 (@ —p)* + ¢ (—q1 — ka)"]

Iy = Tr[ys(n-9)(p2 - v+ m)yeh1e(—ks) (v + 1A, (—Kkf)
X'Y“/(qé Y+ m)’yy/]guu’gw’
X[g" (ka+1p1)7 + 97 (1 —p)* + 97" (—q1 — ka)"]

(F16)

(F17)

(F18)
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I = Te[ys(n-v)(p2 -y +m)v (g2 - v + m)y”
XAI/Q(_kB>(70 + 1)A;/12(_k39>70’]guu/guu’
X[g"V (Ky +p0)7 + g7 (g — p)" + g7 (—q; — kW)Y (F19)
Is = Tr[ys(n-v)(p2 - v+ m)v (g2 - v +m)y”

xA1jo(—kg) (70 + 1)A1_/12(_k33)

XVV/ (g5 + m)vu’]g##,gw, (F20)
Is = Tr[ys(n-v)(p2 - v +m)v" (g2 - v+ m)y”

x Ar2(—kg) (0 + 1AL, (=)

X,-yl/<qé Y+ m)'yy,]gu,u’gw/ (FQl)

I = Trlys(n-7)(p2 -y +m)y"(gs - ¥+ m)y"
xA1j2(—kg) (70 + 1)/\1_/12(_1{33)%’]%#’9'/”’
(9" (Ky + )7 + 6" (dy = p)" + g7 (—q) — k)] (F22)
Is = Te[ys(n-y)(p2 - v +m)y"(gs -y +m)y"
xA1jo(—kg) (0 + DA, (—Kfp)
7 (g -y + M)V |G G (F23)
Iy = Tr[ys(n-7)(p2 -y +m)y" (g5 - v +m)y*
xA1ya(=kg)(v0 + DA, (—kp)

X (g ¥ + M)V |Gy G (F24)

7. GaQa — Qpqp With a £ b

For the polarization of ¢, in the final state, we obtain

_ _ 1
ALt = anqaeqbqbgﬁmgﬁ

q-q

XTr | Ao (=K (0 — DA (—ka)y"
X Ayja(—Kp) (0 + DAL 5(—Kp)7"]

XTr [ys(n - ) (p2 - v — m)yu(pr -y — m)n), (F'25)
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where ¢ = k4 + kp and ¢’ = k/; + k3 are momenta in propagators.
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