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We describe bound states, resonances and elastic scattering of light ions using a δ-shell poten-
tial. Focusing on low-energy data such as energies of bound states and resonances, charge radii,
asymptotic normalization coefficients, effective-range parameters, and phase shifts, we adjust the
two parameters of the potential to some of these observables and make predictions for the nuclear
systems d + α, 3H + α, 3He + α, α + α, and p + 16O. We identify relevant momentum scales for
Coulomb halo nuclei and propose how to apply systematic corrections to the potentials. This al-
lows us to quantify statistical and systematic uncertainties. We present a constructive criticism of
Coulomb halo effective field theory and compute the unknown charge radius of 17F.

I. INTRODUCTION

Low-energy reactions between light ions fuel stars and
are relevant to stellar nucleosynthesis [1]. Because of
the Coulomb barrier, fusion cross sections decrease expo-
nentially with decreasing kinetic energy of the reactants,
and this makes it difficult to measure them in laborato-
ries. For the extrapolation of data to low energies, and a
quantitative understanding of the reactions one thus has
to turn to theoretical calculations.

Theoretical approaches can roughly be divided into two
kinds, taking either the ions as degrees of freedom or
starting from individual nucleons. The former approach
includes a variety of models [2–5], effective range expan-
sions [6–12], and effective field theories (EFTs) [13–18];
the microscopic approach ranges from simpler models [19]
to ab initio computations [20–23]. Unfortunately, there
are still significant uncertainties [1], and data tables for
relevant quantities such as asymptotic normalization co-
efficients (ANCs) or astrophysical S factors may [24] or
may not [25, 26] contain theoretical uncertainties.

There are various tools available for computing theo-
retical uncertainties [27, 28]. Systematic errors are acces-
sible within EFTs (because of a power counting) [28–32]
but much harder to quantify for models. Nevertheless,
all models are constrained by data with errors, and the
propagation of the latter to computed observables, or the
employment of a set of models provides us with means
to uncertainty estimates [27].

In this work, we revisit low-energy bound states, reso-
nances, and scattering within simple two-parameter mod-
els, using ions as the relevant degrees of freedom. In an
attempt to estimate uncertainties, we quantify the sensi-
tivity of the computed results to the input data. We also
propose systematic improvements of the simple models.
This allows us to estimate model uncertainties. As we
will see, this approach yields accurate results when com-
pared to data. One of the key results is the prediction
for the unknown charge radius of 17F. We contrast our
approach to Coulomb halo EFT (which is not accurate at

leading order for 8Be [13] and 17F [14]) and present a con-
structive criticism based on a finite range and a modified
derivative expansion.

This paper is organized as follows. In Section II we
present arguments in support of finite-range interactions,
review key formulas for the δ-shell potential, and discuss
systematic improvements. Section III shows the results
for a number of interesting light-ion systems. We con-
clude with a summary in Sect. IV. Several details are
relegated to the Appendix V.

II. THEORETICAL BACKGROUND

A. Energy scales and estimates for observables

1. Estimates for observables

While effective range expansions [7–9, 33] established
relations between low-energy observables, we still lack
simple expressions that give estimates for such observ-
ables when only basic properties such as energies and
radii of the involved ions are available. In applications
of EFTs to low-energy ion scattering one makes assump-
tions about the relevant momentum scales to propose a
power counting [13–15, 17]. This makes it important to
understand the relevant scales. As it turns out, the pres-
ence of Coulomb interactions modifies expectations from
neutron-halo EFT or pion-less EFT significantly. To see
this, we explore how a finite-range potential differs from
a zero-range potential.

The range of the strong nuclear force is close to the
sum of the (charge) radii D of two interacting particles.
This is true for both, the nucleon-nucleon interaction and
for the strong force between ions considered in this work.
It is in this sense that the nuclear interaction is short
ranged. This implies that the two-body wave function
essentially acquires its “free” asymptotic form for inter-
particle distances r & D.

The relevant asymptotic properties of a low-energy
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bound-state wave function are its bound-state momen-
tum (also known as the bound-state wave number) and
ANC [34, 35]. In the absence of the Coulomb interaction,
and for a zero-range interaction, the s-wave ANC C0 is re-
lated to the bound-state momentum γ for weakly bound
states via C2

0 ≈ 2γ. Similarly , the s-wave scattering
length a0 fulfills a0 ≈ 1/γ. This allows one – at leading
order – to work with zero-range potentials whenever the
physical range is sufficiently short and when the bound
state momentum is the smallest momentum scale. We
note that the effective range scales as r0 ∼ O(D). Finite-
range effects of the potential enter at next-to-leading or-
der. Pion-less EFT and neutron-halo EFT are based on
these insights [36–38].

Let us now contrast this to the case when the Coulomb
potential

VC(r) =
~2kc
mr

(1)

is added. Here, m is the reduced mass and kc is the
Coulomb momentum (or inverse Bohr radius)

kc ≡
Z1Z2αm

~
. (2)

It is given in terms of the fine structure constant α ≈
1/137 and the charge numbers Z1 and Z2 of the two ions.
As we will see, this new momentum scale significantly
modifies the discussion of low-energy observables.

We consider a weakly bound state with energy
−~2γ2/(2m) and bound-state momentum γ, and assume
γ � kc; for resonances we consider a low-energy reso-
nance with energy ~2κ2/(2m) and momentum κ, and also
assume κ � kc. In what follows, we will simply refer to
these momenta as k, setting k = iγ for bound states and
k = κ for resonances. The Sommerfeld parameter is

η ≡ kc
k
. (3)

For radial distances r approximately exceeding the sum
D of the charge radii of the two ions, the strong interac-
tion potential vanishes, and the Hamiltonian consists of
the kinetic energy and the Coulomb potential. Thus, for
r & D, the wave functions are combinations of Coulomb
wave functions. The key argument is as follows: For
small momenta |k| � kc, i.e. for |η| � 1, the Coulomb
wave functions can be expanded in a series of modified
Bessel functions, where coefficients fall off as inverse pow-
ers of η, while the modified Bessel functions have ar-
guments 2

√
2kcr (see the Appendix for details). Thus,

low-energy observables (such as ANCs, radii, scattering
lengths, and effective ranges) become series of functions
of 2
√

2kcD, with coefficients that fall off as inverse powers
of η. We have to distinguish the case of weak Coulomb
2
√

2kcD � 1 from the case of strong Coulomb (where
2
√

2kcD � 1). In the former case, one can take D → 0
and employ zero-range interactions; in the latter case
this is not possible. Estimates for several low-energy s-
wave observables are given in Table I, and the results for

Observable 2
√

2kcD � 1 D → 0

a0 −(πκ2D)−1e4
√

2kcD − 6kc
κ2

r0 (3kc)
−1 O(D)

C0 (πD)−1/2Γ(1 + kc/γ)e2
√

2kcD
√

6kcΓ(1 + kc/γ)
Γ
E

4 kc
κ2D

e4
√

2kcDe−2π kc
κ 24π

k2c
κ2
e−2π kc

κ

〈r2〉 D2 O(k−2
c )

TABLE I. Simple estimates for low-energy observables of a
two-ion system with a bound-state momentum γ or a reso-
nance momentum κ, in presence of a Coulomb potential with
the Coulomb momentum kc, and a δ-shell potential with the
range D, in the limit κ, γ � kc. Here a0, r0, C0, and Γ/E
are the s-wave scattering length, effective range, and ANC,
respectively. The resonance energy is E = ~2κ2/(2m), and
the corresponding width is denoted as Γ, not to be confused
with the Gamma function Γ(1+kc/γ). The inter-ion distance
is 〈r2〉.

2
√

2kcD � 1 differ markedly from those where D → 0
could be taken. The displayed results have been obtained
with a δ-shell potential [8] (with details of the calculation
presented in the Appendix).

We see that the scattering length a0, the squared ANC
C2

0 , and the resonance width are exponentially enhanced

by a factor e4
√
2kcD when kcD � 1 compared to the case

D → 0. We also see that the inter-ion distance squared
〈r2〉 is not large, though we considered the limit of van-
ishing bound-state momentum. However, this distance
becomes very small in the zero-range limit. It is clear
that a zero-range potential is not compatible with nuclei
that consist of ions: As ions have finite charge radii they
must be separated by a distance that is similar to the
sum of their charge radii in order to retain their identi-
ties. An EFT that employs a contact at leading order
fails short of this requirement. These arguments confirm
the need to include finite-range potentials or a finite ef-
fective range at leading order [13, 39, 40]. Bounds for the
minimum physical range of the strong potential are also
known from elementary considerations [41] and causality
arguments [42, 43].

On the first view, the quantities displayed in the sec-
ond column of Table I appear to be model dependent
for 2

√
2kcD � 1 (as they depend on the parameter D).

However, in the considered limit, the inter-ion distance
fulfills 〈r2〉 = D2, and this links observable quantities to
each other.

The inter-ion distance is related to the charge ra-
dius. Let the ions (labeled by i = 1, 2) have masses mi

and charge radii squared 〈r2i 〉. Then, the charge radius
squared of the bound state is [44]

〈R2
c〉 =

Z1〈r21〉+ Z2〈r22〉
Z1 + Z2

+
(Z1m

2
2 + Z2m

2
1)〈r2〉

(Z1 + Z2)(m1 +m2)2
. (4)

Here, the first term account for the finite charge radii
of the ions, and the second term is the contribution of
the ions (taken as point charges) in the center-of-mass
system. The derivation of Eq. (4) is elementary and this
expression is well known [2, 44]; for a recent EFT dis-
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cussion of contributions to charge radii in halo nuclei we
refer the reader to Ref. [45]. We note that the consistency
of any two-ion model (or EFT) requires that the distance
between the two ions is larger than the sum of their indi-
vidual charge radii. As we will see below, our results are
largely consistent with the assumption of separated ions.

We also note that cluster systems consisting of an even-
even and an odd-mass nucleus have magnetic moments
(in units of nuclear magnetons)

µ = µodd +
Z

A
l. (5)

Here, µodd is the magnetic moment of the odd-mass con-
stituent, l is the orbital angular momentum, and Z and A
are the charge and mass number, respectively, of the com-
pound system. Here we assumed that the magnetic mo-
ment due to the spin S of the odd-mass ion and the mag-
netic moment due to the orbital angular momentum l add
up. This is the case for states with total spin j = l + S.
When applied to weakly bound nuclei, Eq. (5) serves as
a check to what extend these nuclei can be viewed as
clusters of two ions.

We note that (for 2
√

2kcD � 1) the effective range in
Table I does not depend on D, and that it decreases with
increasing Coulomb momentum. Its value, r0 = 1/(3kc),
is that of a Coulomb system with a zero-energy bound
state (see Appendix for details), and 1/(3kc) is also at
the causality limit imposed by the Wigner bound [8, 43].
We can define the nontrivial regime of strong Coulomb
interactions by the model-independent relation 3kcr0 ≈
1. For the δ-shell potential, it is interesting to compute
corrections that are due to a finite value of 2kcD. This
yields [8] (see the Appendix for details)

r0 −
1

3kc
= −πDe−4

√
2kcD. (6)

This equation expresses model-dependent quantities on
its right-hand side in terms of observables. Combining it
with the expression for the scattering length in Table I
yields the model-independent relation

κ−2 = a0

(
r0 −

1

3kc

)
. (7)

This formula was derived (for bound states) by Sparen-
berg et al. [9] and very recently rederived by Schmickler
et al. [40].

Other notable relations that can be obtained from Ta-
ble I are

a0 ≈ −(4πkc)
−1 Γ

E
e2π

kc
κ , (8)

relating the scattering length to resonance properties,
and

C2
0 ≈ γ2a0 [Γ(1 + kc/γ)]

2
, (9)

relating the ANC to the bound-state energy and the scat-
tering length (after replacing κ by γ). This last expres-
sion agrees with the result in Refs. [9, 33, 43]. It seems

System Jπ γ or κ (fm−1) kc (fm−1) D (fm) 2
√

2kcD
d+ α 1+ 0.31 0.09 3.82 1.68

3H + α 3/2− 0.45 0.12 3.43 1.80
3He + α 3/2− 0.36 0.24 3.64 2.63
p+ 7Be 1/2− 0.08 0.12 3.52 1.85
α+ α 0+ 0.09 0.28 3.35 2.72
p+ 16O 1/2+ 0.07 0.26 3.58 2.73

TABLE II. Bound-state momentum γ (or momentum κ of the
resonant state), Coulomb momentum kc, and sum of charge
radii D for two-ion systems in the state with spin/parity Jπ.
The dimensionless quantity 2

√
2kcD is also shown.

to us that Eq. (8) was not yet known. These model-
independent expressions are valuable. They relate quan-
tities that are often unknown or hard to measure (such
as the ANC or the effective range parameters) to others
that are better known (such as energies or widths).

We believe the model-dependent expressions in Table I
are also useful, because they allow us to estimate these
hard-to-measure quantities. Table II lists relevant pa-
rameters for two-ion systems of interest. Of the con-
sidered systems, only the last two approximately fulfill
both |η| � 1 and 2

√
2kcD � 1. Thus, for theses sys-

tems, finite-range models will yield significantly different
values than zero-range models. Applying the simple ex-
pressions of Table I and the estimates for D from Ta-
ble II to α−α scattering, for instance, yields a very large
scattering length of about a0 ≈ −2482 fm, an effective
range r0 ≈ 1.2 fm, and a resonance width of Γ ≈ 7.5 eV.
These values are reasonably close to actual values. For
the weakly bound Jπ = 1/2+ state of the p+16O system,
for example, we note that the simple estimate from Ta-
ble I yields an ANC of about C0 ≈ 80 fm−1/2, close to the
empirical estimates [10, 26, 46, 47]. Thus, δ-shell poten-
tial allows us to estimate the sizes of relevant observables
in Coulomb halo nuclei.

Table II shows that 2
√

2kcD & 1 for essentially all
Coulomb halo nuclei of interest. As a consequence,
r0 − 1/(3kc) is very small for s waves, and this makes
scattering lengths, resonance widths, and ANCs large.
We note that these are natural properties of Coulomb-
halo nuclei. In contrast, the smallness of r0 − 1/(3kc) is
viewed as a fine tuning in Coulomb halo EFT [13, 14, 16].

Throughout this work, we will employ a single partial
wave for the description of low-energy phenomena. Thus,
we tacitly assume that the mixing of partial waves is a
small correction that can be neglected at the precision we
are working at. In this sense, the ANCs and resonance
widths are single-particle properties.

2. Energy scales

In what follows, we will exploit a separation of scales
between the low momentum scale we are interested in and
a higher-lying breakdown scale. The breakdown momen-
tum Λb defines the breakdown energy Eb ≡ ~2Λ2

b/(2m).



4

It is set by the smaller of an empirical and a theoreti-
cal breakdown scale. The empirical breakdown scale is
set by the energy of excited states of the two clusters or
of the resulting nucleus; however, only states with rele-
vant quantum numbers count. In 8Be, for instance, the
ground state has spin/parity Jπ = 0+, and the empir-
ical breakdown scale is set by first excited 0+ state at
about 20 MeV (and not by the energy of the lowest 2+

state at 3 MeV). There is also a theoretical breakdown
scale. The strong interaction potential has a range that
is of the size of the sum D of the charge radii of the clus-
ters involved. Thus, at momenta π/D, the details of our
model are fully resolved. As we cannot expect that the
δ-shell model would be accurate at such a high momen-
tum, π/D sets the theoretical breakdown momentum. In
other words: when probed at this momentum scale, dif-
ferent models that exhibit the same physical range D will
yield different results for obsevables.

The phenomena we seek to describe are simple because
of a separation of scales. Scattering phase shifts at low
energies are typically either close to zero or close to π.
Only in presence of a narrow resonance do phase shifts
vary rapidly in a small energy region of the size of the
resonance width. Thus, away from the resonance energy,
the asymptotic wave function consists mostly of the regu-
lar Coulomb wave function, which is exponentially small
under the Coulomb barrier. This implies that the wave
function cannot resolve any details of a finite-range po-
tential as long as the classical turning point is larger than
the range D of our potential, i.e. the strong potential is
entirely in the classically forbidden region. The corre-
sponding “model” momentum Λm fulfills

Λm ≡
√

2kc/D. (10)

Thus, for energies below Em ≡ ~2Λ2
m/(2m), it will be

hard to distinguish between different finite-range mod-
els that have been adjusted to low-energy data. In this
sense, one deals with universal and model-independent
phenomena. For momenta k with Λm . k . π/D dif-
ferences between models start to show up and eventually
become fully resolved. Some models might accurately de-
scribe data even for momenta beyond Λm; we would view
such models as fortuitous but useful picks. The system-
atic improvements that are presented in Subsection II C
below can be used to estimate what a different model
would yield; we refer to resulting uncertainties as “sys-
tematic uncertainties” in what follows. In EFT parlance,
the momentum regime below Λm would be that where
“leading-order” results are expected to be accurate and
precise. Higher-order corrections should become visible
beyond that scale.

In this work, we employ simple finite-range models for
the nuclear potential that essentially exhibit two param-
eters (a range and a strength). Most calculations will
be done with the δ-shell potential, but for 8Be we also
employ a simple square well or the Breit model [48], a
hard-core potential plus a boundary condition. As we
will see, at sufficiently low energies, and when adjusted

to low-energy data, such simple models will describe data
accurately and precisely. We will also propose how to
make systematic improvements to these models.

B. δ-shell potential

The δ-shell potential plus the Coulomb interaction is
well understood and can be solved analytically [7, 8, 49].
In this Subsection, we briefly summarize some of the rel-
evant results. The Hamiltonian is

H = H0 + V. (11)

The strong interaction potential is V , and the “free”
Hamiltonian H0 consists of the kinetic energy and the
Coulomb interaction

H0 = − ~2

2m
∆ + VC(r). (12)

Here, m denotes the reduced mass of the two-ion sys-
tem and VC is the Coulomb potential (1). The δ-shell
potential is parameterized as

V (r) =
~2λ0
2m

δ(r −R). (13)

Here, λ0 and R denote the strength and the physical
range of the potential, respectively. We work in the
center-of-mass system and employ spherical coordinates.
The radial wave function ψl(r) = ul(r)/r must be con-

tinuous at r = R, and its derivative u′l ≡
dul
dr fulfills

u′l(R
+)− u′l(R−) = λ0ul(R). (14)

The radii R+ and R− are infinitesimal larger and smaller
than R, respectively.

As we shall see below, the δ-shell potential is quite
useful in describing the low-energy physics of charged
ions. The key is here that the outside (r > R) wave
function has accurate asymptotic properties, and that
low-energy physics does not probe the inaccurate and
unphysical inside (r < R) wave function.

1. Bound states

For bound states with energy E = −~2γ2

2m we make the
ansatz

ul(r) =

 N
H+
l ( kciγ ,iγR)
Fl( kciγ ,iγR)

Fl

(
kc
iγ , iγr

)
, r < R

NH+
l

(
kc
iγ , iγr

)
, r > R.

(15)

Here, we employed the Coulomb wave functions Fl and
H+
l . We note that some readers might find the ap-

pearance of the Coulomb wave function H+
l unusual

and might have preferred to see the Whittaker function
W−kc/γ,l+1/2(2γR) instead. For complex arguments the
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Coulomb wave function H+
l (−ikcγ, iγr) can be written

in terms of the Whittaker function W−kc/γ,l+1/2(2γR),
see Ref. [50, Chapter 33.2]. As we employ the Coulomb
wave functions at imaginary arguments, some care must
be taken in their numerical implementation; we followed
Gaspard and Sparenberg [51] and present details in the
Appendix. We also refer the reader to that reference for
a discussion of the analytical properties (or lack thereof)
of Coulomb wave functions. We recall that the Coulomb
wave functions F0(η, x), G0(η, x), and H±0 (η, x) behave
asymptotically, i.e. for large real values of the argument
x and real values η, as the functions sinx, cosx, and
exp (±ix) when omitting the Coulomb phase.

In Eq. (15), the constant N ensures the proper nor-
malization

∞∫
0

dr |ul(r)|2 = 1 (16)

of the wave function. Because of the particular ansatz
of the wave function for r > R in terms of the Coulomb
wave function rather than the Whittaker function, the
ANC is

Cl = N
W−kc/γ,l+1/2(2γR)

H+
l

(
kc
iγ , iγR

) . (17)

The matching condition (14) yields

γ

λ0
= iFl

(
kc
iγ
, iγR

)
H+
l

(
kc
iγ
, iγR

)
. (18)

The inter-ion distance squared

〈r2〉 =

∞∫
0

drr2 |ul(r)|2 (19)

enters into the computation of the charge radius (4).

2. Scattering

For positive energies E = ~2k2

2m we make the ansatz

ul(r) =

{
BFl

(
kc
k , kr

)
, r < R

Fl
(
kc
k , kr

)
cos δ +Gl

(
kc
k , kr

)
sin δ, r > R.

Here, Gl is the irregular Coulomb wave function, δ de-
notes the phase shift, and we employed the shorthand

B ≡
Fl
(
kc
k , kR

)
cos δ +Gl

(
kc
k , kR

)
sin δ

Fl
(
kc
k , kR

) . (20)

The matching condition (14) yields

k

λ0
= −F 2

l

(
kc
k
, kR

)
cot δ − Fl

(
kc
k
, kR

)
Gl

(
kc
k
, kR

)
(21)

Given the phase shifts, one can use this equation to ad-
just λ0. Alternatively, for fixed parameters (λ0, R) this
equation can be solved for the phase shifts. This yields

cot δ = −
k
λ0

+ Fl
(
kc
k , kR

)
Gl
(
kc
k , kR

)
F 2
l

(
kc
k , kR

) . (22)

The δ-shell potential can at most exhibit one bound
state. It is interesting to identify the critical strength λ∗
at which the bound state enters. To do so, we start from
Eq. (21), and consider a resonance by setting δ = π/2.
In order to take the limit k → 0, we employ asymptotic
approximations of the Coulomb wave functions (see Ap-
pendix for details). This yields

λ−1∗ = −2RI1

(
2
√

2kcR
)
K1

(
2
√

2kcR
)
. (23)

Here, I1 and K1 are modified Bessel functions.
The effective range-expansion for the δ-shell potential

is [7, 49]

a−1l =
2k2l+1
c

(l!I2l+1)
2

(
1

λ0R
+ 2I2l+1K2l+1

)
rl = − 2k2l−1c

3 (l!I2l+1)
2

[
2
kc
λ0

lI2l+3 +
√

2kcRI2l+2

I2l+1

+2l(l + 1)(l + 2)I2l+1K2l+1

−1

2
(I2l+1)

2 − l(l + 1)− kcR
]
. (24)

Here, we used the shorthands

Il ≡ Il
(

2
√

2kcR
)

(25)

for the modified Bessel functions.

3. Resonances

As λ0 is decreased from 0 at fixed R, the potential
becomes increasingly more attractive. Just before the
critical strength (23) is reached, the phase shift exhibits
a quick rise through π/2 at a low momentum κ. This is
reminiscent of a resonance, and we can indeed model this
physical phenomenon. The goal is to adjust the parame-
ters of the δ-shell potential to the resonance energy and
width. To do so, we set δ = π/2 in Eq. (21) and find

κ

λ0
= −Fl

(
kc
κ
, κR

)
Gl

(
kc
κ
, κR

)
. (26)

This relates the parameters of our potential to the res-
onance momentum κ. The resonance energy is Eκ =
~2κ2/(2m). To compute the resonance width Γ, we use
the relation [52]

dδ

dE

∣∣∣∣
Eκ

=
2

Γ
. (27)
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This relation is particularly useful because it allows us
to describe narrow resonances based on elastic scattering
phase shifts [53]. We denote the momentum derivative of

a function f as df
dk ≡ ḟ , take the derivative with respect

to momentum of Eq. (21), and set δ = π/2. This yields

λ−10 = (Fl)
2
δ̇ − ḞlGl − FlĠl. (28)

Here and in what follows we suppress the arguments
(kc/κ, κR) of the Coulomb wave functions. Combining

Eqs. (26) and (28), and using δ̇ = 4Eκ/(κΓ) yields an
expression for the width that depends on R alone (and
not on λ0)

Eκ
Γ

=
κ
(
ḞlGl + FlĠl

)
− FlGl

4(Fl)2
. (29)

Given the width and the resonance energy, one can solve
Eq. (29) for the parameter R; substitution of the result
into Eq. (26) then yields the parameter λ0.

It is now interesting to combine the result (26) with
Eq. (21) to compute the phase shift. We find

cot δ =
k
κFl

(
kc
κ , κR

)
Gl
(
kc
κ , κR

)
− Fl

(
kc
k , kR

)
Gl
(
kc
k , kR

)
F 2
l

(
kc
k , kR

) .

(30)

Here, it is implied that R fulfills Eq. (29).

C. Systematic improvements

We want to make systematic improvements to the δ-
shell potential. For this purpose, let us recall how this is
accomplished in pion-less EFT. There, the leading-order
is a contact potential, e.g. a δ-shell potential with a range
R that is much smaller than any other length scale in the
problem under consideration. Then, leading corrections
for s-waves are of the form

g∆δ(r −R+) + gδ(r −R+)∆. (31)

Here, ∆ is the Laplacian, and g is a coupling con-
stant. When acting on the wave function with energy
Ek = ~2k2/(2m) of the leading-order Hamiltonian the
perturbation (31) yields a contribution proportional to
gk2, and this is a small correcton because g ∝ R2 in a
natural EFT, and kR� 1 because k is a low momentum
and R is a small length scale.

Having this in mind, we now have to consider our case,
i.e. Coulomb is added. Let us discuss how to make sys-
tematic improvements to the δ-shell potential. For this
purpose we consider the operator

Wn ≡
1

2
(H0)

n
δ(r −R+) +

1

2
δ(r −R+) (H0)

n
. (32)

Here, R+ denotes a point that is larger than R by an ar-
bitrarily small amount, and n is a non-negative integer 1.
Consider the Hamiltonian (n ≥ 1)

H̃n = H0 + V + gnWn, (33)

where gn denotes a low-energy constant. We write down
the Schrödinger equation for the Hamiltonian H̃n acting
on the eigenfunction of H0 with eigenvalue E and inte-
grate over the neighborhood of the singularities at r = R.
This yields

0 =

R+∫
R−

drH̃nul(r)

= − ~2

2m

[
u′l(R

+)− u′l(R−)− λ0ul(R)
]

+ gnE
nul(R

+)

(34)

Comparison with Eq. (14) shows that the matching con-
dition becomes

u′l(R
+)− u′l(R−) = λ̃ul(R), (35)

where we introduced the energy-dependent coupling con-
stant

λ̃ ≡ λ0 +
2m

~2
gnE

n. (36)

One might prefer to convert energy dependence into a
momentum dependence. We employ the shorthand

gn =

(
2m

~2

)n−1
g̃n, (37)

and E = ~2k2/(2m), noting that k can be real (for pos-
itive energies) or purely imaginary k = iγ for bound
states. Then, the momentum-dependent coupling con-
stant is

λ̃(k) = λ0 + g̃nk
2n. (38)

We remind ourselves that this is only correct if the Hamil-
tonian acts on eigenstates of H0.

Let us discuss the power counting. The breakdown mo-
mentum is Λb. By definition, the leading-order Hamilto-
nian (11) and the perturbation (32) have the same energy
~2Λ2

b/(2m) at the breakdown scale. Equating the respec-
tive energies yields

~2Λ2
b

2m
∼ ~2Λ2

b

2m

n

gn|ul(R)|2. (39)

Using the estimate |ul(R)|2 ∼ R−1 yields the scaling

g̃n ∼
R

Λ
2(n−1)
b

. (40)

1 We could envision also more “democratic” ways to write powers
of H0 left and right from the δ function, but this is not important
at this stage.
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Thus, for “natural” coefficients of this size, the
momentum-dependent coupling constant (38) is a small
correction at low momenta, and contributions systemat-
ically decrease with increasing n. We propose that W2

is the leading correction to the Hamiltonian H. The ra-
tionale is as follows: The two parameters of our theory
allow us to fit, for instance, the scattering length and the
effective range. Then, a quartic correction at next-to-
leading order should affect the shape parameters in the
effective range expansion.

We note that the same result could have been obtained
from perturbation theory. We also note that the same
systematic corrections apply to the Breit model or the
square-well potential. The reason is that also for these
models the eigenstates of H = H0 + V are wave func-
tions of the “free” Hamiltonian H0 for r > R. Thus,
the expectation value of gnWn in a state with low energy
E = ~2k2/(2m) is (k2/Λ2

b)
n−1E. For k � Λb, this is a

small correction and we have established a power count-
ing. The systematically improvable Hamiltonian is (with
terms in order of decreasing importance)

H = H0 +
~2λ0
m

W0 + g2W2 + g3W3 + . . .

= H0 +
~2λ(k)

m
δ(r −R) (41)

In the first line, we have replaced the δ-shell poten-
tial (13) by W0. In the second line we reminded our-
selves that this corresponds to introducing a momentum-
dependent coupling constant

λ(k) = λ0 + g̃2k
4 + g̃3k

6 + . . . (42)

when acting on eigenstates of H = H0 + V . In what
follows, we will simply denote the coupling constant as
λ, suppressing its momentum dependence. In practical
applications, we will use λ = λ(0) = λ0, and employ the
leading correction to estimate systematic uncertainties.

On the one hand, the proposed way to include correc-
tions to the δ-shell Hamiltonian (11) exhibits a power
counting and thereby follows central ideas from EFT.
On the other hand, the approach is not simply a deriva-
tive expansion of the unknown strong interaction, be-
cause H0 contains the Coulomb potential. This is impor-
tant, because the contributions from the Coulomb poten-
tial and the kinetic energy are large when the Sommer-
feld parameter is large; only the combination of kinetic
and Coulomb potential energy yields a small total en-
ergy. To see this, we note that the expectation value
of the Coulomb potential term δ(r−R+)~2kc/(mr) for a
state with energy E is C2

l ~2kc/(mR). As this expectation
value can be very large (compared to C2

l E), the contribu-
tion of a derivative contact such as δ(r − R+)~2∆/(2m)
must be large in size, too, when compared to C2

l E.
This analysis suggests that systematic improvements
to Coulomb systems should be based on a Coulomb-
corrected derivative expansion such as Eq. (41), rather
than on a purely derivative expansion as done in Coulomb
halo EFT.

Nucleus Jπ l λ0 (fm−1) R (fm)
6Li 1+ 0 −0.89 3.84
7Li 3/2− 1 −1.45 3.14
7Li 1/2− 1 −1.31 3.50
7Be 3/2− 1 −1.42 3.22
7Be 1/2− 1 −1.25 3.75
17F 5/2+ 2 −1.63 3.60
17F 1/2+ 0 −0.79 3.85
8Be 0+ 0 −0.81 3.54

TABLE III. Potential parameters (λ0, R) of the δ-shell poten-
tial that reproduce the central values for the nuclei described
in this paper.

To further illuminate this point, we consider the
Coulomb wave functions F0(kc/k, kr) and G0(kc/k, kr)
for the case of low momentum (i.e. for k → 0) and large
Coulomb momentum (i.e. for kcr � 1). Then (details
are presented in the Appendix)

d

dr
F0(kc/k, kr) ≈ +4kcF0(kc/k, kr),

d

dr
G0(kc/k, kr) ≈ −4kcG0(kc/k, kr). (43)

Thus, the derivative of the Coulomb wave function (even
with a small momentum k � kc) yields the large
Coulomb momentum kc. This casts some doubts on em-
ploying the usual derivative expansion known from pion-
less EFT when the Coulomb momentum is large com-
pared to the momentum scale of interest.

III. RESULTS

In this Section we present our results for various sys-
tems of interest. Our emphasis is on uncertainty esti-
mates and a comparison with results from Coulomb halo
EFT. The prediction of the 17F charge radius is subject
to confrontation with data [54]. For completeness, we dis-
play the parameters of the δ-shell potential in Table III.
We note that the values of D (i.e. the sum of the ions’
charge radii) in Table II are smaller than the values of R
displayed in Table III (except for the 3/2− ground state
of 7Li). Thus, the strong interaction is peripheral in the
cluster model we employ. In what follows we will em-
ploy energies of bound and resonant states. These are all
taken from National Nuclear Data Center [55].

A. 8Be as α+ α resonance

The nucleus 8Be is not bound, but rather a Jπ = 0+

resonant state at an energy E ≈ 92 keV and a width of
Γ ≈ 6 eV above the α + α threshold. The next known
0+ state is at 20.2 MeV of excitation. We note that this
energy is equal to the energy of the first 0+ state of the
α particle to three significant digits. Assuming there are
indeed no other 0+ states, 20 MeV sets the empirical
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breakdown energy for any cluster model or EFT that de-
scribes 8Be in terms of “elementary” α particles (because
an “elementary” point particle dies not exhibit any struc-
ture and cannot be exited). The corresponding empirical
breakdown momentum is 1.4 fm−1.

However, α particles have a finite size, and the sum
of the two charge radii of the α particles is D ≈ 3.3 fm.
At a momentum π/D ≈ 0.95 fm−1, the details of any
Hamiltonian with a physical range D can be resolved.
The corresponding breakdown energy in the center-of-
mass system is Eb ≈ 9.4 MeV. This energy is lower than
the empirical breakdown scale discussed in the previous
paragraph and therefore sets the breakdown scale. We
note that it is not precluded to construct a model that
describes data accurately even at the breakdown scale.
However, that would seem to be fortuitous, as a generic
finite-range model that is adjusted to low-energy data is
expected to not be accurate at such energies.

The Coulomb momentum is kc ≈ 0.28 fm−1. We ex-
pect model dependencies to become visible above the mo-
mentum Λm ≈ 0.4 fm−1, see Eq. (10). This corresponds
to a center-of-mass energy of about Em = ~2Λ2

m/(2m) ≈
1.7 MeV. Recall that this is the energy where the classical
turning point is at a radial distance D.

To summarize the arguments: Virtually any model
with a physical range of size D that is adjusted to low-
energy data is expected to describe data accurately up
to about Em = 1.7 MeV. At higher energies, model de-
pendencies start getting resolved because the strong po-
tential is not anymore in the classically forbidden region;
a de-facto breakdown of models with a range of size D
is expected at an energy of about Eb = 9.4 MeV. The
model dependencies of the δ-shell potential can be esti-
mated by employing the momentum dependent coupling
λ(k) = λ0 + gRk4/Λ2

b . Here, g is a number of order one.
Figure 1 shows s-wave phase shifts for α − α scatter-

ing computed from different models, and compares them
to data. The two-parameter models have been adjusted
to the resonance energy and its width. The models are
(i) the δ-shell potential, (ii) a shallow square well (with
no bound states), (iii) a deep square well with multi-
ple bound states2, and (iv) the Breit model [48], i.e. a
hard-core potential where the wave function’s logarith-
mic derivative at the hard core is set. All models are prac-
tically indistinguishable below Em ≈ 1.7 MeV and differ
significantly at the breakdown energy Eb ≈ 9.4 MeV.
This behavior is as expected from the discussion of the
energy scales presented in Sect. II A 2. We note that the
δ-shell potential and the Breit model yield similar re-
sults. However, unlike the former, the latter employs a
hard core and its wave functions thus exhibit significant
high-momentum modes.

Let us focus on the δ-shell potential and estimate un-
certainties. Figure 2 shows the phase shifts over an

2 These bound-state energies are large and outside the domain of
low-energy physics.
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FIG. 1. (Color online) Phase shifts of α− α scattering in the
s wave, as a function of the center-of-mass energy computed
with a shallow square-well potential (dotted line), the δ-shell
(solid line), the Breit model (dashed line) and a deep square
well (dashed-dotted line). Data taken from Refs. [56, 57].
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FIG. 2. (Color online) Phase shifts of α − α scattering in
the s wave, as a function of the energy in the center-of-mass
frame. The dark band shows the uncertainty from the res-
onance width. The light band shows the theoretical uncer-
tainty estimate. Data taken from Refs. [56, 57].

even larger range of energies. The central line is ob-
tained from adjusting to the resonance energy and the
central value of its width. Varying the resonance width
Γ = 5.57 ± 0.25 eV within its uncertainty produces the
dark band. The systematic uncertainty estimate, i.e.
the range that different models would explore, is shown
as a light band. Its extent is generated by employing
λ(k) = λ0 ± Rk4/Λ2

b . We see that the prediction of the
δ-shell potential agrees well with data, even for energies
beyond Em = 1.7 MeV. This model happens to be ac-
curate. The comparison with Fig. 1 shows that the sys-
tematic uncertainty band is a reasonable estimate for the
range of results spanned by different models.

We computed the scattering length and effective range
and obtained a0 = −2020 ± 100 fm and r0 = 1.106 ±
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0.005 fm, respectively. The uncertainties stem from the
uncertainty in the resonance width. Let us compare
this with effective range parameters from the literature.
Overall, there is a consensus on the effective range, which
is close to the estimate 1/(3kc) = 1.21 fm shown in
Table I. The scattering length, of course, is sensitive
to the precise difference r0 − 1/(3kc) [see the approx-
imation (7)], and it is probably only known to about
5 to 10%. The effective range expansions by Rasche
[58], Higa et al. [13], and Kamouni and Baye [59] found
a0 = 1650±150 fm, a0 = 1920±90 fm, and a0 = 2390 fm,
respectively. The potential models by Kulik and Mur [3]
yielded a0 = 2030±100 fm. Ab initio computations have
not yet reached the precision to extract very large scat-
tering lengths precisely [60].

We discuss some of these works in more detail. Kulik
and Mur [3] uses simple models for the computation of
phase shifts and effective range parameters. The two-
parameter models are the δ-shell potential and the Breit
model. These models are adjusted to the resonance en-
ergy and to phase shifts, and they virtually agree with
each other for energies in the center-of-mass system up to
2 MeV. They agree with data over an even wider range.
Interestingly, these models yield an accurate description
of the resonance width when adjusted to phase shifts.
Kamouni and Baye [59] use the resonating group method
and R-matrix theory to extract an effective range expan-
sion. This approach adjusts about two parameters in
each partial wave.

Let us also contrast our approach to the halo EFT work
by Higa et al. [13]. That approach is based on a dimeron
formulation with contact interactions. At leading order
(LO), a fit to the resonance energy and width yields phase
shifts that agree with data only up to 0.3 MeV in the
center-of-mass frame. At next-to-leading-order (NLO),
three parameters are adjusted to the resonance energy,
its width, and phase shifts. The resulting phase shifts
clearly deviate from data above 0.7 MeV of center-of-
mass energy. Figure 3 compares the EFT results at LO
and NLO to models. The EFT results are not accurate.
This is somewhat surprising, because the effective-range
expansion by the same authors yielded phase shifts that
agree with data.

B. 17F as 16O + p

The 17F nucleus plays a role in nucleosynthesis. Its
Jπ = 5/2+ ground state and its first excited 1/2+ states
are bound by about 0.6 and 0.1 MeV, respectively. These
energies are small compared to 6 MeV, the energy it takes
to excite the doubly-magic nucleus 16O, and we can thus
approximate 17F as a 16O+p system at sufficiently low en-
ergies. The next excited states in 17F with quantum num-
bers 5/2+ and 1/2+ are separated by 6.7 and 6.5 MeV,
respectively, from the corresponding bound states. Thus,
the empirical breakdown energy is about Eb ≈ 6 MeV.
The sum of the charge radii of the proton and 16O is
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FIG. 3. (Color online) Phase shifts of α + α scattering in
the s wave computed from finite-range models and in leading
order (LO) and next-to-leading order (NLO) Coulomb halo
EFT [13], as a function of the center-of-mass energy. Data
taken from Refs. [56, 57].

about D ≈ 3.6 fm. This sets the theoretical breakdown
momentum to π/D ≈ 0.88 fm−1, corresponding to an
energy of about 17 MeV. Thus, the breakdown scale is
set by the empirical breakdown energy. The Coulomb
momentum is kc ≈ 0.26 fm−1. Thus, potentials with
a physical range D are expected to exhibit model de-
pendencies above about Λm = (2kc/D)1/2 ≈ 0.27 fm−1,
corresponding to an energy Em ≈ 1.6 MeV.

Let us consider the excited Jπ = 1/2+ halo state [61].
We adjust the model parameters to the binding energy
and the 2S1/2 phase shift data from Ref. [62]. The results
are shown in Fig. 4. We then predict the ANC to be
C0 = 78.9 ± 4.2 fm−1/2, and the charge radius of the
excited state is R∗c = 3.096±0.034 fm. The uncertainties
reflect the uncertainties from the χ2 fit of the phase shifts,
obtained from doubling the χ2. The ANC agrees with the
results by Gagliardi et al. [46], Artemov et al. [47], and
Huang et al. [26], who found values of (80.6±4.2) fm−1/2,
(75.5 ± 1.5) fm−1/2, and 77.2 fm−1/2, respectively. Our
effective range parameters are a0 = 4080 ± 430 fm, and
r0 = 1.17 ± 0.01 fm. Within their uncertainties, these
values agree with those of Refs. [10, 59].

Let us also compare to Coulomb halo EFT. For the
excited 1/2+ state, Ryberg et al. [14] employed one pa-
rameter at leading order and found that the relative dis-
tance 〈r2〉 = (0.59 fm)2 between the proton and the core
and the ANC C0 = 21.4 fm−1/2 are too small. At next-
to-leading order, effective range contributions enter, and
the charge radius is increased by a factor 3.6–3.8 [65].

Let us turn to the 17F ground state. Its charge ra-
dius is not yet known but its measurement is currently
an active experiment at CERN Isolde [54]. We want to
make a prediction for this observable. To put things
into perspective we note that the charge radius of 19F
is Rc = 2.8976(25) fm [66]; the ground-state of that

nucleus has spin/parity 1/2
+

. We adjust our model
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FIG. 4. (Color online) Phase shifts of p +16 O scattering in
the 2S1/2 partial wave, as a function of the energy in the
center-of-mass frame. Data taken from Ref. [62–64].

parameters to the binding energy and the ANC. The
ground-state ANC extracted from transfer reaction data
via potential models is 1.04 ± 0.05 fm−1/2 [46, 47]. The
resulting phase shifts are shown in Fig. 5. Unfortu-
nately, the phase shift analysis lacks uncertainties, but
we see a systematic deviation. We compute a scattering
length of a2 = 1.15(11)× 103 fm5 and an effective range
of r2 = −0.068(7) fm−3, in agreement with results by
Yarmukhamedov and Baye [10] (who were also informed
by the ANCs we used). We compute a charge radius of
Rc = 2.88(1) fm. This is a large radius for a d-wave state
and practically as large as the charge radius of the 1/2+

ground state of 19F.

To estimate the reliability of our computations, we al-
ternatively fit to the potential parameters to the phase
shifts and the binding energy and find R ≈ 2.957 fm
and λ0 ≈ −1.924 fm−1. We note the the resulting χ2

per degree of freedom is about 11, hinting at phase-
shift uncertainties of about three degrees (assuming them
to be of statistical nature). In this case, we compute
an ANC of C2 = 0.7286 fm−1/2, and a charge radius
Rc = 2.80(2) fm. These values are significant smaller
than those given in the previous paragraph, and the un-
certainties do not overlap. It seems to us that the phase
shift data [62–64] and the transfer reaction data [46] are
probably not compatible. We note, however, that the
accurate determination of d-wave phase shifts from low-
energy scattering is complicated because s and p waves
dominate. We also note that somewhat smaller ANCs
of 0.91 and 0.88 fm−1/2 have been computed by Huang
et al. [26] and Blokhintsev et al. [12], respectively. As the
extraction of the ANC by Gagliardi et al. [46] is more
recent than the phase shift analysis (and includes un-
certainties), we base our computation on the ANC and
predict a charge radius of 2.88(1) fm for 17F. The mea-
surement [54] will certainly be useful to yield insight into
the low-energy properties of the p+ 16O system. We also
note that this nucleus is in reach of ab initio computa-
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FIG. 5. (Color online) Phase shifts of p +16 O scattering in
the 2D5/2 partial wave, as a function of the energy in the
center-of-mass frame. Data taken from Refs. [62–64].

tions [67], but its charge radius and ANC have not been
computed, yet.

C. 6Li as a α+ d bound state

The ground state of 6Li is only bound by about E =
1.47 MeV with respect to the d+ α threshold. This cor-
responds to a bound-state momentum of γ ≈ 0.31 fm−1.
Its spin/parity is identical to that of the deuteron, and
the estimate (5) for its magnetic moment yields 0.86 nu-
clear magnetons, which is close to the observed value of
0.822 [68]. These basic properties suggest that the 6Li
ground state exhibits a dominant s-wave halo structure,
and we will we neglect any d-wave component in what
follows.

Let us assess the breakdown scale. The three-body
breakup of 6Li into α+n+ p requires the breakup of the
deuteron and is thus about 2.2 MeV above threshold.
This inelastic process is without concern to us. The first
excited state with the same spin and parity as the ground
state is at 5.65 MeV, and this is the empirical breakdown
energy. The sum of charge radii is D ≈ 3.8 fm, setting the
theoretical breakdown momentum at π/D ≈ 0.82 fm−1,
which corresponds to a high energy of 10.6 MeV. Thus,
the breakdown scale is set by the empirical properties.
The binding energy of the deuteron to the α core is a fac-
tor of about four smaller than the breakdown energy, and
this provides us with a separation of scale. The Coulomb
momentum of the d + α system is kc ≈ 0.09 fm−1, and
model differences are start to get resolved above the mo-
mentum Λm ≈ 0.22 fm−1, corresponding to an energy
Em ≈ 0.75 MeV. As this energy is smaller than the
binding energy of the α+ d system, model dependencies
could be relevant. However, below we will see that the
δ-shell model yields an accurate description of existing
low-energy data.

We model the 6Li ground state using the δ-shell poten-
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FIG. 6. (Color online) Phase shifts of d+ α scattering in the
3S1 partial wave, as a function of the energy in the center-of-
mass frame. Data taken from Refs. [70, 71].

tial in the s partial wave. Ryberg et al. [69] pointed out
that charge radii can be used to constrain low-energy ob-
servables that are relevant in astrophysics. Together with
the binding energy, these are the most precise data avail-
able at low energies. We therefore adjust the two parame-
ters of our potential to the binding energy and the charge
radius. The charge radius of 6Li is 2.589± 0.039 fm [66]
and we perform a total of three calculations, adjusting
to its central, lower, and upper values. For the relevant
s wave we compute an ANC of C0 = 2.23(11) fm−1/2,
a scattering length a0 = 29.1 ± 1.7 fm, and an effec-
tive range r0 = 1.85(5) fm. The uncertainties reflects
the uncertainty in the charge radius. The central value
of the inter-ion distance is

√
〈r2〉 = 3.86 fm, and this

marginally exceeds the sum of charge radii of its con-
stituents, 3.82 fm. The resulting phase shifts are shown
in Fig. 6, and they agree with data [70, 71]. This gives
us confidence in the accuracy of our results.

It is interesting to compare our prediction for the
ANC and the effective range parameters with the litera-
ture. The effective range parameters agree with Ref. [72],
which states a0 = 30.8 fm and r0 = 1.88 fm; the ANC
agrees with the values of Refs. [5, 73, 74]. However, we
note that ANCs have clearly evolved (and decreased) over
time, as the papers [73, 75–77] show. We note that the ab
initio computation by Nollett et al. [20] reports an ANC
of 2.28 ± 0.02 fm−1/2 (in agreement with recent cluster
models and our result), while Hupin et al. [22] found
a larger ANC of about 2.7 fm−1/2. While the calcula-
tion of Ref. [20] is informed by charge radii through its
variational wave function, the paper [22] did not present
results for charge radii. We believe our calculations,
through their consistency for all low-energy observables,
add further weight to an ANC around 2.2 fm−1/2.
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FIG. 7. (Color online) Phase shifts of 3He + α scattering in
the 2P3/2 partial wave, as a function of the energy in the
center-of-mass frame. Data taken from Refs. [78, 79]

D. 7Be as α+3 He bound state

The 7Li ground state has quantum numbers Jπ = 3/2−

and is bound by 1.6 MeV with respect to the α + 3He
threshold. The only other bound state is at about
0.4 MeV of excitation energy and has quantum numbers
Jπ = 1/2−. Both states are thus weakly bound and can
be viewed as p waves of the α+3He system. We note that
the estimate (5) for the ground state’s magnetic moment,
−1.556 nuclear magnetons, is close to the experimental
value of −1.398 [68]. This all suggests that we can de-
scribe 7Be as an α+3 He system.

The empirical breakdown energy is set by the energy
of excited states 9.9 MeV for quantum numbers Jπ =
3/2−; it is about twice as high for the numbers Jπ =
1/2− state. Of course, the 3He nucleus breaks up at
an excitation energy of about 6 MeV, but this inelastic
channel is of no concern for us. The sum of the two charge
radii is D ≈ 3.6 fm, setting the theoretical breakdown
momentum to π/D ≈ 0.86 fm−1, corresponding to an
energy of 9 MeV. Thus the breakdown energy is about
9 MeV. Model dependencies become visible above the
momentum scale Λm ≈ 0.36 fm−1, corresponding to an
energy of 1.6 MeV. We note that this energy is similar to
the ground-state energy.

For the 2P3/2 partial wave, we adjust the two parame-
ters of the δ-shell potential to the binding energy of the
ground state and its charge radius of 2.646±0.016 fm [66].
As before, we propagate the uncertainty of the charge
radius to low-energy observables. Then, the ground-
state ANC is C1 = 3.6 ± 0.1 fm−1/2, and the effective-
range parameters are a1 = 207 ± 8 fm3 and r1 =
−0.041 ± 0.004 fm−1. The predicted phase shifts are
shown in Fig. 7 and compared to data [78, 79]. The
agreement is fair. Unfortunately, the older data by Spiger
and Tombrello [78] lacks uncertainties.

Let us compare with other approaches for the 3/2−

partial wave. Descouvemont et al. [25] found an ANC
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of C1 = 3.79 fm−1/2 (close to our value) from an R ma-
trix analysis, while Tursunmahatov and Yarmukhamedov
[80] found an ANC of C1 = 4.83+0.1

−0.25 from evaluations
of capture reactions. We refer to the latter paper for a
review of literature values. The ab initio computation
by Dohet-Eraly et al. [23] found a scattering volume of
a1 = 210.4 fm3 (close to our result), while the effective
range expansion techniques [10] found effective range pa-
rameters a1 = 301±6 fm3 and r1 = 0.0170±0.0026 fm−1

(and a squared ANC of C2
1 = 23.3 fm−1). We note that

the ab initio computation [23] yields a charge radius that
is close to data.

We note that Coulomb halo EFT was very recently ap-
plied to the α + 3He system [16, 18] for a computation
of the astrophysical S factor. Zhang et al. [18] pursued a
Bayesian approach based on data from capture reactions,
avoiding the need to adjust parameters to phse shifts.
Higa et al. [16] employed the ANC from Ref. [80] for
their computation of the astrophysical S factor. At lead-
ing order (a one-parameter or a three-parameter theory,
depending on the power counting), the resulting phase
shifts are visibly above the data [79].

It seems to us that this α + 3He system is still not
sufficiently well understood. Existing theoretical results
are in conflict with each other, and no calculation seems
to be able to reproduce charge radii, phase shifts, and
capture data.

E. 7Li as α+ 3H bound state

The 3/2− ground state of 7Li is bound by about
2.5 MeV with respect to the threshold of the α + 3H
system. Based on a cluster assumption (5), its magnetic
moment is 3.4 nuclear magnetons, which is close to the
experimental datum of 3.256 [68]. This suggests that one
can describe 7Li as the bound state of the α+ 3H system
with orbital angular momentum l = 1.

The next 3/2− state is at about 9.8 MeV, setting the
empirical breakdown scale. The breakup of the triton at
about 6 MeV is an inelastic channel we are not concerned
with. The sum of the charge radii of the constituent ions
is D ≈ 3.4 fm, and the theoretical breakdown momentum
is π/D ≈ 0.91 fm−1, corresponding to an energy of about
10 MeV. Thus the breakdown energy is at about 10 MeV.
At the momentum Λm = 0.26 fm−1, corresponding to an
energy of 0.84 MeV, model dependencies become visible.
We note that this energy is smaller than the bound-state
energy, and model dependencies could thus be notable.

We adjust the δ-shell parameters to the α-separation
energy and the charge radius (2.444 ± 0.042 fm [66]) of
the 7Li. The resulting phase shifts are shown in Fig. 8
and compared to a phase shift analysis [78]. The agree-
ment is poor. However, the scatter of the points from the
phase shift analysis also suggests that the uncertainties
are significant.

For the 3/2− channel, we compute a scattering vol-
ume a1 = 74 ± 8 fm3, an effective range r1 = −0.24 ±
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FIG. 8. (Color online) Phase shifts of 3H + α scattering in
the 2P3/2 partial wave, as a function of the energy in the
center-of-mass frame. Data taken from Ref. [78].

0.02 fm−1, and an ANC C1 = 3.0 ± 0.2 fm−1/2. The ab
initio computations by Dohet-Eraly et al. [23] found a
scattering volume of 70 fm3 (which agrees with our re-
sult), and their computed charge radius is close to data.
Kamouni and Baye [59] fit a model to phase shifts and
report effective-range parameters a1 = 72.77 fm3 and
r1 = 0.27 fm−1 (which are close to our results); however,
the ground-state energy of the 3H +α system was about
twice as large as the data. However, Descouvemont et al.
[25] found an ANC of C1 = 3.49 fm−1/2 from an R matrix
analysis, while Yarmukhamedov and Baye [10] computed
effective-range parameters a1 = 58.10 ± 0.65 fm3 and
r1 = 0.346±0.005 fm−1 (with an ANC of C1 = 3.57±0.15
from Ref. [81]).

We see that there is no consensus yet about low-energy
observables for the α+ 3H system. However, the simplic-
ity of the δ-shell potential, its economical use of only two
low-energy data, its agreement with ab initio computa-
tions, and its ability to estimate uncertainties of models
make it an attractive potential also here.

IV. SUMMARY

We employed a simple two-parameter model to de-
scribe a number of nuclear light-ion systems that exhibit
a separation of scale. Whenever possible, the model pa-
rameters were constrained by the energy and width of
a low-energy resonance or by the energy and charge ra-
dius of a weakly bound state. In those cases, we pre-
dicted phase shifts, effective range parameters and ANCs.
Our analysis of ANCs, charge radii and resonance widths
shows that the inclusion of a finite range is relevant for
systems with strong Coulomb interactions. We also pro-
posed a way to account for systematic corrections and
model uncertainties. This allowed us to present uncer-
tainty estimates for the computed observables. The pre-
sented approach provides us with a constructive criticism
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of Coulomb halo EFT. We predicted a charge radius of
2.88(1) fm for the 17F ground state, taking its energy and
ANC to constrain the model.

The potential model employs two parameters in each
partial wave. When applied to a single partial wave, it
is a minimal model whose results compete well at low
energies with traditional Woods-Saxon potential mod-
els or R matrix analyses that employ more parameters.
We pointed out that the δ-shell model practically de-
livers model-independent results below a momentum Λm
when it is adjusted to low-energy data. We also presented
simple formulas that estimate the sizes of effective-range
parameters and ANCs based on energies of low-energy
states and charge radii of the involved ions. Such esti-
mates are useful in the construction of EFTs, and they
seemed to be missing in the literature.
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V. APPENDIX

The Appendix presents some details that could be
looked up or are straightforward (but sometimes tedious)
to derive. We present them here briefly to make the pa-
per self contained.

A. Coulomb wave function

For the Coulomb wave functions we followed Gaspard
and Sparenberg [51]. In that paper, the analytical prop-
erties are emphazised. This is relevant to us because
we call the Coulomb wave functions at real and purely
imaginary arguments. We employed Mathematica and
scipy special functions in Python for our numerical im-
plementation. We checked for a number of arguments
that our implementation agrees with the precise numer-
ical routines by Michel [82].

The regular Coulomb wave function is

Fl(η, ρ) = Cl(η)ρl+1eiρM(l + 1 + iη, 2l + 2,−i2ρ).

(44)

Here, η = kc/k is the Sommerfeld parameter, and ρ = kr.
For bound states with energy E = −~2γ2/(2m) we have
k = −iγ, and the arguments η = −ikc/γ, and ρ = i2γr
are purely imaginary. In Eq. (44), we employed Kum-
mer’s function M(a, b, z), or the confluent hypergeomet-
ric function 1F1(a, b, z) = M(a, b, z). The η-dependent
normalization Cl(η), not to be confused with the ANC
and distinct from it by its argument, is

Cl(η) =
(2η)l

(2l + 1)!

√
2πηwl(η)

e2πη − 1
, (45)

with

wl(η) =

l∏
j=0

(
1 +

j2

η2

)
. (46)

The incoming and outgoing Coulomb wave functions are

H±l (η, ρ) = D±l (η)ρl+1e±iρU(l + 1± iη, 2l + 2,∓i2ρ).

(47)

Here, U denotes Tricomi’s function (or the confluent hy-
pergeometric function of the second kind) and the nor-
malization is

D±l (η) = ∓i2(−1)leπη
(2l + 1)!Cl(η)

Γ(l + 1∓ iη)
. (48)

The irregular Coulomb wave function is then defined as

Gl(η, ρ) =
1

2

[
H+
l (η, ρ) +H−l (η, ρ)

]
. (49)

We are interested in low-energy phenomena and there-
for seek approximations for Coulomb wave functions for
η � 1. Following [50, Chapter 33.9] we expand the
Coulomb wave functions into a series of modified Bessel
functions whose coefficients decrease with inverse powers
of η. Thus, (η ≡ kc/k and ρ ≡ kR)

F0(η, ρ) =
C0(η)

2η

∞∑
n=1

bn(2kcR)
n
2 In(2

√
2kcR),

G0(η, ρ) =
2

β0(η)C0(η)

∞∑
n=1

(−1)nbn(2kcR)
n
2Kn(2

√
2kcR)

. (50)

Here,

b1 = 1,

b2 = 0,

b3 = − 1

4η2
,

b4 = − 1

12η2
, (51)
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and all other bn are of order O(η−4) or smaller. We have

β0(η) = −1 +O(η−4). (52)

Similar expressions exist for nonzero orbital angular mo-
mentum.

We also need to know similar approximations for the
Coulomb wave functions for purely imaginary momentum
k = iγ. In the weak-binding limit γ → 0, the regular
Coulomb wave function becomes [50, Eq. 13.8.12]

Fl

(
kc
iγ
, iγr

)
≈

(iγr)l+1Cl(−ikc/γ)
(2l + 1)!

(2kcr)l+1/2
I2l+1(2

√
2kcr). (53)

The Coulomb wave functions Gl and H+
l are based on

Tricomi’s function. For γ → 0 we use (see Ref. [83])

lim
a→∞

U(a, b, z/a)Γ(1 + a− b) = 2z
1−b
2 Kb−1(2

√
z).

(54)

We see that Coulomb wave functions are approximated
by modified Bessel functions as the momentum goes to
zero. Let us also consider approximations of the latter.
We have

In(z) ≈
(z

2

)n( 1

n!
+

z2

4(n+ 1)!

)
,

Kn(z) ≈ 1

2

(
2

z

)n(
(n− 1)! +

(n− 2)!z2

4

)
,

(55)

valid for z � 1, see [50, Chapters 10.25 and 10.31]. We
also have

In(z) ≈ ez√
2πz

(
1− a1(n)

z

)
,

Kn(z) ≈
√

π

2z
e−z

(
1 +

a1(n)

z

)
,

(56)

valid for z →∞, see [50, Chapter 10.40]. Here,

a1(n) ≡ 4n2 − 1

8
. (57)

B. Estimate for the asymptotic normalization
coefficient and inter-ion distance

We want to compute an estimate for the ANC. For the
δ-shell potential, the bound-state wave function can be
written as follows.

ul(r) =

 Cl
W

− kc
γ
,l+1

2

(2γR)

Fl( kciγ ,iγR)
Fl

(
kc
iγ , iγr

)
, for r < R,

ClW− kcγ ,l+
1
2
(2γr) , for r > R.

Here, we employed the Whittaker function W (which is
proportional to the outgoing Coulomb wave function for
bound states [50]), and Cl is the ANC by definition. We
have

Wκ,µ(z) = e−
z
2 zµ+

1
2U(1/2 + µ− κ, 1 + 2µ, z) (58)

The ANC is determined by the normalization condition

1 =

∞∫
0

dr |ul(r)|2

= C2
l

∞∫
R

dr
(
W− kcγ ,l+

1
2
(2γr)

)2

+

∣∣∣∣∣∣Cl
W− kcγ ,l+

1
2
(2γR)

Fl

(
kc
iγ , iγR

)
∣∣∣∣∣∣
2 R∫
0

dr

∣∣∣∣Fl(kciγ , iγr
)∣∣∣∣2 .(59)

To perform the integration, we need to make approxima-
tions. As we are interested in the case of weak binding,
i.e. γ → 0, we use the approximation (54). Thus,

W− kcγ ,l+
1
2
(2γr) ≈ 2(2kcr)

−l− 1
2

Γ(kc/γ − l)
K2l+1

(
2
√

2kcr
)
.(60)

Here, we approximated e−γr ≈ 1. We note that the
bound-state momentum enters as the argument of the
Γ function. To simplify matters further, we approximate

Γ(kc/γ − l)
(
kc
γ

)l+1

≈ Γ(kc/γ + 1), (61)

which is correct in leading order when γ � kc. Then

W− kcγ ,l+
1
2
(2γr) ≈ 2

√
2kcr

Γ(1 + kc/γ)
K2l+1

(
2
√

2kcr
)
.(62)

In the weak-binding limit γ → 0, we use the approxima-
tion (53) for the regular Coulomb wave function. The
integral (59) can now be evaluated exactly (e.g. via
Mathematica), but we did not find the result partic-
ularly illuminating. However, for l = 0 one can then take
the limit R→ 0 and finds

C0 ≈
√

6kcΓ(1 + kc/γ). (63)

This is the result from leading-order Coulomb halo
EFT [65].

For further analytical insights we return to Eqs. (62)
and (53), and assume kcR� 1. This allows us to use the
leading terms of Eqs. (50). We change the integration
variable to z =

√
2kcr and perform the integration (59).

Keeping only the leading term in kcR� 1 yields

Cl ≈
Γ(1 + kc/γ)√

πR
e2
√
2kcR. (64)

Replacing R→ D yields the result presented in Table I.
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Similar computations allow us also to give an estimate
for the squared inter-ion distance (19). Making the same
approximations as in the computation of the ANC we
find (for orbital angular momentum l = 0)

〈r2〉 ≈
{

9
35k
−2
c , for R→ 0,

R2, for kcR� 1.
(65)

The results are strikingly different from each other be-
cause the wave function is strongly localized and peaked
around r = R in for large Coulomb momenta. We see in
particular that the inter-ion distance does not depend on
the bound-state momentum, and this is in stark contrast
to the case without Coulomb, where 〈r2〉 ∝ γ−2. Replac-
ing R→ D yields the expressions presented in Table I.

C. Estimate for the resonance width

For the δ-shell potential, the resonance width is given
in Eq. (29).

Using the approximation (50) the inverse width be-
comes in leading order of kc/κ� 1

E

Γ
≈ κR

3C2
0 (η)

√
2kcR(I1K4 − I4K1)− 3(I1K3 + I3K1)

I21
. (66)

Here, we have suppressed the arguments of the modi-
fied Bessel function, i.e. In ≡ In(2

√
2kcR) and Kn ≡

Kn(2
√

2kcR).
We consider two cases. For zero-range interactions, we

take R→ 0 and obtain

Γ

E

∣∣∣∣
R→0

≈ 24π
k2c
κ2
e−2π

kc
κ . (67)

Here, we used the expansions (55). The physically rel-
evant case kcR � 1 is more interesting. We use the
expansions (56) and find

Γ

E

∣∣∣∣
kcR�1

≈ 4
kc
κ2R

e4
√
2kcRe−2π

kc
κ . (68)

Replacing R→ D yields the results presented in Subsec-
tion II A.

D. Estimates for effective-range parameters

We start from the effective-range parameters given in
Eq. (24). These expressions contain the strength λ0
of the δ-shell potential. For a resonance with energy
E = ~2κ2/(2m) this parameter fulfills Eq. (26). We as-
sume κ � kc and use the approximation (50), focusing
on orbital angular momentum l = 0. This yields

(λ0R)−1 ≈ −2I1K1 −
κ2R

8kc
√

2kcR
, (69)

and we have omitted higher-order corrections in κ/kc.
Here, and in what follows the modified Bessel functions
have arguments In ≡ In(2

√
2kcR) and similar for Kn.

We insert the expression (69) into the Eq. (24) for the
s-wave scattering length and find

a−10 = − κ2R

4I21
√

2kcR
. (70)

Again, we consider two approximations. For 2
√

2kcR �
1, we take the leading approximation of Eqs. (56) and
find

a0 = −(πκ2R)−1e4
√
2kcD . (71)

For R → 0, we take the approximations (55) and find
a0 = −6kc/κ

2. Replacing R → D yields the expressions
given in Table I.

We turn to the effective range of Eq. (24) and employ
the leading term (λ0R)−1 ≈ −2I1K1 from Eq. (69). This
yields

r0 =
1

3kc

(
1 +

2(2kcR)3/2I2K1 − kcR
I21

)
. (72)

Again, we consider two approximations. For 2
√

2kcR �
1, we take the Eqs. (56) and find [8]

r0 = (3kc)
−1 − πR e−4

√
2kcR. (73)

For R→ 0, we employ the approximations (55) and find
r0 = O(R)). Replacing R → D yields the expressions
given in Table I and in Eq. (6).

E. Derivatives of Coulomb wave functions

We limit the discussion to orbital angular momentum
l = 0 and positive energies. For k � kc we find (z ≡
2
√

2kcr) from Eq. (50) that

F0(kc/k, kr) ∝ zI1(z),

G0(kc/k, kr) ∝ zK1(z). (74)

Here, we neglected any constants and functions that de-
pend on k and kc, but not on r. We see that only the
combination 2kcr enters, and it is clear that a derivative
with respect to r will yield a factor kc rather than k. Tak-
ing a derivative becomes particularly simple for strong
Coulomb interactions as kcr � 1 practically holds for all
distances exceeding 1 fm or so. We use the approxima-
tions (56) and find

F0(kc/k, kr) ∝
√

z

2π
ez,

G0(kc/k, kr) ∝
√
πz

2
e−z. (75)

Taking the derivative with respect to r, and using z � 1
yields

d

dr
F0(kc/k, kr) ≈ +4kcF0(kc/k, kr),

d

dr
G0(kc/k, kr) ≈ −4kcG0(kc/k, kr). (76)
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F. Square well plus Coulomb

The potential is

V (r) =

{
−~2q2

2m , r < R
Z1Z2α~

r r > R.
(77)

We limit ourselves to s waves. Solutions with positive
energy E = ~2k2/(2m) are

u(r) ={
cos δF0( kck ,kR)+sin δG0( kck ,kR)

sin pkR
sin pkr, r < R

cos δF0

(
kc
k , kr

)
+ sin δG0

(
kc
k , kr

)
, r > R.

(78)

Here, pk ≡
√
k2 + q2. The phase shifts fulfill

cot δ =

G′0
(
kc
k , kR

)
sin pkR− p

kG0

(
kc
k , kR

)
cos pkR

F ′0
(
kc
k , kR

)
sin pkR− pk

k F0

(
kc
k , kR

)
cos pkR

(79)

Here, we used F ′0(η, z) ≡ d
dzF0(η, z) and similar for the

irregular Coulomb wave function. A resonance at energy
Eκ ≡ ~2κ2/(2m) fulfills

pκ cot pκR = κ
G′0
(
kc
κ , κR

)
G0

(
kc
κ , κR

) (80)

The resonance width Γ fulfills

Eκ
Γ

=
G0

4

(
q2

p2κ
G′0 + κĠ′0 − κ

G′0Ġ0

G0
+

κRG0

sin2 pκR

)
. (81)

Here, we used Ġ0(kc/κ, κR) ≡ d
dκG0(kc/κ, κR), and we

dropped the arguments for all Coulomb wave function.
For a given resonance energy and width, one can solve
Eqs. (80) and (81) for the parameters (q,R) of the po-
tential. Once these are known, the phase shifts result
from Eq. (79). As the square well can hold an arbitrary
number of bound states, the solutions are not unique.
However, low-energy data such as the α− α phase shifts
exhibit sensitivity to such details only at energies above
about 1.7 MeV.
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