
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Equation of state effects in the core collapse of a 20-M_{⊙}
star

A. S. Schneider, L. F. Roberts, C. D. Ott, and E. O'Connor
Phys. Rev. C 100, 055802 — Published  7 November 2019

DOI: 10.1103/PhysRevC.100.055802

http://dx.doi.org/10.1103/PhysRevC.100.055802


Equation of state e�ects in the core collapse of a 20-M� star

A. S. Schneider,
1, 2, ∗

L. F. Roberts,
3, †

C. D. O�,
4, ‡

and E. O’Connor
1, §

1Department of Astronomy and the Oskar Klein Centre,
Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden

2TAPIR, Walter Burke Institute for �eoretical Physics, MC 350-17,
California Institute of Technology, Pasadena, CA 91125, USA

3National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy,
Michigan State University, East Lansing, MI 48824, USA

4OCS Labs LLC, Pasadena, CA 91104
(Dated: October 7, 2019)

Uncertainties in our knowledge of the properties of dense ma�er near and above nuclear saturation density

are among the main sources of variations in multi-messenger signatures predicted for core-collapse super-

novae (CCSNe) and the properties of neutron stars (NSs). We construct 97 new �nite-temperature equations

of state (EOSs) of dense ma�er that obey current experimental, observational, and theoretical constraints and

discuss how systematic variations in the EOS parameters a�ect the properties of cold nonrotating NSs and

the core collapse of a 20-M� progenitor star. �e core collapse of the 20-M� progenitor star is simulated in

spherical symmetry using the general-relativistic radiation-hydrodynamics code GR1D where neutrino inter-

actions are computed for each EOS using the NuLib library. We conclude that the e�ective mass of nucleons at

densities above nuclear saturation density is the largest source of uncertainty in the CCSN neutrino signal and

dynamics even though it plays a subdominant role in most properties of cold NS ma�er. Meanwhile, changes

in other observables a�ect the properties of cold NSs, while having li�le e�ect in CCSNe. To strengthen our

conclusions, we perform six octant three-dimensional CCSN simulations varying the e�ective mass of nucle-

ons at nuclear saturation density. We conclude that neutrino heating and, thus, the likelihood of explosion is

signi�cantly increased for EOSs where the e�ective mass of nucleons at nuclear saturation density is large.

PACS numbers: 21.65.Mn,26.50.+x,26.60.Kp

I. INTRODUCTION

Stars with masses above roughly eight times the mass of

the Sun (M�), end their lives in a core collapse event, in many

cases leading to a core-collapse supernova (CCSN) explosion.

Core collapse sets in once electron degeneracy pressure in

the nickel-iron core of a massive star can no longer support

it against gravity [1].

Core collapse proceeds until the inner core reaches nuclear

saturation density, ρsat & 2.7 × 1014 g cm−3
, at a tempera-

ture of 10−20 MeV. At this point, the residual nuclear force

prevents the inner core from contracting any further and it

rebounds into the still infalling outer core, creating a shock

wave. As the shock wave propagates through the outer core

it eventually stalls because of energy losses resulting from

dissociation of heavy nuclei and to lesser extent due to neu-

trino losses from behind the shock.

A few mechanisms that revive the shock and lead to

successful CCSNe have been suggested, see discussion in

Refs. [2–7] and references therein. Simulations have shown

that it is likely that a multitude of macroscopic (e.g., progeni-

tor structure, large-scale convection, magnetohydrodynamic

forcing) and microscopic properties and processes (e.g., neu-

trino heating) couple non-linearly to drive an explosion. Still,

it is believed that the main contributor to shock revival is
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the neutrino heating mechanism [8, 9], whereby ∼ 10% of

the outgoing electron-�avor neutrino luminosity is deposited

behind the shock. �is provides the shock with thermal sup-

port, drives turbulence, and aids in shock runaway [2, 10, 11].

One of the fundamental ingredients to understand the dy-

namics of core collapse events is the equation of state (EOS)

of dense ma�er. �e density at which the collapse halts,

how many protons are converted into neutrons during the

collapse, the spectra of neutrinos, how much energy is de-

posited behind the shock and its expansion rate, the ejecta

mass and its composition, the proto neutron star (PNS) mass,

its radius, cooling rate, and whether it later collapses into a

black-hole (BH) as well as the gravitational wave (GW) sig-

nal, are all dependent on the EOS. In a CCSN, and also in

NS mergers, ma�er exists in a wide range of temperatures,

0 . T . O(100 MeV), densities, ρ . 1015 g cm−3
, and

proton fractions, 0.0 . y . 0.5. Some of these conditions

are so extreme they are not readily available to laboratory

experiments and, thus, such regions of parameter space can

only be probed indirectly from observations in consent with

computational and theoretical models.

Recently, Ref. [12] introduced the concept of meta-

modeling for the nuclear EOS (see also Ref. [13]). In their

model, the EOS is parametrized in terms of empirical param-

eters, i.e., nuclear ma�er binding energy, saturation density,

incompressibility, symmetry energy, and so on. �e average

values of the empirical parameters and their uncertainties

are estimated based on experimental and theoretical nuclear

physics constraints. In follow-up studies meta-modeling was

used to study the e�ects of uncertainties in the empirical pa-

rameters on NS properties [14], �nite size e�ects in the de-

scription of nuclear masses and radii of ground state nuclei
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[15], and to compute correlations between empirical param-

eters from known constraints [16].

We follow the meta-modeling approach [12, 14] and ana-

lyze how uncertainties in properties of nuclear ma�er a�ect

cold NS properties and the core collapse of a 20-M� progen-

itor star. We use the meta-modeling formalism to construct a

family of �nite temperature EOSs of dense ma�er. �e EOSs

are built using the recently developed open-source SROEOS

code [17], which is itself based on the La�imer and Swesty

liquid-drop model of nuclei [18], with a few improvements.

�e main improvements relevant to this work are the possi-

bility to compute EOSs where (1) the e�ective mass of nu-

cleons is di�erent from their vacuum values and (2) for any

desired value of the incompressibility of nuclear ma�erKsat,

instead of the canonical values of 180 MeV, 220 MeV, and

375 MeV to which the code of [18] is essentially limited. �e

SROEOS model has also been extended to transition to a de-

scription of many nuclear species in nuclear statistical equi-

librium (NSE) at low densities.

�e main goal of this study is to separately determine how

each empirical parameter of the EOS may a�ect a core col-

lapse event and the resulting PNS. �is is only possible us-

ing many EOSs obtained within a single formalism. Previous

studies have studied the e�ect of the EOS on CCSNe and their

observables, e. g., Refs. [6, 19–31]. �e main drawback of

these studies is that o�en the EOSs being compared were ob-

tained with distinct approaches, used di�erent prescriptions

to describe low density ma�er, and, with the exception of

Ref. [27] which analyzed changes resulting from using 18 dif-

ferent EOSs in their simulations, the number of EOSs investi-

gated was rather small. �us, in many cases, it was challeng-

ing to disentangle how a parameter of the EOS contributed

to a given observable.

In this paper, we focus on EOS e�ects on the neutrino heat-

ing mechanism and delay the study of GW signals to future

work. We simulate the core collapse of a single non-rotating

20-M� progenitor star taken from [32] using 97 distinct EOSs

that each vary in at most two di�erent empirical parame-

ters from a baseline EOS. �e SROEOS code is ideal for this

type of sensitivity study as it allows one to compute many

EOSs within the same framework using arbitrary Skyrme-

type parametrizations of the nuclear forces. Furthermore, to

limit our assessment only to the e�ects of the high-density

part of the EOS, we use the same nuclear surface parametriza-

tion for all EOSs and the same NSE EOS at low densities for

all simulations. �e CCSN simulations are performed using

the open-source general-relativistic multi-group radiation-

hydrodynamics code GR1D [33, 34]. Since the GR1D code

is limited to spherical symmetry, we also perform six three-

dimensional (3D) simulations, limited to an octant of the 3D

cube to keep computational demands manageable. For this,

we employ the open-source 3D general-relativistic radiation-

hydrodynamics code Zelmani [35, 36], which is based on the

Einstein Toolkit [37, 38]. We perform the octant 3D runs

for �ve variations of the SLy4 EOS [39] and the LS220
1

EOS

1
LS220 is the La�imer & Swesty EOS with incompressibility Ksat =

[18].

�is paper is structured as follows. In Section II, we discuss

a variant of the meta EOS model of Ref. [12] that suits our

needs. We proceed to discuss how each of the empirical pa-

rameters a�ects the properties of cold beta-equilibrated NSs

in Sec. III and spherically-symmetric core collapse in Sec. IV.

In Sec. V, we discuss 3D runs with octant symmetry. We con-

clude in Sec. VI.

II. META EOS

Motivated by Ref. [12], we use a metamodeling formal-

ism to compute Skyrme parameters for the nucleonic EOS

in terms of empirical nuclear parameters. In this work, mat-

ter is assumed to be made solely of nucleons, electrons,

positrons, and photons
2
. Electrons, positrons, and photons

are treated as uniform free gases and charge neutrality is as-

sumed. �erefore, their contributions to the EOS decouple

from the nucleon contributions. Our treatment of these com-

ponents of the EOS is discussed in detail in Appendix A of

Ref. [17].

A. Skyrme Model

�e bulk nuclear contribution to the EOS is computed

assuming non-relativistic e�ective Skyrme-type nucleon-

nucleon interactions. In this approach the energy per baryon

εB of nucleonic ma�er with number density n and proton

fraction y can be separated into its kinetic and potential en-

ergy density contributions i.e.,

εB(n, y, T ) = εkin(n, y, T ) + εpot(n, y) . (1)

�e kinetic energy density term is

εkin(n, y, T ) =
1

n

(
~2τn
2m?

n

+
~2τp
2m?

p

)
, (2)

where

τt =
1

2π2

(
2m?

tT

~2

) 5
2

F3/2(ηt) , (3)

and the density dependent e�ective nucleon masses m?
t are

given by

~2

2m?
t

=
~2

2mt
+ α1nt + α2n−t . (4)

220 MeV EOS. In this work the LS220 EOS was recomputed using the

SROEOS code [17].

2
It is expected that the EOS so�ens at very high temperatures and densi-

ties due to the appearance of heavy leptons, hyperons, condensates, and

quark-gluon plasmas [40, 41]. �ey are not explicitly included here since

we take a parameterized approach to the high-density EOS.
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Above, nt and mt are, respectively, the density and vacuum

mass of a nucleon with isospin t, where t = n for neutrons

and t = p for protons, and, if t = n then −t = p and vice-

versa. �e neutron and proton densities are related to the

proton fraction y and the nucleon density n by nn = (1−y)n
and np = yn, respectively. �e quantities α1 and α2 are pa-

rameters of the model and establish a simple dependence of

the nucleon e�ective masses on the density and proton frac-

tion of the system. We stress that the Skyrme model treat-

ment of e�ective masses is rudimentary, other models allow

for much more complex dependencies of m?
[42]. Neverthe-

less, we use this model as a guide to teach us how each piece

of the EOS a�ects neutron star (NS) properties and the dy-

namics of CCSNe.

�e Fermi integral in Eq. (3) is de�ned as

Fk(η) =

∫ ∞

0

ukdu

1 + exp(u− η)
, (5)

and is a function of the degeneracy parameter

ηt =
µt − Vt
T

. (6)

Here, µt is the nucleon chemical potential and Vt is the

single-particle potential (see [17] for more details).

�e temperature-independent potential energy density

term in Eq. (1) has the form

εpot(n, y) =

N∑

i=0

[ai + 4biy(1− y)]nδi . (7)

where ai, bi, and δi are constant parameters of the Skyrme

model. �e i = 0 term is chosen to represent two-body nu-

cleon interactions. �erefore, we �x δ0 = 1 for all models.

Meanwhile, the i > 0 terms approximate e�ects of many-

body interactions [18]. �e summation in most Skyrme pa-

rameterizations ends at N = 1, while only a small num-

ber of studies in the literature consider N > 1 [43]. To

allow for more �exibility in our empirically ��ed models,

we choose to �x N = 3 and δ0 = 1, δ1 = 4/3, δ2 = 2,

and δ3 = 7/3 (the last three terms amount to an expansion

in terms of the Fermi momenta of the nucleons kt ∝ n
2/3
t

[44, 45]). �erefore, the EOS model contains ten free param-

eters {a0, b0, a1, b1, a2, b2, a3, b3, α1, α2} that we �t using a

set of empirical properties of nuclear ma�er.

B. Empirical Parameters

Now, we would like to de�ne a set of empirical properties

with which to constrain our Skyrme EOS parameters. First,

we consider measurable properties of nearly symmetric nu-

clear ma�er near nuclear saturation density. In these con-

ditions, the zero-temperature nuclear EOS can be expanded

about nuclear saturation density, n = nsat ' 0.155 fm−3
,

for symmetric ma�er (y = 1/2) in a Taylor series, giving

rise to a set of expansion parameters that can be empirically

constrained. �is expansion is wri�en as

εB(n, y) = εis(x) + δ2εiv(x) , (8)

where x = (n− nsat)/(3nsat) and δ = 1− 2y is the isospin

asymmetry. Here, the isoscalar (is) and isovector (iv) expan-

sion terms are [12, 46]

εis(x) = εsat +
1

2!
Ksatx

2 +
1

3!
Qsatx

3 + . . . , (9)

εiv(x) = εsym + Lsymx+
1

2!
Ksymx

2

+
1

3!
Qsymx

3 + . . . , (10)

shown here explicitly up to third order. �e empirical param-

eter εsat is the energy per baryon at nuclear saturation den-

sity nsat,Ksat is the isoscalar incompressibility modulus, and

Qsat the isoscalar skewness. Similarly, εsym is the symmetry

energy,Lsym is related to the slope of symmetry energy in the

direction of increasing density, Ksym is the isovector incom-

pressibility modulus, andQsym is the isovector skewness. By

de�nition of the saturation density nsat, the linear term in x
of εis vanishes. In principle, all of these expansion parame-

ters can be determined experimentally, with varying degrees

of di�culty. Nevertheless, the lower-order parameters are

substantially easier to constrain. �erefore, we only include

the well constrained saturation density empirical parame-

ters {nsat, εsat,Ksat, εsym, Lsym,Ksym} in our Skyrme model

�ts described below.

Although this expansion is useful near saturation den-

sity, it cannot accurately describe the behavior of the nuclear

EOS at densities larger than a few times saturation density

since x is no longer small and the expansion breaks down.

Densities this large are reached in CCSNe and in the cores

of NSs. �erefore, we also require empirical constraints at

higher density. Most experiments probe densities near satu-

ration density, but there are some results available for higher

densities. Using measurements of �ow in heavy ion colli-

sions and theoretical transport models, [47] constrained the

baryonic pressure PB = n2∂εB/∂n of symmetric nuclear

ma�er (SNM) and pure neutron ma�er (PNM), albeit in a

model dependent way, at four times nuclear saturation den-

sity, P
(4)
SNM

= PB(n = 4nsat, y = 1/2) and P
(4)
PNM

= PB(n =
4nsat, y = 0). Constraints on these pressures have recently

been made sharper by combining the results of these �ow ex-

periments with constraints on the tidal deformability of NSs

inferred from GW170817 [48].

Finally, although they do not enter into the expansion

above, the nucleon e�ective masses at saturation density can

also be considered a quasi-empirical parameter [12]. How-

ever, there is considerable complexity involved in extracting

this property of the single quasi-particle energies. Neverthe-

less, the nucleon e�ective masses are particularly important

for determining the temperature dependence of the nuclear

EOS [see Eq. (2) above]. �erefore, we include the nucleon

e�ective mass at saturation density in SNM, m? ≡ m?
n(n =

nsat, y = 1/2), and the neutron-proton e�ective mass split-

ting in PNM, ∆m? ≡ m?
n(n = nsat, y = 0) − m?

p(n =
nsat, y = 0), in our list of empirical parameters.

In total, this gives ten empirical pa-

rameters that we consider in this work,

{nsat, εsat,Ksat, εsym, Lsym,Ksym,m
?,∆m?, P

(4)
PNM

, P
(4)
SNM
}.

Due to their small uncertainties, we �x the values of the
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nuclear saturation number density nsat = 0.155 fm−3

(mass density ρsat = 2.7 × 1014 g cm−3
) and of the energy

at nuclear saturation density εsat = −15.8 MeV. Other

saturation density quantities are allowed to vary within their

experimental or theoretical uncertainties (as compiled in

[12]) as long as they are able to produce 2-M� NSs [49–51].

�e exception to this choice is the slope of the symmetry

energy Lsym. Instead of using the average values of Ref. [12],

Lsym = 60 ± 15 MeV, we set Lsym = 45 ± 7.5 MeV. Al-

though this choice only probes the lower half of possible

values compiled in Ref. [12], we choose these limits so

that the mass-radius relationships of NSs in this work are

centered near the center of the constraints computed from

observations of x-ray bursts [52]. �ese limits also agree

with combined theoretical calculations of pure neutron

ma�er and astrophysical observations [45, 53, 54]. Even

though Lsym is correlated with radii of low mass NSs [55],

for the systems we study, our limited choice for Lsym has

li�le e�ect on PNS properties in the �rst second a�er core

collapse. Finally, we ignore existing correlations between the

di�erent empirical nuclear ma�er parameters [16, 45, 55].

Note, however, that the allowed ranges for empirical param-

eters contain EOSs that do not ful�ll expected correlation

between εsym and Lsym determined on the basis of unitary

gas considerations [45]. We justify our choice with our

primary interest in how di�erent parameters of the EOS

a�ect CCSNe. Our focus is less on particularly intricate

details of the EOS. In Tab. I we summarize the constraints

used in this work.

TABLE I: Constraints of nuclear ma�er properties used in this work

grouped in sets de�ned in Sec. II C. Nuclear ma�er empirical pa-

rameters were compiled in Ref. [12], see references therein for de-

tails. Meanwhile, nuclear ma�er pressure at 4nsat, P (4)
, for SNM

and PNM is from Ref. [47]. We use values similar to the ones in

Refs. [12, 47], but exclude from our analysis regions of parameter

space that fail to reproduce 2-M� NSs and, in the case of Lsym, val-

ues that lead to too large radii for NSs [52]. We show the averages

and one-standard deviations compiled or assumed in this work.

Set �antity Range �is work Units

sM m? 0.75±0.10 0.75±0.10 mn

∆m? 0.10±0.10 0.10±0.10 mn

− nsat 0.155±0.005 0.155 fm−3

εsat −15.8±0.3 −15.8 MeV baryon−1

sS εsym 32±2 32±2 MeV baryon−1

Lsym 60±15 45±7.5 MeV baryon−1

sK Ksat 230±20 230±15 MeV baryon−1

Ksym −100±100 −100±100 MeV baryon−1

sP P
(4)
SNM 100±50 125±12.5 MeV fm−3

P
(4)
PNM 160±80 200±20 MeV fm−3

C. Empirically Constrained Skyrme EOS Models

For a given set of Skyrme parameters, the empirical pa-

rameters described in the last section can be calculated from

the Skyrme energy density [Eq. (1)], its derivatives, and the

Skyrme expression for the e�ective masses [Eq. (4)]. Con-

versely, for a given choice of the ten empirical parameters

given above, the ten Skyrme parameters are �xed. Our

method for �nding the Skyrme parameters from the empir-

ical parameters is given in Appendix B. We stress that the

��ed Skyrme parameterization only matches the saturation

density expansion [Eq. (8)] at saturation density since the

Skyrme model has a di�erent functional form from the poly-

nomial expansion.

To investigate the impact of EOS uncertainties on cold NSs

and core collapse, we build a set of 97 Skyrme EOSs by pick-

ing 97 sets of the empirical parameters in the ranges given

in Tab. I. We initially set the quantities used to obtain the

Skyrme parametrization to their average values. �en, two-

sigma variations in the nuclear properties are implemented

for four sets of nuclear properties with two quantities each.

�e sets are

sM = {m?,∆m?} , (11a)

sS = {εsym, Lsym} , (11b)

sK = {Ksat,Ksym} , (11c)

sP = {P (4)
SNM, P

(4)
PNM} . (11d)

�us, for set sM the values of m?
and ∆m?

can be their av-

erage values (m? = 0.75 and ∆m? = 0.10), or their av-

erage values plus or minus one standard deviation (m? =
0.75 ± 0.10 and ∆m? = 0.10 ± 0.10) or two standard devi-

ations (m? = 0.75± 0.20 and ∆m? = 0.10± 0.20). Similar

variations are implemented for all other sets, leading to a to-

tal of 97 di�erent parametrization for the EOS
3
. For each of

the parametrizations we build an EOS table using the open-

source SROEOS code we have recently developed [17].

D. Non-uniform and low density matter

To limit our focus to the e�ects of the empirical parame-

ters on CCSNe, we set the same parametrization of the nu-

clear surface for all EOSs. �is is di�erent from what we

presented in Ref. [17], where the parametrization of the sur-

face properties was computed self-consistently based on the

Skyrme parameters. We defer to future work a detailed study

of nuclear surface e�ects on CCSNe. Here, the surface pa-

rameters are chosen to be σs = 1.15 MeV fm−2
, q = 16,

λ = 3.0, and p = 1.5, see Eqs. (19) and (20) in Ref. [17]. �e

surface parametrization chosen here leads to a surface sym-

metry energy SS = 57.8 MeV, in agreement with the value

SS = 58.9±1.1 MeV of Ref. [56], and a surface level density

AS = 0.13 MeV fm−1
.

Once empirical and surface parametrizations are set, we

use the SROEOS code to obtain the EOS table. �e EOSs in the

Skyrme model are obtained in the single nucleus approxima-

tion (SNA) [17, 18] although extensions to accommodate mul-

tiple nuclear species have recently been proposed [57, 58].

3
�ere are 25 EOSs in each set s. However, the baseline EOS with the

average values of the observables is the same for all 4 sets.
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We take the same approach discussed in our previous work

and match our Skyrme-type EOSs to an EOS of 3,335 nuclei in

nuclear statistical equilibrium (NSE) [17]. A uni�ed method

to connect SNA and NSE EOSs is the subject of Refs. [59, 60].

Here we follow the simple prescription to transition between

SNA to NSE EOSs using a density dependent function as dis-

cussed in Sec. VII A of Ref. [17]. Here, we set the transition

parameters ntr = 10−3 fm−3
and nδ = 0.33, see Eqs. (57)

and (58) of Ref. [17]. Note that the parameter ntr is di�erent

from ntr = 10−4 fm−3
used in Ref. [17]. �e reason for this

change is that the time to bounce in core collapse is insensi-

tive tontr in the range 10−2 fm−3 & ntr & 10−3 fm−3
, while

it is a function of ntr for ntr < 10−3 fm−3
. We note that set-

tingnδ . 0.5 has li�le e�ect on CCSN simulations. However,

larger values may have an e�ect since the SNA (NSE) EOS

will have signi�cant contributions at low (high) densities.

III. COLD NEUTRON STARS

We study how variations in the empirical parameters of the

EOS and of the pressure of nuclear ma�er at high densities

a�ects the zero-temperature EOS and properties of cold non-

rotating beta-equilibrated NSs using the suite of EOSs dis-

cussed in Section II. We consider each set of empirical pa-

rameter variations [see Eqs. (11)] separately.

A. E�ective Mass

�e Tolman-Oppenheimer-Volko� (TOV) equations of NS

structure only depend on the relationship between the pres-

sure and energy density for the cold, beta-equilibrated EOS,

Pβ−equil,T=0(εBn), where n is the baryonic number density

and εB the energy per baryon de�ned in Eq. (1). Since εB
and its �rst few derivatives are �xed at saturation density by

the empirical expansion parameters, varying only the e�ec-

tive masses, set sM de�ned in Eq. (11a), has a limited impact

on Pβ−equil,T=0(εBn) and one expects small variations in the

nonrotating NS mass radius relation
4
.

�e limited impact of the e�ective masses on the zero-

temperature EOS is visible in the �rst column of Fig. 1, where

we plot the zero-temperature pressures of SNM (top) and

PNM (bo�om) as a function of density. No perceptible di�er-

ences are seen for the EOS of SNM as the e�ective masses are

changed. Meanwhile, only minor changes in the EOS of PNM

occur for the di�erent e�ective masses. As in the SNM case,

4
Due to our choice of �xing the empirical parameters of order 2 and lower

in Eq. (8) as well as the baryonic pressures for SNM and PNM at 4nsat,

the zero-temperature baryonic pressure, PB = n2∂εB/∂n, is almost

independent ofm? and ∆m?. Small variations in the cold EOS for distinct

choices of m? and ∆m? result from how the Skyrme parameters, and,

thus, the empirical parameters of order 3 and higher in Eq. (8), adjust to

reproduce the �xed empirical parameters and the pressure at 4nsat. Our

method contrasts with the one in Ref. [64], where a large e�ect in the EOS

and mass-radius relations of cold beta equilibrated NSs due to variations

of the e�ective mass is observed.

the EOS of PNM is, by construction, within the bounds deter-

mined from �ow experiments [47], since we �x the pressure

of PNM at four times saturation density. �ere are two bands

shown for the pressure of PNM where the lower (higher)

pressure band represents the pressure of PNM considering

the so�est (sti�est) density dependence of the PNM EOS pro-

posed in Ref. [61]. Our results cross the two di�erent bands

and, at the highest densities, coincide with the upper limit

of the range obtained in Ref. [47]. �e explored range agrees

with results from Ref. [48], which compares results from �ow

experiments [47] with the tidal deformability computed for

the NS merger event GW170817 [65]. We add to our compar-

isons the pressure of PNM obtained from chiral e�ective �eld

theory (EFT) [62]. For densities up to n ' 1.5nsat, the values

from the Skyrme EOSs are within the constraints of chiral

EFT, although they are slightly above the limits for higher

densities.

In the second column of Fig. 1, we plot the mass-radius

relations of cold beta-equilibrated NSs obtained solving the

TOV equations (top) and the baryonic mass of the cold NS

with proton fraction y above a critical value set to ycrit =
0.11 (bo�om) as is the condition necessary for direct Urca

processes to take place inside a NS [66]. Because we limit

our analysis to EOSs that predict a large pressure at high

densities, see Tab. I, all EOSs satisfy the observational con-

straints for the mass of PSR J0348+0432, 2.01 ± 0.04M�
[50]. A similarly large NS mass, M = 1.93 ± 0.02M�,

has been observed for PSR J1614-2230 [51]. Furthermore, our

choices of the other empirical parameters guarantee that the

mass-radius relations are within the 1σ range of “model A”

of Ref. [52] obtained from observations of x-ray bursts. �e

EOSs also obey the constraints for the radius of a 1.4-M� NS,

12.00 km < R1.4 < 13.45 km, computed from the data for

the NS merger observation GW170817 [63]. �is constraint

is more stringent than obtained by others for the same event,

e. g., Ref. [67] constrain radii of NSs to be in the 8.9 km <
R̄ < 13.2 km range while results from the LIGO and Virgo

Collaborations suggest R = 11.9 ± 1.4 km [68]. �e con-

straint of Ref. [67] was computed assuming hadronic EOSs

for high density ma�er and from inference of the dimension-

less tidal deformability deduced from the GW170817 event

that suggests Λ̃ < 800 [65]. Meanwhile, the LIGO/Virgo re-

sults require that both bodies that generated the GW170817

event are NSs described by the same EOS with spins within

the range observed in Galactic binary NSs and are able to pro-

duce 1.97-M� NSs. We notice only minor di�erences in the

mass-radius relations as a function of the e�ective masses,

mostly in the mass range 0.5M� .M . 1.5M�.

Recently, it has been shown that the cooling rate of the

NS in the transient system MXB 1659-29 while in quiescence

is consistent with direct Urca reactions occurring in a small

fraction of the core, ≈ 0.03M� [66]. Assuming hadronic

ma�er, this is only possible if nucleons in the core are un-

paired and the proton fraction exceeds a critical value ycrit

in the range 0.11 − 0.15 [69]. Here we set ycrit = 0.11
and compute for each NS the total baryonic mass in the

core which exceeds ycrit, Mbaryon(y > ycrit). We de�ne

Mbaryon(y > ycrit) as the integrated baryonic mass in re-

gions of the star where y ≥ ycrit excluding the crust, i.e., the
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FIG. 1: (Color online) Plots for variations in the e�ective mass m?
and e�ective mass spli�ing ∆m?

of (a) the pressure of SNM and (d)

of PNM as a function of density, of (b) the mass-radius relations for cold beta-equilibrated NSs and (e) the NS baryonic mass above critical

proton fraction, ycrit = 0.11, as a function of the total gravitational NS mass, and of (c) the density and (f) proton fraction as function of

the radius for a canonical 1.4-M� NS. E�ective masses are computed in units of the neutron vacuum mass mn. Nuclear ma�er pressures

are compared to results of Danielewicz et al., Ref. [47]. For PNM there are two bands in Ref. [47] based on a strong (top band) and weak

(bo�om band) density dependence of the symmetry energy proposed in Ref. [61]. PNM pressure is also compared to chiral e�ective �eld

theory results of Tews et al., Ref. [62]. Mass-radius relations are compared to the mass of a NS observed by Antoniadis et al., Ref. [50],

the mass-radius relations obtained from observations of x-ray bursts by Nä�ilä et al., Ref. [52], and the radius of a 1.4-M� NS computed

from the limits of tidal deformability of NSs by Most et al., Ref. [63]. Note that the outer ' 1 km of canonical 1.4-M� NSs have densities

below 1014 g cm−3
. All quantities plo�ed show only minor dependence with respect to variations in the e�ective mass at nuclear saturation

density m?
and the neutron-proton e�ective mass spli�ing ∆m?

.

outer ' 1 km of the star, as densities there are to low to in-

duce direct Urca reactions. If the values chosen for the empir-

ical parameters hold, the EOS described by those parameters

implies that the NS in the MXB 1659-29 system has a mass in

the range 1.6 to 1.8M� as lower mass values would imply

that the proton fraction in the core never reaches the critical

value ycrit to start the direct Urca process. Meanwhile, NSs

with larger masses would cool at a much faster rate through

direct Urca processes. �us, under the assumption that mat-

ter in the core of a NS is made of unpaired nucleons, com-

bined measurements of NS masses and cooling rates may be

used to improve constraints on the EOS of dense ma�er.

Finally, in the last column of Fig. 1, we compare the in-

terior properties of a canonical 1.4-M� NS for the di�erent

EOSs. Although there are no clear visible changes for the

density as a function of NS radius, we notice that there are,

as in the case of the gravitational mass with proton fraction

above ycrit, small changes in the proton fraction in the core

region as a function of the nucleon e�ective masses. �ese

variations in proton fraction in the inner core of a 1.4-M� NS

are inversely (directly) correlated with m?
(∆m?

). However,

these changes are small, and the nucleon e�ective masses af-

fect the central proton fraction y1.4 at the center of a 1.4-M�
NS by at most 0.02. Nevertheless, a clear trend is observed

here: EOSs that predict smaller radii for the same mass NS

also predict a larger isospin asymmetry in their cores.

B. Symmetry energy and its slope

We now discuss the variation set sS [Eq. (11b)], where the

symmetry energy εsym and its logarithmic derivative with re-

spect to density Lsym at saturation density are varied.

In Fig. 2, we plot the pressure as a function of density and

properties of cold beta-equilibrated NSs considering changes

in these quantities according to Tab. I. Because we are only

modifying parameters of the symmetry energy, the pressure

of SNM remains unchanged across EOSs, see the top le�

panel in Fig. 2. Meanwhile, there are some variations in the
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FIG. 2: (Color online) Same as Fig. 1 but for variations in the symmetry energy εsym and the slope of the symmetry energy Lsym. Both

quantities are shown in units of MeV baryon−1
. Because only the two lowest order isospin asymmetry terms are varied, the pressure of

SNM (top le�) is unchanged while the e�ects on the pressure of PNM (bo�om le�) are more pronounced in the region n . 2nsat. �ese

changes impact the mass radius relationship of NSs more signi�cantly for low mass NSs (top center). Meanwhile, the inner NS composition

is a�ected even for massive NSs (bo�om center). �e di�erence in compositions can also be seen for canonical 1.4-M� NSs, which have

similar density pro�les in their core (top right) but proton fractions that may di�er by a factor of two (bo�om right).

pressure of PNM, as depicted by the bo�om le� panel of Fig. 2.

�e di�erences between the EOSs are largest below ' 2nsat

since the higher density behavior of the symmetry energy is

strongly constrained by the �xed values of P
(4)
SNM, P

(4)
PNM, and

Ksym for all EOSs in the variation set sS [Eq. (11b)]. �ere-

fore, all EOSs obey the �ow constraints from Danielewicz

et al. [47] across a wide range of densities. In compari-

son, some of the sS EOSs become slightly inconsistent with

the sub-saturation density chiral e�ective �eld theory con-

straints [62] at low density.

�e mass-radius curve of cold beta-equilibrated NSs, the

top center plot in Fig. 2, is most impacted by symmetry

energy variations at lower NS mass. For NSs with mass

M . 1.5M�, larger symmetry energies at saturation den-

sity εsym and symmetry energy slopes Lsym result in larger

NS radii. �is is consistent with the results of Refs. [13, 70],

which highlight the impact of the density dependence of the

symmetry energy on the NS radius. However, there are only

minor changes in the mass-radius relationship in the region

M & 2M�, as these NSs reach quite high densities in their

cores where the pressure is �xed by P
(4)
SNM and P

(4)
PNM. Nev-

ertheless, massive NSs with approximately the same radius

have very di�erent inner compositions. See the bo�om cen-

ter panel of Fig. 2. For the variations considered here, we ob-

serve an inverse relationship between the NS radius and the

amount of ma�er with proton fraction larger than the criti-

cal value ycrit = 0.11, i.e., the isospin asymmetry. �is is also

clearly seen in the composition of the 1.4-M� NS, see bo�om

right plot in Fig. 2. At densities near or abovensat, the density

pro�le of 1.4-M� NSs is similar for all EOS parametrizations

that di�er only in εsym and Lsym, top right of Fig. 2. How-

ever, these NS radii may di�er by up to 800 m due to di�erent

density pro�les at densities lower than nsat.

C. Incompressibility

We now consider set sK [Eq. (11c)], where we analyze

variations in the isoscalar incompressibility Ksat, which is

well constrained, and the isovector incompressibility Ksym,

which is poorly known (see Section II).

In Fig. 3, we plot the pressure of SNM (top le�) and of PNM

(bo�om le�). Small di�erences are evident in SNM for di�er-

ent Ksat, while the di�erences in PNM are substantial due to

the large range of values allowed forKsym. Since we keep the

pressure of SNM and PNM at n = 4nsat �xed for all EOSs, the

curves for the pressures cross at this value and at n = nsat.

�is limits the e�ect of both Ksat and Ksym at high density.
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FIG. 3: (Color online) Same as Fig. 1 but for variations in the isoscalar and isovector incompressibilities Ksat and Ksym, respectively,

measured in MeV baryon−1
. Because of the lower uncertainty in Ksat relative to Ksym the variations in the pressure of SNM (top le�)

are smaller than those of PNM (bo�om le�). Due to the imposed constraints the pressures of both SNM and PNM match at n = nsat and

n = 4nsat. For NSs with masses lower than' 2.0M� there is a direct correlation between increasing incompressibility and NS radius (top

center) and inverse correlation with phase space available for direct Urca processes (bo�om center). �ese correlations are inverted for NSs

with masses higher than 2.0M�. Canonical 1.4-M� NSs are more compact for lower incompressibilities (top right) and the core proton

fraction is impacted almost exclusively by the isovector incompressibility (bo�om right).

Variations in the incompressibilities cause drastic di�er-

ences in the mass-radius relationships and compositions of

cold NSs (see the center upper and center lower panels of

Fig. 3, respectively). �ere is an inverse correlation between

the radius of a NS predicted by a given EOS and its isospin

asymmetry, which is similar to what we see for variation sets

sM and sS , Secs. III A and III B, respectively. �is is partic-

ularly obvious in the rightmost panels of Fig. 3, which show

the internal properties of 1.4-M� NSs.

We also observe di�erent qualitative behaviors in the core

composition that relate to the isovector incompressibility

Ksym. While for Ksym . −200 MeV the proton fraction

in the NS core is almost constant, for Ksym & −200 MeV
the core asymmetry decreases with Ksat. Similar properties

are found across NSs with the same mass but di�erent EOSs

except for the most massive ones, M & 2M�.

D. Pressure at high-density

Finally, we consider the variation set sP [Eq. (11d)], where

the pressures of SNM and PNM are varied at four times nu-

clear saturation density, while leaving all other empirical pa-

rameters constant. �ese variations begin to have an impact

at densities & 2nsat, since the saturation density properties

of the EOSs are unaltered. �is is clearly visible in the top

and bo�om le� panels of Fig. 4.

Changes in the pressure at high densities translate directly

into variations in the mass-radius relationship of high-mass

NSs, which probe these high densities in their cores (see the

center panels of Fig. 4). Since the pressure in the NS core is

somewhere between the SNM and PNM pressures, increasing

either one sti�ens the EOS and gives rise to a larger radius

for a �xed NS mass. Additionally, increasing the pressure

of either SNM or PNM increases the predicted maximum NS

mass.

Varying these pressures also impacts the predicted lepton

richness of NSs. In the lower le� panel of Fig. 4, it can be seen

that the pressure of PNM is anti-correlated with the isospin

asymmetry in the NS core while the pressure of SNM is cor-

related with the isospin asymmetry.
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FIG. 4: (Color online) Same as Fig. 1 but for variations in the pressure of symmetric nuclear ma�er and pure neutron ma�er at n = 4nsat.

Pressure values are given in MeV fm−3
. In the �rst column we plot the pressure of SNM (top le�) and PNM (bo�om le�). Higher pressures

allow for higher NS masses (top center). Proton fraction in the core is higher for lower (higher) pressure of SNM (PNM) (bo�om center).

Meanwhile, canonical 1.4-M� NSs are more compact if the pressure at high densities is lower (top right). Again, the proton fraction in the

core is higher for lower (higher) pressure of SNM (PNM) (bo�om right).

IV. SPHERICALLY-SYMMETRIC CORE COLLAPSE

We now focus on how variations in the empirical parame-

ters of the EOS and of the pressure of nuclear ma�er at high

densities a�ects the core collapse of a massive star and its

CCSN evolution. We will mainly investigate the impact of

the EOS on neutrino emission during the postbounce phase.

�e details of neutrino emission from high-density ma�er in

a CCSN is interesting both because these neutrinos can be

directly detected from a galactic CCSN (e.g., [71]) and be-

cause these neutrinos can be re-absorbed in the lower density

ma�er behind the CCSN shock and play a role in powering

the explosion [8]. Uncertainties in the nuclear EOS translate

into uncertainties in predictions of CCSN neutrino �uences,

which in turn introduce uncertainty in the detectability of

the neutrino emission and into the CCSN mechanism itself.

Both the explosion mechanism and detectability are sensi-

tive to changes in the neutrino energy spectra, which we will

characterize by the root-mean-square (RMS) neutrino energy,√
〈ε2ν〉, and in the neutrino luminosities, Lν . Larger lumi-

nosities and RMS energies of electron neutrinos and antineu-

trinos result in higher predicted neutrino detection rates and

more favorable conditions for explosion due to the quadratic

energy dependence of neutrino interaction cross-sections.

Speci�cally, we study the collapse and bounce of a 20-M�

progenitor star (s20WH07 of [32]). We study this progenitor

star since it (1) has been studied by many other groups [24, 31,

36, 72–84], so comparisons can be readily made, (2) produces

a massive PNS, (3) does not collapse into a black-hole within

the �rst second a�er bounce, and (4) o�en exhibits the onset

of an explosion in multi-dimensional simulations [36, 72, 74,

78, 83] soon a�er the density discontinuity from the Si/Si-

O shell boundary crosses the shock radius. Furthermore, (5)

the PNS central number density during the �rst second a�er

bounce is in the range 2−3nsat. Since we constrain our EOS

with empirical properties at saturation density and at four-

times saturation density, this maximum density does not go

beyond the range of densities over which the EOSs have been

�t.

Core collapse, bounce, and up to∼ 1 s post-bounce are sim-

ulated in spherical symmetry using the general-relativistic

radiation-hydrodynamics code GR1D [19, 34]. In GR1D, the

general-relativistic hydrodynamic equations of [85, 86] for

the conserved quantities are discretized in space using a

�nite-volume scheme [86–88]. Time integration of conserved

variables is performed using a second order Runge-Ku�a in-

tegrator with a Courant factor of 0.5. Variables are de�ned at

cell centers and reconstructed at cell interfaces, where inter-

cell �uxes are computed, using a total-variation-diminishing

(TVD) reconstruction with monotonized central (MC) limiter
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[89] before core bounce and a piecewise-parabolic method

(PPM) during and a�er bounce [90]. Interface �uxes are eval-

uated using the HLLE Riemann solver [91]. �e neutrino

transport is based on [34, 92, 93] and is performed opertor

split from the hydrodynamics. It is based on a M1 scheme,

where the zeroth (energy density) and �rst (momentum den-

sity) angular moments of the neutrino distribution function

are evolved utilizing an analytic closure to describe higher-

order moments. �e neutrino-ma�er interactions that cou-

ple the hydrodynamics and the neutrino transport are deter-

mined using NuLib [34]. NuLib is an open-source neutrino-

ma�er interaction library designed for use in high-energy as-

trophysical simulations. It is used here to generate a table of

neutrino interaction coe�cients: absorption opacities, scat-

tering opacities and kernels, and emissivities. �ese coe�-

cients are based on [94–96]. For our spherically-symmetric

simulations, we consider the same neutrino-ma�er interac-

tions as [34], shown in their Table 1 and reproduced here

in Table II for completeness. For each EOS table described

in Section II, a consistent set of neutrino opacities is gener-

ated using NuLib. For the neutrino transport, we consider

electron neutrinos and electron antineutrinos separately and

group the heavy �avored neutrinos and anti-neutrinos into a

single composite species. For each species, we follow 24 log-

arithmically spaced neutrino energy groups running from 1

MeV to ' 269 MeV. �e computational grid is set to have

1 500 grid cells, constant cell size of 100 m out to a radius of

20 km, and then geometrically increasing cell size to an outer

radius of 20 000 km. We map stellar mass rest-mass density

ρ, proton fraction y, and pressure P from the progenitor star

to GR1D as described in [17].

TABLE II: List of neutrino reactions considered in the NuLib li-

brary, reproduced from [34]. Interactions with ν are �avor insensi-

tive, while interactions with νi are �avor sensitive.
A
ZX denotes an

element with Z protons and mass number A.

Production

Charged-current interactions �ermal Processes

νe + n←→ p+ e− e + e+ ←→ νx + ν̄x
ν̄e + p←→ n+ e+ N +N ←→ N +N + νx + ν̄x

νe + A
ZX ←→ e− + A

Z+1X
Sca�ering

Iso-energetic sca�ering Inelastic Sca�ering

ν + α←→ ν + α νi + e− ←→ νi
′ + e−

′

ν + p←→ ν + p
ν + n←→ ν + n

ν + A
ZX ←→ ν + A

ZX

A. E�ective Mass

First, we consider the impact of variation set sM [Eq. (11a)]

on core collapse, where the e�ective mass m?
and the e�ec-

tive mass spli�ing ∆m?
are varied. Since the temperature

enters only through the factor m?T in the Skyrme model we

use (see Eq. 1), one expects the �nite temperature behavior of

the EOS to be substantially impacted by changes in the e�ec-

tive mass. As shown in Sec. III, varying the e�ective mass in

our EOS ��ing procedure has a negligible impact on the zero-

temperature EOS and therefore a negligible impact on cold-

NS structure. On the other hand, in CCSNe, temperatures of

tens of MeV can be reached and the �nite-temperature prop-

erties of the EOS may have a substantial impact.

�e high-density EOS impacts the neutrino emission by

changing the structure and thermodynamic state of the re-

gion from which most neutrinos are emi�ed, the neutri-

nospheres. �e position of the neutrinosphere depends

on both the energy and neutrino species (�avor, neu-

trino/antineutrino). Here, we consider the properties of

a neutrino-energy averaged neutrinosphere, which qualita-

tively captures the state of the material from which the bulk

of the neutrinos are emi�ed. �e neutrinosphere is de�ned as

the location where the opacity is equal to τν = 2/3 [97]. Gen-

erally, before explosion, the neutrinospheres move to smaller

radius, higher density, and higher temperature over time. �e

electron neutrinospheres and antineutrinospheres also stay

nearly in neutrino-free beta-equilibrium since they can e�-

ciently lose lepton number by de�nition.

In Fig. 5, the in�uence of varying the e�ective mass on the

neutrinosphere properties is shown. Increasing the SNM ef-

fective mass at saturation density, m?
, increases the temper-

ature of the neutrinosphere for all �avors and at all times. On

the other hand, increasing m?
decreases the neutrinosphere

radii for all �avors. For electron neutrinos and antineutri-

nos, increasing m?
causes a decrease in the neutrinosphere

density. Higher temperatures result in larger values of the

beta-equilibrium ye. For heavy-lepton neutrinos, increasing

m?
increases the neutrinosphere density slightly. �e impact

of variations in ∆m?
on the neutrinosphere properties is rel-

atively small.

It is somewhat counter intuitive that the neutrinosphere

temperatures increase with the e�ective mass, since the ef-

fective mass enters the EOS in the combinationm?T . Never-

theless, it is easy to understand this behavior. First, note that

deviations in the nucleon e�ective masses from their vacuum

mass depends linearly on the density. Since the density of the

neutrinospheres is less than a hundredth nuclear saturation

density this means that m?
at the neutrinosphere is essen-

tially the bare nucleon mass. �erefore, the impact of vary-

ing the e�ective mass on the neutrinosphere properties must

be indirect. For small temperatures where the Sommerfeld

expansion is valid, the entropy in nucleon species t is given

by, see Appendix A,

st ≈
(π
~

)2 m?
tT

(3π2nt)2/3
. (12)

In the same approximation, the temperature dependent con-

tribution from species t to the nucleon pressure is given by

Pth,t = Tntst/3. �erefore, in so far as the density and

entropy throughout the outer layers of the PNS are not im-

pacted by changes in the e�ective mass, the pressure of ma-

terial below the neutrinosphere goes down with increasing

e�ective mass since T ∝ (m?)−1
. �is suggests that increas-

ing the e�ective mass results in more compact outer layers of

the PNS. �is is consistent with what our simulations show.

As can be seen in Fig. 5, increasing the e�ective mass results
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FIG. 5: (Color online) Neutrinosphere (a) radius, (b) density, (c) temperature, and (d) proton fraction for electron neutrinos νe (le�), electron

antineutrinos ν̄e (center), and heavy neutrinos νx (right) for the spherical core collapse of the 20-M� star of Woosley & Heger [32]. We

observe that increasing the EOS e�ective mass, m?
, leads to smaller neutrinosphere radii and densities as well as higher neutrinosphere

temperatures and proton fractions. �e only exception is the νx neutrinosphere density which has the opposite behavior. Increasing the

e�ective mass spli�ing, ∆m?
, has the same qualitative e�ect as increasing the e�ective mass, but to a lower order.

in a smaller radius neutrinosphere which, in turn, results in

a larger virial temperature for the neutrinosphere.

Variations in the neutrinosphere properties are directly

imprinted in the CCSN neutrino emission itself. In Fig. 6

we plot the RMS energy (top) and luminosity (bo�om) of

the three neutrino species considered, i.e., νe, ν̄e, and νx =
νµ/τ = ν̄µ/τ . Soon a�er core bounce, t − tbounce . 200 ms,

all EOSs predict RMS energy and luminosity of neutrinos

emi�ed that di�er only by . 5% in the most extreme cases.

However, a�er the �rst ' 200 ms, neutrino energies and lu-

minosities start to diverge. �e average RMS energy of all

neutrino �avors and the luminosity for νe and ν̄e neutrinos

is higher the larger the nucleon e�ective mass m?
at satu-

ration density is. Meanwhile, there is barely any change in

the neutrino luminosity for the heavy-lepton neutrinos νx as

the e�ective mass changes. Moreover, di�erences in neutrino

properties are only a�ected at the ' 1% level by the change

of the nucleon e�ective mass di�erence ∆m?
.

In Fig. 6 we see that the largest variation in the RMS ener-

gies occurs for the heavy-lepton neutrinos νx a�er' 400 ms
a�er core bounce, although the heavy lepton neutrino lumi-

nosities are barely a�ected. Nevertheless, supernova electron
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FIG. 6: (Color online) Time evolution of (a) neutrino RMS energies (and (b) luminosities for νe (le�), ν̄e (center), and νx (right) as a function

of variations in the e�ective masses in the EOS for the spherical core collapse of the 20-M� star of Woosley & Heger [32]. We observe that

increasing the EOS e�ective mass, m?
, leads to higher neutrino RMS energies and luminosities. Increasing the EOS e�ective mass spli�ing,

∆m?
, leads to the same qualitative e�ect as increasing the e�ective mass, m?

, but to a lower order.

neutrinos and antineutrinos have a larger impact on the su-

pernova explosion mechanism with the la�er being easier to

detect [98]. We observe that an increase in the e�ective mass

m?
also leads to an increase in the RMS electron neutrino and

antineutrino energies by about 2 to 3 MeV soon a�er core

bounce, t − tbounce & 200 ms, while luminosities increase

by up to 30%. An interesting question is whether di�erent

neutrino interactions, e.g., inelastic neutrino-nucleus sca�er-

ing, will result in the same qualitative and quantitative di�er-

ences. Recently, Ref. [30] showed for 2D CCSNe simulations

that, in proximity to criticality, the cumulative e�ect of small

changes in neutrino transport could convert an anemic into

a robust explosion, or even a dud into a blast. However, this

same sensitivity was not observed in spherically symmetric

simulations. We postpone further investigation of this ques-

tion to future work.

An increasing e�ective mass increases the luminosity and

average energy of electron neutrinos and antineutrinos and

thereby increases the rate of neutrino heating behind the SN

shock. �erefore, it might be expected that a higher e�ective

mass makes conditions more favorable for shock runaway.

Nevertheless, we �nd that larger e�ective masses result in

smaller shock radii in spherically-symmetric runs. In Fig.

7 we observe that the shock radius Rshock follows the PNS

radius R12. In these spherically-symmetric simulations, the

impact of the reduced PNS radius on the shock overwhelms

the increased neutrino heating rate when the e�ective mass

is increased. Nevertheless, in multi-dimensional simulations,

the larger neutrino luminosities and average energies may in-

stead lead to shock radii that expand faster for larger nucleon

e�ective masses m?
. �is is discussed in Sec. V.

Besides neutrinos emi�ed during core collapse, we also

discuss the hot PNS evolution during the �rst second a�er

collapse, see Fig. 7. In Ref. [78], it is argued in the context of

2D simulations, that the LS220 EOS leads to fast contracting

PNSs because this EOS generates compact cold beta equili-

brated NSs. In our simulations we see that the collapse of a

massive star simulated using EOSs that di�er only in their ef-

fective masses predict very similar mass-radius relations for

cold NSs, see Fig. 1. Although all these EOSs produce very

similar cold beta equilibrated NSs, they predict distinct be-

haviors for the PNSs formed in core collapse. In Fig. 7, we

plot the core temperature Tc and density ρc as well as shock

radius Rshock and core radius R12, the la�er de�ned as the

radius where mass density is ρ = 1012 g cm−3
. �ere is a

clear correlation between the e�ective mass m?
and the core

density a�er bounce as well as how fast the PNS radius and

shock contract a�er reaching their maximum values. �e

core temperature, on the other hand, is higher (lower) the

lower (higher) m?
is. Long term e�ects of e�ective mass on

PNS evolution have been recently considered in [99].

Density, temperature, and proton fraction pro�les of the

PNS at 500 ms a�er bounce are plo�ed in Fig. 8. It is clear

that EOSs with higherm?
produce less thermal support since
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FIG. 7: (Color online) Plot of PNS (a) central density ρc, (b) central

temperature Tc, (c) shock radius Rshock, and (d) radius R12 where

ρ = 1012 g cm−3
for the spherical core collapse of the 20-M� star

of Woosley & Heger [32] for variations in the e�ective mass of SNM

at saturation density, m?
, and the neutron-proton e�ective mass

spli�ing in the PNM limit, ∆m?
.

their temperatures are lower in most of the PNS interior and

hot mantle, although the temperature is higher in the region

where it peaks. �us, we deduce the reason the LS220 EOS

leads to faster contraction when compared to other EOSs is

be�er explained by its assumptions about its e�ective mass,

set by m? = mn, rather than by the mass-radius relation it

predicts for cold beta equilibrated NSs, which is barely af-

fected by the e�ective mass.

Fig. 4 of Ref. [21] shows that the PNS radius that fol-

lows from the core collapse of a 11.2-M� progenitor star

simulated with the LS220 EOS contracts signi�cantly faster

than the radius of PNSs simulated with other EOSs that have

m?/mn ' 0.61− 0.76. However, the EOSs in that work use

diverse prescriptions to compute the EOSs at low and high

densities, which makes a direct comparison between our re-

sults and their results non-trivial. In this work, by unifying

the formalism used for all EOSs, we are able to draw stronger

conclusions about the e�ect of each parameter of the EOS on

the core collapse, and speci�cally on the role of the e�ective

mass.
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FIG. 8: (Color online) Plot of PNS (a) density, (b) temperature and (c)

proton fraction pro�les at 500 ms a�er core bounce for the 20-M�
star of Woosley & Heger [32] for variations in the e�ective mass

of SNM at saturation density, m?
, and the neutron-proton e�ective

mass spli�ing in the PNM limit, ∆m?
.

B. Symmetry energy and its slope

We perform core collapse simulations using variation set

sS , where the symmetry energy and its slope are varied. We

observe that for the range of variations considered for εsym

and Lsym, the changes in the neutrino spectra and the PNS

properties are rather small. �ey are of comparable in magni-

tude to the changes seen from varying the nucleon e�ective

mass spli�ing, ∆m?
. �us, for the purpose of simulations of

CCSNe, these two quantities are rather well constrained and

we expect that even substantial variations around the cur-

rent best estimates for these two observables will not a�ect

simulation results signi�cantly.

It may be the case, however, that if we were to simulate

these CCSNe for longer timescales, including into the cooling

phase, that larger di�erences between EOSs could become

apparent. We defer this, as well as CCSN simulations of dif-

ferent progenitors, to future work.
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FIG. 9: (Color online) Plot of PNS (a) central density ρc, (b) central

temperature Tc, (c) shock radius Rshock, and (d) radius R12 where

ρ = 1012 g cm−3
for the spherical core collapse of the 20-M� star

of Woosley & Heger [32] for variations in the isoscalar and isovector

incompressibilities Ksat and Ksym, respectively.

We now discuss e�ects in CCSN simulations due to

changes in the incompressibility parameters Ksat and Ksym

of the EOS. As in the case of variations in the symmetry en-

ergy εsym and its slope Lsym, the relative changes in the neu-

trino spectra are rather small and at most twice those ob-

served for changes in the nucleon e�ective mass spli�ing,

∆m?
. Nevertheless, it is likely that this is the case only for

the short times we evolved the collapsing star, t . 1.0 s. For

longer evolutions or more massive progenitors, larger di�er-

ences between the EOSs are likely. �is may be inferred from

Figs. 9 and 10. �e former shows the evolution of the core

density, core temperature, shock radius, and PNS radius. �e

la�er shows the PNS density, temperature, and proton frac-

tion as a function of radius. �e central density and tem-

perature of the PNS at ' 1 s a�er bounce di�er by ' 20%
between the most extreme cases. Meanwhile, changes in the

shock radius and PNS radius, are a�ected only in the ' 5%
range. At that time, the maximum PNS mantle temperature is

correlated with both Ksat and Ksym. On the other hand, the
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FIG. 10: (Color online) Plot of PNS (a) density, (b) temperature and

(c) proton fraction pro�les at 500 ms a�er core bounce for the 20-

M� star of Woosley & Heger [32] for variations in the isoscalar and

isovector incompressibilities Ksat and Ksym, respectively.

PNS and shock radius are anti-correlated with these quan-

tities. We observe that despite the much larger error bar in

Ksym when compared to Ksat, both lead to uncertainties in

PNS structure of similar magnitudes. We expect these di�er-

ences to be ampli�ed in multi-dimensional simulations due to

the interplay between neutrino heating and hydrodynamic

instabilities that can lead to shock revival [5]. Hence, it is

important for realistic simulations that these two parameters

are constrained further in the future.

D. Pressure at high-density

We also study the di�erences in the neutrinos spectra and

in the PNS evolution during the �rst second of collapse for

the 20-M� progenitor star due to changes in the pressure of

SNM and PNM at n = 4nsat, set sP in Eq. (11d). As expected,

by the end of our runs neither the emi�ed neutrinos nor the

PNS properties were signi�cantly altered by changes in the

pressure at high densities. Except for changes of ' 5% with

respect to the baseline EOS for the density and temperature

in the core near the end of the runs, none of the other quanti-
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ties studied (neutrino luminosity and RMS energy, and shock

and PNS radii) di�ered by more than 1% during the run. �is

is due to the maximum density in the PNS still being below

2.5nsat at t − tbounce ' 1 s and, thus, the EOSs used in all

runs did not reach regions were the di�erences become large.

Lower pressures at high densities cause densities (tempera-

tures) in the core to increase faster (slower). As in the cases

of changes in the symmetry energy εsym and its slope Lsym,

we expect that longer evolutions will show di�erences for the

di�erent EOSs, as the densities reached throughout the PNS

will be higher. Furthermore, we expect the pressure at high

densities to play a signi�cant role in se�ing the time of col-

lapse of the PNS to a BH. Such a study is currently underway

[100].

V. THREE-DIMENSIONAL CCSN SIMULATIONS

In order to further investigate the insights gained from

performing spherically-symmetric (1D) core collapse simu-

lations discussed in Sec. IV for di�erent EOSs, we perform

six three-dimensional (3D) octant runs, i.e., limited to one

octant of the 3D cube, for the same non-rotating 20-M� pre-

supernova model s20WH07 [32]. In our 1D simulations, we

�nd that increasing the nucleon e�ective mass makes the PNS

atmosphere more compact and increases the neutrino ener-

gies and luminosities. In the spherically-symmetric simula-

tions, the impact of a reduced PNS radius overwhelmed the

impact of increased neutrino heating. Hence, larger e�ec-

tive masses result in smaller maximum shock radii. Never-

theless, spherical symmetry inhibits hydrodynamic instabil-

ities that may be present behind the shock and these conclu-

sions may not hold in more realistic three-dimensional sim-

ulations. Five of the 3D runs are performed using variants

of the �nite temperature SLy4 EOS [17, 39]. Additionally,

we perform one run with the o�en used La�imer & Swesty

EOS with Ksat = 220 MeV, LS220. �e SLy4 and LS220 EOS

properties at T = 0 are listed in Tab. III.

�e variants of the SLy4 EOS are computed using the meth-

ods described in Sec. II and Appendix B by keeping all em-

pirical quantities except the e�ective mass for SNM at satu-

ration density m?
constant. �e values used for the e�ective

mass are m?/mn = 0.6, 0.7, 0.8, 0.9, and 1.0. In the discus-

sion that follows we di�erentiate between the di�erent SLy4

EOSs by adding a subscript that corresponds to the e�ective

mass used, SLy4m?/mn
. As in Sec. IV, the SLy4 EOSs as well

as the LS220 EOS are connected to a low-density EOS of 3 335

nuclei in NSE using the prescription outlined in Sec. II D.

Following Sec. IV, we simulate the collapse of the progen-

itor star using the GR1D code [34, 97]. In this phase, the neu-

trino reactions are considered in the exact same manner as

discussed in the previous section. Following Ref. [35], we

map the spherically-symmetric collapsing progenitor 20 ms
a�er core bounce to a high-resolution octant 3D geometry

with re�ecting boundary conditions on the xy, yz, and zx
planes. �e remainder of the simulation is performed using

the general-relativistic radiation-hydrodynamics code Zel-

mani [35], which is itself based on the Einstein Toolkit

[37, 38]. �e high-resolution simulation grid uses a Carte-

TABLE III: Zero-temperature properties of the SLy4 and LS220

EOSs.

�antity SLy4 LS220 Units

m? 0.694 1.000 mn

∆m? −0.185 0.000 mn

nsat 0.1595 0.1549 MeV baryon−1

εsat −15.97 −16.00 MeV baryon−1

εsym 32.00 28.61 MeV baryon−1

Lsym 45.96 73.81 MeV baryon−1

Ksat 229.90 219.84 MeV baryon−1

Ksym −119.70 −24.04 MeV baryon−1

P
(4)
SNM 127.12 107.75 MeV fm−3

P
(4)
PNM 142.15 162.08 MeV fm−3

sian adaptive mesh re�nement (AMR) with eight levels of

re�nement, where each level increases the resolution by a

factor of two. �e �nest grid covers the PNS and has a lin-

ear size ∆x = 370 m. �e postshock region is completely

covered by the third-�nest grid, which has resolution ∆x =
1.48 km, until the average shock radius reaches 300 km. At

this point, we switch the postshock region coverage to the

fourth-�nest grid, resolution ∆x = 2.96 km. Zelmani uses

a fully three-dimensional, two-moment M1 neutrino trans-

port as described in [35] and only uses 16 energy groups due

to computational limits. As in Ref. [36], we employ the subset

of neutrino opacities from Ref. [94], see also Tab. II above, but

now leave out velocity dependence and inelastic neutrino-

electron sca�ering, although elastic neutrino-electron scat-

tering is included.

In Fig. 11, we plot the neutrino RMS energies,

√
〈ε2ν〉,

and luminosities, Lν , a�er core bounce for the three consid-

ered neutrino species. As in the spherically-symmetric case,

both neutrino energies and luminosities, for the Skyrme-type

EOSs, increase as the e�ective mass is increased. In the range

of e�ective masses studied, di�erences in neutrino RMS ener-

gies are approximately 1.5 MeV for all neutrino species. We

observe that neutrino energies and luminosities, especially

for the heavy-lepton neutrinos νx, computed for the LS220

EOS are higher than for the SLy41.0 EOS, even though both

have the same e�ective mass for SNM at saturation density,

m? = mn. �e reason for this is that most of the empiri-

cal parameters that di�er between the two EOSs, see Tab. III,

shi� neutrino luminosities and energies to higher values for

the LS220 EOS with respect to the SLy41.0 EOS. �e exception

isKsym, which slightly decreases the neutrino output for the

LS220 when compared to the SLy41.0 EOS. �e pressure at

high densities, represented by P
(4)
SNM and P

(4)
PNM, meanwhile,

does not have a signi�cant e�ect for this progenitor within

the �rst second of core bounce.

Although variations of the e�ective mass have a similar

impact on the RMS neutrino energies in the 3D simulations

as they had in the 1D simulations, the resulting shock radius

evolutions di�er substantially. �e s20WH07 progenitor has

a steep density and speci�c entropy discontinuity at the Si/Si-

O shell interface. In the full 3D simulations of Ref. [36] for the

same progenitor star but using the SFHo EOS [21], the abrupt

decrease in the ram pressure at the shock as the discontinuity
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FIG. 11: (Color online) Plot of (a) neutrino RMS energies,

√
〈ε2ν〉, and (b) luminosities, Lν , for νe (le�), ν̄e (center), and νx (right) for our

octant runs. A�er ' 100 ms a�er core bounce a clear trend appears and we observe that simulations using EOSs with higher m?
lead to

higher neutrino RMS energies and neutrino luminosities.

is accreted results in shock runaway. In Fig. 12, we plot the

shock radius and accretion rate for our six octant 3D simu-

lations. �e accretion rates for all octant runs agree within

1% or less, while the shock radius a�er the shock crosses the

Si/Si-O is very sensitive to the EOS, with only the LS220 EOS

predicting shock runaway.

In this paper, we choose not to carry out a direct compari-

son between our results and that of Ref. [36]. We do so for a

number of reasons. First, full 3D runs appear to more readily

lead to shock runaway than octant runs [35]. Second, when

se�ing the initial conditions of the run we choose to pre-

serve density ρ, proton fraction y, and pressure P , while in

Ref. [36] chose density ρ, proton fraction y, and temperature
T . �is leads to di�erent times of core bounce and a di�er-

ent accretion history. Finally, the SFHo EOS, including its

low-density part, is generated using a relativistic mean-�eld

approach and not a Skyrme model. Fig. 15 of Ref. [17] shows

how changes in the low density EOS a�ect the postbounce

accretion rate. Understanding how the di�erence in the low

density EOS as well as in the initial conditions lead to di�er-

ences in the PNS pro�le and CCSNe evolution is beyond the

scope of the present work.

With respect to the shock radius evolutions resulting from

the di�erent EOSs, we note that for the octant runs EOSs

with higher e�ective masses for SNM at saturation density

m?
generally lead to larger shock radius a�er bounce. In the

LS220 run, the shock runs away approximately 350 ms a�er

core bounce reaching, on average, 500 km by the end of the

run. In the SLy41.0 run, on the other hand, the average shock

radius grows up to 220 km at 320 ms a�er core bounce, only

slightly lower than what is predicted for the LS220 EOS, but

then recedes. Although this is opposite to the pa�ern seen

for the shock radii in 1D runs, see Fig. 7, this is expected in

3D simulations due to the higher neutrino luminosities and

RMS energies for EOSs that have higher m?
. Compare Fig. 6

for 1D runs and Fig. 11 for the 3D octant runs. An excep-

tion is the SLy40.6 EOS, whose 3D simulation predicts shock

radius behavior similar to the SLy40.8 run and higher radii

than what we observe in the SLy40.7 run, despite its lower

neutrino luminosities and average energies. �is is likely due

counteracting e�ects of lower neutrino production, but larger

initial mass in the gain region for EOSs with lower e�ective

masses, see Fig. 13.

In Fig. 13, we present diagnostics that help us understand

variations in the results for the di�erent EOSs. First, higher

neutrino energies and luminosities lead to higher integrated

neutrino heating, heating minus cooling Q̇, and higher heat-

ing e�ciency, η = Q̇(Lνe + Lν̄e)−1
, in the gain layer.

Ref. [36] showed that for the �rst 80− 100 ms a�er bounce,

the heating e�ciency η is almost independent of the progen-

itor. Here we observe that η is also almost completely EOS

independent early a�er bounce. However, it is clearly corre-

lated with the e�ective mass m?
at later postbounce times.

At the time when the Si/Si-O interface reaches the shock, η
is ' 50% higher for EOSs with m? = mn compared to the

ones with m? ≥ 0.6mn.

Next, from Fig. 13, we see that the mass in the gain layer

Mgain is mostly EOS independent until the Si/Si-O shell
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FIG. 12: (Color online) Shock radius, Rshock (solid lines, le� axis), and accretion rates at 400 km, Ṁ400 (dashed lines, right axis), for

our octant simulations. �ick solid line shows the average shock radius while thin lines show the maximum and minimum shock radius.

Accretion rates are mostly independent of the EOS and are only plo�ed up to the point where shock radius reaches 400 km. �e shock

radius is very sensitive to the EOS used in the simulation, particularly a�er it crosses the Si/Si-O interface' 220 ms a�er core bounce. EOSs

with a higher e�ective mass m?
predict longer expansion of the shock radius with the LS220 EOS predicting shock runaway.

crosses the shock radius. A�er this occurs, EOSs that pre-

dict higher PNS compactness, (GMPNS)/(RPNSc
2), also pre-

dict larger mass in the gain layer, another indicator of favor-

able conditions for shock runaway. �e ratio between the

timescales τadv 'MgainṀ
−1

for material to advect through

the gain layer and τheat ' |Egain|Q̇−1
for neutrino heating is

another such indicator [10, 101, 102]. Following implementa-

tion details of Ref. [103], we �nd that two of the EOSs, LS220

and SLy41.0, cross the τadv/τheat & 1 threshold set as a con-

dition that favors shock runaway, while SLy40.9 comes very

close to it. While the LS220 EOS results in shock runaway,

none of the simulations using variants of the SLy4 EOS lead

to shock runaway within 400 ms of core bounce. Not even

the SLy41.0 EOS, despite reaching a ratio between advection

and heating timescales τadv/τheat & 1.5. As discussed in

Ref. [36], τadv/τheat serves more as a diagnostic of shock run-

away than a condition for explosion. Even at times where

τadv/τheat & 1 for the simulations employing the SLy41.0

EOS, the mass in the gain layer continues to decrease and

the shock stabilizes at 〈Rshock〉 ' 200 km before receding.

In the simulation using the LS220 EOS, the mass in the gain

layer stabilizes and then grows once explosion sets in.

Finally, we also plot in Fig. 13 the total, gain-layer-

integrated radial and angular turbulent energies as de�ned

in Ref. [104]. As argued in Refs. [11, 35, 105, 106] we �nd

that the total turbulent energy is anisotropic on large scales,

i.e., Eturb,r ' Eturb,θ+φ. Furthermore, Eturb is mostly EOS

independent until ' 240 ms a�er core bounce, when shock

behavior becomes very sensitive to the EOS. As the Si/Si-O

shell advects through the shock, the initially increasing total

turbulent energy Eturb suddenly drops. For simulations us-

ing the SLy4 EOSs with m? ≤ 0.9mn shock radius recedes

quickly in the late stages of the run while the total turbulent

energy Eturb stabilizes a�er the large drop ' 200 − 240 ms
a�er core bounce. On the other hand, simulations using the

LS220 EOS leads to increasing Eturb as its shock runs away,

Fig. 12. �e SLy41.0 EOS predicts a behavior for the turbulent

energy density that is a mix of the predictions by the simula-

tions using the LS220 and the other SLy4 EOSs: a momentary

increase of Eturb is achieved while 〈Rshock〉 ' 200 km fol-

lowed by its stabilization as the shock radius recedes. �e

values of Eturb at the end of the run are correlated with the

shock radius.

VI. CONCLUSIONS

We carried out a detailed study of the impact of variations

of di�erent experimentally accessible parameters of the nu-

clear ma�er EOS on the properties of cold beta-equilibrated
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FIG. 13: (Color online) Plots of (a) neutrino heating rate Q̇, (b) mass in the gain layer Mgain, (c) total gain-layer-integrated turbulent

kinetic energy Eturb across radial and angular directions, (d) heating e�ciency η = Q̇/(Lνe + Lν̄e), (e) ratio τadv/τheat between the

mass advection timescale τadv and neutrino heating timescale τheat, and (f) PNS compactness (GMPNS)/(RPNSc
2). We observe a clear

correlation between quantities plo�ed and the e�ective mass m?
of the EOS used in a given simulation. EOSs with larger m?

lead to

simulations with higher neutrino heating rates, higher heating e�ciency, more mass in the gain region, a larger ratio between the advection

and the heating timescales, which favors shock runaway, as well as a more compact PNS. Total gain-layer-integrated turbulent energy is

anisotropic on large scales, i.e., Eturb,r ' Eturb,θ+φ, nearly EOS independent up to ' 240 ms, and depends on the shock radius behavior

at late times, see discussion in text.

neutron stars (NSs) and on the core collapse and postbounce

evolution of a massive star.

Using the SROEOS code [17], we constructed 97 �nite-

temperature EOSs in which we systematically varied the

empirical parameters of the EOS based on the experimen-

tal and theoretical constraints compiled in Refs. [12, 14, 47].

We then used these EOSs to compute the properties of cold

beta-equilibrated NSs and to simulate the core collapse of

the 20-M� presupernova stellar model of Ref. [32]. We

carried out core-collapse supernova (CCSN) simulations us-

ing the spherically-symmetric general-relativistic radiation-

hydrodynamics code GR1D [19, 33, 34]. We carried out the

simulations to approximately 1 second a�er core bounce and

investigated the neutrino signals and protoneutron star (PNS)

evolution for each EOS.

Although the uncertainty in the e�ective nucleon mass at

saturation density has a negligible impact on the properties of

cold NSs in our EOS model, we �nd variations in the e�ective

mass have a substantial impact on the postbounce evolution

of our CCSN models. �e e�ective nucleon mass mainly reg-

ulates the temperature dependence of the Skyrme-type EOSs

we consider, so it impacts the structure of the shock heated

material in the PNS. Speci�cally, we found that the e�ective

mass of nucleons in SNM at saturation density, m?
, impacts

the interior structure of the PNS, the PNS radius, the CCSN

neutrino emission, and the evolution of the CCSN shock. In-

creasing the e�ective mass increases the average neutrino en-

ergies for all neutrino types and their total luminosity. �is is

because increasing the e�ective mass m?
leads to more com-

pact PNSs with ho�er neutrinospheres, although the larger

e�ective masses result in lower PNS core temperatures. Re-

cently, similar conclusions regarding the impact of the e�ec-

tive mass were reported from spherical-symmetric simula-

tions of a 15-M� progenitor star [64]. �e di�erences de-

scribed here due to variations in the e�ective mass have been

seen elsewhere in the literature, e.g. Refs. [6, 21, 23, 31]. How-

ever, due to the low number of EOSs explored in previous

works, it was unclear that the e�ective mass was the main

culprit of variations seen in simulations employing di�erent

EOSs.

Variations in other parameters of the EOS, such as changes

in the neutron-proton e�ective mass spli�ing in PNM, have

a small impact on CCSN evolution. Moreover, changes in the

isoscalar part of the incompressibility, Ksat, a�ects tempera-

ture and density in the core of PNSs, but has limited impact

on the neutrino signal, and the outer regions of the PNS. Al-

though it is more weakly experimentally constrained, vary-

ing the isospin incompressibility, Ksym, leads to variations

in neutrinos signal and PNS evolution of the same order of

magnitude as the isoscalar incompressibility, Ksat. Further-
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more, for the purpose of CCSN evolution, symmetry energy

terms and the pressure at high densities, n & 4nsat, have

even smaller impact on the outcome of the core collapse than

changes in the incompressibility. Based on the spherically-

symmetric simulation results, we conclude that most of the

uncertainty introduced into simulations of core collapse evo-

lution and its neutrino signal by uncertainties in the EOS is

due to the temperature dependence of the EOS and, to a lesser

degree, due to the nuclear incompressibility.

To con�rm these spherically-symmetric results, we per-

formed six octant 3D simulations using the LS220 EOS and

�ve variants of the SLy4 EOS where the e�ective mass of

nucleons for SNM at saturation density was varied in the

m? = 0.6 − 1.0mn range. �e runs were performed us-

ing the same set-up as the spherically-symmetric runs up to

20 ms a�er bounce and using the Zelmani code [35] leaving

out the velocity dependence and inelastic neutrino-electron

sca�ering in the neutrino transport.

Among the octant runs, lower m?
causes lower neutrino

average energies and luminosities, as was the case in the

spherically-symmetric runs. �e lower neutrino energies re-

sult in less neutrino heating of the gain layer which subse-

quently leads to lower shock radii and failed explosions. Only

the simulation using the LS220 EOS (m? = mn) shows shock

runaway at ∼ 350 ms a�er core bounce. For the SLy4 EOS

variants there is a strong correlation between the shock radii

and the value of m?
. For runs employing the SLy4 EOS vari-

ant with m?/mn = 1.0, SLy41.0, and 0.9, SLy40.9, the av-

erage shock radius reaches ' 220 km and 180 km, respec-

tively, before starting to recede. For the other SLy4 EOS

variants, the maximum average shock radius is limited to

160 km. Analysis of our simulations shows that the run us-

ing the SLy41.0 EOS reached conditions very close to those

that induce shock runaway. Speci�cally, the ratio between

the advection and heating time scales is well above the limit

τadv/τheat & 1, usually indicative of impending shock run-

away. It is likely that the small di�erences in nuclear satu-

ration density properties between SLy41.0 and LS220, which

play only a secondary role in our spherically-symmetric runs,

determine that the shock runs away in the la�er simulation

while it does not in the former. We expect full 3D simula-

tions to more easility lead to shock runaway than the oc-

tant simulations considered here [35]. �us, it is likely that

for such conditions, the SLy41.0, and maybe even some of

the other SLy4 EOS variants with lower m?
, may experience

shock runaway in full 3D.

Our octant runs may be compared to the full 3D run of O�

et al. for the same progenitor [36]. �at run used the SFHo

EOS [21], which has m? = 0.76mn. Nevertheless, despite

the relatively low value of m?
, that simulation saw shock

runaway. It is likely that full 3D, di�erences in the high and

low-density EOS, and di�erences in the setup of the initial

conditions all played a role in the outcome of that simula-

tion. �is highlights the di�culty of comparing the role of

the EOS between simulations that di�er in many ways.

Understanding the e�ects each element of the EOS has on

the outcome of a core collapse event is a long standing prob-

lem in nuclear and computational astrophysics. Using the

SROEOS code [17] we have, for the �rst time, determined

in a consistent manner the pieces of the EOS that most sig-

ni�cantly a�ect core collapse dynamics and PNS evolution.

We demonstrated that uncertainties in the temperature de-

pendence of the EOS a�ect neutrino energies and luminosi-

ties and play an important role in determining whether shock

runaway takes place. We stress the need to extend our study

to understand the EOS e�ects with di�erent progenitors, full

3D simulations, and using other CCSNe simulation codes [84]

to con�rm our �ndings.

If our �ndings are con�rmed by full 3D simulations as well

as for other pre-SN progenitor models, then the outcome of

CCSNe is considerably sensitive to variations in the �nite-

temperature component of the EOS. In such case, substantial

progress in constraining the �nite-temperature EOS would

still be required to accurately predict the evolution of CC-

SNe. Particularly, as also discussed in Ref. [64], constraints in

the temperature dependence of the EOS are still lacking, but

may be indispensable to correctly describe CCSNe. E�orts

to further constrain the e�ective mass of nucleons, which di-

rectly impact the thermal component of the EOS [42], are

currently being undertaken both experimentally [107, 108]

and theoretically [109–112]; see Ref. [113] for a recent re-

view. Furthermore, stronger constraints on the cold EOS will

be obtained from observations of NS mergers [68, 114, 115],

by modeling of NS cooling curves [66, 99] and from heavy-

ion collisions [47, 116] in the near future. However, it is also

possible that core-collapse of the progenitor model studied

here is particularly sensitive to the EOS through a critical in-

terplay between accretion rate and neutrino emissions and

that the core-collapse outcome for other progenitors is less

dependent on particular details of the EOS. Finally, we recall

that the temperature dependence of Skyrme-type models is

quite simple as the e�ective mass only has density depen-

dence [18, 42, 117]. If, as suggested by some theoretical calcu-

lations [112], the e�ective mass of nucleons at temperatures

similar to that found in PNSs is similar to that of nucleons in

vacuum, then our conclusions would be a�ected. �us, addi-

tional systematic CCSNe simulations that use other families

of EOSs would help to further quantify how uncertainties in

the temperature dependence of the EOS a�ect CCSNe.
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Appendix A: Sommerfeld Expansion

To compute the Sommerfeld expansion we make use of

lim
T→0
Fk(η) =

∫ η

0

ukdu+
π2

6
T 2

(
d(uk)

du

)

η

+ . . . . (A1)

Some algebra leads to

nt '
2κt
3
µ̃

3/2
t

[
1 +

π2

8

(
T

µ̃t

)2
]
, (A2)

where we de�ned κt = (1/2π2)(2m?
t /~2)3/2

, µtF =
(~2/2m?

t )(3π
2nt)

2/3
, and µ̃t = Tηt. We may invert Eq. (A2)

to obtain

µ̃t = µtF

[
1− π2

12

(
T

µtF

)2
]
, (A3)

where µtF = ~2k2
tF /2m

?
t is the Fermi chemical potential

with ktF = (3π2nt)
1/3

the Fermi momentum.

A similar procedure implies that the kinetic energy density

is

τt ' τtF
[

1 +
5π2

12

(
T

µtF

)2
]
, (A4)

with τtF = 3
5k

2
tFnt. �us, the low temperature limit of the

speci�c entropy

sB =
1

T

1

n

∑

t

[
5

3

~2τt
2m?

t

− Tηtnt
]

' T

n

π2

2

∑

t

[
nt
µtF

]
=
∑

t

nt
n
st , (A5)

where st is given in Eq. (12). �e thermal contribution to the

pressure is readily obtained from

Pth =
∑

t

[
nt (µ̃t − µtF )− ~2

2m?
t

(τt − τtF )

]
+ TnsB ,

(A6)

which reduces to Pth ' 1
3TnsB . Expressions containing

higher order terms can be found in Ref. [118].

Appendix B: Linear Equations

We present the linear equations discussed in Sec. II used

to obtain the Skyrme parametrization given the set of EOS

properties in Tab. I.

�e α1 and α2 parameters are computed from the prop-

erties of the e�ective masses m?(n, y) at two distinct points

in the n, y phase space. We set the neutron e�ective mass

value at m?
n(nsat, 1/2) and ∆m?(nsat, 0) = m?

n(nsat, 0) −

m?
p(nsat, 0) and compute the α parameters from the coupled

equations:

(α2 + α1) = 2(β?n − βn)/nsat , (B1)

β∆ = (βn + α1nsat)
−1 − (βp + α2nsat)

−1
. (B2)

Here βt = ~2/2mt and β∆ = ~2/2(m?
n −m?

p). Eq. (B2) re-

duces to (α2−α1)nsat = (βn−βp) when ∆m?(nsat, 0) = 0.

We decided to compute the parameters α that set the e�ec-

tive mass of nucleons separately from the other Skyrme pa-

rameters to avoid negative e�ective masses at high densities

and/or large isospin asymmetries.

�e parameters ai and bi in Eq. (7) are computed by solving

the system of linear equations Ax = B where

A =




a0 a0 a1 a1 a2 a2 a3 a3

a′0 a′0 a′1 a′1 a′2 a′2 a′3 a′3

0 −a0 0 −a1 0 −a2 0 −a3

0 −3a′0 0 −3a′1 0 −3a′2 0 −3a′3

a′′0 a′′0 a′′1 a′′1 a′′2 a′′2 a′′3 a′′3

0 −a′′0 0 −a′′1 0 −a′′2 0 −a′′3
b0 b0 b1 b1 b2 b2 b3 b3

b0 0 b1 0 b2 0 b3 0




, (B3)

where we de�ned

ai = nδisat (B4)

a′i = δin
δi
sat (B5)

a′′i = 9δi(δi − 1)nδisat (B6)

bi = δi (4nsat)
δi , (B7)

x = (a0, b0, a1, b1, a2, b2, a3, b3)T , and

B =




εsat − εkin(nsat, 0.5)

n−1
satPkin(nsat, 0.5)

εsym − εsym,kin(nsat, 0.5)

Lsym − Lsym,kin(nsat, 0.5)

Ksat −Kkin(nsat, 0.5)

Ksym −Ksym,kin(nsat, 0.5)

P
(4)
SNM − Pkin(4nsat, 0.5)

P
(4)
PNM − Pkin(4nsat, 0)




. (B8)

In Eq. (B8) nsat, εsat, εsym, Ksat, Ksym, Lsym, P
(4)
SNM, and

P
(4)
PNM, are, respectively, the nuclear saturation density, en-

ergy at saturation, symmetry energy at nuclear saturation

density, isoscalar incompressibility, isovector incompressibil-

ity, the slope of the symmetry energy, and the pressures of

SNM and PNM at 4nsat. Furthermore, εkin(n, y) is the ki-

netic energy term of the speci�c energy and was de�ned in



21

Eq. (2) while

Pkin(n, y) = n2 ∂εkin(n′, y)

∂n′

∣∣∣∣
n

, (B9)

Kkin(n, y) = 9n2 ∂
2εkin(n′, y)

∂n′2

∣∣∣∣
n

, (B10)

Ksym,kin(n, y) = 9n2 ∂
4εkin(n′, y′)

∂y′2n′2

∣∣∣∣
n,y

, (B11)

εsym,kin(n, y) =
1

8

∂2εkin(n, y′)

∂y′2

∣∣∣∣
n,y

, (B12)

Lsym,kin(n, y) =
3

8
n
∂3εkin(n′, y′)

∂y′2∂n′

∣∣∣∣
n,y

. (B13)
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Blaschke, Nature Astron. 2, 980 (2018).

[41] I. Sagert, T. Fischer, M. Hempel, G. Pagliara, J. Scha�ner-

Bielich, A. Mezzacappa, F.-K. �ielemann, and

M. Liebendörfer, Phys. Rev. Le�. 102, 081101 (2009).

[42] C. Constantinou, B. Muccioli, M. Prakash, and J. M. La�imer,

Ann. Phys. 363, 533 (2015).

[43] M. Dutra, O. Lourenço, J. S. Sá Martins, A. Del�no, J. R. Stone,
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