This is the accepted manuscript made available via CHORUS. The article has been published as:

Fast-timing measurements in the ground-state band of ^ \{114\}Pd
E. R. Gamba et al.

Phys. Rev. C 100, 044309 — Published 11 October 2019
DOI: 10.1103/PhysRevC.100.044309

S. Zhu, ${ }^{3}$ J. T. Anderson, ${ }^{3}$ A. D. Ayangeakaa, ${ }^{3},{ }^{8}$ T. A. Berry, ${ }^{2}$ I. Burrows, ${ }^{4}$ M. Carmona Gallardo, ${ }^{5}$ R. J. Carroll, ${ }^{2}$ P. Copp, ${ }^{6}$ D. M. Cullen, ${ }^{7}$ T. Daniel, ${ }^{2, \mid}$ T| Fernández Martínez, ${ }^{8}$ J. P. Greene, ${ }^{3}$ L. A. Gurgi, ${ }^{2}$ D. J. Hartley, ${ }^{9}$ R. Ilieva, ${ }^{2}$ S. Ilieva, ${ }^{8}$ F. G. Kondev, ${ }^{10}$ T. Kröll, ${ }^{8}$ G. J. Lane, ${ }^{11}$ T. Lauritsen, ${ }^{3}$ I. Lazarus, ${ }^{4}$ G. Lotay, ${ }^{2}$ C. R. Niţă, ${ }^{12}$ Zs. Podolyák, ${ }^{2}$ V. Pucknell, ${ }^{4}$ M. Reed, ${ }^{11}$ P. H. Regan, ${ }^{2,13}$ J. Rohrer, ${ }^{3}$ J. Sethi, ${ }^{3}$ D. Seweryniak, ${ }^{3}$ C. M. Shand, ${ }^{2}$ J. Simpson, ${ }^{4}$ M. Smoleń, ${ }^{14}$ E. A. Stefanova, ${ }^{15}$ V. Vedia, ${ }^{5}$ and O. Yordanov ${ }^{15}$
${ }^{1}$ School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ, United Kingdom
${ }^{2}$ Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
${ }^{3}$ Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
${ }^{4}$ STFC Daresbury Laboratory, Daresbury, Warrington WA4 4 AD, United Kingdom
${ }^{5}$ Grupo de Física Nuclear, Universidad Complutense, CEI Moncloa, ES-28040 Madrid, Spain
${ }^{6}$ Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854, USA
${ }^{7}$ School of Physics and Astronomy, University of Manchester, Manchester M13 9PL. United Kingdom
${ }^{8}$ Institut für Kernphysik, TU Darmstadt, Schlossgartenstrasse 9, 64289 Darmstadt, Germany
${ }^{9}$ Department of Physics, U.S. Naval Academy, Annapolis, Maryland 21402, USA
${ }^{10}$ Nuclear Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
${ }^{11}$ Department of Nuclear Physics, R.S.P.E., Australian National University, Canberra 0200, Australia
${ }^{12}$ Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Măgurele, Romania
${ }^{13}$ AIR Division, NPL, Teddington, TW11 OLW, United Kingdom
${ }^{14}$ School of Engineering and Science, University of the West of Scotland, Paisley PA1 2BE, United Kingdom
${ }^{15}$ INRNE, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria

(Dated: September 1, 2019)

Abstract

Using a hybrid Gammasphere array coupled to $25 \operatorname{LaBr}_{3}(\mathrm{Ce})$ detectors, the lifetimes of the first three levels of the yrast band in ${ }^{114} \mathrm{Pd}$, populated via ${ }^{252} \mathrm{Cf}$ decay, have been measured. The measured lifetimes are $\tau_{2^{+}}=103(10) \mathrm{ps}, \tau_{4^{+}}=22(13) \mathrm{ps}$ and $\tau_{6^{+}} \leq 10 \mathrm{ps}$ for the $2_{1}^{+}, 4_{1}^{+}$and 6_{1}^{+} levels, respectively. Palladium-114 was predicted to be the most deformed isotope of its isotopic chain and spectroscopic studies have suggested it might also be a candidate nucleus for low-spin stable triaxiality. From the lifetimes measured in this work, reduced transition probabilities B(E2; $\mathrm{J} \rightarrow \mathrm{J}-2$) are calculated and compared with IBM, PSM and Collective model calculations from the literature. The experimental ratio $\mathrm{R}_{B(E 2)}=B\left(E 2 ; 4_{1}^{+} \rightarrow 2_{1}^{+}\right) / B\left(E 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)=0.80(42)$ is measured for the first time in ${ }^{114} \mathrm{Pd}$ and compared with the known values $\mathrm{R}_{B(E 2)}$ in the palladium isotopic chain: the systematics suggest that, for $\mathrm{N}=68$, a transition from γ-unstable to a more rigid γ-deformed nuclear shape occurs.

I. INTRODUCTION

Nuclear lifetimes are very important physical observ- ${ }^{47}$ ables able to provide fundamental information on the ${ }^{48}$ structure of the atomic nucleus. The lifetime of a nu- 49 clear excited level can be related to the quadrupole re- ${ }^{50}$ duced transition probability $B(E 2 ; J \rightarrow J-2)$ of the ${ }^{51}$ level, which is in turn related to the intrinsic quadrupole ${ }^{52}$ moment Q_{0}. This is strictly dependent on the quadrupole ${ }^{53}$ deformation parameter β_{2} [1]. By measuring the lifetime ${ }^{54}$

* Alison.Bruce@brighton.ac.uk
\dagger Present address: Department of Nuclear Engineering, Faculty 59 of Physics, University of Sofia "St. Kl. Ohridski", Sofia 1164, ${ }_{60}$ Bulgaria
\ddagger Present address: Dipartimento di Fisica, Università degli Studi ${ }^{61}$ di Milano and INFN, 20133, Milano, Italy
§ Present address: Department of Physics, U.S. Naval Academy, ${ }^{63}$ Annapolis, Maryland 21402, USA
II Present address: Department of Physics, Benue State University, P.M.B, 102119, Makurdi, Nigeria.
of nuclear excited levels it is therefore possible to quantify the occurrence of deformation across the nuclear chart as a function of proton and neutron numbers. Nuclear deformation has been studied systematically in regions far from shell closures such as $A \simeq 110, A \simeq 150$ and $\mathrm{A} \simeq 250$, where nuclei are known to be characterized by non-spherical shapes [2]. Together with oblate $\left(\beta_{2}<0\right)$ and prolate $\left(\beta_{2}>0\right)$ deformed nuclei, a third possibility is represented by cases of static or dynamical triaxial deformation $\left(\gamma \neq n \frac{\pi}{3}\right)$, where all three nuclear axes have different lengths. Indications of triaxial deformation have been observed in the molybdenum $(Z=42)$ [3, 4], ruthenium $(\mathrm{Z}=44)$ [5-7 and palladium $(\mathrm{Z}=46)$ [8 isotopic chains.
The palladium isotopic chain lies between $\mathrm{Cd}(\mathrm{Z}=48)$, usually treated as vibrational [9], and $\mathrm{Ru}(\mathrm{Z}=44)$ showing γ-soft and rigid-triaxial rotor behaviour (5) 6. Studies have indicated the vibrational behaviour of ${ }^{106,108} \mathrm{Pd}$ isotopes [10] which approaches that of a γ-soft rotor for $A \leq 110$ [8]. Spectroscopic investigations of higher mass ${ }^{116-120} \mathrm{Pd}$ isotopes [11-13] suggest that, as the neutron
number increases, the behaviour of Pd isotopes moves back to that of an anharmonic vibrator showing a loss of collectivity [14].
The isotope ${ }^{114} \mathrm{Pd}(\mathrm{N}=68)$ lies very close to the mid shell at $\mathrm{N}=66$, between the $\mathrm{N}=50$ and $\mathrm{N}=82$ neutron shell closures, and it has been shown in Ref. [15] that the maximum of rotational collectivity is reached for this isotope. Furthermore, for $\mathrm{N}=68$, the maximum value of the ratio $E\left(4_{1}^{+}\right) / E\left(2_{1}^{+}\right) \simeq 2.6$ is reached [15]. Similarly to the case of the ruthenium isotopic chain, this never reaches the rotational limit of 3.33 , which is expected for axially symmetric nuclei.
From a spectroscopic perspective, for the isotope ${ }^{114} \mathrm{Pd}$, the energy spacing of the yrast band follows quite remarkably the $\sim J(J+6)$ pattern expected for both Wilets-Jean's γ-soft [16] and Davydov-Filippov's rigid triaxial rotor [17] models. Two important signatures for triaxial deformation are also the $E_{2_{2}^{+}} / E_{4_{1}^{+}}$and $E_{2_{2}^{+}} / E_{2_{1}^{+}}$ ratios which, for this case, are 0.8 and 2.1 , respectively. The former is reported by both Wilets-Jean's and Davydov-Filippov's models to be a signature of strong departure from axiality, while the latter is consistent with ${ }_{121}$ a γ deformation parameter of 27.5°.
A distinction between γ-soft and rigid triaxial behaviour ${ }_{123}$ can be established when looking at the energy spacing ${ }_{124}$ between levels inside the quasi- γ band [18]. In Ref. [19] ${ }_{125}$ Pd isotopes have been systematically analysed in terms ${ }_{126}$ of the staggering parameter $S(J)$, defined as

$$
\begin{equation*}
S(J)=\frac{(E(J)-2 E(J-1)+E(J-2))}{E\left(2_{1}^{+}\right)} \tag{1}
\end{equation*}
$$

where $E(J)$ is the energy of a level with spin J in the ${ }_{129}^{128}$ quasi- γ band. In the case of γ-soft nuclei, the $S(J)$ pa- $_{130}$ rameter is expected to take positive values for the odd ${ }^{131}$ spin levels and negative values for the even-spin ones, , $_{132}$ while the opposite is true for the γ-rigid case [20]. Fig- ${ }_{-133}$ ure 1 shows the behaviour of the parameter $S(J)$ for the ${ }_{134}$ quasi- γ band in the nuclei ${ }^{108-118} \mathrm{Pd}$. An inversion of the ${ }_{135}$ type of triaxiality, from γ-soft to that of a rigid rotor, is_{136} observed for ${ }^{114} \mathrm{Pd}$.

In this work, ${ }^{114} \mathrm{Pd}$ nuclei were produced via the spon- ${ }^{138}$ taneous fission of ${ }^{252} \mathrm{Cf}$, which is able to populate the re- ${ }_{139}$ gions of deformed nuclei around mass numbers $\mathrm{A} \simeq 110_{140}$ and $A \simeq 150$ with higher fission yields for neutron-rich ${ }_{141}$ nuclei with respect to other neutron-induced fission re- ${ }_{142}$ actions [21]. The measured lifetimes of the $2_{1}^{+}, 4_{1}^{+} \operatorname{and}_{143}$ 6_{1}^{+}levels, are used to calculate $B(E 2 ; J \rightarrow J-2) \operatorname{tran}^{-144}$ sition probabilities and then compared with theoreti- ${ }_{145}$ cal calculations from the literature, performed using the ${ }_{146}$ Interacting Boson Model (standard and triaxial IBM_{-147} 1) [22, 23], the Projected Shell Model (PSM) [24] and the ${ }_{148}$ Collective model [2, 25] with the inclusion of the Killing- ${ }_{-149}$ beck potential [26]. Since $\mathrm{R}_{B(E 2)}=B\left(E 2 ; 4_{1}^{+} \rightarrow 2_{1}^{+}\right) /_{150}$ $B\left(E 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)$ratios are known to be able to give in-151 formation about the type of nuclear deformation, and are ${ }_{152}$ well established for nuclei in the mass region $A \simeq 110,153$ of prime interest for the present work is to obtain new 154

FIG. 1. Values of $S(J)$ for ${ }^{108-118} \mathrm{Pd}$ nuclei, calculated from Eq. 1. using values taken from Ref. [27. The staggering parameter for odd- J levels (solid lines) are compared with those for even- J levels (dashed lines). Figure adapted from Ref. [19].
information on the $\mathrm{R}_{B(E 2)}$ ratio for ${ }^{114} \mathrm{Pd}$. Furthermore, the experimental $\mathrm{R}_{B(E 2)}$ ratio obtained for ${ }^{114} \mathrm{Pd}$ is compared with those from the neighbouring even-N palladium isotopes, when these are available, and with the theoretical values predicted by the vibrational, rigid axial rotor, Davydov-Filippov's and Wilets-Jean's models.

II. EXPERIMENTAL SET-UP

The experimental set-up combined the Gammasphere [28] and FATIMA [29, 30] arrays at the Argonne National Laboratory (USA). This was the first time that Gamamsphere was coupled to such a large number of $\mathrm{LaBr}_{3}(\mathrm{Ce})$ scintillator detectors using a fully-digital acquisition set-up. ${ }^{114} \mathrm{Pd}$ nuclei were observed following the spontaneous fission of a $34.4 \mu \mathrm{Ci}{ }^{252} \mathrm{Cf}$ source placed at the centre of a 4π hybrid array made of 51 Comptonsuppressed HPGe detectors from the Gammasphere array coupled to $25 \mathrm{LaBr}_{3}(\mathrm{Ce})$ scintillator detectors from the FATIMA array.
The source consisted of a sample of 183 ng of ${ }^{252} \mathrm{Cf}$ electrodeposited on a platinum disk of $\sim 1.6 \mathrm{~cm}$ diameter and 0.25 mm thickness with an active spot of $\sim 1.27 \mathrm{~cm}$ diameter. A second platinum disk of the same size was attached to the other side of the source using an indium layer of $250 \mu \mathrm{~m} / \mathrm{cm}^{2}$. The resulting disk sandwiched the source between the two Pt disks, therefore fission fragments were equally absorbed on both sides of the disk and no Doppler-shifted γ-rays nor increased line widths were observed.
Each $\mathrm{LaBr}_{3}(\mathrm{Ce})$ detector consisted of a cylindrical crystal 3.8 cm in diameter and 5.1 cm in length, coupled with a Hammamatsu H10570 photomultiplier assembly comprising a R9779 phototube. A 5 mm -thick lead layer covered the side of each $\mathrm{LaBr}_{3}(\mathrm{Ce})$ crystal in order to absorb Compton-scattered γ-rays from ad-
jacent crystals. A fully digital acquisition system (DAQ) was used on the entire $\mathrm{LaBr}_{3}(\mathrm{Ce})$ array for the first time. On the $\mathrm{LaBr}_{3}(\mathrm{Ce})$ side, events made of at least two γ rays within a time window of 200 ns were collected. Independently, fold ≥ 1 events were collected in the Gammasphere array. The two DAQ data streams were eventually merged using a coincidence time window of 500 ns between the fold $\geq 2-\mathrm{LaBr}_{3}(\mathrm{Ce})$ and fold ≥ 1-HPGe events, in order to give events of the type $\gamma\left(\operatorname{LaBr}_{3}(\mathrm{Ce})\right)-\gamma\left(\operatorname{LaBr}_{3}(\mathrm{Ce})\right)-\gamma(\mathrm{HPGe})$. During a 30-day long run a total of $2.6 \times 10^{9} \mathrm{E}_{\gamma}(\mathrm{HPGe})-\mathrm{E}_{\gamma}\left(\mathrm{LaBr}_{3}(\mathrm{Ce})\right)-$ $\mathrm{E}_{\gamma}\left(\mathrm{LaBr}_{3}(\mathrm{Ce})\right)$ events were collected. For a detailed description of the acquisition system see Ref. 31.

III. DATA ANALYSIS AND RESULTS

The level of statistics obtained in this experiment only allowed the lifetimes of the $2_{1}^{+}, 4_{1}^{+}$and 6_{1}^{+}levels in ${ }^{114} \mathrm{Pd}$ to be measured. In order to measure the three lifetimes, both $\mathrm{LaBr}_{3}(\mathrm{Ce})$ and HPGe detectors were used. Due to the superior energy resolution of HPGe detectors, ${ }^{207}$ E_{γ} (HPGe) transitions were used to select the nucleus ${ }^{208}$ of interest and the corresponding excited band, while209 cerium-doped lanthanum bromide $\left(\mathrm{LaBr}_{3}(\mathrm{Ce})\right)$ scintil-210 lator detectors, capable to access the sub-nanosecond ${ }^{211}$ range, were used to measure the lifetimes of interest.212 The large number of contaminant γ-ray peaks from the ${ }^{213}$ large number of fission fragments means that particu-214 lar care had to be taken when applying the $\mathrm{E}_{\gamma}(\mathrm{HPGe})^{215}$ gates and when performing the lifetime measurements ${ }^{216}$ with the $\mathrm{LaBr}_{3}(\mathrm{Ce})$ detectors. The lifetimes measured ${ }^{218}$ in this work were around 100 ps or shorter, therefore ${ }^{219}$ the Generalized Centroid Difference (GCD) method [32] ${ }^{220}$ was used. The background correction applied on the ${ }^{221}$ time information followed the Three Samples approach ${ }^{222}$ described in Ref. 33].
The analysis performed for the three levels used simi-224 lar procedures, however, for each case, individual adjust-225 ments had to be considered. For the discussions carried ${ }^{226}$ out in this Section, the reader should refer to the partial ${ }^{227}$ level scheme of ${ }^{114} \mathrm{Pd}$, presented in Fig. 2, where only ${ }^{228}$ the levels and transitions of interest for this work are ${ }^{229}$ represented.

$$
\text { A. } \quad 2_{1}^{+} \text {level in }{ }^{114} \mathrm{Pd}
$$

For the lifetime measurement of the 2_{1}^{+}level in ${ }^{114} \mathrm{Pd}$,234 $\mathrm{E}_{\gamma}(\mathrm{HPGe})$ gates were applied on the $6_{1}^{+} \rightarrow 4_{1}^{+}(648 \mathrm{keV}),{ }^{235}$ $8_{1}^{+} \rightarrow 6_{1}^{+}(715 \mathrm{keV}), 10_{1}^{+} \rightarrow 8_{1}^{+}(644 \mathrm{keV})$ and $5_{1}^{-} \rightarrow 4_{1}^{+}{ }_{236}$ (1332 keV) transitions. For each of these Full-Energy-237 Peak (FEP) gates a $\mathrm{E}_{\gamma}(\mathrm{HPGe})$ background gate was also ${ }^{238}$ identified. Each of these background gates was taken as ${ }^{239}$ close as possible to the corresponding FEP gate and the ${ }^{240}$ same gate width (usually 2 or 3 keV) was used. Due ${ }^{242}$ to the large number of peaks in the ${ }^{252} \mathrm{Cf}$ fission spec- ${ }^{-243}$ trum the selection of $\mathrm{E}_{\gamma}(\mathrm{HPGe})$ background gates re-244

FIG. 2. Partial level scheme of ${ }^{114} \mathrm{Pd}$, including the groundstate band and the quasi- γ band, of interest for this work. For clarity, the 5_{1}^{-}level is also included (see text for details) [27. All arrows have equal widths and these don't reflect the γ-ray intensities.
quired extreme care, to make sure that no peak with small amplitude was included in the background gate. The $\mathrm{E}_{\gamma}(\mathrm{HPGe})$ (red) and $\mathrm{E}_{\gamma}\left(\mathrm{LaBr}_{3}(\mathrm{Ce})\right)$ (blue) energy spectra shown in Fig. 3 were obtained by adding together the four different FEP-gated energy spectra and by subtracting the four background-gated spectra, for both arrays, respectively. In both spectra the $4_{1}^{+} \rightarrow 2_{1}^{+}$(feeding transition at 520 keV) and $2_{1}^{+} \rightarrow 0_{\text {g.s. }}^{+}$(decay transition at 333 keV) are clearly visible, together with other higherenergy transitions from the same nucleus or its fission partners. The same FEP and background $\mathrm{E}_{\gamma}(\mathrm{HPGe})$ gates were then applied to produce eight $\mathrm{E}_{\gamma}\left(\mathrm{LaBr}_{3}(\mathrm{Ce})\right)$ -$\mathrm{E}_{\gamma}\left(\mathrm{LaBr}_{3}(\mathrm{Ce})\right)-\Delta \mathrm{T}$ cubes with coincident events. This set of eight cubes was then used to produce the final $\mathrm{E}_{\gamma}\left(\mathrm{LaBr}_{3}(\mathrm{Ce})\right)-\mathrm{E}_{\gamma}\left(\mathrm{LaBr}_{3}(\mathrm{Ce})\right)-\Delta \mathrm{T}$ cube by adding together the four cubes obtained from the FEP gates and subtracting those from the background gates.
The final $\mathrm{E}_{\gamma}-\mathrm{E}_{\gamma}-\Delta \mathrm{T}$ cube produced following this procedure is a so-called start-and-stop cube, i.e. the two energy axes x and y represent the energy values measured for the γ rays defining the start and stop of the measured $\Delta \mathrm{T}$ value, respectively. Here, $\Delta \mathrm{T}$ is defined as

$$
\begin{equation*}
\Delta \mathrm{T}=\mathrm{T}_{E_{y}}-\mathrm{T}_{E_{x}} . \tag{2}
\end{equation*}
$$

The information from the detector with the smaller identification number was put on the x axis and the other one on the y axis. This avoids the cube from being filled twice and also makes it not symmetrical. The $\mathrm{E}_{\gamma^{-}}$ E_{γ} matrix obtained projecting the cube on the $x-y$ plane, for the case of the 2_{1}^{+}level in ${ }^{114} \mathrm{Pd}$, is shown in Fig. 4. The two coincidence peaks encircled in red contain independent events from the $4_{1}^{+} \rightarrow 2_{1}^{+} \rightarrow 0_{\text {g.s. }}^{+}$ cascade and, by gating on them, the $p \mid p$ (FEP-FEP) delayed and anti-delayed time distributions are obtained. In order to background-correct the value of the centroid position $\mathrm{C}_{p \mid p}^{m}$ (where the label m stands for measured) of the delayed and anti-delayed time distributions, the

FIG. 3. (Colour online). Gammasphere (red) and $\mathrm{LaBr}_{3}(\mathrm{Ce})$ (blue) energy spectra, obtained by adding together four FEP(HPGe)-gated energy spectra and by subtracting four background-gated energy spectra, see text for details. The $4_{1}^{+} \rightarrow 2_{1}^{+}$and $2_{1}^{+} \rightarrow 0_{\text {g.s. }}^{+}$transitions in ${ }^{114} \mathrm{Pd}$ are clearly visible. It can also be noticed the large number of (small) transitions, produced by ${ }^{114} \mathrm{Pd}$ itself and the fission partners ${ }^{134,136} \mathrm{Te}$. For the purpose of this measurement these small peaks are considered as contaminants. The four arrows indicate the left (unfilled) and right (filled) background regions considered for the timing background subtraction (see text and Fig. (4). FFP(HPGe)-gated energy spectra, obtained by adding together four
. (Colour online). Two-dimensional projection of the start and stop $\mathrm{E}_{\gamma}\left(\operatorname{LaBr}_{3}(\mathrm{Ce})\right)-\mathrm{E}_{\gamma}\left(\operatorname{LaBr}_{3}(\mathrm{Ce})\right)-\Delta \mathrm{T}$ cube obtained by gating on the $6_{1}^{+} \rightarrow 4_{1}^{+}, 8_{1}^{+} \rightarrow 6_{1}^{+}, 10_{1}^{+} \rightarrow 8_{1}^{+}$and $5_{1}^{-} \rightarrow 4_{1}^{+}$transitions, in ${ }^{114} \mathrm{Pd}$, in Gammasphere. The two regions encircled by the red solid lines represent the coincidence peaks for the $4_{1}^{+} \rightarrow 2_{1}^{+} \rightarrow 0_{g . s}^{+}$. cascade. The dots encircled in red are used to indicate the left (white) and right (black) gates applied to obtain the three background components, for both the delayed and anti-delayed time distributions. These correspond to the four arrows shown in Fig. 3 .
the equation

$$
\begin{equation*}
\mathrm{C}_{p \mid p}^{t}=\frac{\mathrm{n}_{p \mid p}^{m} \mathrm{C}_{p \mid p}^{m}-\mathrm{n}_{p \mid b g}^{m} \mathrm{C}_{p \mid b g}^{m}-\mathrm{n}_{b g \mid p}^{m} \mathrm{C}_{b g \mid p}^{m}+\mathrm{n}_{b g \mid b g}^{m} \mathrm{C}_{b g \mid b g}^{m}}{\mathrm{n}_{p \mid p}^{m}-\mathrm{n}_{p \mid b g}^{m}-\mathrm{n}_{b g \mid p}^{m}+\mathrm{n}_{b g \mid b g}^{m}} \tag{3}
\end{equation*}
$$

where $\mathrm{n}_{p \mid p}^{m}$, represent the measured number of counts of the $p \mid p$ time distribution. In order to take into account the energy-dependent time-walk affecting the centroid position of each background time distribution, these were corrected for the Compton time-walk obtained from the Compton curve (see Ref. [33) before being used in Eq. 3 . The measured centroid positions and number of counts for each of the eight time components measured and for the final background-corrected delayed and anti-delayed time distributions, are listed in the first part of Table. I. The centroid difference value, $\Delta \mathrm{C}$, defined as

$$
\begin{equation*}
\Delta \mathrm{C}^{t}=\mathrm{C}_{p \mid p}^{t, \text { del }}-\mathrm{C}_{p \mid p}^{t, a n t i-d e l} \tag{4}
\end{equation*}
$$

was then corrected for the FEP-FEP time-walk which, when the GCD method is used, is usually described by the Prompt Response Difference Curve (PRD). This correction term is given by the value $\operatorname{PRD}\left(\mathrm{E}_{f}, \mathrm{E}_{d}\right)$, defined as

$$
\begin{equation*}
\operatorname{PRD}\left(\mathrm{E}_{f}, \mathrm{E}_{d}\right)=\operatorname{PRD}\left(\mathrm{E}_{f}\right)-\operatorname{PRD}\left(\mathrm{E}_{d}\right) \tag{5}
\end{equation*}
$$

The Compton curve and the PRD curve are shown in Fig 5. Finally, the lifetime of the level is obtained from the equation

$$
\begin{equation*}
\tau=\frac{\Delta \mathrm{C}^{t}-\mathrm{PRD}^{\left(\mathrm{E}_{f}, \mathrm{E}_{d}\right)}}{2} \tag{6}
\end{equation*}
$$

FIG. 5. Experimental PRD (solid line) and Compton (dashed line) curves, plotted using 344.3 keV as the reference energy. These are used to correct for the effect of the time-walk on the position of the centroids of the FEP $(p \mid p)$ and background ($p|b g, b g| p$ and $b g \mid b g$) time distributions, respectively. See Refs. [32, 33] for a complete description of the properties of these two curves.

The corrected centroid shift value of $\Delta \mathrm{C}^{t}=358(19) \mathrm{ps}$, together with a time-walk correction of $\operatorname{PRD}(520$, $333)=152(6) \mathrm{ps}$, gave a lifetime for the 2_{1}^{+}level of $\tau=103(10) \mathrm{ps}$. This is consistent with the literature ${ }_{340}$ value of $\tau=118(20) \mathrm{ps}$, from Ref. [15], and also with the result of $\tau=116(6)$ ps obtained in Ref. [34], that ${ }^{341}$ was never published in a referee journal. The weighted ${ }^{342}$ average of the three values is $\tau_{2^{+}}=113(5) \mathrm{ps}$ and that ${ }^{343}$ is the value which will be used later on in the paper. ${ }^{344}$
B. 4_{1}^{+}level in ${ }^{114} \mathbf{P d}$

The 4_{1}^{+}level in ${ }^{114} \mathrm{Pd}$ was isolated by applying threes50 background-subtracted HPGe gates on the $2_{1}^{+} \rightarrow 0_{\text {g.s. }}^{+}$, $8_{1}^{+} \rightarrow 6_{1}^{+}$and $10_{1}^{+} \rightarrow 8_{1}^{+}$transitions. The resulting γ-ray ${ }^{351}$ spectra are shown in Fig. 6. The energy gates on the ${ }^{352}$ $4_{1}^{+} \rightarrow 2_{1}^{+}$and $6_{1}^{+} \rightarrow 4_{1}^{+}$transitions in $\mathrm{E}_{\gamma}\left(\mathrm{LaBr}_{3}(\mathrm{Ce})\right)$ are ${ }^{353}$ shown by the two pairs of black solid lines. The non- ${ }^{354}$ negligible contribution of the 511 keV peak to the peak ${ }^{355}$ at 520 keV means that the energy gate on the $4_{1}^{+} \rightarrow 2_{1}^{+356}$ transition was taken only to the right of the energy peak. ${ }^{357}$ The energy gate on the $6_{1}^{+} \rightarrow 4_{1}^{+}$transition was taken as ${ }^{358}$ narrow as possible in order to minimize the contributions ${ }^{359}$ from the $10_{1}^{+} \rightarrow 8_{1}^{+}$and $7_{1}^{+} \rightarrow 5_{1}^{+}\left(659 \mathrm{keV}\right.$, from the ${ }^{360}$ quasi- γ band) transitions. The former is presumably car- ${ }^{361}$ rying a very short lifetime, from the 10_{1}^{+}level, while the ${ }^{362}$ lifetime carried by the latter is unknown. The position ${ }^{363}$ of the two background gates are indicated by the black ${ }^{364}$ arrows. For the $4_{1}^{+} \rightarrow 2_{1}^{+}$peak, this was taken as close as possible to the peak. The second background gate was applied around 750 keV of energy, in order to avoid the ${ }^{365}$ $3_{1}^{+} \rightarrow 2_{1}^{+}$transition, from the quasi- γ band at 680 keV . Only the background to the right-hand side of the coin-366 cidence peak was considered for the Three Samples ap-367 proach because of the large number of contaminant peaks368

FIG. 6. (Colour online). $\mathrm{E}_{\gamma}\left(\mathrm{LaBr}_{3}(\mathrm{Ce})\right)$ (blue) and $\mathrm{E}_{\gamma}(\mathrm{HPGe})$ (red) spectra obtained in coincidence with the background-subtracted HPGe gates on the $2_{1}^{+} \rightarrow 0_{g . s .}^{+}$, $8_{1}^{+} \rightarrow 6_{1}^{+}$and $10_{1}^{+} \rightarrow 8_{1}^{+}$transitions. $\mathrm{E}_{\gamma}\left(\operatorname{LaBr}_{3}(\mathrm{Ce})\right)$ gates on the $4_{1}^{+} \rightarrow 2_{1}^{+}$and $6_{1}^{+} \rightarrow 4_{1}^{+}$transitions are indicated by the black solid lines. In order to minimize the contributions of contaminant peaks, observable in the $\mathrm{E}_{\gamma}(\mathrm{HPGe})$ spectrum, these were not centred around the $\mathrm{LaBr}_{3}(\mathrm{Ce})$ energy peaks. Background gates for the timing information in the $\operatorname{LaBr}_{3}(\mathrm{Ce})$ array are indicated by the black arrows.

A second indirect measurement was performed on the lifetime of the 4_{1}^{+}level. $\mathrm{E}_{\gamma}(\mathrm{HPGe})$ gates were applied on the $8_{1}^{+} \rightarrow 6_{1}^{+}$and $10_{1}^{+} \rightarrow 8_{1}^{+}$transitions, while $\mathrm{E}_{\gamma}\left(\operatorname{LaBr}_{3}(\mathrm{Ce})\right)$ start and stop gates were applied on the $2_{1}^{+} \rightarrow 0_{\text {g.s. }}^{+}$and $6_{1}^{+} \rightarrow 4_{1}^{+}$transitions. A background-corrected centroid difference value of $\Delta \mathrm{C}=477(38)$ ps was obtained and by using the timewalk correction $\operatorname{PRD}(648,333)=231(6) \mathrm{ps}$, the lifetime $\tau_{2+}+\tau_{4+}=123(19) \mathrm{ps}$ was measured. The lifetime of $\tau_{2^{+}}=103(10) \mathrm{ps}$ was subtracted from this sum of two lifetimes, and the value $\tau_{4^{+}}=20(22) \mathrm{ps}$ was obtained. The weighted average between the two lifetime measurements (direct and indirect) for the 4_{1}^{+}level gives $\tau_{4^{+}}=21(11) \mathrm{ps}$.

C. 6 $_{1}^{+}$level in ${ }^{114} \mathbf{P d}$

The lifetime of the 6_{1}^{+}level in ${ }^{114} \mathrm{Pd}$ was determined after gating on the background-subtracted $2_{1}^{+} \rightarrow 0_{\text {g.s. }}^{+}$and $4_{1}^{+} \rightarrow 2_{1}^{+}$transitions in Gammasphere. $\mathrm{E}_{\gamma}\left(\mathrm{LaBr}_{3}(\mathrm{Ce})\right)$

FIG. 7. (Colour online). As Fig. 4 but gated on the background-subtracted $2_{1}^{+} \rightarrow 0_{\text {g.s. }}^{+}, 8_{1}^{+} \rightarrow 6_{1}^{+}$and $10_{1}^{+} \rightarrow 8_{1}^{+}$ transitions, in Gammasphere. The black solid lines define the limits of the gates applied on the delayed and anti-delayed coincidence peaks, while the black dots represent the three background samples selected for each peak.
(blue) and $\mathrm{E}_{\gamma}(\mathrm{HPGe})$ (red) spectra are shown in Fig. 8 . As for the case of the 4_{1}^{+}level, in order to minimize the contribution from the $10_{1}^{+} \rightarrow 8_{1}^{+}$transition, the $\mathrm{E}_{\gamma}\left(\operatorname{LaBr}_{3}(\mathrm{Ce})\right)$ gate on the $6_{1}^{+} \rightarrow 4_{1}^{+}$transition was set asymmetrically to the right-hand side of the peak. Any background gate taken to the immediate right of the 648 keV peak, or to the left of the 715 keV peak, would include also events from the $3_{1}^{+} \rightarrow 2_{1}^{+}$transition, and therefore the background gate for the $6_{1}^{+} \rightarrow 4_{1}^{+}$transition was set around $\mathrm{E}_{\gamma}=760 \mathrm{keV}$. As for the previous case, many peaks can be observed to the left of the $6_{1}^{+} \rightarrow 4_{1}^{+}$ transition, and for this reason a left background gate was excluded also for this peak. The background gate for the $8_{1}^{+} \rightarrow 6_{1}^{+}$transition was applied around $\mathrm{E}_{\gamma}=780 \mathrm{keV}$. The positions of the two FEP and the background gates are indicated in Fig. 8 by the two black arrows and by the black dots in the two-dimensional projection of the $\mathrm{E}_{\gamma}-\mathrm{E}_{\gamma}-\Delta \mathrm{T}$ cube, shown in Fig. 9. The measured centroid positions and number of counts for the eight time distributions considered for this measurement, are listed in the bottom part of Table. [] A corrected centroid difference value of $\Delta \mathrm{C}^{t}=35(15) \mathrm{ps}$ was found. Combined ${ }^{39}$ with a time-walk correction of $\operatorname{PRD}(715,648)=30(4) \mathrm{ps}^{400}$ the lifetime value obtained was $\tau_{6^{+}}=2(8) \mathrm{ps}$. This was translated into an upper limit for this lifetime of 10 ps .

FIG. 8. (Colour online). $\mathrm{E}_{\gamma}\left(\mathrm{LaBr}_{3}\right)$ (blue) and $\mathrm{E}_{\gamma}(\mathrm{HPGe})$ (red) spectra obtained from the two background-subtracted HPGe gates on the $2_{1}^{+} \rightarrow 0_{g . s .}^{+}$and $4_{1}^{+} \rightarrow 2_{1}^{+}$transitions. Energy gates on the feeding and depopulating transitions are indicated by the black solid lines. Background gates for the timing information on the LaBr_{3} array are indicated by the two black arrows.

FIG. 9. (Colour online). As for Fig. 4 but obtained by gating on the background-subtracted $2_{1}^{+-} \rightarrow 0_{\text {g.s. }}^{+}$, and $4_{1}^{+} \rightarrow 2_{1}^{+}$ transitions in Gammasphere. The background regions are indicated by the black dots and the red arrows indicate to which of the two coincidence peaks they refer.
where τ_{W} is the single-particle Weisskopf estimate of the lifetime and τ_{γ} is the partial lifetime defined as

$$
\begin{equation*}
\tau_{\gamma}=\tau_{\text {meas }}(1+\alpha) \tag{8}
\end{equation*}
$$

where α is the electron conversion coefficient taken from BrIcc [35]. For each of the three measured lifetimes F_{W} is in the order of magnitude of 10^{-2} which indicates a collective behaviour for the excited levels in the yrast band of ${ }^{114} \mathrm{Pd}$.
The $B(E 2)$ transition strengths in $\mathrm{e}^{2} \mathrm{~b}^{2}$ units were calculated using the equation

$$
\begin{equation*}
B\left(E 2 ; J_{i} \rightarrow J_{i}-2\right)=\frac{8.162 \times 10^{10}}{\tau_{\gamma} E_{\gamma}^{5}} \tag{9}
\end{equation*}
$$

TABLE I. Centroid positions and number of counts for the $p|p, p| b g, b g \mid p$ and $b g \mid b g$ time distributions, obtained for the lifetime measurements of the $2_{1}^{+}, 4_{1}^{+}$and 6_{1}^{+}levels in ${ }^{114} \mathrm{Pd}$. The values are listed for the $p|p, p| b g, b g \mid p$ and $b g \mid b g$ time distributions of both the delayed and anti-delayed coincidence peaks. The centroid positions listed for the background time distributions have been corrected for the Compton time-walk. For each lifetime measurement, the delayed and anti-delayed centroid positions $\mathrm{C}^{p \mid p}$ and the related centroid difference value $\Delta \mathrm{C}$ are given before and after the background correction from Eq. 3 and labelled with m and t, respectively. The values of the $\operatorname{PRD}\left(\mathrm{E}_{f}, \mathrm{E}_{d}\right)$ time-walk correction applied in each case are also listed. All centroid positions, PRD values and lifetimes are given in picoseconds.

where τ_{γ} is in nanoseconds and the energy E_{γ} of the tran-420 sition is in keV . The uncertainties $\sigma_{B(E 2)}$ are assumed to421 be symmetric, and were estimated following the proce-422 dure given in Ref. [36]. This is usually recommended ${ }_{423}$ when the uncertainties associated to the lifetime mea-424 surements are either asymmetric or exceed 10%. Intrinsic quadrupole moments Q_{0} for the levels of interest were calculated using the relationship between $B(E 2 ; J \rightarrow J-2)^{425}$ and Q_{0}, described by the equation

$$
\begin{equation*}
B\left(E 2 ; J_{i} \rightarrow J_{f}\right)=\frac{5}{16 \pi} e^{2} Q_{0}^{2}\left\langle J_{i} K 20 \mid J_{f} K\right\rangle^{2} \tag{10}
\end{equation*}
$$

where the symbol in brackets $\langle\ldots\rangle$ is the ClebschGordon coefficient. Uncertainties on Q_{0} were obtained by propagating the uncertainties on $B(E 2)$. Deformation parameters $\left|\beta_{2}\right|$ for each level were calculated solving the cubic equation [1]

$$
\begin{equation*}
Q_{0}=\frac{3}{\sqrt{5 \pi}} R_{a v}^{2} Z \beta_{2}\left(1+\frac{2}{7} \sqrt{\frac{5}{\pi}} \beta_{2}+\frac{1}{14 \pi} \beta_{2}^{2}+\ldots\right) \tag{11}
\end{equation*}
$$

valid in the assumption of a quadrupoloid shape. The value of $R_{a v}=1.2 \cdot A^{1 / 3} \mathrm{fm}$ was used. Uncertainties for the different $\left|\beta_{2}\right|$ values were obtained solving the same equation for the upper and lower limits of Q_{0}. Partial
level lifetimes τ_{γ}, reduced transition probabilities $B(E 2)$,484 intrinsic quadrupole moments Q_{0} and deformation pa-485 rameters $\left|\beta_{2}\right|$ for the $2_{1}^{+}, 4_{1}^{+}$and 6_{1}^{+}levels in ${ }^{114} \mathrm{Pd}$ are listed in Table. II.

TABLE II. Partial lifetimes τ_{γ}, reduced transition probabilities $B\left(E 2 ; J_{i} \rightarrow J_{i}-2\right)$ together with intrinsic quadrupole moments Q_{0} and deformation parameters $\left|\beta_{2}\right|$ for ${ }^{114} \mathrm{Pd}$. One W.u. equals $32.84 \times 10^{-4} \mathrm{e}^{2} \mathrm{~b}^{2}$.

J_{i}^{π}	τ_{γ} $[\mathrm{ps}]$	$B\left(E 2 ; J_{i} \rightarrow J_{i}-2\right)$ $\left[\mathrm{e}^{2} \mathrm{~b}^{2}\right]$	$\left\|Q_{0}\right\|$ $[$ W.u. $]$	$\left\|\beta_{2}\right\|$	
2_{1}^{+}	$115(5)$	$0.174(7)$	$53(2)$	$2.96(6)$	$0.231(5)$
4_{1}^{+}	$21(11)$	$0.140(73)$	$43(27)$	$2.22(58)$	$0.177(44)$
6_{1}^{+}	≤ 10	≥ 0.071	≥ 21	≥ 1.51	≥ 0.123

In Davydov-Filippov's model 17 for rigid triaxial ro- ${ }^{486}$ tors, $B(E 2)$ values between the ground-state band and ${ }_{487}$ quasi- γ band are able to provide a signature of triaxial-488 ity, however, as shown in Ref. [37], for values of γ go-489 ing from 0° to $60^{\circ}, B(E 2)$ values for transitions between490 levels inside the ground-state band change by less than ${ }^{491}$ 10%, which is below the experimental uncertainties on ${ }^{492}$ the $B(E 2)$ values presented in this work.
Figure 10 shows the comparison between measured ${ }_{493}$ $B(E 2)$ values (black dots) and theoretical values from,494 Projected Shell Model (PSM) 14 (squares) and using 495 the Bohr Hamiltonian coupled with the Killingbeck po-496 tential [20 (triangles, down). In this last work ${ }^{114} \mathrm{Pd}_{497}$ was assumed to be triaxial. In the IBM-1 calculations in ${ }_{498}$ Ref. [38] two different approaches were used to calculate499 $B(E 2)$ transition rates in ${ }^{114} \mathrm{Pd}$. An $\mathrm{SU}(3)$-type Hamil-500 tonian was used first (triangles, up), and then a three-501 body term (three d bosons) able to create a triaxial min-502 imum in the potential was added (crosses). The effect of503 this additional interaction is to strongly modify the dis-504 tribution of the energy levels belonging to the γ-band,505 reducing the odd-even staggering $S(J)$ described previ-506 ously 39. As pointed out in Ref. 38, the three-body507 term reduces the relative $B(E 2)$ values for the ground-508 state band, by a factor of ~ 0.8, leading to a better agree-509 ment with the experimental $B(E 2)$ values as shown in510 Figure 10. IBM-2 calculations 40] (not in the figure) give ${ }_{511}$ a relative $B\left(E 2 ; 4_{1}^{+} \rightarrow 2_{1}^{+}\right)$value of $0.25 \mathrm{e}^{2} \mathrm{~b}^{2}$ which over-512 laps with those from PSM and the triaxial IBM-1 (the ${ }_{513}$ $B\left(E 2 ; 6_{1}^{+} \rightarrow 4_{1}^{+}\right)$value was not calculated in this model).514 All calculations were normalized to the $B\left(E 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)_{515}$ value measured in this work.

516
Figure 10 shows that none of the calculations for the ${ }_{517}$ $B\left(E 2 ; 4_{1}^{+} \rightarrow 2_{1}^{+}\right)$value are within one standard devia-518 tion of the experimental value but the closest is for the 5_{519} Killingbeck potential which is at 1.2 standard deviations. 520 This calculation explicitly includes the triaxial deforma-521 tion and this may be why it shows better agreement. In-522 deed, the $B\left(E 2 ; 4_{1}^{+} \rightarrow 2_{1}^{+}\right)$values calculated in the two ${ }_{523}$ versions of the IBM-1 show the importance of triaxiality. 524 However, in order to get a better understanding, it would ${ }_{525}$ be necessary to measure the lifetimes of the first excited ${ }_{526}$
states of the quasi- γ band, which is not possible with this data set.

FIG. 10. Theoretical values of the reduced transition probabilities for the $2_{1}^{+} \rightarrow 0_{\text {g.s. }}^{+}, 4_{1}^{+} \rightarrow 2_{1}^{+}$and $6_{1}^{+} \rightarrow 4_{1}^{+}$transitions in ${ }^{114} \mathrm{Pd}$, obtained from PSM (squares) [14, Killingbeck potential (triangles, down) [20], standard IBM-1 (triangles, up), and triaxial IBM-1 (crosses) 38, compared with experimental values (black dots).

Additional information can be obtained by analysing the systematics of the $B\left(E 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)$values for the neighbouring even- Z isotopic chains, i.e. Cd and Ru as shown in Fig. 11. Even-even cadmium isotopes in the range $\mathrm{N}=56-72$ are considered to be good examples of spherical anharmonic vibrators [9, 41, 42] while among the even-even Ru isotopes cases of γ-softness and stable triaxiality in the range ${ }^{100-118} \mathrm{Ru}$ were observed [6, 7]. Fig. 11 shows that as the number of neutrons N increases, the $\overline{\mathrm{Ru}}$ and Cd isotopic chains follow completely different paths. The $B(E 2)$ values for the cadmium chain are rather constant while Ru transition rates increases up to a maximum value for ${ }^{112} \mathrm{Ru}$, where the maximum of triaxiality is expected to occur [6]. The $B(E 2)$ values for the Pd chain lie in between those of Cd and Ru for almost every value of N , but it is interesting that the adopted value of ${ }^{114} \mathrm{Pd}$ approaches that of ${ }^{112} \mathrm{Ru}$, indicating some degree of triaxiality. Moreover, Q_{0} values in the ground-state band of molybdenum and ruthenium, which are associated to γ-deformation, were observed to decrease for increasing J values 4 and this is consistent with the values quoted in Table II for the 2^{+}and 4^{+}levels in ${ }^{114} \mathrm{Pd}$.
Figure 11 also hints at some sort of staggering behaviour between ${ }^{12} \mathrm{Pd}$ and ${ }^{116} \mathrm{Pd}$. However, the lifetime measurements of the first 2^{+}levels in ${ }^{112} \mathrm{Pd}$ and ${ }^{116} \mathrm{Pd}$ have been performed using the recoil distance method in Refs. [43] and 44], respectively. In both works, the palladium isotopes were observed following the spontaneous fission of ${ }^{252} \mathrm{Cf}$ and γ rays were detected in singles, in coincidence with fission fragments. Considering that lifetimes were obtained by measuring the absolute or relative intensities of the $2_{1}^{+} \rightarrow 0_{1}^{+}$transition in the two nuclei and that high- J levels are likely to be populated,
it is possible that some feeding transitions contribute to the lifetimes measured in the two experiments. The lifetime measured would then be larger than that for the 2_{1}^{+} level leading to correspondingly smaller $B\left(E 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)$ values.

FIG. 11. $B\left(E 2 ; 2_{1}^{+} \rightarrow 0_{\text {g.s. }}^{+}\right)$transition rates for the Ru ($\mathrm{Z}=44$, circles $), \mathrm{Pd}(\mathrm{Z}=46$, triangles $)$ and $\mathrm{Cd}(\mathrm{Z}=48$, squares) isotopic chains. Values are taken from Ref. [36], except for ${ }^{114} \mathrm{Pd}(\mathrm{N}=68)$ which corresponds to $\tau_{2^{+}}=113(5) \mathrm{ps}{ }^{570}$ Error bars are not shown when they are smaller than the data ${ }^{571}$ points.

The ratio $\mathrm{R}_{B(E 2)}=B\left(E 2 ; 4_{1}^{+} \rightarrow 2_{1}^{+}\right) / B\left(E 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)^{574}$ is indicative of the degree of collectivity: $\mathrm{R}_{B(E 2)}=2$ for ${ }^{5 / 5}$ vibrational nuclei [25], 1.43 for rigid axial nuclei [45], 1.68^{576} for γ-unstable rotors 46 and 1.40 for rigid triaxial ro- ${ }^{577}$ tors 47, in the case of $\gamma=27.5^{\circ}$. The $B\left(E 2 ; J_{i} \rightarrow J_{i}-2\right)^{578}$ values in Table II give a value of $\mathrm{R}_{B(E 2)}=0.80(42)^{579}$ for ${ }^{114} \mathrm{Pd}$ and this is compared with the experimental ${ }_{581}^{580}$ ratios measured in Coulomb excitation experiments for ${ }_{582}^{581}$ ${ }^{104,106,108,110} \mathrm{Pd}$ in Fig. 12. It can be observed that the ${ }_{583}^{582}$ $\mathrm{R}_{B(E 2)}$ values of Pd isotopes for $\mathrm{N}=60,62,64$ fluctu- ${ }_{584}^{583}$ ate around the limit of 1.68 given by the Wilets-Jean's ${ }_{585}^{584}$ model, although the value for ${ }^{104} \mathrm{Pd}(\mathrm{N}=58)$ is slightly ${ }^{585}$ smaller. A sudden drop of the $\mathrm{R}_{B(E 2)}$ value is observed ${ }_{587}^{586}$ for $\mathrm{N}=68$ and while the experimental value is more than ${ }^{587}$ 1 standard deviation from the value for either rigid axial ${ }_{589}^{588}$ or triaxial deformation, it is consistent within 1.4σ with 589 the conclusion suggested by the energy staggering $S(J){ }_{599}^{590}$ shown in Fig. 1, that there is an inversion to rigid triaxial ${ }_{592}^{591}$ behaviour at ${ }^{\Pi 4} \mathrm{Pd}$.

V. CONCLUSIONS

This work reports on the first measurements of life- ${ }_{598}$ times of excited levels in fission fragments using the large ${ }_{599}$ scale array Gammasphere + FATIMA. The hybrid array, used at the Argonne National Laboratory used 51 HPGe detectors coupled to $25 \mathrm{LaBr}_{3}(\mathrm{Ce})$ scintillators. A fullydigital acquisition set-up was used for the first time. ${ }^{600}$ A lifetime measurement of the 2_{1}^{+}level in ${ }^{114} \mathrm{Pd}$ gave a value of $\tau_{2^{+}}=103(10) \mathrm{ps}$ which was found to be con-601 sistent with previous measurements [15, 34]. Values of f_{62}

FIG. 12. Experimental $\mathrm{R}_{B(E 2)}$ values for ${ }^{104,106,108,110} \mathrm{Pd}$, taken from Ref. [27, and for ${ }^{114} \mathrm{Pd}$ measured in this work. The ratios are compared with the values predicted by the vibrator, rigid axial rotor, Wilets-Jean's and DavydovFilippov's models, as indicated in the legend.
$\tau_{4^{+}}=22(13) \mathrm{ps}$ and $\tau_{6^{+}} \leq 10 \mathrm{ps}$ were also obtained. From the lifetimes measured, $B(E 2)$ transition strengths and quadrupole moments Q_{0} were calculated, along with their associated deformation parameters $\left|\beta_{2}\right|$. None of the theoretical calculations performed using the IBM[3840, PSM [14, and Collective model calculations [20] is within 1σ of the measured $B\left(E 2 ; 4_{1}^{+} \rightarrow 2_{1}^{+}\right)$value but the closest is the one obtained from the Killingbeck potential, probably because of the inclusion of a triaxial minimum. The lower limit obtained for the $B\left(E 2 ; 6_{1}^{+} \rightarrow 4_{1}^{+}\right)$value is in agreement with all the calculations.
The suggestion that ${ }^{114} \mathrm{Pd}$ is one of the most deformed of all Pd isotopes is strongly supported by the $B\left(E 2 ; 2_{1}^{+} \rightarrow 0_{1}^{+}\right)$value which is one of the largest of the isotopic chain. The systematics of the $B(E 2)$ values for even-even palladium isotopes compared with the ones of the even-even neighbouring ruthenium and cadmium isotopes shows an onset of triaxiality that reaches a maximum for ${ }^{114} \mathrm{Pd}$.
The experimental $\mathrm{R}_{B(E 2)}$ ratio was compared with the expectations from different models and a transition from γ-soft rotor to that of a rigid triaxially-deformed configuration seems to be taking place for $\mathrm{N}=68$.
Any measurement of inter-band $B(E 2)$ values was precluded by the lack of statistics, with $\mathrm{LaBr}_{3}(\mathrm{Ce})$ detectors, for the transitions between the quasi- γ and ground-state bands. This forbids any quantitative evaluation of the triaxial deformation characterising ${ }^{114} \mathrm{Pd}$ and therefore new data will be necessary to draw any definitive conclusion.

ACKNOWLEDGMENTS

This work was financially supported by the Science and Technology Facility Council (STFC) grants

ST/L005840/1, ST/L005743/1 and ST/G000751/1. This609 work has also been partially supported by the U.S. De-610 partment of Energy, Office of Science, Office of Nuclear611 Physics under contract DE-AC02-06CH11357 (ANL). 612 The author E. R. Gamba would like to acknowledge the ${ }_{613}$ STFC for founding his Ph.D. studentship. D. J. Hart-614
ley acknowledges the National Science Foundation, Grant No. PHY-1502092. E. A. Stefanova and O. Yordanov would like to acknowledge the project DFNI-E02/6. This research used resources of the Argonne National Laboratory ATLAS facility, which is a DOE Office of Science User Facility.
[1] K. E. G. Lobner, M. Vetter and V. Hönig, Nucl. Data65o Tables 7 (1970) 495.
[2] A. Bohr, K. Dan. Vidensk. Selsk. Mat-Fys. 26 (1952) 14.652
[3] H. Watanabe et al., Phys. Lett. B 704 (2011) $270 .{ }_{653}$
[4] J. B. Snyder et al., Phys. Lett. B 723 (2013) 61.
654
[5] Y. X. Luo et al., Phys. Lett. B 670 (2009) 307.
655
[6] D. T. Doherty et al., Phys. Lett. B 76 (2017) $334 .{ }_{656}$
[7] P.-A. Söderström et al., Phys. Rev. C 88 (2013) 024301.657
[8] S. Lalkovski et al., Eur. Phys. J. A 18 (2003) $589 .{ }_{658}$
[9] Y. X. Luo et al., Nucl. Phys. A 874 (2012) 32.
[10] L. E. Svensson et al., Nucl. Phys. A 584 (1995) 547.
[11] Y. Wang et al., Phys. Rev. C 63 (2001) 024309.
[12] X. Q. Zhang, J. H. Hamilton, A. V. Ramayya, S. J. Zhu,662 J. K. Hwang, C. J. Beyer, J. Kormicki, E. F. Jones, 663 P. M. Gore et al., Phys. Rev. C 63 (2001) 027302.
[13] M. A. Stoyer et al., Nucl. Phys. A 787 (2007) 455c. ${ }_{665}$
[14] R. Chaudhary et al., Eur. Phys. J Plus 133 (2018) $81 .{ }_{666}$
[15] A. Dewald, K. Starosta, P. Petkov, M. Hackstein,667 W. Rother, P. Adrich, A. M. Amthor, T. Baumann, 668 D. Bazin et al., Phys. Rev. C 78 (2008) 051302(R). ${ }_{669}$
[16] L. Wilets and M. Jean, Phys. Rev. 102 (1956) 788.
[17] A. S. Davydov and G. F. Filippov, Soviet Physics JETP 671 6 (1958) 33. 672
[18] N. V. Zamfir and R. F. Casten, Phys. Lett. B 260 (1991)673 265.

674
[19] S. Frauendorf, Int. Jour. Mod. Phys. 24 (2015) 1541001.675
[20] H. Sobhani et al., Nucl. Phys. A 973 (2018) 33.
[21] A. C. Wahl, Symposium on Physics and Chemistry of 677 Fission, IAEA, Vienna, 1965.
[22] A. Arima and F. Iachello, Phys. Rev. Lett. 35 (1975)679 1069.
[23] F. Iachello and A. Arima, The Interacting Boson Model,681 (Cambridge University Press, 1987.
[24] K. Hara and Y. Sun, Int. Journ. of Mod. Phys. 4683 (1995),637.
[25] A. Bohr and B. R. Mottelson, Nuclear Structure - Volume 1 and 2 (World Scientific, Singapore, 1975).
[26] J. Killingbeck, J. Phys. A: Math. Gen. 13 (1980), L393.
[27] https://www.nndc.bnl.gov.
[28] I-Y.Lee et al., Nuclear Physics A 520 (1990) 641c .
[29] O. J. Roberts et al., Nucl. Instrum. Methods Phys. Res. Sect. A 748 (2014) 91.
[30] L. M. Fraile et al., FATIMA technical design report, 2105.
[31] M. Rudigier et al., Acta Physica Polonica B 48 (2017) 351.
[32] J.-M Régis et al., Nucl. Instrum. Methods Phys. Res. Sect. A 726 (2013) 191.
[33] E. R. Gamba, A. M. Bruce and M. Rudigier, Nucl. Instrum. Methods Phys. Res. Sect. A 928 (2019) 93.
[34] H. Mach et al., JYFL annual report, 2003.
[35] http://bricc.anu.edu.au.
[36] S. Raman, C. J. Nestor, and P. Tikkanen, At. Data Nucl. Data Tables 78 (2001) 1.
[37] H. Toki and A. Faessler, Z. Phys. A 276 (1976) 35.
[38] B. Sorgunlu and P. Van Isacker, Nucl. Phys. A 808 (2008) 27.

39] P. Van Isacker, private communication.
[40] K.-H. Kim et al., Nucl. Phys. A 604 (1996) 163.
[41] A. Jokinen et al., Proceedings of the third international conference on "Fission and properties of neutron-rich nuclei", USA, 2002.
[42] A. Aprahamian et al., Phys. Lett. B 140 (1984) 22.
[43] G. Mamane et al., Nucl. Phys. A 454 (1986) 213.
[44] R. C. Jared, presented at the third symposium on the physics and chemistry of fission, Rochester, New York, 1973.
[45] G. Alaga, K. Aider, A. Bohr and B. Mottelson, Mat. Fys. Medd. Dan. Vid. Selsk. 29 (1955).
[46] F. Iachello, Phys. Rev. Lett. 85 (2000) 3580.
[47] A. S. Davydov and V. S. Rostovski, Nucl. Phys. 12 (1959), 58.

