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We utilize a nuclear shell model Hamiltonian with only two adjustable parameters to generate, for
the first time, exact solutions for pairing correlations for light to medium-mass nuclei, including the
challenging proton-neutron pairs, while also identifying the primary physics involved. In addition
to single-particle energy and Coulomb potential terms, the shell model Hamiltonian consists of an
isovector T = 1 pairing interaction and an average proton-neutron isoscalar T = 0 interaction, where
the T = 0 term describes the average interaction between non-paired protons and neutrons. This
Hamiltonian is exactly solvable, where, utilizing 3 to 7 single-particle energy levels, we reproduce
experimental data for 0+ state energies for isotopes with mass A = 10 through A = 62 exceptionally
well including isotopes from He to Ge. Additionally, we isolate effects due to like-particle and proton-
neutron pairing, provide estimates for the total and proton-neutron pairing gaps, and reproduce N
(neutron) = Z (proton) irregularity. These results provide a further understanding for the key role of
proton-neutron pairing correlations in nuclei, which is especially important for waiting-point nuclei
on the rp-path of nucleosynthesis.

I. INTRODUCTION

Since the pairing model was first applied to nuclei by
Bohr, Mottelson, and Pines [1], studies have repeat-
edly found pairing correlations to have a profound in-
fluence on nuclear structure [2]. A better understand-
ing of pairing features in nuclei could greatly benefit
other areas of research, such as superfluidity in neutron
stars [3, 4], pairing correlations in nuclear matter [5–7]
and nuclei around closed shells [8]. While pairing cor-
relations among like-particles, e.g., proton-proton (pp)
and neutron-neutron (nn) pairing, have been described
through numerous methods [9–13] and are well under-
stood, proton-neutron (pn) pairing has been less stud-
ied due to its complexity [14–20]. For example, current
approaches for pairing in the continuum have been ad-
dressed [21–23] but solely for like-particle pairing. An
accurate treatment of the challenging pn pairing interac-
tion has been suggested to be important for understand-
ing waiting-point nuclei in rapid-proton capture nucle-
osynthesis [24–26] and may play a role in neutrinoless
double-beta decay (0νββ) [27, 28]. Therefore, exact an-
alytic solutions for both like-particle and pn pairing are
of great interest.

Albeit restricted to degenerate single-particle energies,
exact solutions to like-particle and pn pairing interactions
can be achieved through the T = 1 charge-independent
pairing Hamiltonian constructed using generators of the
quasispin group Spj(4), where j indicates the orbits uti-
lized in the model space and T corresponds to the isospin
[14, 29]. For non-degenerate single-particle energies, ap-
proximate numerical solutions can be attained through
the BCS formalism [30–34]. Some studies utilize the alge-
braic Bethe ansatz method with an infinite-dimensional
Lie algebra [35–42] and other methods [43–49] provide

exact solutions for systems with like-particle pairing or
for systems with two or fewer pairs.

In this paper, we present a new shell model Hamilto-
nian that yields exact analytic solutions for the lowest
isovector-paired 0+ states for up to six nucleons (three
pairs). The Hamiltonian, adapted from Ref. [17] where
degenerate energies have been considered, consists of a
single-particle energy term, Coulomb potential term, and
includes an isovector T = 1 pairing interaction and an
isoscalar T = 0 proton-neutron interaction that accounts
for the average interaction between non-paired nucleons.
The model utilizes the analytic solutions to isovector
pairs in non-degenerate single-particle levels that are de-
rived in Ref. [16] for up to three pairs, which offers a
complementary procedure to the one in Ref. [50]. The
new method discussed here is efficacious and could be ap-
plied to a very broad range of nuclei. However, when con-
sidering three or more pairs highly nonlinear equations
appear and require sophisticated techniques to achieve
solutions [51]. Here, we report applications of such so-
lutions to light through medium-mass nuclei including
the challenging pn pairs. We also identify the primary
physics involved through an analysis of the staggering
behavior of our results and pairing gap estimates.

II. THEORETICAL FORMALISM

Algebraic solutions to a T = 1 charge-independent pair-
ing Hamiltonian that utilizes single-particle energies of
the jth orbit, εj , which can be derived from the spherical
shell model, are introduced in Ref. [16]. These solutions
are for Jπ = 0+ states of 2k nucleons and include both
like-particle and pn pairs, where k is the total number of
pairs. To describe ground states and 0+ isobaric analog
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states in nuclei it is important to consider the Coulomb
potential and an isoscalar T = 0 pn interaction [17] in ad-
dition to the isovector pairing. In particular, our model
Hamiltonian is expressed as

Ĥ =
∑
j

εjNj −G
∑
jj′µ

A†j,µAj′ ,µ (1)

+ α

(
T̂ 2 − N

2

(
N

2
+ 1

))
+ VCoul,

where G > 0 is the pairing strength, and α is the strength
of the additional isoscalar T = 0 interaction, which can
be understood as the average interaction between non-
paired protons and neutrons in a T = 1 pair as shown
in Ref. [29] (also related to the symmetry term). The

nucleon number operator Nj , pair creation A†j,µ and an-

nihilation Aj,µ = (A†j,µ)† operators, where µ = +,−, 0
indicates pp, nn, and pn pairs, respectively, together with
the isospin operators T̂j,±1 and T̂j,0 are generators of the
Spj(4) group. The total number operator is given by
N =

∑
j Nj , which is also N = 2k, and VCoul denotes

the Coulomb interaction. The Hamiltonian is initially
solved for the first two terms in Eq. (1), as described in
the next section, resulting in eigenstates that have k, T ,
and Tz as good quantum numbers (or, equivalently, pro-
ton and neutron numbers along with T ); in this basis the
α term is diagonal, resulting in additional energy given
by α(T (T + 1) − k(k + 1)). The Coulomb term is also
diagonal and its contribution is accounted by an estimate
given in Ref. [52], as described in Sec. II B.

A. Exact isovector pairing solutions for up to six
nucleons

Exact solutions for non-degenerate single-particle en-
ergies and isovector T = 1 pairing interaction [first
two terms of Eq. (1)] for k ≤ 3 are derived for se-
lected permutations of the permutation group Sk in
Ref. [16]. As described in Ref. [16], the method
uses elements of the Gaudin algebra G(Sp(4)), A†µ(x) =∑
j

A†j,µ
1+εjx

, Aµ(x) =
∑
j
Aj,µ
1+εjx

, Tµ(x) =
∑
j

Tj,µ
1+εjx

,

and N(x) =
∑
j
Nj,µ
1+εjx

, where x = {x1, x2, . . . , xk}
are spectral parameters for k pairs. Hence, one
can solve the Hamiltonian, Ĥ = ∂N/∂x|x=0 +
GA†(0) · A(0) using the Bethe ansatz wave func-
tion |k; ζ; [λ]k, TTz〉 =

∑
P∈Sk Q

[λ](xP1
, xP2

, . . . , xPk){
A†(xP1

)×A†(xPk)× · · · ×A†(xPk)
}TTz |0〉, that de-

scribes a k-paired state with |0〉 the seniority-zero state,
where [λ]k is an irrep of the permutation group Sk con-
taining k boxes in the corresponding Young diagram and
P labels all possible permutations. As a result, the ex-
pansion coefficients Q[λ] and the spectral parameters,
x1, . . . , xk, are determined. In Ref. [16] solutions are

derived for the cases k = 1, T = 1 along with k = 2 and
3 for T = 0, . . . , k.

It is important to note that this method leads to highly
nonlinear equations that become more challenging to
solve as k increases. Therefore, to find solutions and
reduce the number of singularities we have modified the
spectral parameters of Ref. [16], such that in numeri-
cal calculations we use yi ≡ 2/xi where i = 1, 2, . . . , k.
Additionally, we utilize an average single-particle energy
εavg defined as

εavg =

∑
j

(Ωjεj)∑
j

Ωj
, (2)

where Ωj = j + 1
2 is the j-level degeneracy. Hence, the

energies utilized are taken with respect to this average
energy, εj = εj − εavg. In the appendix we briefly outline
the main equations, which have been derived in Ref. [16],
in terms of the different variables used in the present
numerical calculations.

B. Coulomb potential

We include the Coulomb potential (VCoul) by using esti-
mates provided in Ref. [52]. Defining N+, N−, and A
as the valence proton, neutron, and the atomic numbers
of nuclei, respectively, we first calculate VCoul of isotopes
with N+ = N−:

VCoul(A,N+) = 0.162N2
+ + 0.95N+ − 18.25, N+ ≤ 20,

VCoul(A,N+) = 0.125N2
+ + 2.35N+ − 31.53, N+ > 20.

(3)

Next we calculate VCoul(A,N+) for N+ 6= N− using the
recursive relations:

VCoul(A,N+) = VCoul(A,N+ − 1) + 1.44
N+− 1

2

A1/3 − 1.02, N+ > N−

VCoul(A,N+) = VCoul(A,N+ + 1)− 1.44
N++ 1

2

A1/3 + 1.02, N+ < N−.

(4)

The relations (3)-(4) were used to calculate the Coulomb
potentials for even-A isotopes in the mass ranges A =
10 − 16, A = 34 − 46, and A = 50 − 56. These energies
were accounted for when reproducing the experimental
energy spectra for these mass ranges.

III. RESULTS AND DISCUSSION

The present model, which accounts for both pn and like-
particle pairing, is applied to even-A nuclei for up to six
particles above and below the 16O, 40Ca, and 56Ni cores.
In particular, using only two adjustable parameters, G
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and α, and experimentally deduced single-particle ener-
gies we calculate exact solutions for the Jπ = 0+ binding
energies in even-even (ee) nuclei and the lowest isobaric
analog 0+ excited states in odd-odd (oo) nuclei (which
correspond to the ground state of the even-even neigh-
bor), together with pair-excitation 0+ states. Using these
solutions, we show in the next section that we are able
to reproduce the experimental energy spectra as well as
utilize discrete derivatives of the energy function to de-
scribe fine pairing features of these light to medium-mass
nuclei off closed shells, as detailed next.

A. Energy spectra for isotopes around 16O, 40Ca,
and 56Ni

In our model we use single-particle energies deduced from
the experimental energy spectrum of Acore±1 nuclei for a
core of mass Acore. These single-particle energies are non-
degenerate, as compared to an earlier algebraic model
based on the Sp(4) group [17], or equivalently on the
O(5) group, that utilizes the same Hamiltonian but with
degenerate single-particle energies. Indeed, it is crucial
for our model to consider non-degenerate energies due to
the comparatively large energy gap between levels, which
is on the order of approximately 1 MeV. The experimen-
tally deduced single-particle energies and the model pa-
rameters utilized in the Hamiltonian are listed in Table
I for their respective cores. It should be noted that the
0d5/2 single-particle energy level in the 55Ni energy spec-
trum has yet to be experimentally determined and is thus
omitted in our calculations.

The model parameters were chosen such that the differ-
ence between the calculated and measured 0+ energies is
minimized to approximately 1-200 keV. For a set of nuclei
above (or below) each core, we first determined a small
range of values for G for the limiting k = T case where
the α-term of the Hamiltonian has zero contribution to
the 0+ energy of the isobaric analog states. Next, within
the chosen values for G, the α and G parameters were
adjusted to best reproduce all the available 0+ energies
for the nuclei under consideration. As a comparison to
the earlier Sp(4) model of Ref. [17] that uses degenerate
single-particle energies, the root-mean-square of energy
differences decreases from 1.733 [17] to 1.291 for the nu-
clei considered above the 56Ni core. This suggests that
the use of non-degenerate single-particle energies is im-
portant to provide better descriptions of pairing. We find
that, while typically particles and holes (above and be-
low a core, respectively) can be described by the same G
and α values, a larger pairing strength, G, is required for
the lightest nuclei below the 16O core in the mass range
10 ≤ A ≤ 14. This, however, is in agreement with G pro-
portional to (17±1)/A and α proportional to (36±3)/A,
which is supported by earlier estimates [8].

Our model very closely reproduces the energy of the low-

Core Particles (MeV) Holes (MeV)

16O

G = 0.55 G = 1.65

α = 2.445

ε0d5/2 = −4.14 ε0p1/2 = 15.66

ε1s1/2 = −3.27 ε0p3/2 = 21.84

ε0p3/2 = 0.94 ε0s1/2 = 23.22

ε0f7/2 = 1.55

ε1d3/2 = 0.41

ε0f5/2 = −0.29

ε1p1/2 = −1.09

40Ca

G = 0.45

α = 1.229

ε0f7/2 = −8.36 ε1s1/2 = 18.10

ε1p3/2 = −6.42 ε0d3/2 = 15.64

ε0f5/2 = −5.79 ε0d5/2 = 20.07

ε1p1/2 = −4.75

ε0g9/2 = −3.91

56Ni

G = 0.33

α = 1.000

ε1p3/2 = −10.25 ε1s1/2 = 19.83

ε0f5/2 = −9.48 ε0d3/2 = 20.40

ε1p1/2 = −9.14 ε0f7/2 = 16.64

ε0g9/2 = −7.24

TABLE I: Experimentally deduced single-particle
energy levels and model parameters utilized in the
Hamiltonian for nuclei up to 6 nucleons above and
below the 16O, 40Ca, and 56Ni cores.

est 0+, T = 0, . . . , 3 states of ee and oo nuclei for up to
six particles above and below the 16O, 40Ca, and 56Ni
cores (Fig. 1). The theoretical and experimental en-
ergy spectrum of individual isotopes are listed for allowed
isospin values. For a model with only two parameters,
the overall agreement is remarkable, with slight devia-
tions around 50 ≤ A ≤ 54. To improve this, one may
need to include 0d5/2 in the model space, which how-
ever is experimentally not available, as mentioned above.
While only like-particle pairing occurs when k = |Tz|, our
model accounts for pn pairing as well, which is a signifi-
cant feature, as it permits the calculation of the binding
energies for isotopes when k 6= |Tz| and the especially
interesting N = Z case.

B. Comparison to ab initio results for 12C

A recent paper [53] reported ab initio symmetry-adapted
no-core shell model (SA-NCSM) calculations [54] for the
low-lying spectrum of 12C using the realistic nucleon-
nucleon interaction JISP16 [55] for ~Ω = 20 MeV and
Nmax = 8 (or, including 10 harmonic oscillator major



4

FIG. 1: (Color online) Theoretical energy spectra (colored shapes) compared to experiment (black crosses) for
0+; 0, .., 3 binding energies and lowest isobaric analog 0+; 0, .., 3 excited states of isotopes above and below the (a)
and (d) 16O core; (b) and (e) 40Ca core; (c) and (f) 56Ni core.

shells). The third 0+ state in the SA-NCSM calculations
has been identified as the lowest 0+, T = 1 state with
excitation energy 21.42 MeV. This is consistent with the
18.16 MeV value calculated using our model (Fig. 1).
Furthermore, the wave functions for the lowest isobaric
analog 0+ states in 12B, 12C, and 12N are expected to
have very similar spatial parts, or deformation. Indeed,
the SA-NCSM calculations reveal that this 0+ state in
12C is predominantly oblate with intrinsic spin 1, that
is, the (λµ) = (1 2) basis state contributes ∼ 61% to
this state, where (λµ) are the deformation-related SU(3)
quantum numbers [56]. Exactly the same deformation
dominates in the isobaric analog 0+ state of 12N. The
dominant features of these isobaric analog 0+ states in
A = 12 can be explained by strong pairing correlations
(an isovector pair excitation given by the present model)
as well as by strong collective modes, as suggested by

the SA-NCSM. This is an interesting result pointing to
the close interplay and overlap of pairing and deforma-
tion degrees of freedom, which has been also observed in
other studies [57–59].

C. Discrete derivatives and fine structure effects

In this section a noteworthy test for the theory is im-
plemented and applied to the lowest isobaric analog 0+

states of ee and oo nuclei in the mass ranges 10 ≤ A ≤
22, 34 ≤ A ≤ 46, and 50 ≤ A ≤ 56. By considering the
discrete derivatives of the energy function with respect to
particle number, we are able to investigate the capability
of the present model to reproduce fine features of nuclear
dynamics. We utilize the formulae of Ref. [60], some of
which are provided here for completeness, and follow the
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analysis reported in there. The discrete approximations
of the E0 energy are given as

Stg
(m)
δ (x) =

Stg
(m−1)
δ (x+ δ

2 )−Stg
(m−1)
δ (x− δ2 )

δ , m ≥ 2,

Stg
(1)
δ (x) =

{
E0(x+

δ
2 )−E0(x− δ2 )
δ , m-even

E0(x+δ)−E0(x)
δ , m-odd,

(5)

where the variable x = {n, Tz, N+, N−} with n, N+,
and N− denoting the valence particles, valence protons
and valence neutrons, respectively, and where increment
δ ≥ 1. These approximations (5) eliminate the large
mean-field contributions (hence, often referred to as “en-
ergy filters”) and reveal the nuclear fine structure effects
of pairing correlations. This is also true for the mixed
derivatives, which are defined as

Stg
(2)
δ1,δ2

(x, y) =
E0(x+ δ1, y + δ2)− E0(x+ δ1, y)

δ1δ2
(6)

− E0(x, y + δ2) + E0(x, y)

δ1δ2
,

where the variables (x, y) = {n, Tz, N+1, N−1} and incre-
ments δ1,2 ≥ 1. We investigate different types of discrete
derivatives of both the theoretical energies E0 with their
experimental counterparts, and analyze their staggering
patterns. In our studies, E0 is the energy plotted in Fig.
1 with the Coulomb interaction removed. By removing
the Coulomb interaction, we isolate and study phenom-
ena governed solely by the nuclear interaction.

As suggested in Refs. [29, 60–62], the significance of var-
ious energy filters can be understood using phenomeno-
logical arguments that can be given a simple and useful
graphical representation. Specifically, in the following
subsections, each nucleus is represented by an inactive
part, or a general ee or oo nucleus, schematically illus-
trated by a box, �, in which the interaction between the
constituent particles does not change for a given energy
filter. Active particles are represented by solid or empty
dots for protons or neutrons, respectively, above the box.

1. Discrete derivatives with respect to the number of pairs
and isospin projection: staggering behavior and pairing gaps

The description of pn pairing correlations is crucial for
reproducing staggering behavior and pairing gaps. The
Stgm1 (Tz) and Stgm2 (2k) energy differences, m = 1, 2, ...,
isolate effects related to the various types of pairing in
addition to changes in energy due to the different isospin
values (symmetry term). We investigate these effects and
provide insight into pairing correlations for ee and oo nu-
clei through analysis of the Stg21(Tz = 0), k-odd and
Stg22(2k), T = 1 discrete derivatives in terms of the pair-
ing gap relation

∆̃ ≡ ∆pp + ∆nn − 2∆pn ≈
1

2
(
••
� +

◦◦
� −2

•◦
�). (7)

The result (7) is a measure of the difference in the isovec-
tor pairing energy between ee and oo nuclei and fol-
lows from the well-known definition of the empirical like-
particle pairing gap [8]

∆pp(nn) ≡
1

2
(BE(N+1 ± 1, N−1 ∓ 1) (8)

− BE(N+1 − 1, N−1 − 1)

− 2[BE(N±1, N∓1 − 1)

− BE(N+1 − 1, N−1 − 1)])

=
1

2
(
••
� −�− 2[

•
� −�]),

which isolates the isovector pairing interaction of the
(N±1)th and (N±1 + 1)th protons (neutrons) for an even-
even (N+1 − 1, N−1 − 1)-nucleus (denoted by a square)
[62]. As defined in [29], the pn isovector pairing gap,

∆pn ≡
1

2
(BE(N+1, N−1)−BE(N+1, N−1 − 1) (9)

− [BE(N+1 − 1, N−1)

− BE(N+1 − 1, N−1 − 1)])

=
1

2
(
•◦
� −

•
� −[

◦
� −�]),

is the pairing interaction of the (N+1)th proton and the
(N−1)th neutron. To correctly account for the T = 1
mode of pn pairing one should consider in Eq. (10) the E0

energy of the oo (N+1, N−1) nucleus (that is, the energy
of the isobaric analog state rather than its ground state
energy, BE). For the remaining ee nuclei in Eq. (10)
replacing the symbol E0 with BE is justified.

For [(k + Tz)-even] and [(k + Tz)-odd] nuclei centered at
N = Z (Tz = 0) and N 6= Z (Tz 6= 0), the second-order
discrete derivative

Stg
(2)
1 (Tz) = E0(Tz + 1)− 2E0(Tz) + E0(Tz − 1),

2k = const, (10)

can be written in terms of the pairing gap ∆̃,

Stg
(2)
1 (Tz) ≈

{
2∆̃, Tz = 0, k = odd

(−)(k+Tz) 4
3(1+δTz,0)

+ Vr, otherwise,
(11)

where in some cases the contribution from an additional
residual nonpairing interaction Vr cannot be fully re-
moved. For ee N = Z nuclei, the additional Vr term is
a two-body interaction related to the nonpairing interac-
tion of the three protons and three neutrons in oo nuclei.
However, for the Tz 6= 0 case of ee and oo nuclei the pri-
mary contribution of the residual interaction is from the
symmetry energy. We also note that since pp, nn, and

pn T = 1 pairs coexist [60, 63, 64], Stg
(2)
1 (Tz = 0) does

not simply account for the energy gained when two pn
pairs are created (in the first two oo nuclei) and energy
lost to destroy a pp pair and a nn pair in an ee N = Z
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nucleus. The relations (9-12) are based on the assump-
tions that the interaction of a particle within the box is
independent of the type of added/removed particles and
is the same for all protons (neutrons) above the box [29].
We utilize Stg21(Tz = 0) to isolate the effects related to
like-particle and pn pairing, which is described primarily
by the symmetry term of our Hamiltonian. For exam-
ple, in Fig. 2(a) the total energy and pairing energy
contributions for A = 12 are compared to experiment.
Here, the symmetry energy contributes approximately 9
MeV to the total energy for Tz = 0 and approximately
6 MeV for Tz = ±1, which highlights how crucial the
isoscalar T = 0 interaction is for reproducing the experi-
mental energy in both Figs. 2(b) and (c). It is important
to note the considerable differences in the energy ranges
from Figs. 2(a-c). The large, yet gradually decreasing,
energy differences from 16O to 56Ni may be attributed
to the single-particle energy levels considered in 56Ni cal-
culations, which are much closer in energy compared to
those utilized for 16O and 40Ca.

The second-order discrete derivative with respect to 2k
(for a constant Tz),

Stg
(2)
2 (2k) =

E0(2k + 2)− 2E0(2k) + E0(2k − 2)

4
,

=
1

4
(

••◦◦
� −2

••

� −�),

is related to the isovector pairing gap ∆̃ [60],

Stg
(2)
2 (2k) ≈ (−)(k+Tz)

∆̃

3
+ Vr, (12)

where in the oo case Vr is the nonpairing interaction of
the last two protons with the last two neutrons in the
(2k+ 2) nucleus. The additional nonzero contribution of
the symmetry energy prevents the isolation of the pair-
ing gap relation ∆̃ through Eq. (12). However, by using
only the first two terms of the Hamiltonian (1) in the
calculations for E0, we can eliminate the contribution of
the symmetry energy. Hence, the staggering amplitude of
the theoretical total pairing energy, which includes like-
particle and pn pairing energies, can provide an estimate
of the ∆̃ pairing gap using Eq. (12). As an example,
Fig. (3) shows the total pairing gap for A = 60 isotopes,
which is estimated to be between 1.5-2.4 MeV. Since the
approximation (13) does not considerably fluctuate com-
pared to the pn pairing gaps with respect to Tz [60], we
utilize the experimentally deduced like-particle pairing
approximation,

∆pp + ∆nn ≈
24√
A
. (13)

Using the total pairing gap (12) and its relation to the
pn and like-particle gap (7), we provide an estimate for
the pn pairing gap 2∆pn that is between 0.5-1.5 MeV

for A = 60. The like-particle pairing gap estimate, com-
pared to the pn gap, primarily contributes to the total
gap for A = 60. We note that in this staggering filter the
single-particle term discontinuity may have an effect, and
for lighter isotopes, where the energy difference between
single-particle energies is larger, the effect is also larger.

2. Discrete derivatives with respect to proton and neutron
numbers: N = Z irregularities

As discussed in Ref. [60], the second-order discrete mixed
derivative δVpn(Z,N),

δVpn(Z,N) =
E0(Z + 2, N + 2)− E0(Z + 2, N)

4

− E0(Z,N + 2) + E0(Z,N)

4
, (14)

represents, for even-even nuclei, the residual interaction
between the last proton and the last neutron [61, 65].
It is well known that the attractive dip in the N = Z
nuclei cannot be described by a model with an isovector
interaction only. Hence, this filter is an important probe
of the α-term in the model Hamiltonian (1) that is related
to pn isoscalar interactions.
Following the convention from the previous subsections,
Eq. (14) can be graphically represented as

δVpn(Z,N) =
1

4
(

••◦◦
� −

••

� −
◦◦

� +�).

In contrast to the previous filters, the relation (14) does
not display a consistent staggering pattern (Fig. 4), but
we expect that for fixed Z there is a significant change
in energy when N = Z. In this study, this filter can be
applied to only selected nuclei, since the calculations are
carried for up to 3 pairs. The model reproduces exper-
imentally deduced N = Z values for the C, O, Ar, Ca,
Fe, and Ni isotopes. With the exception of Fe (Z = 26)
the results agree remarkably well with the experimental
data. The deviation may be as a result of the absence of
the 0d 5

2+
single-particle energy level in our calculations,

as described above. The good agreement points to the
significance of the symmetry term in the model Hamilto-
nian (1) and the physically relevant choice for the value
of its strength α (Table I).

IV. CONCLUSIONS

We have presented a new shell-model Hamiltonian that
yields exact solutions for the lowest isobaric analog Jπ =
0+, T = 0, .., 3 states that includes both like-particle and
pn pairing, as well as a symmetry term that is related
to pn isoscalar interactions. Adapted from Ref. [17],
the model Hamiltonian utilizes experimentally deduced
non-degenerate single-particles energies and includes an
isoscalar T = 0 interaction, which describes the inter-
action of nonpaired nucleons. The present results are
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FIG. 2: (Color online) Theoretical staggering amplitudes for the total energy (filled colored shapes) and the pn and
like-particle pairing energies (empty colored shapes) compared to experiment (black crosses) for (a)16O; (b) 40Ca;
(c) 56Ni core, as a function of the isospin projection Tz.

FIG. 3: (Color online) Estimate for the total isovector

pairing gap ∆̃, 2∆pn, and the empirical like-particle

pairing gap ∆pp + ∆nn = 24/
√
A for A = 60.

based on the exact solutions for isovector pairing in non-
degenerate single-particle energies derived in Ref. [16].
The model utilizes only two adjustable parameters: the
pairing strength, G > 0, and α, which is the strength
of the isoscalar interaction. We applied our model to
even-A nuclei for up to six particles above and below the
16O, 40Ca, and 56Ni cores and reported exact solutions for
shell model pp, nn, and pn pairing correlations for ee and
oo nuclei in the mass ranges 10 ≤ A ≤ 22, 34 ≤ A ≤ 46,
and 50 ≤ A ≤ 62. When comparing our results to a re-
cent ab initio study [53] we found the same deformation
dominates the isobaric analog 0+ states in 12N, where
the dominant features of these isobaric analog states in
A = 12 can be explained by both strong pairing correla-
tions and strong collective modes. In addition to remark-
ably reproducing the energy spectra, we investigated how

well the model captures fine features of nuclear dynamics
by analyzing our results through discrete derivatives of
the calculated energies. We isolated the effects related to
like-particle and pn pairing through theoretical stagger-
ing amplitudes for the total, pn, and like-particles ener-
gies. Estimates for the total isovector pairing gap and pn
contribution were provided for A = 60, where the total
gap is between 1.5-2.5 MeV and the pn contribution is
between 0.5-1.5 MeV. Additionally, the model correctly
reproduces the N = Z irregularity, which is a signature
of non negligible isoscalar pn interaction, and we showed
that the attractive dip expected for N = Z nuclei was,
indeed, well reproduced by the present results.
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FIG. 4: (Color online) The second-order discrete mixed
derivative with respect to Z and N , shown for (a)
4 ≤ Z ≤ 10, (b) 16 ≤ Z ≤ 22, and (c) 24 ≤ Z ≤ 30,
where the filled colored shapes correspond to the
theoretical calculations and the empty shapes
correspond to their experimental counterparts. The
energy filter eliminates the mean-field contribution from
the energy and isolates the residual interaction between
the last proton and last neutron in even-even nuclei; the
N = Z value is a probe for the pn isoscalar interaction,
shown here for (a) 12C and 16O, (b) 36Ar and 40Ca, (c)
52Fe and 56Ni.

APPENDIX

The following equations are derived in Ref. [16] and are
presented here for completeness, since different variables
have been employed in the present numerical calcula-
tions.

The k = 1 case. As defined in Ref. [16], there is only one
irreducible representation (irrep) [1,0,0] of the permuta-
tion group S1. The eigenvalue for the k = 1, T = 1 case
is given as

E
[1]T=1
ζ = y(ζ) + 2kεavg, (15)

where the inverse spectral parameter y(ζ) must satisfy

1 +G
∑
j

Ωj
y(ζ) − 2εj

= 0. (16)

The k=2 case. This case is solved for T = 0, 2 of the irrep
[2,0,0] and T = 1 of the irrep [1,1,0] of the permutation

group S2, where the eigenvalues for the k = 2, T = 0, 1, 2
cases are given as

E

[2]T=2,0
[1,1,0]T=1
ζ = y

(ζ)
1 + y

(ζ)
2 + 2kεavg. (17)

The inverse spectral parameters y
(ζ)
1 and y

(ζ)
2 for T = 2, 0

of [2,0,0] must simultaneously satisfy

1 +G
∑
j

Ωj

y
(ζ)
i − 2εj

± 2G

y
(ζ)
m − y(ζ)i

= 0, (18)

where i = 1, 2, m = 2, 1, and y
(ζ)
1 6= y

(ζ)
2 .

The inverse spectral parameters y
(ζ)
1 and y

(ζ)
2 of the T = 1

case of the irrep [1,1,0] must simulataneously satisfy

1 +G
∑
j

Ωj

y
(ζ)
i − 2εj

= 0, (19)

for i = 1, 2, where y
(ζ)
1 6= y

(ζ)
2 .

The k=3 case. The irreps [3], [2,1,0], and [13] of the per-
mutation group S3 are solved for T = 3, 1, T = 2, and
T = 0, respectively, where the eigenvalue equation for all
k = 3 cases is

E

[3]T=3,1
[2,1,0]T=2

[13]T=0
ζ = 2kεavg +

3∑
i=1

y
(ζ)
i . (20)

The inverse spectral parameters y
(ζ)
i for i = 1, 2, 3 for the

T = 3 and T = 0 cases of Eq. (20) must satisfy

1 +G
∑
j

Ωj

y
(ζ)
i − 2εj

− 2G

3∑
m
i 6=m

1

y
(ζ)
i − y

(ζ)
m

= 0 (21)

and

1 +G
∑
j

Ωj

y
(ζ)
i − 2εj

= 0, (22)

respectively. The three resulting equations for both
T = 3 and T = 0 when i = 1, 2, 3 must be solved si-
multaneously, where the solutions are only valid when

y
(ζ)
1 6= y

(ζ)
2 6= y

(ζ)
3 , which is due to the antisymmetric

nature of the wavefunction [16].

For T = 2, 1 the inverse spectral parameters y
(ζ)
i for i =

1, 2, 3 must satisfy

1 +G
∑
j

Ωj

y
(ζ)
i − 2εj

−GF
[2,1,0]
[3,0,0]
i (y1, y2, y3) = 0, (23)

where, for simplicity, we introduce the relations a = y
(ζ)
1 ,

b = y
(ζ)
2 , and c = y

(ζ)
3 . For T = 2 there are two sets

of equations for F
[2,1,0]
i (a, b, c) provided in [16] that yield
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solutions for y
(ζ)
i where i = 1, 2, 3. The first set of equa-

tions,

R =
√
a2 + b2 − bc+ c2 − a(b+ c)

F
[21]
1 = −b+ c− 2a−R

(a− b)(a− c)
, (24a)

F
[21]
2 =

a− 2b+ c−R
(a− b)(b− c)

, (24b)

F
[21]
3 =

a+ b− 2c−R
(a− c)(c− b)

, (24c)

and the second set,

F
[2,1,0]
1 =

b+ c− 2a−R
(a− b)(a− c)

, (25a)

F
[2,1,0]
2 =

a− 2b+ c+R

(a− b)(b− c)
, (25b)

F
[2,1,0]
3 =

a+ b− 2c+R

(a− c)(c− b)
, (25c)

both produce solutions for (23). The solutions provided

by Eq. (24) are only valid when y
(ζ)
1 = y

(ζ)
2 < y

(ζ)
3 ,

y
(ζ)
1 = y

(ζ)
3 < y

(ζ)
2 , and y

(ζ)
2 = y

(ζ)
3 < y

(ζ)
1 , and solutions

provided by Eq. (25) are only valid when y
(ζ)
2 = y

(ζ)
1 >

y
(ζ)
3 , y

(ζ)
3 = y

(ζ)
1 > y

(ζ)
2 , and y

(ζ)
3 = y

(ζ)
2 > y

(ζ)
1 .

The most complicated case for k = 3 is T = 1. The

equations utilized for F
[3,0,0]
i (a, b, c) are

F
[3,0,0]
1 =

bβ − 2c(1 + β) + a(2 + β)

(a− b)(a− c)(1 + β)
, (26a)

F
[3,0,0]
2 = −a+ b+ 2bβ − 2c(1 + β)

(a− b)(b− c)(1 + β)
, (26b)

F
[3,0,0]
3 =

−a+ c− bβ + cβ

(a− c)(c− b)(1 + β)
, (26c)

where the β relations that produce solutions are

β1 =
1

9(a− c)(−b+ c)

(
2a2 − 3b2 + 4a(b− 2c) (27)

+ 2bc+ 3c2 −
(

h3
(h1 + h2)1/3

+ (h1 + h2)1/3
))

,

β2 = − 1

36(a− c)(c− b)

(
h4 −

2(
√

3i+ 1)h5
(h1 + h2)1/3

(28)

+ 2(−1 +
√

3i)(h1 + h2)1/3
)
,

β3 = − 1

36(a− c)(c− b)

(
h4 −

2(
√

3i− 1)h5
(h1 + h2)1/3

(29)

− 2(1 +
√

3i)(h1 + h2)1/3
)
.

The arguments h1,..,5 in (27-29) are

h1 = −9(a− b)(a− c)(b− c)
√

3D

D = −9a6 + 27a5b− 79a4b2 + 113a3b3 − 79a2b4

+ 27ab5 − 9b6 + 27a5c+ 23a4bc− 23a3b2c− 23a2b3c

+ 23ab4c+ 27b5c− 79a4c2 − 23a3bc2 + 69a2b2c2

− 23ab3c2 − 79b4c2 + 113a3c3 − 23a2bc3 − 23ab2c3

+ 113b3c3 − 79a2c4 + 23abc4 − 79b2c4 + 27ac5

+ 27bc5 − 9c6

h2 = −8a6 + 33a5b− 6a4b2 + 53a3b3 + 144a2b4

− 27ab5 + 27b6 + 15a5c− 153a4bc− 135a3b2c

− 735a2b3c− 153ab4c− 135b5c+ 39a4c2 + 441a3bc2

+ 1305a2b2c2 + 1041ab3c2 + 414b4c2 − 199a3c3

− 1311a2bc3 − 1911ab2c3 − 899b3c3 + 477a2c4

+ 1611abc4 + 1152b2c4 − 513ac5 − 783bc5 + 216c6

h3 = 4a4 − 11a3b+ 40a2b2 − 6ab3 + 9b4

− 5a3c− 47a2bc− 62ab2c− 30b3c+ 31a2c2

+ 109abc2 + 76b2c2 − 57ac3 − 87bc3 + 36c4

h4 = −4(2a2 − 3b2 + 4a(b− 2c) + 2bc+ 3c2)

h5 = 4a4 − 11a3b+ 40a2b2 − 6ab3 + 9b4

− 5a3c− 47a2bc− 62ab2c− 30b3c+ 31a2c2

+ 109abc2 + 76b2c2 − 57ac3 − 87bc3 + 36c4
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