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We study the regularization and renormalization of a finite-range inverse-cube

potential in the two- and three-body sectors. Specifically, we compare and contrast

three different regulation schemes frequently used to study few-body systems as well

as the associated renormalization group (RG) flows. We also calculate bound state

and scattering observables over a wide range of cutoffs, demonstrating the sufficiency

of a two-body contact interaction to renormalize two- and three-body observables.

We supplement these plots with quantified analyses of the observables’ residual cutoff

dependence.

I. INTRODUCTION

Effective field theories (EFTs) have become a standard tool in nuclear few-body physics

to construct the interactions between the considered degrees of freedom [1, 2]. For example,

chiral effective theory is a low-energy expansion of the nucleon-nucleon (NN) interaction

that employs only nucleons and pions as degrees of freedom and that uses the pion mass mπ

(or a small momentum) over a large scale Λ that can be associated with the lightest degree of

freedom not included in the EFT (e.g. the ρ-meson). This framework is then used to derive

the nuclear Hamiltonian in a systematic low-energy expansion. The resulting potential has

been used extensively in few-nucleon studies and ab initio nuclear structure calculations.

It was pointed out that the most singular piece of the one-pion exchange (OPE) in the

deuteron channel is an inverse-cube potential [3, 4]. The renormalization of this leading

order (LO) potential has been studied repeatedly in the two- and three-nucleon sector [5–

9]. Here, we study the renormalization of the finite-range inverse-cube potential (FRIC)

in the much simpler three-boson system thereby removing the complications due to the
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spin-dependent tensor force. In particular, we examine whether the three-body system with

pairwise inverse-cube interactions requires a three-body counterterm for renormalization,

and whether residual cutoff corrections can be used as a reliable tool to build a power

counting scheme as suggested in Ref. [10]. We note that there is also interest in atomic

physics regarding the inverse-cube interaction. However, most attention is focused on the

low-energy properties in the infinite-range limit [11, 12].

Since the residual cutoff dependence to some extent can be influenced by the chosen

regularization scheme, we carry out this analysis for various schemes that are currently used

by the community. Specifically, we consider a local regularization scheme [13] that cuts off

the potential in coordinate space at a small distance R, a non-local regularization scheme [1]

that cuts off the high momenta in the momentum space form of the two-body interaction

V (p, p′) separately, and a semi-local regularization scheme [14] that applies these strategies

separately to the long-range inverse-cube part of the interaction and the short-distance

regulator.

These different regularization schemes have different advantages for different methods

that are used to diagonalize the nuclear Hamiltonian. For example, local interactions are

commonly used in quantum Monte Carlo calculations, though progress has been made in-

cluding nonlocal interactions (e.g. [15, 16]). However, while these have been used extensively

in the literature, a detailed comparison of these approaches is missing.

We find that the regularization schemes analyzed can be used to obtain regulator-

independent results at large cutoffs. We find however that the regulator dependence of

the short-distance counterterm is different for the regulation schemes we apply. In agree-

ment with findings in the three-nucleon sector[6, 9], we find that three-body observables

are completely renormalized without the inclusion of an additional three-body counterterm.

However, an analysis of the cutoff dependence of three-body observables shows also that

observables converge more slowly than expected from previous studies of the three-nucleon

sector [9].

In Sec. II, we discuss the regularization schemes as well as the renormalization and calcu-

lation of observables. In Sec. III, we present the results obtained for the two- and three-boson

system as well as quantitative analyses of the remaining cutoff corrections. We conclude with

a summary and an outlook.
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II. THEORY

In the following subsections, we describe the interaction that is used in this work, how it

is regulated, and how it is renormalized. We comment also briefly on technical details such

as the normalization of states and the calculation of observables through the Schrödinger,

Lippmann-Schwinger, and Faddeev equations.

The non-regulated and singular potential VS that we consider is a FRIC potential of the

form

VS(r) = −C3
e−mπr

r3 . (1)

We choose mπ = 138 MeV and C3 = 0.8 fm2 such that a deuteron-like state (B2 = 2.2 MeV)

exists when we regulate the potential at ≈ 1 fm. This potential has to be regulated at short

distances and observables will depend strongly on the regularization scale as the interaction

is too singular [17]. Below we display how a (smeared out) short-distance counterterm can

be introduced to address this problem.

We perform our calculations in momentum space, and we Fourier transform the interac-

tion V and carry out a partial-wave projection

Ṽl(p, k) ≡ FT [V (r)] = 2
π

∫ ∞
0

drr2jl(pr)V (r)jl(kr) , (2)

where jl(z) are the spherical Bessel functions of order l.

A. Regulator Formulations

1. Local Regulation

For a local, singular potential, VS(r), we have implemented three different forms of reg-

ulation: local, semi-local, and nonlocal. The locally regulated potential has the form

V (r) = ρ(r;R)VS(r) + g(R)χ(r;R) , (3)

where ρ(r;R) is an arbitrary function that minimally fulfills two requirements. First, it must

overcome VS(r) in the r → 0 limit such that the product ρ(r;R)VS(r) is finite. Second, in

the limit of r →∞, ρ(r;R) must go to one. For the locally regulated case we use

ρ(r;R) =
(
1− e−(r/R)2)4

, (4)
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where R is the range at which the characteristic behavior of VS(r) is cut off. The counterterm

g(R)χ(r;R) , (5)

has two components. The first, g(R) is an R-dependent coupling strength. We tune this

parameter to match some low-energy, two-body observable such as the two-body binding

energy. The second, χ(r;R), is a contact-like interaction or a smeared δ function such that

lim
R→0

χ(r;R) ∝ δ(r) . (6)

For the locally regulated case we use

χ(r;R) = e−(r/R)3
. (7)

We discuss below that the RG flow of the locally-regulated counterterm strength, g(R),

contains multiple branches [18]. To ensure consistency between our results and others’, we

also implement a semi-local regulation scheme.

2. Semi-Local Regulation

The difference between local regulation and semi-local regulation lies in the definition of

the counterterm. In Eq. (3) we defined the counterterm in coordinate space. This countert-

erm, that regulates the relative distance in the two-body system and thereby the momentum

exchange, has multiple solutions (provided the short-distance cutoff is small enough) for

which the two-body binding energy B2 is reproduced.

If we instead define the counterterm in momentum space as

g(R)χ̃(p;R)χ̃(k;R) , (8)

such that, by itself, only permits one state, we obtain a unique RG flow. The full potential

in momentum space is then

Ṽ (p, k) = FT [ρ(r;R)VS(r)] + g(R)χ̃(p;R)χ̃(k;R) , (9)

where FT represents the Fourier transform and partial-wave projection shown in Eq. (2).

For the semi-locally regulated case, similar to [14], we use

ρ(r;R) =
[
1− e−(r/R)2]4

, (10)
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and

χ̃(p;R) = e−(pR/2)2
= e−(p/Λ)2

, (11)

where Λ ≡ 2/R. For a brief discussion on the different ρ(r;R) functions used for the locally

and semi-locally regulated cases, see Appendix A.

3. Nonlocal Regulation

For the fully nonlocal interaction, we take the semi-local interaction Eq. (9), including

the forms of ρ(r;R) and χ̃(p;R), and modify the first term as follows

Ṽ (p, k) = χ̃(p;R)FT [ρ(r;R<)VS(r)] χ̃(k;R) + g(R)χ̃(p;R)χ̃(k;R) . (12)

The momentum-space regulators multiplying the first term suppress the diagonal matrix

elements where the incoming and outgoing momenta are large but similar, removing some

sensitivity to the choice of ρ(r;R) that we discuss in A. The short-distance cutoff used before

we take the Fourier transform, R<, is chosen to be much less than R. This allows us to

ensure that the resulting cutoff dependence in the observables is attributable to the regulator

function, χ̃(p;R), rather than the Fourier transform.

B. Two-Body Bound States

We calculate two-body binding energies by solving the Schrödinger equation

(Ĥ0 + V̂ ) |ψ〉 = E |ψ〉 , (13)

in coordinate and momentum space. In coordinate space, we tune the counterterm such

that for a desired value E, the radial equation

− 1
m

d2u

dr2 + V (r)u(r) = E u(r) , (14)

is solved where u(r) ≡ rR0(r). We have dismissed the centrifugal term as only s-waves are

considered. In momentum space, we rearrange Eq. (13) such that we have

Ĝ0(E)V̂ |ψ〉 = |ψ〉 , (15)
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where G0(z) ≡ 1/(z − Ĥ0). After discretization with the basis states |pi〉, Eq. (15) becomes

an eigenvalue problem that is easily solved by finding the energies that fulfill

det
[
1̂−Kij(E)

]
= 0 , (16)

where Kij(E) = 〈pi|Ĝ0(E)V̂ |pj〉 and we tune the counterterm such that the requirement

Eq. (16) is satisfied.

C. Lippmann-Schwinger Equation

To obtain two-body phase shifts, we solve numerically the Lippmann-Schwinger Equation

for the two-body t-matrix

t̂ = V̂ + V̂ Ĝ0t̂ . (17)

In the partial-wave projected momentum basis, considering bosons interacting in s-waves

only, we have

〈p |t̂|p′〉 = 〈p |V̂ |p′〉+ 〈p |V̂ Ĝ0(E + iε) t|p′〉 ,

t(p, p′;E) = Ṽ (p, p′) +
∫ ∞

0
dq q2 Ṽ (p, q) t(q, p′;E)

E + iε− q2/m
(18)

where m is the nucleon mass and ε → +0. From the on-shell matrix element t(p, p;E =

p2/m) we extract the phase shift via

t(p, p;E = p2/m) = − 2
mπ

1
p cot δ − ip . (19)

The scattering length is defined by the effective range expansion

p cot δ ≈= −1
a

+ rs
2 p

2 , (20)

which allows us to calculate it exactly from the on-shell t-matrix amplitude at p = 0.

a = mπ

2 t(0, 0; 0) . (21)

D. Three-Body Bound States

To calculate three-body binding energies, we start with the equation for a single Faddeev

component of a system containing three identical particles

|ψ〉 = Ĝ0(E)t̂P̂ |ψ〉 , (22)
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where

P̂ = P̂12P̂23 + P̂13P̂23 , (23)

is the permutation operator with P̂ij interchanging particles i and j [19]. After projecting

onto the partial-wave, momentum basis for three identical bosons described by two Jacobi

momenta p (the relative momentum between particles 1 and 2) and q (the relative momentum

between particle 3 and the center of mass of the 1–2 subsystem), we discretize the equation

and solve for the bound state energy E using the same techniques as in the two-body case,

as long as E remains below the deepest state in the two-body spectrum. However, this

limitation is in conflict with our goal of studying the cutoff dependence of two- and three-

body observables. As we go to higher momentum-space cutoffs (smaller R values), spurious

bound states enter the two-body spectrum. Three-body states quickly become resonances

in this regime, bounded above and below by two-body bound states. There are two ways

that we deal with this.

The first method follows [6] and is repeated here. It involves removing the spurious

two-body state from the spectrum by transforming the potential

V̂ → V̂ + |φ〉λ 〈φ| , (24)

which takes the eigenvalue of the state φ and modifies it by an amount λ. Using this

transformed potential in the Lippmann-Schwinger equation and taking the limit of λ→∞

(removing the state from the spectrum), we have

lim
λ→∞

t̂(λ) = t̂− |η〉 1
〈φ|Ĝ0|η〉

〈η| , (25)

as our modified t-matrix where

|η〉 = |φ〉+ t̂Ĝ0 |φ〉 . (26)

This only requires that we have the wave function 〈p|φ〉 to calculate the modified t-matrix

where that state no longer contributes a pole. In practical calculations using a large, finite

λ value in (24) is sufficient. If there are several spurious two-body states, the procedure is

repeated for each of them.

The second method we employ to study the cutoff dependence of three-body resonances

is to look for the resonances in the three-body phase shifts.
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E. Three-Body Phase Shifts

In the cutoff regime where spurious two-body bound states exist, we can scatter a third

particle off the spurious deep two-body state and scan the phase shifts in the energy range

between the two-body states for a resonance. To do this, we calculate the three-body T -

matrix using [20]

T̂ = t̂P̂ + t̂Ĝ0P̂ T̂ , (27)

which relates to the elastic scattering operator Û by

Û = P̂ Ĝ−1
0 + P̂ T̂ . (28)

In the partial-wave-projected, momentum basis, considering bosons interacting only via s-

waves, we have

〈pq|T̂ |φ〉 = 〈pq|t̂P̂ |φ〉+∫ ∞
0

dq′(q′)2
∫ 1

−1
dx

t(p, π1, E − 3q2/4m)G(q, q′, x)
E + iε− q2/m− (q′)2/m− qq′x/m

〈π2q
′|T̂ |φ〉 ,

(29)

where the incoming state |φ〉 = |ϕk〉 contains the wave function ϕ(p) of the two-body bound

state and the relative momentum k between the third particle and the center of mass of

the two-body subsystem, G(q, q′, x) is a geometrical factor introduced by the permutation

operator, π1 =
√
q2/4 + (q′)2 + qq′x, and π2 =

√
q2 + (q′)2/4 + qq′x.

The elastic scattering amplitude M is related to the U operator by

M = −2mπ
3 〈φ|Û |φ〉 , (30)

and the phase shift by

M = 1
k cot δ − ik . (31)

In the three-body sector, we have a similar effective range expansion

k cot δ ≈ − 1
aAD

+ rs,AD
2 k2 , (32)

which defines the atom-dimer scattering length aAD and atom-dimer effective range rs,AD.

We also study the inelasticity parameter given in terms of the S-matrix by

η = e−2δi , (33)

where the phase shift is complex and the usual decomposition

δ = δr + iδi , (34)

is taken.
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F. Quantitative Uncertainty Analysis

To analyze the uncertainties induced by short-distance physics of our regularization pro-

cedure, we study in this section the regulator dependence of observables. Similar to the

analysis done by Song et al. [9], our uncertainty analysis is based on a simple power series

expansion of observables quantities O of the form

O(Λ) ≈ O∞
[
1 +

∞∑
i

ci

(
q

Λ

)i]
, (35)

where q is associated with the low-momentum scale relevant to the calculation; however, i is

not assumed to be an integer. For the purposes of this project, we truncate the summation

over i after the first term i = n, leaving

O(Λ) ≈ O∞
[
1 + cn

(
q

Λ

)n]
, (36)

We seek to establish the value of n. In Ref. [9], n was found by fitting the first few terms in

the above expansion with integer n to the cutoff dependence of observables. Here, we study

the cutoff dependence at very large cutoffs, focus on the dominant term in the expansion,

and fit n itself to data and allow for non-integer values.

To extract the power of the leading cutoff correction, we examine both the Λ and the

q dependence. The first approach we take to investigate the Λ dependence is to calculate

observable O over a range of Λ values, and fit the results to Eq. (36) for a range of n values.

For each n, we evaluate a penalty function that we define as

pn =
∑
i

(
Ocalc(Λi)−Ofit(Λi)

Ocalc(Λi)

)2

, (37)

where Ocalc(Λ) is the observable calculated for a specific value of Λ and Ofit(Λ) is the value

of the observable as it is “reproduced” by Eq. (36) and the fit parameters O∞ and cn. Once

we have pn for a range of n values, we search for a minimum pn where n is optimal.

Griesshammer has shown [10] that the q dependence of observables provides a necessary

though insufficient window into the order of cutoff-dependent corrections. To isolate the q

dependence, we have to restrict the observables we study to those whose q dependence is

well understood. Doing so allows us to calculate the observable at two different cutoffs and

study the relative difference

1− O(Λ1)
O(Λ2) ≈ qncn

[
1

Λn
2
− 1

Λn
1

]
. (38)
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Taking the logarithm, we get

ln
[
1− O(Λ1)
O(Λ2)

]
= n ln q + b , (39)

where n and b are the slope and intercept that we fit, respectively.

III. RESULTS

A. Renormalization Group Flow

The first thing we compare between the regulation schemes is the RG flow. We choose

to fix the shallowest two-body state at B2 = 2.2 MeV. Figure 1 shows the stark difference

between the RG flow found using a local counterterm and the RG flows found with nonlocal

counterterms. The main difference is the issue of uniqueness. For the locally regulated

potential, as pointed out by [18], g(R) has multiple solutions that give a two-body bound

state at the desired binding energy. There is one branch where there exists one state in the

two-body system. Each branch below that branch contains successively one additional state.

The RG flow shown for the locally regulated interaction connects four of those branches,

“hopping” downward when it is easier to add an additional state than to continue to maintain

the shallowness of the fixed state. Only two of the “hops” are visible in the plot due to the

scale and the relative difference between the magnitudes of g in the different branches. Note

also the difference in the units the two plots if Fig. 1. There is a factor of R3 that comes

from the Fourier transform and partial-wave projection of χ(r;R).

The other two functions shown in the Fig. 1(b) are qualitatively very similar. They

correspond to the semi-local and nonlocal regulation schemes. While the same ρ(r;R) is

used in both, the prescription is somewhat different as can be seen from Eq. (9) and Eq. (12).

The semi-local regulation scheme brings in spurious bound states faster than the nonlocal

regulation scheme, but as mentioned before, nonlocal regulation cuts off the potential at

large incoming and outgoing momenta, suppressing high-momentum contributions. Still,

they are very similar interactions, thus they provide very similar RG flows.
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FIG. 1. RG flows of the counterterm coupling g. The yellow circles in (a) represent g(R) values

calculated with a local regulator and local counterterm. The red, solid line in (a) are the g(R)

values used to calculate the phase shifts in Fig. 2. The blue, dashed line in (b) corresponds to the

semi-locally regulated interaction. The orange, dashed line corresponds to the nonlocally regulated

interaction.

B. Two-Body Scattering

As the different regulation schemes are tuned to reproduce the same shallow state at

B2 = 2.2 MeV, we expect that differences in low-energy scattering observables are highly

suppressed when large cutoffs are employed. We calculate the phase shifts using all three

regulation schemes and show the results in Fig. 2. Fig. 2(a) contains the phase shifts of an

non-renormalized, nonlocally regulated potential with g(R) = 0, demonstrating the strong

cutoff dependence of low-energy observables and the need for a counterterm. The most

important feature of Fig. 2(b) is the agreement between the different regulation schemes.

It is also worth mentioning the “turning point” Λ value at which phase shifts clearly begin
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FIG. 2. (a) Cutoff dependence of the s-wave phase shifts at E = 1 (red, dashed), 10 (green,

dotted), and 100 MeV (blue, dot-dashed) calculated via a nonlocally regulated potential without a

counterterm. (b) Cutoff dependence of the s-wave phase shifts at (from top to bottom) E = 1, 10,

and 100 MeV in the center-of-mass frame. The solid, red lines are the phase shifts calculated from

a locally regulated potential. The green, dashed lines are the phase shifts at the same energies

calculated with a semi-locally regulated interaction. The blue, dot-dashed lines are the phase shifts

using a nonlocally regulated interaction. All three schemes include a contact-like counterterm.

to flatten out. At low energies, the point is near 2 GeV. As the scattering energy increases

that point increases as well. Importantly, this behavior agrees with studies of the OPE

potential [6, 9] where similar convergence behavior is found across a range of partial-wave

channels. Our C3 value is chosen to mimic the OPE in the bosonic sector such that we

can expect similar renormalization behavior. Observing this similarity is consistent with

the known result that the one-pion-exchange potential goes like an inverse-cube potential at

short distances (high cutoffs) [3, 4].

It is clear from Fig. 2 that a two-body contact interaction is sufficient to renormalize the
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FIG. 3. The scattering length is shown as a function of the high-momentum (short-distance) cutoff.

The blue circles are the numerical results.

two-body phase shifts. The corresponding result for the two-body scattering length is shown

in Fig. 3.

One of the advertised, key advantages of EFT is quantifiable uncertainty which in turn

requires a power counting that orders contributions in the Hamiltonian according to their

importance. These uncertainties have usually two sources: (i) the truncation of the low-

energy expansion and (ii) uncertainties that are introduced when low-energy counterterms

are fitted to data. Here we focus on the first source of uncertainties and some information

on this truncation error is contained in the convergence behavior of observables as the short-

distance cutoff is increased. To study this problem, we first chose a range of cutoffs over

which to fit the scattering length to Eq. (36). However, as the window of cutoffs over which

the fit was carried out was narrowed to include only the highest values of Λ, the resulting n

was found to be unstable. As a result, we plotted Λ(da/dΛ), shown in Fig. 4. The solid, red

line in the Fig. 4(a) is the expected Λ(da/dΛ) dependence based on a fit to Eq. (36) with

n = 1.5. Clearly, there is behavior in the cutoff dependence of the scattering length that is

not captured by the simple form assumed in Eq. (36).
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FIG. 4. (a) RG analysis of the two-body scattering length as a function of the cutoff. Blue circles

represent the data. The red, dashed line represents a fit to Eq. (36) with n = 1.5. (b) The blue

circles represent the same data as in (a). The red, dashed line represents a fit to Eq. (40) with

nmin = 1.7.

Instead, if we model the residual cutoff dependence by

ΛdO
dΛ ≈

1
Λn

[
A+B cos

(
hΛ1/3 + f

)]
, (40)

and treat A,B, h and f as fit parameters, we are able to capture the oscillatory behavior.

After choosing a range of n values over which we carry out the fit, we evaluate the quality of

the fit with Eq. (37) at each value. Fig. 4(b) shows Λ(da/dΛ) in blue circles with nmin = 1.7.

The red, dashed line in Fig. 4(b) represents Eq. (40) with the fit parameters found when

using nmin. The agreement between the data and the empirical formula is excellent.

We expect that all low-energy, two-body observables come with similar cutoff dependence.

In keeping with our study of the cutoff dependence of the scattering length, we applied the

same analysis to the phase shifts and cross sections. In Fig. 5 we plot the results. In both

cases, the calculation was performed at a relative, center-of-mass momentum of 106 MeV.

The analyses produced minima of the penalty functions (Eq. (37)) near nmin = 1.7. Similar

analyses performed at different energies produced similar results. The only trend worth
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FIG. 5. (a) RG analysis of the phase shift at a center-of-mass momentum of 106 MeV as a function

of the cutoff. Blue circles represent the data. The red, dashed line represents a fit to Eq. (40) with

nmin ≈ 1.7. (b) The same analysis of the cross section at a center-of-mass momentum of 106 MeV

as a function of the cutoff. The legend and value of nmin are the same as in (a).

mentioning is the slight decrease of nmin to approximately 1.5 as the scattering energy

increases. Overall, the agreement between the data and Eq. (40) found for the scattering

length is found for the phase shift and cross section as well. The nmin values are collected

in Table I.

Interestingly, the h values vary by less than a few percent around 1.5 MeV−1/3 between

the observables. This fairly constant oscillation frequency matches up with the frequency of

new bound states in the RG flow. As shown below, this correspondence carries over to the

three-body sector as well.

The order of corrections is independent of the method used to obtain it. In that spirit, we

apply in addition to our modified power series expansion the method proposed by Griessham-

mer [10]. Fig. 6 shows the comparison of the phase shifts at Λ = 3408 and 6704 MeV. By

Eq. (39), we expect the behavior to be linear. In fact, we are able to extract a reliable slope
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of n = 1.5 by fitting the data to Eq. 39. Unfortunately, we found that other observables

such as the cross section and k cot δ provide unreliable results. Specifically, zeros and un-

predictable crossings precluded the extraction of linear behavior. Selecting the phase shifts

as the quantities of interest follows naturally from these unfortunate conditions as discussed

by Griesshammer [10].

102
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(
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/

(
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|

FIG. 6. Residual cutoff corrections to the two-body phase shifts as a function of the relative

momentum. The blue circles represent the numerical calculation. The red line represents a fit to

Eq. (39), resulting in n = 1.5. The pink, shaded region represents the range of k over which the

fit was performed. The vertical, green line is the binding momentum γ.

C. Three-Body Scattering

The first observable in the three-body sector that we study is the atom-dimer scattering

length. Figure 7 shows the convergence of aAD with respect to the momentum cutoff Λ,

clearly demonstrating that a two-body contact term is sufficient to renormalize three-body

observables.
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FIG. 7. The cutoff dependence of the atom-dimer scattering length.

Again, we apply the analysis based on Eq. (40) to the atom-dimer scattering length.

The results are shown in Fig. 8. As in the two-body sector, Eq. (40) is able to accurately

describe the oscillatory convergence behavior occuring on top of the typically expected Λ-

dependence. The fit was performed over a range of cutoffs — from Λlower = 3.1 GeV to

Λupper = 8.1 GeV. For the atom-dimer scattering length, the best fit to Eq. (40) occurs at

nmin = 1.3. Because this analysis involves the derivative of the observable with respect to

Λ and three-body observables are particularly difficult to obtain to arbitrary accuracy, we

are often forced to constrain our fit window. The atom-dimer scattering length, as well as

the other three-body observables presented below, are selected because they provide stable

results over a significant range of cutoffs.

In addition to the atom-dimer scattering length, we also conduct analyses of three-body

phase shifts and inelasticities at center-of-mass, kinetic energies of 10, 50, and 100 MeV.

The results are shown in Fig. 9. The nmin values, ranging from 1.1 to 1.3, used to plot the

solid, red lines corresponding to Eq. 40 are tabulated in Table I. The bounds of the cutoff

range are included as well to assure the reader that the behavior represents a significant and
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FIG. 8. Λ(daAD/dΛ) as a function of the momentum-space cutoff. The blue circles are the

calculation. The solid, red line is the fit to Eq. (40) with nmin = 1.3.

relevant portion of the cutoff dependence.

D. Three-Body Bound States

One of the main goals of these efforts has been to examine the sufficiency of a two-body

counterterm to renormalize three-body observables. In Fig. 10 we plot the cutoff dependence

of the three-body binding energies associated with two three-body states that appear in the

system defined by the nonlocally regulated interaction Eq. (12). The results shown come

from the solution of Eq. (22), though equivalent results were found by calculating the three-

body phase shifts defined by Eq. (31) and scanning for resonances. The ground state and

excited state binding energies at Λ = 10 GeV are -18.086 MeV and -2.2379 MeV, respectively.

The primary feature of Fig. 10 is the convergence of the binding energies in the infinite Λ

limit. At ≈ 2 GeV, the binding energies (or rather, the resonant energies) begin to flatten

out, just as in the two-body phase shifts.

Unfortunately, small inaccuracies in the three-body binding energies left only small win-
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FIG. 9. (a) Eq. 40-based analysis of the 2+1 phase shift at E = 10 MeV. The blue circles are the

calculation. The solid, red line is the fit to Eq. 40. (b) Same analysis and legend applied to the

2+1 phase shift at E = 50 MeV. (c) Inelasticity at E = 50 MeV. (d) Inelasticity at E = 100 MeV.

dows of cutoffs over which a fit to Eq. (40) could be performed when all four fit parameters

were treated as such. Using the values of h and f from the fit of the atom-dimer scattering

length to Eq. (40), we fit only A and B for the ground state binding energy and show the

results in Fig. 11. An nmin value of 1.4 is found to minimize the penalty function, and the

form of Eq. (40) is further validated.

Throughout all of the three-body observables, we see a consistency among the h values.

Notably, it is enforced manually for the three-body ground state. They range from 1.4 to 1.5

MeV−1/3 which is also consistent with the h values found by fitting the two-body observables.

This consistency between the two- and three-body sectors can be seen in Table I which

establishes the pervasive nature of these oscillations.
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FIG. 10. (a) Three-body ground state/resonance energy as a function of the short-distance cutoff.

(b) Three-body excited state/resonance energy as a function of the short-distance cutoff.

IV. SUMMARY

In this manuscript, we have set out to understand the renormalization properties of the

FRIC potential in the two- and three-body sector. In particular, we have studied the regu-

lator dependence of observables such as two-body phase shifts, three-body binding energies,

the atom-dimer scattering length, phase shifts, and inelasticity parameter. Motivated by

a recent development in the nuclear theory community, we did these calculations using

different, frequently used regulator functions.

Our results in the two-body sector confirm that the two-body sector is properly renor-

malized. One input parameter is required (at leading order) to renormalize one low-energy

counterterm and thereby the two-body sector. In the three-body sector, we have demon-

strated that a three-body force is not needed at leading order to renormalize three-body

observables for the inverse-cube interaction.
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FIG. 11. RG analysis of the three-body, ground-state binding energy. The blue circles are the

calculation. The red line represents a fit to Eq. (40) with nmin = 1.4 and the values of h and f

taken from the same fit of the atom-dimer scattering length.

In both the two- and three-body sectors, we have observed significant oscillatory behavior

in the cutoff dependence of observables. These oscillations are not captured by a simple

power series expansion.

Instead, we have empirically found that a generalized oscillatory dependence of the form

presented in Eq. (40) allows accurate fits of the data to be made and a much clearer picture

of the power of the cutoff dependence to be revealed.

Our analysis strongly indicates that n is smaller in the three-body sector than in the

two-body sector. This would suggest that a three-body force is needed at next-to-leading

order.

Our analysis also indicates that n is consistent with approximately 1.5 for two-body

observables and approximately 1 for three-body observables. It is an interesting question

whether this has any significance for the counting of two- and three-body counterterms in



22

Observable nmin Λlower (GeV) Λupper (GeV) h (MeV−1/3)

a(Λ) 1.7 3.6 10.0 1.5

δ(Λ;E = 12MeV) 1.7 2.6 10.0 1.5

σ(Λ;E = 12MeV) 1.7 2.4 10.0 1.5

δ(k) 1.5 3.4 6.7 —

aAD(Λ) 1.3 3.1 8.1 1.5

δ2+1(Λ;E = 10MeV) 1.3 3.7 7.7 1.4

δ2+1(Λ;E = 50MeV) 1.2 3.7 7.0 1.4

η2+1(Λ;E = 50MeV) 1.3 3.7 7.0 1.5

η2+1(Λ;E = 100MeV) 1.1 3.7 7.1 1.4

E
(0)
3 1.4 3.5 7.8 1.5*

TABLE I. nmin values for various two- and three-body observables alongside the bounds of cutoffs

over which the fit to Eq. (40) was performed as well as the frequency that optimizes the fit. * The

h value for E(0)
3 was taken from the fit of aAD.

an EFT for the inverse-cube potential. For example, the singular 1/r2 has been considered

previously as the starting point for an EFT expansion in Ref. [21], however the inverse-cube

and all other singular coordinate space potentials need their own independent analysis.

Having tested several different local, semi-local, and nonlocal regulators and having found

no significant differences above ≈2 GeV, we conclude that these oscillations are most likely

attributable to the singular nature of the inverse-cube potential in coordinate space.

In the future, we plan to carry out an analysis of higher order corrections in the three-

boson and three-nucleon sector. However, we plan to also extend our work to the infinite-

range inverse-cube potential that is of relevance to the atomic dipole interaction. This will

let us combine the results obtained by Müller [11] with three-body observables and study

the dependence of three-body observables on the boundary condition employed in the two-

body sector. A more detailed analysis of the short-distance behaviour of the three-nucleon

wave function might also provide novel insights into the power counting of electroweak

currents [22].
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Appendix A: Local Regulator Sensitivity

To regulate the interaction

VS(r) = −C3
e−mπr

r3 , (A1)

a general (local) regulator, ρ(r;R), can be used such that the limit

lim
r→0

ρ(r;R)VS(r) , (A2)

is finite. We use regulators of the form

ρ(r;R) = (1− e−(r/R)n1 )n2
, (A3)

whose small r behavior goes like rn1n2 . As long as n1n2 ≥ 3, the regulator sufficiently

meets the requirement of Eq. A2. However, our earliest calculations using the semi-local

regulation scheme with n1 = 3 and n2 = 1 gave inconsistent results. Specifically, we observed

unexpected cutoff dependence in the phase shifts as shown in Fig. 12. Simply increasing

n2 to 4 such that n1n2 = 4 > 3 removes the dramatic changes in the phase shift. We have

also compared our local regulators with those used by others [14, 23]. In the interest of

consistency and to ensure we avoid unexpected cutoff dependence, we have used a local

regulator of the form n1 = 2 and n2 = 4 for the calculations carried out it in this work. The

unexpected cutoff dependence was observed exclusively when using semi-local regulation

and only when n1n2 = 3.
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to n1 = 4 and n2 = 1. The dotted, green line corresponds to n1 = 2 and n2 = 4.



25

[1] E. Epelbaum, H.W. Hammer, U.G. Meißner, Rev. Mod. Phys. 81, 1773 (2009). doi:

10.1103/RevModPhys.81.1773. URL https://link.aps.org/doi/10.1103/RevModPhys.

81.1773

[2] H.W. Hammer, A. Nogga, A. Schwenk, Rev. Mod. Phys. 85, 197 (2013). doi:

10.1103/RevModPhys.85.197

[3] D.W.L. Sprung, W. van Dijk, E. Wang, D.C. Zheng, P. Sarriguren, J. Martorell, Phys. Rev.

C 49, 2942 (1994). doi:10.1103/PhysRevC.49.2942. URL https://link.aps.org/doi/10.

1103/PhysRevC.49.2942

[4] M. Pavon Valderrama, E. Ruiz Arriola, Phys. Rev. C72, 054002 (2005). doi:

10.1103/PhysRevC.72.054002

[5] M. Pavon Valderrama, E. Ruiz Arriola, Phys. Rev. C70, 044006 (2004). doi:

10.1103/PhysRevC.70.044006

[6] A. Nogga, R.G.E. Timmermans, U.v. Kolck, Phys. Rev. C 72, 054006 (2005). doi:

10.1103/PhysRevC.72.054006. URL https://link.aps.org/doi/10.1103/PhysRevC.72.

054006

[7] M.C. Birse, Phys. Rev. C 74, 014003 (2006). doi:10.1103/PhysRevC.74.014003. URL https:

//link.aps.org/doi/10.1103/PhysRevC.74.014003

[8] B. Long, C.J. Yang, Phys. Rev. C85, 034002 (2012). doi:10.1103/PhysRevC.85.034002

[9] Y.H. Song, R. Lazauskas, U. van Kolck, Phys. Rev. C96(2), 024002 (2017). doi:

10.1103/PhysRevC.96.024002

[10] H.W. Grießhammer, PoS CD15, 104 (2016). doi:10.22323/1.253.0104

[11] T.O. Müller, Phys. Rev. Lett. 110, 260401 (2013). doi:10.1103/PhysRevLett.110.260401. URL

https://link.aps.org/doi/10.1103/PhysRevLett.110.260401

[12] B. Gao, Phys. Rev. A 59, 2778 (1999). doi:10.1103/PhysRevA.59.2778. URL https://link.

aps.org/doi/10.1103/PhysRevA.59.2778

[13] A. Gezerlis, I. Tews, E. Epelbaum, S. Gandolfi, K. Hebeler, A. Nogga, A. Schwenk, Phys.

Rev. Lett. 111(3), 032501 (2013). doi:10.1103/PhysRevLett.111.032501

[14] E. Epelbaum, H. Krebs, U.G. Meißner, The European Physical Journal A 51(5), 53 (2015).

doi:10.1140/epja/i2015-15053-8. URL https://doi.org/10.1140/epja/i2015-15053-8

http://dx.doi.org/10.1103/RevModPhys.81.1773
http://dx.doi.org/10.1103/RevModPhys.81.1773
https://link.aps.org/doi/10.1103/RevModPhys.81.1773
https://link.aps.org/doi/10.1103/RevModPhys.81.1773
http://dx.doi.org/10.1103/RevModPhys.85.197
http://dx.doi.org/10.1103/RevModPhys.85.197
http://dx.doi.org/10.1103/PhysRevC.49.2942
https://link.aps.org/doi/10.1103/PhysRevC.49.2942
https://link.aps.org/doi/10.1103/PhysRevC.49.2942
http://dx.doi.org/10.1103/PhysRevC.72.054002
http://dx.doi.org/10.1103/PhysRevC.72.054002
http://dx.doi.org/10.1103/PhysRevC.70.044006
http://dx.doi.org/10.1103/PhysRevC.70.044006
http://dx.doi.org/10.1103/PhysRevC.72.054006
http://dx.doi.org/10.1103/PhysRevC.72.054006
https://link.aps.org/doi/10.1103/PhysRevC.72.054006
https://link.aps.org/doi/10.1103/PhysRevC.72.054006
http://dx.doi.org/10.1103/PhysRevC.74.014003
https://link.aps.org/doi/10.1103/PhysRevC.74.014003
https://link.aps.org/doi/10.1103/PhysRevC.74.014003
http://dx.doi.org/10.1103/PhysRevC.85.034002
http://dx.doi.org/10.1103/PhysRevC.96.024002
http://dx.doi.org/10.1103/PhysRevC.96.024002
http://dx.doi.org/10.22323/1.253.0104
http://dx.doi.org/10.1103/PhysRevLett.110.260401
https://link.aps.org/doi/10.1103/PhysRevLett.110.260401
http://dx.doi.org/10.1103/PhysRevA.59.2778
https://link.aps.org/doi/10.1103/PhysRevA.59.2778
https://link.aps.org/doi/10.1103/PhysRevA.59.2778
http://dx.doi.org/10.1103/PhysRevLett.111.032501
http://dx.doi.org/10.1140/epja/i2015-15053-8
https://doi.org/10.1140/epja/i2015-15053-8


26

[15] A. Roggero, A. Mukherjee, F. Pederiva, J. Phys. Conf. Ser. 527, 012003 (2014). doi:

10.1088/1742-6596/527/1/012003

[16] J.E. Lynn, K.E. Schmidt, Phys. Rev. C 86, 014324 (2012). doi:10.1103/PhysRevC.86.014324.

URL https://link.aps.org/doi/10.1103/PhysRevC.86.014324

[17] W. Frank, D.J. Land, R.M. Spector, Rev. Mod. Phys. 43, 36 (1971). doi:

10.1103/RevModPhys.43.36

[18] S.R. Beane, P.F. Bedaque, L. Childress, A. Kryjevski, J. McGuire, U. van Kolck, Phys. Rev.

A 64, 042103 (2001). doi:10.1103/PhysRevA.64.042103. URL https://link.aps.org/doi/

10.1103/PhysRevA.64.042103

[19] W. Glöckle, The Quantum Mechanical Few-Body Problem. Texts and Monographs in Physics

(Springer, Berlin, 1983). doi:10.1007/978-3-642-82081-6. URL https://link.springer.com/

book/10.1007%2F978-3-642-82081-6

[20] W. Gloeckle, H. Witala, D. Huber, H. Kamada, J. Golak, Phys. Rept. 274, 107 (1996).

doi:10.1016/0370-1573(95)00085-2

[21] B. Long, U. van Kolck, Annals Phys. 323, 1304 (2008). doi:10.1016/j.aop.2008.01.003

[22] M. Pavón Valderrama, D.R. Phillips, Phys. Rev. Lett. 114(8), 082502 (2015). doi:

10.1103/PhysRevLett.114.082502

[23] S. Binder, et al., Phys. Rev. C98(1), 014002 (2018). doi:10.1103/PhysRevC.98.014002

http://dx.doi.org/10.1088/1742-6596/527/1/012003
http://dx.doi.org/10.1088/1742-6596/527/1/012003
http://dx.doi.org/10.1103/PhysRevC.86.014324
https://link.aps.org/doi/10.1103/PhysRevC.86.014324
http://dx.doi.org/10.1103/RevModPhys.43.36
http://dx.doi.org/10.1103/RevModPhys.43.36
http://dx.doi.org/10.1103/PhysRevA.64.042103
https://link.aps.org/doi/10.1103/PhysRevA.64.042103
https://link.aps.org/doi/10.1103/PhysRevA.64.042103
http://dx.doi.org/10.1007/978-3-642-82081-6
https://link.springer.com/book/10.1007%2F978-3-642-82081-6
https://link.springer.com/book/10.1007%2F978-3-642-82081-6
http://dx.doi.org/10.1016/0370-1573(95)00085-2
http://dx.doi.org/10.1016/j.aop.2008.01.003
http://dx.doi.org/10.1103/PhysRevLett.114.082502
http://dx.doi.org/10.1103/PhysRevLett.114.082502
http://dx.doi.org/10.1103/PhysRevC.98.014002

	Renormalization of a Finite-Range Inverse-Cube Potential
	Abstract
	Introduction
	Theory
	Regulator Formulations
	Local Regulation
	Semi-Local Regulation
	Nonlocal Regulation

	Two-Body Bound States
	Lippmann-Schwinger Equation
	Three-Body Bound States
	Three-Body Phase Shifts
	Quantitative Uncertainty Analysis

	Results
	Renormalization Group Flow
	Two-Body Scattering
	Three-Body Scattering
	Three-Body Bound States

	Summary
	Local Regulator Sensitivity
	Acknowledgments
	References


