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We use properties of doubly-magic nuclei, ab-initio calculations of low-density neutron matter,
and of neutron stars to constrain the parameters of the Skyrme energy-density functional. We
find all of these properties can be reproduced within a constrained family of Skyrme parameters.
The maximum mass of a neutron star is found to be sensitive to the neutron effective mass. A
value of [m∗n/m](ρ0) = 0.60 − 0.65 is required to obtain a maximum neutron star mass of 2.0-2.1
solar masses. Using the constrained Skyrme functional with the aforementioned effective mass, the
predicted radius for a neutron star of 1.4 solar masses is 12.4(1) km and tidal polarizability is Λ =
423(40).

PACS numbers: 21.10.Dr, 21.30.Fe, 21.60.Jz, 21.65.-f

Understanding the nature of dense neutron-rich mat-
ter is a major thrust of current research in both nuclear
physics and astrophysics. Indeed a well-posed question
of “What is the nature of matter at extreme temperatures
and densities?” is regarded as a new scientific opportu-
nity for the next decade [1]. To achieve this goal, many
experiments and observations are being carried out us-
ing a wide variety of advanced new facilities, such as, Fa-
cilities for Rare Isotope Beams (FRIB), X-ray satellites
and gravitational wave detectors. In interpreting these
experimental and observational results the equation of
state (EOS) of neutron-rich matter plays a critical role.
Some parameters of the EOS that are crucial for neutron
star properties are not well constrained by nuclear reac-
tion or structure experiments. In particular, the value of
the neutron effective mass remains very uncertain [2, 3].
In this paper, we focus on the role of the neutron ef-
fective mass on the high density EOS, and show that
it can be constrained using properties of doubly-magic
nuclei, ab-initio calculations of low-density neutron mat-
ter in conjunction with astrophysical and gravitational
wave observations. This in turn leads to constraining
nuclear symmetry energy parameters and neutron skins
of medium-to-heavy nuclei.

We start by mentioning the first direct detection of
gravitational waves from the binary neutron star merger
GW170817 [4] that has already provided a fundamental
new insight into the nature of dense matter. In par-
ticular, this detection provided critical properties of the
neutron equation of state (EOS) that are encoded in the
tidal deformability (also known as tidal polarizability) of
the neutron star, an intrinsic property of the star that de-
scribes its tendency to develop a mass quadrupole, Qij ,
in response to the tidal field induced by its companion
Eij ,

Qij = −λEij , (1)

where λ is the tidal deformability. By comparing point

theoretical mass waveforms with the observed neutron
star merger waveform, the gravitational wave data analy-
sis has also revealed the dimensionless tidal deformability
Λ of a neutron star [4]:
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where k2 is the second Love number [5, 6]. The proper-
ties of neutron stars including the tidal deformability and
the second Love number are sensitive to the EOS in the
core and can be computed once the EOS is provided. For
complete discussions, on how to calculate tidal deforma-
bility please refer to [7–10]. In this analysis, we will use
the constraint on the tidal deformability [11].

The structure of neutron stars is sensitive to the EOS
of cold, fully catalyzed, neutron-rich matter over a range
of densities spanning several orders of magnitude. For
the low-density outer crust we employ the EOS that fol-
lows the seminal work of Baym, Pethick, and Suther-
land [12]. In this region, the neutron-star matter consists
of a Coulomb lattice of neutron-rich nuclei embedded in
degenerate electron gas. As the density increases, the
total chemical potential per nucleon of the system also
increases and eventually exceeds the mass of a neutron.

At this point, the optimal nucleus cannot hold any
more neutrons and the neutron drip point is reached
which defines the interface between the outer crust and
the inner crust [13]. The inner crust comprises the re-
gion from neutron-drip density, ρ = 4 × 1011 g/cm3, up
to about half nuclear matter saturation density at which
point the uniformity in the system is restored. On the
top layers of the inner crust, the nucleons continue to be
in the Coulomb crystal of neutron-rich nuclei embedded
in the degenerate electron gas, which however is now also
in chemical equilibrium with a superfluid neutron vapor.
As the density increases further towards the core, the
spherical nuclei that form the crystal lattice start to de-
form in an effort to minimize the Coulomb repulsion. As
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a result, the system is thought to exhibit rich and com-
plex topological structures that emerge from a dynami-
cal competition between the short-range nuclear attrac-
tion and the long-range Coulomb repulsion. The bottom
layers of the inner crust, therefore, consist of complex
and exotic structures, collectively referred to as nuclear
pasta [14, 15].

Due to the great number of quasi-degenerate low-
energy states nuclear pasta systems display an interest-
ing yet subtle low-energy dynamics that has been cap-
tured using either semi-classical simulations [16–24] or
quantum-mechanical mean-field approaches [25–30]. In
practice, one can resort to a cubic spline to interpolate
between the outer crust and the uniform liquid interior
which starts at densities of about half of the nuclear
saturation. The neutron star matter then undergoes a
phase transition to a homogeneous liquid core, where the
Skyrme EDFs are applied. More sophisticated crust cal-
culations exist where interaction terms in the core region
are used in the crustal calculation [31].

However, while some properties of neutron stars, such
as “crustal radii” display strong sensitivity to the EOS
of the inner crust [32], it has been shown that the di-
mensionless tidal deformability, in particular, is mostly
sensitive to the EOS of the core almost independent of
the detailed EOS of the inner crust [13]. While it is im-
portant to have a consistent EOS of the crust and core,
the exact form of the EoS of the crust does not affect
the deformability [13, 32, 33]. Inclusion of a crust affects
the NS radius as pointed out in ref. [34, 35] but the ef-
fect is small, a few hundred meters for the 1.4 solar mass
neutron star with radii> 13 km and do not affect our
conclusion or our results. Our approach should therefore
yield a reliable result, even though we keep the complex-
ity low.

For the neutron star core, we use the EOS of cold
neutron-rich matter derived from the nuclear Skyrme En-
ergy Density Functional (EDF) describing the connec-
tion among the energy density E , the pressure P , and
the baryon density ρ of the system. In addition, we
assume that neutron star-matter is made of nucleonic
matter complemented with electrons and muons in beta-
equilibrium. The pressure of the system can either be
found directly from the nuclear EDF plus leptonic con-
tributions, or from the energy density and its first deriva-
tive

P (ρ) = ρ
∂E(ρ)

∂ρ
− E(ρ) . (3)

Neutron stars satisfy the general relativistic stellar struc-
ture equations, also known as Tolman-Oppenheimer-

Volkoff (TOV) equations,

dP (r)

dr
= −G

[
E(r) + P (r)

][
M(r) + 4πr3P (r)

]
r2
[
1− 2GM(r)/r

] , (4a)

dM(r)

dr
= 4πr2E(r) , (4b)

where G is the gravitational constant, r is the circumfer-
ential radius, and M(r) is the gravitational mass content.
Once an equation of state (P = P (E)) is supplied, the
TOV equations may be solved given boundary conditions
in terms of a central pressure P (0) = Pc and M(0) = 0.
In particular, the mass M and the radius R are deter-
mined from the following two conditions: P (R) = 0 and
M =M(R). Once the TOV equations have been solved,
and the energy density and pressure profiles are obtained,
one can then integrate the differential equation needed to
obtain the tidal deformability [13]. This TOV solver has
been used successfully to connect neutron star properties
to nuclear matter parameters in Skyrme interactions [34].

In this paper, we focus on a particular family of the
EOS model—the Skyrme Energy-Density Functionals—
due to its versatility of being able to fit a myriad of nu-
clear observables [36]. In particular, it can be parameter-
ized to not only reproduce properties of doubly magic nu-
clei but also that of ab-initio calculations, which are sen-
sitive probes of the EOS in neutron-rich environments [2].
We start with the results obtained in [2, 37]. In Ref. [36]
an extensive study was performed to place constraints
on EDFs based on the properties of nuclear matter. The
standard form of the Skyrme EDFs and the parameters
of the Skyrme functional are given in [36]. Out of 240
Skyrme EDFs, the 16 given in Table VI of [36] referred
to as the CSkP set best reproduced a selected set of em-
pirical nuclear matter properties. Five of these were elim-
inated since they gave transitions to spin-ordered matter
around densities of ρ = 0.25 fm−3. One of the remain-
der (LNS) produced unstable finite nuclei. The remain-
ing 10 are those listed in Table I and labeled with their
name in Table VI of [36]. To this list we added the com-
monly used SLy4 [38] and SkM* [39] functionals. These
12 EDFs provide a reasonable range of values for the sym-
metric nuclear matter (SNM) effective mass [m∗0/m](ρ0)
= 0.70-1.00 (ρ0 ≈ 0.16 nucleons/fm3). The lower end of
this range is that required by proton scattering on nu-
clei [40]. The upper end is the enhanced value required
for the level density of single-particle energies near the
Fermi surface due to the coupling with surface vibrations
[40]. They also provide reasonable values for the nuclear
incompressibility (K0 = 212-242 MeV) as compared to
values extracted from the energy of the giant monopole
resonances (K0 = 217-230 MeV) [41] and heavy ion col-
lisions at densities ranging up to 4.5ρ0 [42].

In [37] these 12 EDFs were refit to a common set of
data for nuclear binding energies, charge radii and single-
particle energies from [43]. It was shown that the EOS for
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neutron matter and symmetry energy were constrained
at 0.10 nucleons/fm3 (about two-third of the nuclear sat-
uration density for SNM). The slope of the neutron EOS
at this density was not determined as was first pointed
out in Refs. [44, 45]. It was also first shown in Refs.
[44, 45] that the slope of the neutron EOS around a den-
sity of 0.10 nucleons/fm3 was highly correlated with the
neutron skin Rskin = Rn − Rp of heavy nuclei such as
208Pb, where Rn and Rp are the root-mean-square ra-
dius for neutrons and protons, respectively.

In [2] the same analysis was carried out with the ad-
ditional constraint that the neutron EOS reproduced ab-
initio calculations of low-density neutron matter up to
the E/N of 0.04 neutron/fm3 [46–49]. The remarkable
result of that paper was that the parameters of all 12 of
the EDFs could easily be modified to be consistent with
both the ab-initio low-density neutron matter calcula-
tions and the large set of nuclear data. The outcome was
that the slope of the EOS could be tightly constrained;
Also, the neutron skins could be predicted. The largest
remaining uncertainty was the neutron effective mass. In
[2] a value of [m∗n/m](ρ0) = 0.85 was chosen, and the blue
dashed curves in Fig. 1 represent the EOS of this family.

We start with this set of 12 Skyrme EDFs from [2],
and calculate the properties of neutron stars. The mass-
radius relationship and the deformability-radius relation-
ship for 1.4 solar mass stars are shown as blue dashed
curves in Figs. 2-3. The predicted values of the tidal
deformability and radii for 1.4 solar mass stars shown
as blue solid symbols are within the constraints obtained
from GW170817 [11] represented by a blue shaded square
in Figure 3. However, the maximum mass obtained is
1.8(1) solar mass which is smaller the 2.01(4) solar mass
neutron star observed in [50, 51] and the 2.14(10) so-
lar mass neutron star observed in [52]. To reconcile the
disagreement between our EDFs and this new condition,
adjustment to EDFs’ parameters is needed. By combin-
ing the gravitational and electromagnetic signals from
GW170817 several interesting studies have been carried
out to estimate the maximum mass of neutron stars that
all suggest the absolute maximum mass of a neutron star
to be about ∼ 2.24M� [53–58].

The Skyrme neutron EOS is given by the analytical
expression [37]

E(ρ) = anρ
2 + bnρ

2+σ + cnρ
5/3 + dnρ

8/3 , (5)

where an, bn, cn, dn and σ are constants that depend
on the Skyrme parameters. The first term is from the
s-wave interaction, the second term is from the density-
dependent s-wave interaction, the third term is the
Fermi-gas kinetic energy, and the fourth term is from
the p-wave interaction. The kinetic energy contribution
is the cn term where cn = 119 MeV fm2.

The highest power of the density term dn is related to

the neutron-matter effective mass by

m∗n(ρ)

m
=

cn
cn + dnρ

. (6)

The next step was to refit the Skyrme parameters to
all of the nuclear data and low-density neutron EOS con-
straints considered in [2], with the additional constraint
that the maximum neutron star mass comes out to be
2.0-2.1 solar masses. The outcome is that the neutron
effective mass at ρ0 is reduced from 0.85 to 0.60-0.65.

This change in the effective mass has little effect on
quality of the fit to nuclear data or the low-density neu-
tron EOS. For these 12 Skyrme functionals, the rms de-
viation for binding energies of 40Ca, 48Ca, 68Ni, 88Sr,
100Sn, 132Sn and 208Pb was 0.6 to 0.9 MeV, and the
rms deviation for the root-mean square charge radii of
40Ca, 48Ca, 88Sr and 208Pb was 0.015 to 0.024 fm. Us-
ing the constrained Skyrme functional with the afore-
mentioned effective mass, we obtain L = 65(7) MeV
for the density derivative of the symmetry energy at a
density of ρ0 = 0.16 nucleons/fm3, and neutron skins of
Rskin(208Pb) = 0.194(7) fm and Rskin(48Ca) = 0.178(3)
fm.

The results for neutron stars are shown as red solid
curves in Figs. 1-2 and red solid circle in Fig. 3. As
shown in Fig. 1, the pressure difference between the re-
sults with [m∗n/m](ρ0)=0.60-0.65 and 0.85 for the neu-
tron effective mass groups are prominent at high den-
sity; [m∗n/m](3ρ0)=0.34-0.38 and 0.65, respectively. It
is possible that the effective mass parameter in Skyrme
is mocking up some aspect of dense neutron matter
that cannot be extrapolated from normal nuclear den-
sity EOSs. In this case the Skyrme phenomenology just
provides a convenient and smooth functional form to be
used for the neutron star properties. It is important to
note that all EOSs from both groups satisfy the causality
condition. Their speed of sound never exceeds the speed
of light for densities ranging up to central density of its
heaviest permitted neutron star.

When tidal deformability is inferred from our Skyrme
EDFs, they show good agreement with gravitational
wave observation as shown in Fig. 3. With the assumed
Skyrme functional form and a neutron effective mass of
0.60-0.65 at ρ0, the Λ and radius for a 1.4 solar mass neu-
tron stars can be narrowed down to 423+35

−40 and 12.4+0.1
−0.1

km respectively.
In this paper, we studied the effect of neutron effective

mass, the largest source of EOS uncertainty from nu-
clear structure, on neutron star properties. [m∗n/m](ρ0)
= 0.60-0.65 is required to produce a maximum mass of
2.0-2.1 solar masses. We showed that the tidal deforma-
bility Λ is sensitive to m∗n/m, and due to this sensitivity
we were able to tighten the constraint on Λ using the
Skyrme EDFs that satisfy our effective mass condition.
This effective mass term, if correct, would strongly af-
fect the neutron star thermal properties such as its heat
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TABLE I. Properties of the fitted Skyrme functionals. The symmetry energy J , its density derivative L, the symmetry-energy
incompressibility Ksym, the symmetric-nuclear-matter incompressibility K0 and effective mass m∗0 are evaluated at ρ0 = 0.16
fm−3.

name σ K0 m∗0/m an bn dn J L Ksym Rskin Rskin

(MeV) (MeV (MeV (MeV (MeV) (MeV) (MeV) (fm) (fm)
fm3) fm3γ) fm5) 208Pb 48Ca

KDE0v1 s3 1/6 217 0.81 −325 111 472 34.6 72 −40 0.200 0.178
NRAPR s6 0.14 221 0.73 −316 84 489 34.1 70 −46 0.195 0.181

Ska25 s7 0.25 220 0.98 −281 37 465 31.9 59 −59 0.183 0.176
Ska35 s8 0.35 238 0.99 −274 32 467 32.0 58 −84 0.184 0.177
SKRA s9 0.14 213 0.80 −347 143 426 33.4 65 −55 0.190 0.179
SkT1 s10 1/3 238 0.97 −283 50 476 32.6 63 −70 0.190 0.179
SkT2 s11 1/3 238 0.96 −279 46 470 32.6 62 −75 0.188 0.178
SkT3 s12 1/3 236 0.97 −275 32 467 31.9 58 −80 0.183 0.178

SQMC750 s15 1/6 223 0.75 −307 76 484 33.9 68 −50 0.194 0.180
SV-sym32 s16 0.30 232 0.91 −274 22 473 31.5 58 −77 0.181 0.179

SLy4 s17 1/6 222 0.76 −299 68 473 33.6 66 −55 0.191 0.179
SkM* s18 1/6 219 0.79 −344 157 403 33.7 65 −65 0.187 0.179
mean 33 65(7) -63(24) 0.194(7) 0.178(3)
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FIG. 1. The EOS in the form of Pressure versus Density used
in this study. The red band corresponds to 12 Skyrmes with
m∗n/m = 0.60-65 (at ρ0) while the blue band corresponds to
12 Skyrmes with m∗n/m = 0.85. All EoSs are connected to a
common crustal EoS [12], with crust-core transition density
calculated using empirical relation of [36].

capacity [59] as well as its neutrino luminosity [60–62].
A better knowledge of these thermal properties would
contribute greatly to our understanding of the neutron
star cooling mechanisms [60]. More NS mergers are ex-
pected to be detected by LIGO, and it remains to be seen
whether the new constrains converge to that from these
Skyrme EDFs.

The connection of the maximum neutron star mass,
the neutron star radius, and the neutron effective mass
has also been recognized by Malik et al. [63, 64]. In [64]
they use the CSkP set of Skyrme interactions used in [37],
without the further modifications made in [2], together
with 13 more from [65]. They select those that best re-
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FIG. 2. Mass-vs-Radius relation predicted by the two groups
of Skyrme EoSs described in text. The horizontal grey line
indicates a value of 1.4 solar mass and the 2 vertical bands
show the range of intersections between the grey line and EoSs
from each group, which corresponds to the range of predicted
1.4 solar mass neutron star radius.

produce experimental data on the isoscalar and isovector
modes of excitation in 208Pb, and the maximum mass
for neutron stars. They then predict a radius R(1.4M�)
= 11.6(10) km and a tidal deformability of Λ(1.4M�) =
267(144). The selected Skyrme interactions have effective
masses with [m∗n/m](ρ0) ≈ 0.6 and [m∗0/m](ρ0) ≈ 0.7.

We start with the modified CSkP set obtained in [2]
that gives a maximum neutron star mass of 1.7-1.9 M�.
In [2] the neutron effective mass was rather arbitrarily
constrained to have [m∗n/m](ρ0) = 0.85. Then we con-
strain the neutron effective mass to have a smaller value,
[m∗n/m](ρ0) = 0.60-0.65. This results in an increased
maximum neutron star mass of 2.0-2.1 M� which is in
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FIG. 3. Correlation between neutron-star tidal deformability
and radii of the predicted 1.4 solar mass neutron star from
2 groups of Skyrmes (blue open square and red solid circle
marker). The shaded aqua rectangular box in the background
shows constraints from event GW170817 [11].

better agreement with observations. There is still a rea-
sonably wide range of isoscalar effective masses (0.73-
0.99) coming from the original CSkP parameter sets.
With this change we predict a radius of R(1.4M�) =
12.4(1) km and a tidal deformability of Λ(1.4M�) =
423(40). These results are consistent with those of Ma-
lik et al., but our uncertainties are smaller due to the
constraint provided by the ab-initio calculations of the
low-density neutron-matter EOS from [2].

We note that the assumed functional form of the neu-
tron EOS from the Skyrme EDFs provides the analytical
connections between its properties inferred from nuclei
(e.g. the value of the symmetry energy at a density of
0.10 nucleons/fm3), those inferred from ab-initio calcu-
lations of low-density EOS of neutron matter, and those
inferred for the high-density pressure of the neutron mat-
ter EOS from the neutron star radii. It will be impor-
tant to see if any measured property of nuclei or neutron
stars is inconsistent with our predictions. If so, then a
less restictive form [66] of the EOS will be required.
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