$\mathrm{CH}\left(\mathrm{C}^{2} \mathrm{SUS}\right.$

This is the accepted manuscript made available via CHORUS. The article has been published as:

## Searching for three-nucleon short-range correlations

Misak M. Sargsian, Donal B. Day, Leonid L. Frankfurt, and Mark I. Strikman
Phys. Rev. C 100, 044320 - Published 28 October 2019
DOI: 10.1103/PhysRevC.100.044320

# Searching for three-nucleon short-range correlations 

Misak M. Sargsian ${ }^{1}$, Donal B. Day ${ }^{2}$, Leonid L. Frankfurt ${ }^{3}$, and Mark I. Strikman ${ }^{4}$<br>${ }^{1}$ Department of Physics, Florida International University, Miami, FL 33199<br>${ }^{2}$ Department of Physics, University of Virginia, Charlottesville, VA 22904<br>${ }^{3}$ Sackler School of Exact Sciences, Tel Aviv University, Tel Aviv, Israel<br>${ }^{4}$ Department of Physics, Pennsylvania State University, University Park, PA

(Dated: September 26, 2019)


#### Abstract

Three nucleon short range correlations (SRCs) are one of the most elusive structures in nuclei. Their observation and the subsequent study of their internal makeup will have a significant impact on our understanding of the dynamics of super-dense nuclear matter which exists at the cores of neutron stars. We discuss the kinematic conditions and observables that are most favorable for probing $3 \mathrm{~N}-$ SRCs in inclusive electro-nuclear processes and make a prediction for a quadratic dependence of the probabilities of finding a nucleon in 2 N - and 3 N - SRCs. We demonstrate that this prediction is consistent with the limited high energy experimental data available, suggesting that we have observed, for the first time, $3 \mathrm{~N}-\mathrm{SRCs}$ in electro-nuclear processes. Our analysis enables us to extract $a_{3}(A, Z)$, the probability of finding 3 N -SRCs in nuclei relative to the $\mathrm{A}=3$ system.


## I. INTRODUCTION:

Three nucleon short-range correlations (3N-SRCs), in which three nucleons come close together, are unique arrangements in strong interaction physics. 3N SRC's have a single nucleon with very large momentum $(\gtrsim$ $700 \mathrm{MeV} / \mathrm{c}$ ) balanced by two nucleons of comparable momenta. Unlike two-nucleon short-range correlations ( $2 \mathrm{~N}-\mathrm{SRCs}$ ), $3 \mathrm{~N}-\mathrm{SRCs}$ have never been probed directly through experiment. As the consequence of the factorization of short-distance effects from low momentum collective phenomena [1, 2], 2 N - and $3 \mathrm{~N}-\mathrm{SRCs}$ dominate the high momentum component of nuclear wave function which is almost universal up to a scale factor (see e.g. [1, [3]).

The dynamics of three-nucleon short-range configurations reside at the borderline of our knowledge of nuclear forces making their exploration a testing ground for "beyond the standard nuclear physics" phenomena such as irreducible three-nucleon forces, inelastic transitions in 3 N systems as well as the transition from hadronic to quark degrees of freedom. Their strength is expected to grow faster with the local nuclear density than the strength of $2 \mathrm{~N}-\mathrm{SRCs}$ [1,2]. As a result, their contribution will be essential for an understanding of the dynamics of super-dense nuclear matter (see e.g. Ref. [4]).

Until recently a straightforward experimental probe of 2 N - and 3 N -SRCs was impossible due to the requirements of high-momentum transfer nuclear reactions being measured in very specific kinematics in which the expected cross sections are very small (see Ref. 1 and references therein). With the advent of the high energy ( 6 GeV ) and high intensity continuous electron accelerator at Jefferson Lab (JLab) in the late 1990's, an unprecedented exploration of nuclear structure became possible, opening a new window to multi-nucleon SRCs.

(a)

(b)

(c)

FIG. 1: (a) Geometry of 2 N-SRCs, $\mathbf{p}_{\mathbf{r}} \approx-\mathbf{p}_{\mathbf{i}}$. Two configurations of $3 \mathrm{~N}-$ SRCs: (b) Configuration in which recoil nucleon momenta $\mathbf{p}_{\mathbf{r} 2}, \mathbf{p}_{\mathbf{r} 3} \sim-\mathbf{p}_{\mathbf{i}} / \mathbf{2}$, (c) configuration in which $p_{r 2} \sim p_{r 3} \sim p_{i}$. Here $m_{s}$ is the invariant mass of the recoiling 2 N system.

## II. TWO NUCLEON SHORT RANGE CORRELATIONS (2N-SRCS)

The first dedicated study of $2 \mathrm{~N}-\mathrm{SRCs}$ in inclusive, $A\left(e, e^{\prime}\right) X$, high momentum transfer reactions revealed a plateau in the ratios of per nucleon cross sections of heavy nuclei to the deuteron (5) measured at Stanford Linear Accelerator Center (SLAC) with momentum transfer, $Q^{2} \gtrsim 2 \mathrm{GeV}^{2}$ and Bjorken variable $x>1.5$. Here $x=\frac{Q^{2}}{2 m_{N} q_{0}}$ with $m_{N}$ the nucleon mass and $q_{0}$ the transferred energy to the nucleus, and for a nucleus $A$, $0<x<A$. The observed plateau, largely insensitive to $Q^{2}$ and $x$, sets the parameter $a_{2}(A, Z)[6]$ which is the probability of finding $2 \mathrm{~N}-\mathrm{SRCs}$ in the ground state of the nucleus A relative to the deuteron. These plateaus were confirmed in inclusive cross section ratios of nuclei A to ${ }^{3} \mathrm{He} 7,8$, at similar kinematics with the magnitude of plateaus taken to be related to the relative probability, $\frac{a_{2}(A, Z)}{a_{2}\left({ }^{3} \mathrm{He}\right)}$. Qualitatively and quantitatively the latter results were in agreement with Ref. 5]. These, together with more recent and dedicated measurements of the nuclear to the deuteron inclusive cross section ratios 9 , provided compelling evidence for the sizable ( $\sim 20 \%$ ) high momentum component of the ground state nuclear wave function for medium to heavy nuclei originating from 2 N SRCs.

While inclusive processes provided the first evidence
for $2 \mathrm{~N}-\mathrm{SRCs}$ and an estimate of their probabilities, $a_{2}(A, Z)$, the details of correlation dynamics have been obtained mainly from semi-inclusive experiments in which one or both nucleons from $2 \mathrm{~N}-\mathrm{SRCs}$ were detected. The first $A(p, p p n) X$ experiments at high momentum transfer were performed at Brookhaven National Laboratory [11, 12]. The theoretical analysis of these experiments gave the striking result that the probability of finding proton-neutron combinations in $2 \mathrm{~N}-\mathrm{SRCs}$ exceeds by almost a factor of 20 the probabilities for protonproton and neutron-neutron SRCs [13]. This result was subsequently confirmed in semi-inclusive electroproduction reactions at JLab [15, 16] and both are understood as arising from the dominance of the tensor component in the NN interaction at distances $\left|r_{1}-r_{2}\right| \lesssim 1 \mathrm{fm}$ [17, 18 . This reinforced the conclusion that the nucleons have been isolated in SRCs with separations much smaller than average inter-nucleon distances. The dominance of the $p n$ component in 2 N -SRCs suggested a new prediction for momentum sharing between high momentum protons and neutrons in asymmetric nuclei[19] where the minority component (say protons in neutron rich nuclei) will dominate the high momentum component of the nuclear wave function. This prediction was confirmed indirectly in $A\left(e, e^{\prime} p\right) X$ and $A\left(e, e^{\prime} p p\right) X$ experiments [20] and directly in $A\left(e, e^{\prime} p\right) X$ and $A\left(e, e^{\prime} n\right) X$ processes in which proton and neutron constituents of 2 N -SRCs have been probed independently 21, 22. The momentum sharing effects also arise from variational Monte-Carlo calculations for light asymmetric nuclei[23] as well as in model calculations of nuclear wave functions for medium to heavy nuclei 24 .

In addition to measuring the isospin content of 2 N SRCs, several experimental analyses [12, 16, 25, established a detailed "geometrical" picture of 2N-SRCs consisting of two overlapping nucleons having relative momentum between $250-650 \mathrm{MeV} / \mathrm{c}$ with back-to-back angular correlations (Fig 1(a)) and with moderate center of mass momentum, $\lesssim 150 \mathrm{MeV} / \mathrm{c}$, for nuclei ranging from ${ }^{4} \mathrm{He}$ to ${ }^{208} \mathrm{~Pb}$ (25). Several recent reviews 2, 3, 26[28] have documented extensively the recent progress in the investigation of $2 \mathrm{~N}-\mathrm{SRCs}$ in a wide range of atomic nuclei.

## III. THREE NUCLEON SHORT RANGE CORRELATIONS (3N-SRCS)

Despite an impressive progress achieved in studies of $2 \mathrm{~N}-\mathrm{SRCs}$ the confirmation of $3 \mathrm{~N}-\mathrm{SRCs}$ remains arguable. One signature of $3 \mathrm{~N}-\mathrm{SRCs}$ is the onset of the plateau in the ratio of inclusive cross sections of nuclei A and ${ }^{3} \mathrm{He}$ in the kinematic region of $x>2$ similar to the plateau observed for 2 N -SRCs in the region of $1.5<x<2$ and discussed above. The first observation of a plateau at $x>2$ was claimed in Ref. [8]. However it was not confirmed by subsequent measurements [9, 29]. The source of this disagreement has been traced to the poor reso-


FIG. 2: Kinematics of 3N-SRCs. The surface above the horizontal plane at $\alpha_{3 N}=1.6$ defines the kinematics most optimal for identification of 3 N -SRCs in inclusive processes. In this calculation we assumed a minimal mass for $m_{S}=2 m_{N}$ which corresponds to the maximal contribution to the nuclear spectral function with $k_{\perp}=0$ and $\beta=1$ (see Eq.(1)).
lution at $x>2$ of the experiment of Ref. [8] which led to bin migration 30 where events move from smaller to higher $x$. Additionally, as it will be shown below, the absence of a plateau is related to the the modest invariant momentum transfer, $Q^{2}$ covered in Ref. [8].

To quantify the last statement we first need to identify the dominant structure of $3 \mathrm{~N}-\mathrm{SRCs}$ in the nuclear ground state. The problem is that while for $2 \mathrm{~N}-\mathrm{SRCs}$ the correlation geometry is straightforward (two fast nucleons nearly balancing each other, Fig 1(a)), in the case of 3 N -SRCs the geometry of balancing three fast nucleons is not unique - ranging from configurations in which two almost parallel spectator nucleons with momenta, $\sim-\frac{p_{i}}{2}$ balance the third nucleon with momentum $\mathbf{p}_{\mathbf{i}}$, Fig 1 (b)), to the configurations in which all three nucleons have momenta $p_{i}$ with relative angles $\approx 120^{\circ}$ Fig, 1 (c)). The analysis of 3 N systems in Ref. [17] demonstrated that configurations in which two recoil nucleons have the smallest possible mass, $m_{S} \sim 2 m_{N}$, dominate the $3 \mathrm{~N}-\mathrm{SRC}$ nuclear spectral function at lower excitation energy. This allows us to conclude 31 that in inclusive scattering, which integrates over the nuclear excitation energies, the dominant contribution to $3 \mathrm{~N}-\mathrm{SRCs}$ originates from arrangements similar to Fig $1(\mathrm{~b}))$ with $m_{S} \gtrsim 2 m_{N}$.

With the dominant mechanism of 3 N -SRCs identified we are able to develop the kinematic requirements to expose 3 N correlations in inclusive $e A$ scattering. We use the fact that, due to relativistic nature of SRC configurations, the most natural description is achieved through the light-cone (LC) nuclear spectral functions [6, 32] in which the correlated nucleons are described by their nuclear light-cone momentum fractions, $\alpha_{i}$ and transverse momentum $p_{i, \perp}$. In inclusive scattering one probes the spectral function integrated over the LC momenta of the correlated recoil nucleons, residual nuclear excitation energy and the transverse momentum of the interacting nucleon. This corresponds to the LC density matrix of the
nucleus $\rho_{A}\left(\alpha_{N}\right)$, where $\alpha_{N}$ is the LC momentum fraction of the nucleus carried by the interacting nucleon. It can be shown 33 that $\rho_{A}\left(\alpha_{N}\right) / \alpha$ is analogous to the partonic distribution function in QCD, $f_{i}(x)$ where $x$ describes the LC momentum fraction of the nucleon carried by the interacting quark.

To evaluate the LC momentum fraction, $\alpha_{N}$ (henceforth $\alpha_{3 N}$ ) describing the interacting nucleon in the 3 N SRC, we consider the kinematic condition of quasielastic scattering from a 3 N system: $q+3 m_{N}=p_{f}+p_{S}$, where $q, p_{f}$ and $p_{S}$ are the four momenta of the virtual photon, final struck nucleon and recoil two-nucleon system respectively. One defines the LC momentum fraction of the interacting nucleon, $\alpha_{3 N}=3-\alpha_{S}$, where $\alpha_{S} \equiv 3 \frac{E_{S}-p_{S}^{z}}{E_{3 N}-p_{3, N}^{z}}$ is the light-cone fraction of the two spectator nucleons in the center of mass of the $\gamma^{*}(3 N)$ system with $z \| q$. Using the boost invariance of the light-cone momentum fractions one arrives at the following lab-frame expression (see Ref. [31] for details) :

$$
\begin{gather*}
\alpha_{3 N}=3-\frac{q_{-}+3 m_{N}}{2 m_{N}}\left[1+\frac{m_{S}^{2}-m_{N}^{2}}{W_{3 N}^{2}}+\right. \\
\left.\sqrt{\left(1-\frac{\left(m_{S}+m_{N}\right)^{2}}{W_{3 N}^{2}}\right)\left(1-\frac{\left(m_{S}-m_{N}\right)^{2}}{W_{3 N}^{2}}\right)}\right] \tag{1}
\end{gather*}
$$

where $W_{3 N}^{2}=\left(q+3 m_{N}\right)^{2}=Q^{2} \frac{3-x}{x}+9 m_{N}^{2}$ and $q_{-}=$ $q_{0}-q$ with $q_{0}$ and $q$ being energy and momentum transfer in the lab with $z \| \mathbf{q}$. The invariant mass of the spectator 2 N system, $m_{S}^{2}=4 \frac{m_{N}^{2}+k_{\perp}^{2}}{\beta(2-\beta)}$ where $\mathbf{k}_{\perp}$ is the transverse component of the relative momentum of the 2 N system with respect to $\mathbf{p}_{\mathbf{S}}$ and $\beta$ is the light-front momentum fraction of $p_{S}$ carried by the spectator nucleon $(0 \leq \beta \leq 2)$. Inclusive reactions integrate over the nuclear spectral function and $k_{\perp}$ and $m_{s}$ are not determined experimentally.

The expression for $\alpha_{3 N}$, Eq. (1), makes it possible to identify the kinematical conditions most appropriate for the isolation of $3 \mathrm{~N}-\mathrm{SRCs}$ in inclusive $A\left(e, e^{\prime}\right) X$ reactions. This is done by identifying the minimal value of $\alpha_{3 N}$ above which one expects the contribution of $3 \mathrm{~N}-\mathrm{SRCs}$ to dominate. First, the threshold can be established from our experience of studying $2 \mathrm{~N}-\mathrm{SRCs}$. In this case we know that $2 \mathrm{~N}-\mathrm{SRCs}$ in inclusive processes dominate at $\alpha_{N} \geq 1.3$ which corresponds to an internal longitudinal momenta of $\sim 300-350 \mathrm{MeV} / \mathrm{c}$. Hence for 3 N SRCs one needs at least $p_{\min } \gtrsim 700 \mathrm{MeV} / \mathrm{c}$, corresponding to $\alpha_{3 N} \gtrsim 1.6$, which will allow two high momentum spectator nucleons to belong to a $3 \mathrm{~N}-\mathrm{SRCs}$. This minimal value for $\alpha_{3 N}$ is validated by the studies of the fast backward nucleon production in pA scattering within the few-nucleon correlation model [6] which indicate that the transition from 2 N - to 3 N - SRCs occurs at $\alpha \sim 1.6-1.7$.

As $\alpha_{3 N}$ increases above 1.6 the contribution of 2 N SRCs is suppressed relative to $3 \mathrm{~N}-\mathrm{SRCs}$. This is because as the LC momentum fraction grows, the relative momentum in the 2 N system grows much faster than the same quantity in the 3 N system. Thus, in the further
discussions we will set $\alpha_{3 N}=1.6$ as the threshold value, above which one expects the $3 \mathrm{~N}-\mathrm{SRCs}$ to dominate in inclusive scattering. This minimal value for $\alpha_{3 N}$ allows us to identify the kinematic parameters most promising for probing $3 \mathrm{~N}-\mathrm{SRCs}$ as illustrated in Fig. 2 . The figure shows the relevant kinematics corresponding to the $\alpha_{3 N}$ surface being above the $\alpha_{3 N}=1.6$ plane. This identifies the $Q^{2}$ and $x$ domains favorable for probing 3 N SRCs. In particular, one observes that starting around $Q^{2} \gtrsim 2.5-3 \mathrm{GeV}^{2}$ one gains enough kinematical range in the $x>2$ domain that one expects to observe 3N-SRCs.

Another advantage of considering $3 \mathrm{~N}-\mathrm{SRCs}$ in terms of $\alpha_{3 N}$, is that at sufficiently large $Q^{2}$ the LC momentum distribution function $\rho_{A}\left(\alpha_{3 N}\right)$ is not altered by final state hadronic interactions (FSIs). The important feature in the high energy limit is that FSIs redistribute the $p_{\perp}$ strength in the nuclear spectral function leaving $\rho_{A}\left(\alpha_{3 N}\right)$ practically unchanged $34-36$. In this limit the distortion of $\alpha_{3 N}$ due to FSI can be evaluated as [34]:

$$
\begin{equation*}
\delta \alpha \approx \frac{x^{2}}{Q^{2}} \frac{2 m_{N} E_{R}}{\left(1+\frac{4 m_{N}^{2} x^{2}}{Q^{2}}\right)} \tag{2}
\end{equation*}
$$

where $E_{R}$ is the kinetic energy of the recoil two nucleon system. The estimates made in Ref. 31] indicate that for $Q^{2} \sim 3 \mathrm{GeV}^{2}$ FSI may alter $\alpha_{3 N}$ by not more than $8 \%$ which is too small to shift the mean field nucleon, $\alpha_{N} \approx 1$, to the $3 \mathrm{~N}-\mathrm{SRC}$ domain at $\alpha_{3 N} \geq 1.6$.

## IV. SIGNATURES OF 3N-SRCS

The cross section in inclusive electron scattering at high $Q^{2}$ is factorized in the form [6]:

$$
\begin{equation*}
\sigma_{e A} \approx \sum_{N} \sigma_{e N} \rho_{A}^{N}\left(\alpha_{N}\right) \tag{3}
\end{equation*}
$$

where $\sigma_{e N}$ is the elastic electron-bound nucleon scattering cross section and $\rho_{A}^{N}\left(\alpha_{N}\right)$ is the light-front density matrix of the nucleus at a given LC momentum fraction, $\alpha_{N}$ of the probed nucleon. This is analogous to the QCD factorization in inclusive deep-inelastic scattering off the nucleon, in which the cross section is a product of a hard electron-parton scattering cross section and partonic distribution function.

The local property of SRCs suggests that $\rho_{A}\left(\alpha_{N}\right)$ in the correlation region to be proportional to the light-front density matrix of the two- and three-nucleon systems [5, 6]. This expectation leads to the prediction of the plateau for the ratios of inclusive cross sections in the SRC region that has been confirmed for $2 \mathrm{~N}-\mathrm{SRCs}$. Similar to $2 \mathrm{~N}-\mathrm{SRCs}$ for the 3 N -SRC one predicts a plateau for the experimental cross section ratios such as:

$$
\begin{equation*}
\left.R_{3}(A, Z)=\frac{3 \sigma_{A}\left(x, Q^{2}\right)}{A \sigma_{3} H e}\left(x, Q^{2}\right) \right\rvert\, \alpha_{3 N}>\alpha_{3 N}^{0} \tag{4}
\end{equation*}
$$

where $\alpha_{3 N}^{0}$ is the threshold value for the $\alpha_{3 N}$ above which one expects onset of 3 N -SRCs (taken as $\sim 1.6$ as described above). To quantify the strength of $3 \mathrm{~N}-\mathrm{SRCs}$ we introduce a parameter $a_{3}(A, Z)$ 31:

$$
\begin{equation*}
a_{3}(A, Z)=\frac{3}{A} \frac{\sigma_{e A}}{\left(\sigma_{e^{3} H e}+\sigma_{e^{3} H}\right) / 2} \tag{5}
\end{equation*}
$$

representing an intrinsic nuclear property related to the probability of finding $3 \mathrm{~N}-\mathrm{SRCs}$ in the nuclear ground state. If a plateau is observed in the $3 \mathrm{~N}-\mathrm{SRC}$ region of $\alpha_{3 N}$ then the ratio $R_{3}(A, Z)$ in Eq. (4) can be used to extract $a_{3}(A, Z)$ as follows 31]:

$$
\begin{equation*}
a_{3}(A, Z)=R_{3}(A, Z) \frac{\left(2 \sigma_{e p}+\sigma_{e n}\right) / 3}{\left(\sigma_{e p}+\sigma_{e n}\right) / 2} \tag{6}
\end{equation*}
$$

The status of the experimental observation of the scaling in the ratio of Eq. (4) is as follows: The E02-109 experiment 40 provided a high accuracy ratios, in the $2 \mathrm{~N}-\mathrm{SRC}$ region, at large momentum transfer for a wide range of nuclei 9 . This experiment covered some part of the 3N-SRC kinematic region with lesser quality of data (see also Refs. $39 \boxed{41}, 43$ ), providing an indication of a plateau in the cross section ratios beginning at $x>2$ once $Q^{2}$ is sufficiently high.

In Ref. 31 it was pointed out that the above-mentioned data [9, 39, 40] suffered from a collapse of the ${ }^{3} \mathrm{He}$ cross section between $x=2.68$ and $x=2.85$ due to difficulties with the subtraction of the Aluminum target walls. This issue arose from the relatively small diameter of the target cell ( 4 cm ) combined with the fact that $\sigma^{\mathrm{Al}} \gg \sigma^{3} \mathrm{He}$ at large $x$ as $\sigma^{3} \mathrm{He}$ must go to 0 at its kinematic limit, $x=3$. The cross section ratio in Ref. 9] was made possible by the following: First the inverted ratio ${ }^{3} \mathrm{He} /{ }^{4} \mathrm{He}$ was formed and then rebinned - combining three bins into one for $x \geq 1.15$. Subsequently the bins in the inverted ratio that had error bars falling below zero were moved along a truncated gaussian, such that the lower edge of the error bar was at zero. The ratio was then inverted to give the ratio for ${ }^{4} \mathrm{He} /{ }^{3} \mathrm{He}$ shown in Figure 3 of Ref. [9] and as the triangles in Fig. 3 below. The use of a truncated gaussian gave rise to the asymmetric error bars seen in the ratios.

As an alternative to the somewhat unconventional procedure above, we have used the following approach to substitute the ${ }^{3} \mathrm{He}$ data of Refs. [9, 39, 40 in 3N-SRC region: We have replaced the problematic data between $x=2.68$ and $x=2.85\left(1.6 \leq \alpha_{3 N} \leq 1.8\right)$, point by point, by employing a y-scaling function $F(y) 44,45$ fit to the SLAC data 37,38 measured at a comparable $Q^{2}$. A simple, two parameter fit $F(y)=a \exp (-b x)$, limited to the range $1.6(y=-0.7) \leq \alpha_{3 N} \leq 1.8(y=-1.1)$ provides a good description of the the SLAC data[31]. We preserved the absolute error of the E02019 data set [9, 39, 40] rather than the smaller errors from the fit. The fit parameters are $a=0.296$ and $b=8.241$.

Note that the above approach was first used in Ref. 5], which provided the first evidence of $2 \mathrm{~N}-\mathrm{SRCs}$ through


FIG. 3: The $\alpha_{3 N}$ dependence of the inclusive cross section ratios for ${ }^{4} \mathrm{He}$ to ${ }^{3} \mathrm{He}$, triangles - JLAB data 9, 39, circles - ratios when using a parameterization of SLAC ${ }^{3} \mathrm{He}$ cross sections 37, 38. The horizontal line at $1.3 \leq \alpha_{3 N}<1.5$ identifies the magnitude of the $2 \mathrm{~N}-\mathrm{SRC}$ plateau. The line for $\alpha_{3 N}>1.6$ is Eq. 10 with a $10 \%$ error introduced to account for the systematic uncertainty in $a_{2}(A, Z)$ parameters across all measurements. The data correspond to $Q^{2} \approx 2.5 \mathrm{GeV}^{2}$ at $x=1, \alpha_{3 N}=1$.
cross section ratios in inclusive scattering. The 2N-SRC results obtained have been confirmed by subsequent precision studies [7] 9 in which the ratios were measured in single experiment.

It is also worth mentioning that in the case of $2 \mathrm{~N}-\mathrm{SRC}$ the adopted approach was more complicated than the one we employed in the current work. In Ref. [5 the data were combined to form the cross section ratios of nuclei $\left({ }^{3} \mathrm{He},{ }^{4} \mathrm{He}, \mathrm{C}, \mathrm{Al}, \mathrm{Fe}\right.$ and Au$)$ to the deuteron, covering a range in $\mathrm{Q}^{2}$ from 0.9 to $3.2(\mathrm{GeV} / \mathrm{c})^{2}$. In the current analysis of $3 \mathrm{~N}-\mathrm{SRCs}$, we worked at a single value of $\mathrm{Q}^{2} \approx$ $2.7(\mathrm{GeV} / \mathrm{c})^{2}$ and, incidentally, the ${ }^{3} \mathrm{He}$ data used in 1993 is the same set we employ here. The resulting ratios are displayed as red circles in Fig. 3 .

Fig. 3 presents the results for the cross section ratios obtained within the two above described approaches. While both give similar results we consider the replacement of the data points between $x=2.68$ and $x=2.85$ $\left(1.6 \leq \alpha_{3 N} \leq 1.8\right)$ as a best alternative to the procedure adopted in Ref 9 in part because it allows a consistent treatment of the ratios for all $A$.

In Fig. 3 the plateau due to 2 N -SRCs is clearly visible for $1.3 \leq \alpha_{3 N} \leq 1.5$. In this region $\alpha_{3 N} \approx \alpha_{2 N}[31$, where $\alpha_{2 N}$ is the LC momentum fraction of the nucleon in the $2 \mathrm{~N}-\mathrm{SRC}$. Because of this, we refer to the magnitude of this plateau as:

$$
\begin{equation*}
R_{2}(A, Z)=\left.\frac{3 \sigma_{A}\left(x, Q^{2}\right)}{A \sigma_{3^{H e}}\left(x, Q^{2}\right)}\right|_{1.3 \leq \alpha_{3 N} \leq 1.5}=\frac{a_{2}(A)}{a_{2}\left({ }^{3} H e\right)} \tag{7}
\end{equation*}
$$

The horizontal line in the region of $1.3 \leq \alpha_{3 N} \leq 1.5$ is given by the right hand side of Eq. (7), in which the values of $a_{2}\left({ }^{3} \mathrm{He}\right)$ and $a_{2}(A)$ are taken from the last column of

Table II in Ref. 42, an average of the SLAC, JLAB Hall C and JLAB Hall B results. The magnitude of the horizontal solid line in the region of $1.6 \leq \alpha_{3 N} \leq 1.8$, is the prediction of $R_{3 N}(A, Z) \approx R_{2 N}^{2}(A, Z)$ which will be explained in the next section. We assigned a $10 \%$ error to this prediction (dashed lines) related to the uncertainty of $a_{2}(A, Z)$ magnitudes across different measurements.

As Fig 3 shows the data at $\alpha_{3 N}>1.6$ are consistent with the prediction of the onset of the new plateau in the $3 \mathrm{~N}-\mathrm{SRC}$ region and that its magnitude is proportional to $R_{2 N}^{2}$.

With a set of ${ }^{3} \mathrm{He}$ data obtained in the above discussed approach we are able to estimate the ratios for other nuclei, including, ${ }^{9} \mathrm{Be},{ }^{12} \mathrm{C},{ }^{64} \mathrm{Cu}$, and ${ }^{197} \mathrm{Au}$, albeit with larger uncertainties 31.

The large experimental uncertainties in evaluation of the ratios for ${ }^{4} \mathrm{He}$ (Fig 3) and for heavier nuclei [31] do not allow us to claim unambiguously the onset of the plateau at $\alpha_{3 N} \geq 1.6$. However one can evaluate the validity of such a plateau by comparing one- and two- parameter fits to the experimental ratios in the $\alpha_{3 N} \geq 1.6$ region. The one-parameter fit in the 3 N -region gives the values $\left(R_{3}^{e x p}\right)$ of the plateaus as seen in Figure 4 (a) along with our prediction of Eq. 10. $R_{3}^{e x p}$ is also listed in Table I. A two-parameter linear fit, returns errors on the parameters nearly as large as the parameters themselves and a correlation matrix indicating that the second parameter is redundant, providing no additional information.

## V. 3N-SRCS AND THE pn DOMINANCE:

In Fig 1 (b) the $3 \mathrm{~N}-\mathrm{SRC}$ is produced in the sequence of two short-range $N N$ interactions in which the nucleon with the largest momentum interacts with the external probe 31, 32]. The presence of short-range $N N$ interactions in $3 \mathrm{~N}-\mathrm{SRC}$ configurations tells us that the recently observed $p n$-SRC dominance [13, 15, 16] is critical to our understanding of $3 \mathrm{~N}-\mathrm{SRCs}$.

For 3 N -SRCs one expects that only $p n p$ or $n p n$ configurations to contribute, with the $p n$ short-range interaction playing role of a "catalyst" in forming a fast interacting nucleon with momentum, $p_{i}$ (Fig.1(b)). For example, in the case of $p n p$ configuration, the neutron will play the role of intermediary in furnishing a large momentum transfer to one of the protons with two successive short range $p n$ interactions. Quantitatively such a scenario is reflected in the nuclear light-front density matrix in the 3 N-SRC domain, $\rho_{A(3 N)}^{N}\left(\alpha_{N}\right)$, being expressed through the convolution of two $p n$-SRC density matrixes, $\rho_{A(p n)}^{N}\left(\alpha, p_{\perp}\right)$ as follows:

$$
\begin{align*}
& \rho_{A(3 N)}^{N}\left(\alpha_{N}, p_{\perp}\right) \approx \sum_{i, j} \int F\left(\alpha_{i}^{\prime}, p_{i \perp}, \alpha_{j}^{\prime}, p_{j \perp}\right) \times \\
& \quad \rho_{A(p n)}^{N}\left(\alpha_{i}^{\prime}, p_{i \perp}^{\prime}\right) \rho_{A(p n)}^{N}\left(\alpha_{j}^{\prime}, p_{j \perp}^{\prime}\right) d \alpha_{i} d^{2} p_{j \perp} d \alpha_{i} d^{2} p_{j \perp}, \tag{8}
\end{align*}
$$

where $\left(\alpha_{i / j}^{\prime}, p_{i / j \perp}^{\prime}\right)$, are the LC momentum fractions and transverse momenta of spectator nucleons in the center of
mass of the $p n$ SRCs. According to the $p n$ dominance [19]:

$$
\begin{equation*}
\rho_{A(p n)}^{N}\left(\alpha, p_{\perp}\right) \approx \frac{a_{2}(A, Z)}{2 X_{N}} \rho_{d}\left(\alpha, p_{\perp}\right) \tag{9}
\end{equation*}
$$

where $X_{N}=Z / A$ or $(A-Z) / A$ is the relative fraction of the proton or neutron in the nucleus and $\rho_{d}\left(\alpha, p_{\perp}\right)$ is the light-front density function of the deuteron at $\alpha \geq$ 1.3. The factor $F\left(\alpha_{i}^{\prime}, p_{i \perp}, \alpha_{j}^{\prime}, p_{j \perp}\right)$ is a smooth function of LC momenta and accounts for the phase factors of nucleons in the intermediate state between the sequential $p n$ interactions with $0<\alpha_{i / j}^{\prime}<2$.


FIG. 4: (a) The $A$ dependence of the experimental evaluation of $R_{3}$ compared with the prediction of Eq 10 (b) The $A$ dependence of $a_{3}(A, Z)$ parameter compared to $a_{2}(A, Z)$ of Ref. 9 .

It follows, from Eq. (8) and the expression of $\rho_{A(p n)}^{N}\left(\alpha, p_{\perp}\right)$ in Eq. 99 , that the strength of $3 \mathrm{~N}-\mathrm{SRCs}$ is $\propto a_{2}^{2}(A, Z)$. This is evident by calculating $R_{3}$ in Eq. (4) using the relation (3) and the conjecture of Eq. (8), which leads to 31]:
$R_{3}(A, Z)=\frac{9}{8} \frac{\left(\sigma_{e p}+\sigma_{e n}\right) / 2}{\left(2 \sigma_{e p}+\sigma_{e n}\right) / 3} R_{2}^{2}(A, Z) \approx\left(\frac{a_{2}(A, Z)}{a_{2}\left({ }^{3} H e\right)}\right)^{2}$,
where $\sigma_{e p} \approx 3 \sigma_{e n}$ in the considered $Q^{2} \sim 3 \mathrm{GeV}^{2}$ range. As Fig 3 shows the prediction of $R_{3} \approx R_{2}^{2}$ is in agreement with the experimental per nucleon cross section ratios of ${ }^{4}$ He to ${ }^{3} \mathrm{He}$ targets. There is a similar agreement for other nuclei including ${ }^{9} \mathrm{Be},{ }^{12} \mathrm{C},{ }^{64} \mathrm{Cu}$ and ${ }^{197} \mathrm{Au}[31]$.

To test the prediction of Eq. 10 quantitatively we evaluated the weighted average of $\vec{R}_{3}^{\text {exp }}(A, Z)$ for $\alpha_{3 N}>$

TABLE I: Numerical values $\mathrm{a}_{2}$ 42], $\mathrm{R}_{2}$ (Eq. 7), $\mathrm{R}_{3}^{\mathrm{exp}}$ (the weighted average in the 3 N region) and $a_{3}$ (Eq. 6)).

| A | $\mathrm{a}_{2}$ | $R_{2}$ | $R_{3}^{\exp }$ | $\mathrm{a}_{3}$ |
| :---: | :---: | :---: | :---: | :---: |
| 3 | $2.13 \pm 0.04$ | 1 | NA | NA |
| 4 | $3.57 \pm 0.09$ | $1.68 \pm 0.03$ | $2.74 \pm 0.24$ | $3.20 \pm 0.28$ |
| 9 | $3.91 \pm 0.12$ | $1.84 \pm 0.04$ | $3.23 \pm 0.29$ | $3.77 \pm 0.34$ |
| 12 | $4.65 \pm 0.14$ | $2.18 \pm 0.04$ | $4.89 \pm 0.43$ | $5.71 \pm 0,50$ |
| 64 | $5.21 \pm 0.20$ | $2.45 \pm 0.04$ | $5.94 \pm 0.52$ | $6.94 \pm 0.77$ |
| 197 | $5.13 \pm 0.21$ | $2.41 \pm 0.05$ | $6.15 \pm 0.55$ | $7.18 \pm 0.64$ |

1.6 and compared them with the magnitude of $\left(\frac{a_{2}(A, Z)}{a_{2}(3 H e)}\right)^{2}$ in which $a_{2}(A, Z)$ 's are taken from Ref. 42]. The results in which the ${ }^{3} \mathrm{He}$ cross section was taken from the $F(y)$ fit to the SLAC data are presented in Fig. 4 (a) and in Table I. They show good agreement with the prediction of Eq.(10) for the full range of nuclei. We investigated the sensitivity of the weighted average of $R_{3}(A, Z)$ on the lower limit of $\alpha_{3 N}$ (before rebinning) and found that the results shown in Fig. 4(a) remain unchanged within errors which grow with a larger $\alpha_{3 N}>1.6$ cut.

The agreement presented in Fig 4(a) represents the strongest evidence yet for the presence of $3 \mathrm{~N}-\mathrm{SRCs}$. If it is truly due to the onset of $3 \mathrm{~N}-\mathrm{SRCs}$ then one can use the measured $R_{3}^{e x p}$ ratios and Eq. (6) to extract the $a_{3}(A, Z)$ parameters characterizing the $3 \mathrm{~N}-\mathrm{SRC}$ probabilities in the nuclear ground state. The estimates of $a_{3}(A, Z)$ and comparisons with $a_{2}(A, Z)$ are given in Fig 4(b) (see also Table I). These comparisons show a faster rise for $a_{3}(A, Z)$ with $A$, consistent with the expectation of the increased sensitivity of 3 N -SRCs to the local nuclear density [2]. If this result is verified in the future with better quality data and a wider range of nuclei then the evaluation of the parameter $a_{3}(A, Z)$ as a function of nuclear density and proton/neutron asymmetry together with $a_{2}(A, Z)$ can provide an important theo-
retical input for the exploration of the dynamics of super dense nuclear matter (see e.g. [46]).

## VI. SUMMARY

Based on the theoretical analysis of a three-nucleon system we have concluded that the dominating mechanism of 3N-SRCs in inclusive processes corresponds to the situation in which the recoil mass of the 2 N spectator system is close to a minimum. From that basis we derived a kinematic condition for the onset of $3 \mathrm{~N}-\mathrm{SRCs}$ in inclusive eA scattering which should result in the observation of a plateau in the ratio of cross sections of heavy to light nuclei, such as, $\frac{3}{A} \frac{\sigma^{A}}{\sigma^{3 H e}}$. The best quality data, available for large enough $Q^{2}$ (Fig 3), indicate a possible onset of such a plateau at $\alpha_{3 N}>1.6$. This first signature of $3 \mathrm{~N}-\mathrm{SRCs}$ is reinforced by the good agreement with the prediction of the quadratic $\left(R_{3} \approx R_{2}^{2}\right)$ dependence between the cross section ratios in the 3 N SRCs domain, $R_{3}$, and the same ratio measured in the $2 \mathrm{~N}-\mathrm{SRC}$ region, $R_{2}$. This agreement has allowed us, for the first time, to extract the parameter $a_{3}(A, Z)$ characterizing the strength of $3 \mathrm{~N}-\mathrm{SRCs}$ in the ground state wave function of the nucleus. Further measurements at larger $Q^{2}$ are necessary to confirm the observation made in this analysis. Precision data at large $Q^{2}$ in the 3 N SRC region can be secured in the forthcoming 12 GeV experiment at Jefferson Lab, E12-06-105 [47.

## Acknowledgments

This work is supported by the US Department of Energy grants: DE-FG02-96ER40950 (DBD), DE-FG0201ER41172 (MSS) and DE-FG02-93ER40771 (MIS).
[1] L. L. Frankfurt and M. I. Strikman, Phys. Rept. 76, 215 (1981).
[2] L. Frankfurt, M. Sargsian and M. Strikman, Int. J. Mod. Phys. A 23, 2991 (2008).
[3] C. Ciofi degli Atti, Phys. Rept. 590, 1 (2015).
[4] H. Heiselberg and V. Pandharipande, Ann. Rev. Nucl. Part. Sci. 50, 481 (2000).
[5] L. L. Frankfurt, M. I. Strikman, D. B. Day and M. Sargsian, Phys. Rev. C 48, 2451 (1993).
[6] L. L. Frankfurt and M. I. Strikman, Phys. Rept. 160, 235 (1988).
[7] K. S. Egiyan et al. [CLAS Collaboration], Phys. Rev. C 68, 014313 (2003).
[8] K. S. Egiyan et al. [CLAS Collaboration], Phys. Rev. Lett. 96, 082501 (2006).
[9] N. Fomin, et al., Phys. Rev. Lett. 108, 092502 (2012).
[10] J. Arrington, A. Daniel, D. Day, N. Fomin, D. Gaskell and P. Solvignon, Phys. Rev. C 86, 065204 (2012).
[11] J. L. S. Aclander et al., Phys. Lett. B 453, 211 (1999).
[12] A. Tang et al., Phys. Rev. Lett. 90, 042301 (2003)
[13] E. Piasetzky, M. Sargsian, L. Frankfurt, M. Strikman and J. W. Watson, Phys. Rev. Lett. 97, 162504 (2006).
[14] D. B. Day et al., Phys. Rev. Lett. 59, 427 (1987).
[15] R. Shneor et al. [Jefferson Lab Hall A Collaboration], Phys. Rev. Lett. 99, 072501 (2007).
[16] R. Subedi, et al., Science 320, 1476 (2008).
[17] M. M. Sargsian, T. V. Abrahamyan, M. I. Strikman and L. L. Frankfurt, Phys. Rev. C 71, 044615 (2005).
[18] R. Schiavilla, R. B. Wiringa, S. C. Pieper and J. Carlson, Phys. Rev. Lett. 98, 132501 (2007).
[19] M. M. Sargsian, Phys. Rev. C 89, no. 3, 034305 (2014).
[20] O. Hen,et al., Science 346, 614 (2014).
[21] M. Duer, et al. [CLAS Collaboration], Nature 560, no. 7720, 617 (2018).
[22] M. Duer et al. [CLAS Collaboration], arXiv:1810.05343 [nucl-ex].
[23] R. B. Wiringa, R. Schiavilla, S. C. Pieper and J. Carlson, Phys. Rev. C 89, no. 2, 024305 (2014).
[24] J. Ryckebusch, W. Cosyn and M. Vanhalst, J. Phys. G 42, no. 5, 055104 (2015).
[25] E. O. Cohen et al. [CLAS Collaboration], Phys. Rev. Lett. 121, no. 9, 092501 (2018).
[26] J. Arrington, D. W. Higinbotham, G. Rosner and M. Sargsian, Prog. Part. Nucl. Phys. 67, 898 (2012).
[27] N. Fomin, D. Higinbotham, M. Sargsian and P. Solvignon, Ann. Rev. Nucl. Part. Sci. 67, 129 (2017).
[28] O. Hen, G. A. Miller, E. Piasetzky and L. B. Weinstein, Rev. Mod. Phys. 89, no. 4, 045002 (2017).
[29] Z. Ye et al. [Hall A Collaboration], Phys. Rev. C 97, no. 6,065204 (2018).
[30] D. W. Higinbotham and O. Hen, Phys. Rev. Lett. 114, no. 16, 169201 (2015).
[31] D. B. Day, L. L. Frankfurt, M. M. Sargsian and M. I. Strikman, arXiv:1803.07629 [nucl-th].
[32] O. Artiles and M. M. Sargsian, Phys. Rev. C 94, no. 6, 064318 (2016).
[33] A. J. Freese, M. M. Sargsian and M. I. Strikman, Eur. Phys. J. C 75, no. 11, 534 (2015).
[34] M. M. Sargsian, Int. J. Mod. Phys. E 10, 405 (2001).
[35] L. L. Frankfurt, M. M. Sargsian and M. I. Strikman, Phys. Rev. C 56, 1124 (1997).
[36] W. Boeglin and M. Sargsian, Int. J. Mod. Phys. E 24, no. 03, 1530003 (2015).
[37] D. Day et al., Phys. Rev. Lett. 43, 1143 (1979).
[38] S. Rock et al., Phys. Rev. C 26, 1592 (1982).
[39] N. Fomin et al., Phys. Rev. Lett. 105, 212502 (2010).
[40] Jefferson Lab Experiment No. E-02-019, unpublished, 2002. https://www.jlab.org/exp_prog/proposals/02/ PR02-019.pdf.
[41] N. Fomin, AIP Conf. Proc. 947, 174 (2007).
[42] J. Arrington, A. Daniel, D. Day, N. Fomin, D. Gaskell, and P. Solvignon, Phys. Rev. C 86, 065204 (2012).
[43] N. Fomin, PhD thesis, University of Virginia, 2007, arXiv:0812.2144.
[44] I. Sick, D. Day and J. S. Mccarthy, Phys. Rev. Lett. 45, 871 (1980).
[45] D. B. Day, J. S. McCarthy, T. W. Donnelly and I. Sick, Ann. Rev. Nucl. Part. Sci. 40, 357 (1990).
[46] D. Ding, A. Rios, H. Dussan, W. H. Dickhoff, S. J. Witte, A. Polls, A. Carbone, Phys. Rev. C 94, 025802 (2016).
[47] Inclusive scattering from nuclei at $x>1$ in the quasielastic and deeply inelastic regimes. https://www.jlab. org/exp_prog/proposals/06/PR12-06-105.pdf Jefferson Lab Experiment No. E12-06-105, unpublished, 2006.

