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Abstract

The evolution of spin-orbit splittings of neutron drops along with the neutron number and

its connection with the tensor-force strength have been investigated systematically for different

external fields in the relativistic Brueckner-Hartree-Fock (RBHF) and relativistic Hartree-Fock

(RHF) theories. Based on the RHF functional PKO1, it is found that a good consistency between

the RBHF and RHF results for the total energies can be obtained only for those neutron drops,

whose central densities are close to the saturation density of nuclear matter. Nevertheless, by

rescaling the density dependence of the RHF functional, the RBHF total energies of neutron drops

in different external fields can be well reproduced. The optimized tensor-force strength λ in the

RHF theory, which reproduces the microscopic RBHF spin-orbit splittings, is running with the

strength of the external fields of neutron drops. This provides an important guide for future

determination of tensor forces in nuclear energy density functionals based on microscopic ab initio

calculations.
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I. INTRODUCTION

The covariant density functional theory (CDFT), with a few parameters, has achieved

great success in describing the basic properties for most nuclei in the nuclear chart [1–

7]. One of the frontiers in nuclear physics is to derive nuclear density functionals from ab

initio calculations in terms of the nucleon-nucleon (NN) interactions [8, 9]. Progress has

been made in Ref. [10] by fitting to the isovector effective mass difference derived from the

relativistic Brueckner-Hartree-Fock (RBHF) theory for nuclear matter. From relativistic

bare NN interactions, fully self-consistent RBHF theory for finite nuclei has been achieved

[11, 12], which provides an important guide for future microscopic derivations of nuclear

density functionals. In particular, by applying RBHF theory to neutron drops, i.e., finite

number of neutrons confined in an external field, a tensor-force effect on the evolution of

spin-orbit (SO) splittings is revealed clearly [13, 14].

Tensor force is one of the most important ingredients of NN interactions in nuclei, as

manifested by the quadruple moment of deuteron [15]. Over the past decades, the effects of

tensor force in exotic neutron-rich nuclei have also attracted a lot of attentions due to its

essential role in the evolution of shell structure [16–20]. Moreover, the tensor-force effects in

nuclear excitations have also been investigated extensively, such as Gamow-Teller transitions

[21], charge-exchange spin-dipole excitations [22], non-charge-exchange multipole responses

[23], the first 0− excitation energies [24] and magnetic excitations [25]. Lots of efforts have

been devoted to explore the impact of tensor forces in nonrelativistic Skyrme [26–38] and

Gogny [18, 24, 39–42] density functional theories (DFTs) as well as the relativistic ones

[19, 43–51].

However, the determination of the strength of tensor forces in finite nuclei is very chal-

lenging because it is difficult to find significant features in experimental data which are

only connected to tensor forces and therefore suitable for an adjustment of their parameters

[13]. Therefore, much attention has been paid to the meta-data from microscopic ab initio

calculations for constraining the strength of tensor forces.

The neutron drop consisting of a certain number of neutrons confined in an external

potential can be calculated with both ab initio methods [52–59] and DFTs [60, 61], due to

the simplicity of missing proton-neutron interactions. In Ref. [61], strong linear correlations

between the neutron drop radii and the neutron skin thickness have been established, and
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the linear correlations are used to constrain the three-neutron forces.

In Ref. [13], the tensor-force effect in neutron drops has been studied by the ab initio

RBHF theory with the Bonn A interaction [62]. Moreover, it is suggested that the strength

of tensor force in the relativistic Hartree-Fock (RHF) density functional PKO1 [43] could

be determined by adjusting to the RBHF results for the evolution of SO splittings in the

neutron drops from N = 8 to N = 50 confined in a harmonic trap with the strength ~ω = 10

MeV. This provides an interesting way to determine the strength of tensor forces in nuclear

density functionals, and it has been implemented in recent works [13, 14, 63].

In Refs. [13, 14, 63], the strength ~ω for the external harmonic oscillator (HO) field in

neutron drops is fixed at ~ω = 10 MeV. In Refs. [61] and [64], the nuclear matter properties

at saturation density and two times saturation density have been investigated, by choosing

the strength ~ω = 10 and 25 MeV, respectively. Therefore, it is important to investigate

the impact of the strength of external fields for neutron drops on the tensor-force strength.

In this work, the neutron drops with even neutron number from N = 8 to N = 50

confined in a harmonic trap with the strength varying from ~ω = 5 to ~ω = 20 MeV are

studied with the RBHF theory and RHF theory. In particular, the impact of tensor forces is

investigated by analyzing the evolution of SO splittings of neutron drops in different external

fields.

This paper is organized as follows. In Sec. II, the theoretical framework of the RBHF

and RHF theories is briefly introduced. The numerical details are given in Sec. III. The

calculated results and the discussions are presented in Sec. IV. Finally, the summary is

given in Sec. V.

II. THEORETICAL FRAMEWORK

Starting from a relativistic one-boson-exchange NN interaction [62], one can build the

stationary many-body Hamiltonian,

H =

∫

d3rψ̄(−iγ · ∇+M)ψ +
1

2

∑

α

∫

d3r1d
3
r2ψ̄(r1)Γ

(1)
α ψ(r1)Dα(r1, r2)ψ̄(r2)Γ

(2)
α ψ(r2),

(1)

where ψ denotes the nucleon field and M is the rest mass of the nucleon. The index α is

running over all types of mesons to be exchanged in the NN interaction and the exchanged

photons in the Coulomb interaction. The interaction vertices Γ
(1)
α and Γ

(2)
α correspond to the

3



particles 1 and 2 with the coordinates r1 and r2, respectively. The retardation effects are

ignored in the propagator Dα(r1, r2) for mesons and photons. For the Bonn interactions,

each vertex is attached with a form factor of monopole type [62].

The nucleon field ψ(r) can be expanded with a given set of Dirac spinors ψk(r):

ψ†(r) =
∑

k

ψ†
k(r)b

†
k, ψ(r) =

∑

k

ψk(r)bk, (2)

where b†k and bk form a complete set of creation and annihilation operators for nucleons in

the state |k〉 with positive or negative energies. Then, the Hamiltonian (1) can be rewritten

as

H =
∑

kl

〈k|T |l〉b†kbl +
1

2

∑

α

∑

klmn

〈kl|Vα|mn〉b
†
kb

†
l bnbm, (3)

where the relativistic kinetic energy matrix element 〈k|T |l〉 and bare NN interaction matrix

elements 〈kl|Vα|mn〉 are respectively given by

〈k|T |l〉 =

∫

d3rψ̄k(r)(−iγ · ∇+M)ψl(r), (4)

〈kl|Vα|mn〉 =

∫

d3r1d
3
r2ψ̄k(r1)Γ

(1)
α ψm(r1)Dα(r1, r2)ψ̄l(r2)Γ

(2)
α ψn(r2). (5)

Due to the strong repulsive core in the bareNN interaction, a direct Hartree-Fock solution

of the Hamiltonian (3) is not accessible. The Brueckner theory [65, 66] is, thus, adopted

to soften the bare interaction into an effective interaction in the nuclear medium, i.e., the

G matrix. It takes into account the short-range correlations by summing up all the ladder

diagrams of the bare interaction and is deduced from the Bethe-Goldstone equation [67],

〈ab|Ḡ(W )|a′b′〉 = 〈ab|V̄ |a′b′〉+
1

2

∑

cd

〈ab|V̄ |cd〉
Q(c, d)

W − εc − εd
〈cd|Ḡ(W )|a′b′〉, (6)

where 〈ab|V̄ |a′b′〉 =
∑

α〈ab|Vα|a
′b′ − b′a′〉 is the anti-symmetrized two-body matrix element,

and the summation of α is only running over mesons. The starting energy is denoted by

W , and εc and εd represent the single-particle energies of the |c〉 and |d〉, respectively. The

Pauli operator Q(c, d) allows the intermediate states c and d in Eq. (6) to run over all the

states above the Fermi surface.

In the relativistic framework, the single-particle states are obtained by solving the RHF

equation,
(

T + U +
1

2
Mω2r2

)

|a〉 = ea|a〉, (7)
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where ea = εa +M is the single-particle energy with the rest mass of nucleon M . Here the

external field Uex =
1
2
Mω2r2 has been added explicitly for neutron drops. The self-consistent

single-particle potential U is defined by the G matrix,

〈a|U |b〉 =
A
∑

c=1

〈ac|Ḡ(W )|bc〉, (8)

where the index c runs over all the occupied states in the Fermi sea (no-sea approximation).

The detailed choices of the starting energy W can be found in Refs. [12, 14].

In contrast to the RBHF theory, the starting point of the RHF theory is an effective

interaction, which is intermediated by two isoscalar meson fields (σ and ω), two isovector

meson fields (π and ρ) and the photon field A, and is adjusted to the properties of finite

nuclei and nuclear matter [43]. The self-consistent single-particle potential comes directly

from this effective interaction, rather than from G matrix in the RBHF theory. Details can

be found in Ref. [43, 68].

III. NUMERICAL DETAILS

For the RBHF calculations, the Bonn A [62] interaction is used in this work. The initial

single-particle basis is chosen as a set of Dirac Woods-Saxon basis [69], and it is updated

self-consistently in each iteration of the RBHF calculations [12]. The energy cut-off is 900

MeV for the positive-energy states and −1700 MeV for the negative-energy ones, and the

single-particle orbital angular momentum cut-off is 25 ~. The two-particle coupled total

angular momentum cut-off is 10 ~. Spherical symmetry is assumed in the calculations, and

the external HO fields with ~ω = 5, 10, 15, and 20 MeV are considered for neutron drops.

The Dirac basis is solved in a box with the size Rbox = 7 fm for ~ω = 15 and 20 MeV, and

Rbox = 8 fm for ~ω = 5 and 10 MeV.

For the RHF calculations, the effective interaction PKO1 is adopted [43]. The πN cou-

pling constant fπ has an explicit exponential density-dependent form

fπ(ρb) = fπ(0)e
−aπξ, (9)

where ξ = ρb/ρ0 is the ratio of baryonic density ρb over baryonic saturation density of nuclear

matter ρ0 = 0.1520 fm−3 and aπ = 1.2320, fπ(0) = 1.0. In the following, as in Ref. [13], a

factor λ is introduced in front of fπ(0) as a strength parameter.
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IV. RESULTS AND DISCUSSION
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FIG. 1. (Color online) The evolution of the 1p and 1d spin-orbit splittings with the neutron number

N for neutron drops in a HO trap with ~ω = 5, 10, 15, 20 MeV calculated by RBHF theory using

the Bonn A [62] interaction, in comparison with the results obtained by RHF density functional

PKO1 [43] with different strength of πN coupling characterized by λ.

In Fig. 1, the evolution of the 1p and 1d SO splittings with the neutron number N for

neutron drops in a HO trap with ~ω = 5, 10, 15, 20 MeV is depicted. As pointed out in

Ref. [13], the zigzag behavior of the SO splittings obtained with the RBHF theory can be

attributed to the tensor-force mechanism proposed by Otsuka et al. [17], i.e., nucleons in

two SO aligned orbits or two SO anti-aligned orbits are repulsive, while nucleons in two

orbits with opposite SO alignment are attractive. For instance, neutrons are filling in the

SO aligned orbit 1f7/2 from N = 20 to N = 28. This occupation could shift upward the

1d5/2 orbit and downward the 1d3/2 one due to the tensor-force mechanism and, thus, reduce

the 1d SO splittings. Above N = 28, the SO anti-aligned orbits 2p1/2 and 1f5/2 are filled.
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This occupation shifts downward the 1d5/2 orbit and upward the 1d3/2 one and, thus, leads

to the increase of the 1d SO splittings. Therefore, the RBHF results for the SO splittings

in neutron drops provide very useful constraints for determining the tensor-force strength

in the phenomenological RHF calculations.

As compared to the RBHF SO splittings for the neutron drops in a HO field with ~ω = 10

MeV (see the upper right panel of Fig. 1), the tensor-force effect is somewhat too weak in

the corresponding RHF calculations (λ = 1.0) though similar behavior could be obtained.

Therefore, it was suggested in Ref. [13] that the strength parameter λ should be enlarged.

Here, for example, by adjusting λ to 1.5, the zigzag behavior of the SO splittings obtained

with RBHF can be well reproduced. Note that although we present here the results for

λ = 1.5 rather than 1.3 as in Ref. [13], it does not mean that λ = 1.5 must be a better

choice than λ = 1.3. In fact, what has been done currently is solely adjusting λ to show

the feasibility of determining tensor-force strength from microscopic calculations and careful

fitting work is needed to get the precise values.

On the other hand, to perform such a fitting work, it is very necessary to study how the

value of λ is influenced by the external fields of neutron drops. In the upper left panel of

Fig. 1, the RBHF and RHF SO splittings are compared for neutron drops in a HO field with

~ω = 5 MeV. Generally speaking, the RHF results with λ = 1.0 are in a better agreement

with the corresponding RBHF ones. Note that here the bumps of 1p and 1d SO splittings

at N = 26 in RBHF calculations are not caused by tensor forces but by the energy level

inversion of 2p3/2 and 1f7/2.

The results for neutron drops in HO fields with ~ω = 15 MeV and ~ω = 20 MeV are

presented in the lower left and lower right panels of Fig. 1, respectively. In the case of

~ω = 15 MeV, the RHF SO splittings are in general larger than the RBHF ones, and the

corresponding zigzag tendency is weaker as well. This indicates that the strength parameter

λ should be in general slightly larger than 1.5 to reproduce the RBHF results for neutron

drops with ~ω = 15 MeV. Several exceptions occur, however, in the drops with neutron

number 8 ≤ N ≤ 14, where the RHF results with λ = 1.5 can well reproduce the RBHF

ones. Furthermore, in the case of ~ω = 20 MeV, it is clear that the RHF results with even

λ = 1.5 deviate significantly from the RBHF ones, and this indicates that a much larger

strength parameter λ is needed. It becomes clear now that the value of the optimized λ in

RHF is running with the strength ~ω of the external fields of neutron drops.
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FIG. 2. (Color online) Renormalized total energies by ~ωN4/3 for N -neutron drops in a HO trap

(~ω = 5, 10, 15, 20 MeV) calculated by RBHF theory using the interaction Bonn A in comparison

with the results obtained by the RHF approach with PKO1.

Futhermore, other neutron drop properties are also investigated. In Fig. 2, the renor-

malized total energies by ~ωN4/3 obtained with RBHF and RHF theories for neutron drops

with the neutron number N from 8 to 50 in a HO trap with ~ω = 5, 10, 15, 20 MeV

are depicted. For a given neutron drop, the renormalized total energies obtained with the

RBHF theory do not depend on the variation of external fields considerably, but the ones

obtained with RHF exhibit a strong ~ω-dependence. Specifically, the RHF energies become

higher and higher with the increasing strength of the external fields from ~ω = 5 to 20 MeV.

A good consistency between the RHF and RBHF results can only be found in the case of

~ω = 10 MeV for the neutron number N > 14 as well as the case of ~ω = 15 MeV for

8 ≤ N ≤ 14. It should be noted that the strength of the external fields in neutron drops es-

sentially influences the density of the system. Therefore, the varying discrepancies between

the RHF and RBHF results in different external fields indicate that the phenomenological

density-dependent behavior of the effective interaction PKO1 is not compatible with the G

matrix derived from the realistic interaction Bonn A in the ab initio RBHF theory.

By taking the neutron drops with neutron number N = 8, 20, 40 as examples, in Fig. 3,

the renormalized density distributions by saturation density ρ0 of nuclear matter are de-

picted. Note that the saturation density ρ0 obtained in the RBHF theory with Bonn A is

0.180 fm−3 [70], while it is 0.152 fm−3 [43] in the RHF calculations with PKO1.

For ~ω = 5 MeV, in both RHF and RBHF calculations, the central densities of all

neutron drops considered here are much lower than ρ0. Since the RHF density functional
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FIG. 3. (Color online) Renormalized density distributions by nuclear matter saturation density ρ0

for N -neutron drops in a HO trap (~ω = 5, 10, 15, 20 MeV) calculated by RBHF theory using the

interaction Bonn A in comparison with the results obtained by the RHF approach with PKO1.

The gray dashed lines denote the position of ρ0.

PKO1 is mainly adjusted to the ground-state properties of several finite nuclei, it is loosely

constrained in the low- and high- density regions. In the RBHF calculations, however, the

G matrix represents the NN interaction in nuclear medium and it is derived microscopically

from the realistic interaction Bonn A determined by fitting to NN scattering data with a

high precision. Therefore, it is not surprising at all that the RHF and RBHF total energies

for ~ω = 5 MeV differ dramatically, as shown in Fig. 2(a).

For ~ω = 10 MeV, the central densities of neutron drops with N = 20 and 40 in both

the RHF and RBHF calculations are very close to ρ0, i.e., around 0.9ρ0. Since the RHF

density functional PKO1 is nicely determined around ρ0 by fitting to nuclear ground-state

properties, it is expected that the RHF total energies for neutron drops with the central

densities close to ρ0 are consistent with the corresponding RBHF results; see Fig. 2(b).

Note that the central densities of the neutron drop with N = 8 are around 0.5ρ0 in both

RHF and RBHF calculations for ~ω = 10 MeV. This value is still a little bit far away from

ρ0, and this may explain the discrepancies between the RHF and RBHF total energies for

8 ≤ N ≤ 14 shown in Fig. 2(b).

For ~ω = 15 MeV, the central densities of the neutron drop with N = 8 are getting
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larger as compared to the case with ~ω = 10 MeV. Accordingly, a better agreement between

the RHF and RBHF total energies for 8 ≤ N ≤ 14 is obtained, as shown in Fig. 2(c).

For the neutron drops with N = 20 and 40, however, the central densities are evidently

higher than ρ0 in both RHF and RBHF calculations. Again, due to the fact that the RHF

density functional PKO1 is not well constrained in the supra-density region, the discrepancies

between the RHF and RBHF total energies for N ≥ 16 shown in Fig. 2(c) are justified.

For ~ω = 20 MeV, the central densities of the neutron drops with N = 20 and 40 are

significantly larger than ρ0, and this is connected with the substantial differences between

the RHF and RBHF total energies observed in Fig. 2(d). While the central densities of the

neutron drop with N = 8 are around ρ0, the agreement between the RHF and RBHF total

energies is less pronounced as shown in Fig. 2(d). This might be related to the fact that the

interior part of light nuclear systems usually cannot be regarded as a fully saturated nuclear

matter.

Therefore, it is clear that to perform a microscopic derivation of nuclear energy density

functionals with tensor forces via neutron drops without rescaling the density dependence

of functionals, it is crucial to assure the central densities of neutron drops close to ρ0.

In addition, to investigate if the ~ω-dependence of λ is due to the inconsistent density

dependence between the effective interaction PKO1 and the ab initio G matrix, the density

dependence of the RHF density functional is rescaled to the equation of states of symmetric

nuclear matter and pure neutron matter calculated by the RBHF theory with Bonn A [71]. In

Fig. 4, the renormalized total energies for neutron drops obtained with the rescaled density-

dependent RHF density functional (labeled as PKO1*) are depicted. It is found that a good

consistency between the RHF and RBHF total energies can be achieved in different external

fields. Nevertheless, to reproduce the RBHF SO splittings, one still needs to adjust the

tensor-force strength factor λ, and the optimized λ = 8, 10, 15 and 20 are obtained for ~ω

= 5, 10, 15 and 20 MeV, respectively. Therefore, the optimized λ is still running with the

external fields, and this reflects the density-dependent nature of the tensor-force strength λ.

Therefore, it could be also interesting, in the future, to determine the density dependence

of effective interactions in nuclear energy density functionals by adjusting to the inhomoge-

neous neutron drop properties in various external fields extracted from ab initio calculations.
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FIG. 4. (Color online) Same as Fig. 2, but for a rescaled density dependence of the RHF density

functional.

V. SUMMARY

In summary, the neutron drops with even neutron number N from 8 to 50 confined in a

harmonic oscillator trap with ~ω = 5, 10, 15, and 20 MeV are studied with the relativistic

Brueckner-Hartree-Fock and relativistic Hartree-Fock theories. The evolution of spin-orbit

splittings along with the neutron number has been investigated and its connection with

the tensor-force strength has been analyzed systematically for different external fields of the

neutron drops. For the RHF density functional PKO1, the optimized tensor-force strength λ

in the RHF theory, which reproduces the microscopic RBHF spin-orbit splittings, is running

with the strength of the external fields of neutron drops, and the total energies calculated

with the RBHF and RHF theories are consistent only for certain neutron drops. To guaran-

tee that the optimized λ corresponds to the tensor-force effects for the evolution of spin-orbit

splittings in neutron drops, one has to determine a reasonable external field to obtain the

consistent RBHF and RHF total energies. This could be useful to guide the future micro-

scopic derivations of nuclear energy density functionals with tensor forces. A good choice

could be to assure the central densities of neutron drops close to nuclear matter satura-

tion density, for instance, ~ω = 10 MeV for neutron number N > 14 and ~ω = 15 MeV

for 8 ≤ N ≤ 14. On the other hand, if one rescales the density dependence of the RHF

functional, a good consistency between the RBHF and RHF results for the total energies

of various neutron drops can be achieved. Even so, the optimized tensor-force strength λ

is still running with the strength of the external fields of neutron drops. This reflects the
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density-dependent nature of the tensor-force strength λ.
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[23] L. G. Cao, G. Colò, H. Sagawa, P. F. Bortignon, and L. Sciacchitano,

Phys. Rev. C 80, 064304 (2009).

[24] M. Anguiano, G. Co’, V. De Donno, and A. M. Lallena, Phys. Rev. C 83, 064306 (2011).

[25] G. Co’, V. De Donno, M. Anguiano, and A. M. Lallena, Phys. Rev. C 85, 034323 (2012).

[26] F. Stancu, D. M. Brink, and H. Flocard, Phys. Lett. B 68, 108 (1977).

[27] B. A. Brown, T. Duguet, T. Otsuka, D. Abe, and T. Suzuki,

Phys. Rev. C 74, 061303(R) (2006).
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