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We consider causal higher order theories of relativistic viscous hydrodynamics in the limit of one-
dimensional boost-invariant expansion and study the associated dynamical attractor. We obtain
evolution equations for the inverse Reynolds number as a function of Knudsen number. The solutions
of these equations exhibit attractor behavior which we analyze in terms of Lyapunov exponents
using several different techniques. We compare the attractors of the second-order Müller-Israel-
Stewart (MIS), transient DNMR, and third-order theories with the exact solution of the Boltzmann
equation in the relaxation-time approximation. It is shown that for Bjorken flow the third-order
theory provides a better approximation to the exact kinetic theory attractor than both MIS and
DNMR theories. For three different choices of the time dependence of the shear relaxation rate
we find analytical solutions for the energy density and shear stress and use these to study the
attractors analytically. By studying these analytical solutions at both small and large Knudsen
numbers we characterize and uniquely determine the attractors and Lyapunov exponents. While
for small Knudsen numbers the approach to the attractor is exponential, strong power-law decay of
deviations from the attractor and rapid loss of initial state memory is found even for large Knudsen
numbers. Implications for the applicability of hydrodynamics in far-off-equilibrium situations are
discussed.

PACS numbers: 25.75.-q, 24.10.Nz, 47.75+f

I. INTRODUCTION

Hydrodynamics is an effective macroscopic theory de-
scribing the large scale and slowly varying dynamical
modes of multiparticle systems. The conventional for-
mulation of hydrodynamic equations proceeds by assum-
ing a separation of macroscopic and microscopic length
and time scales such that gradients of local-equilibrium
quantities, normalized to appropriate powers of the sys-
tem’s energy density, are small and one can perform
an order-by-order gradient expansion around local ther-
modynamic equilibrium [1]. Therefore the remarkable
success of relativistic hydrodynamics in describing the
quark-gluon plasma (QGP) formed in ultra-relativistic
heavy-ion collisions initially led to the belief that these
collisions create a nearly thermalized medium close to
local thermal equilibrium [2] (see also the reviews [1, 3–
5]). On the other hand, with the advent of numerical
dissipative relativistic fluid dynamics [6–12] it became
clear that the dynamical evolution of heavy-ion collisions
is affected by persistent large dissipative corrections. In
spite of this numerical evidence for large deviations from
local thermal equilibrium, second-order dissipative rela-
tivistic fluid dynamics (especially when coupled with a
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hadronic cascade to describe the final dilute decoupling
stage [13, 14]) met with impressive phenomenological suc-
cess and predictive power in the description of heavy-ion
collision experiments [7, 11, 12, 15–22], and was even
successfully applied to explain flow data in small colli-
sion systems formed in proton-proton (p-p) and proton-
lead (p-Pb) collisions [23, 24]. This “unreasonable effec-
tiveness” of hydrodynamics as a dynamical description
of high-energy hadronic collisions in situations that are
even very far away from local thermal equilibrium has
generated much recent interest in the very foundations
of fluid dynamics [25–52], culminating in the formula-
tion of a new “far-from-local-equilibrium fluid dynam-
ics” paradigm [5, 37]. The present work is a contribution
to this ongoing discussion, adding new analytic results
for the heavily studied simple case of (0+1)-dimensional
Bjorken expansion of a transversally homogeneous sys-
tem with longitudinal boost-invariance [53].

The simplest relativistic dissipative theory, relativis-
tic Navier-Stokes theory [54, 55], imposes instantaneous
constitutive relations between the dissipative flows and
their generating forces, expressed through first-order gra-
dients of equilibrium quantities. This approach was
found to be plagued by acausality and intrinsic instabil-
ity [56, 57]. The phenomenological second-order theory
developed by Müller, Israel and Stewart (MIS) [58–60]
cures these problems by introducing a relaxation type
equation for the dissipative flows and thus turning them
into independent dynamical degrees of freedom of the
system whose evolution is controlled by the competition
between macroscopic expansion (driving the system away
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from local equilibrium) and microscopic scattering (driv-
ing it back towards local equilibrium). As discussed in [5],
even the minimal causal conformal theory given by MIS
introduces new modes called non-hydrodynamic modes
that were absent in Navier-Stokes theory. These non-
hydrodynamic modes are now known to play an impor-
tant role in the approach to the regime of applicabil-
ity of hydrodynamics, a.k.a. the “hydrodynamization”
process [26, 30, 61–63]. For conformal systems undergo-
ing longitudinal Bjorken expansion, it was shown explic-
itly that hydrodynamization occurs at microscopic ther-
malization time scales which, in strongly and anisotrop-
ically expanding systems, are much shorter than both
the time scales for local isotropization and thermalization
[37]. Similar conclusions were obtained in recent studies
[32, 42] of systems undergoing Gubser flow [64] where
the fireball expands not only boost-invariantly in longi-
tudinal, but also azimuthally symmetrically in transverse
direction. These findings lead to the conclusion that the
criterium of proximity to local thermodynamic equilib-
rium for hydrodynamics to be valid is (at least in these
carefully analytically studied simplified situations) too
strict and should be replaced by a different condition
stating that contributions from the non-hydrodynamic
modes can be neglected [31]. In the present study, we
will focus on yet another interesting feature that appears
in a causal theory of relativistic dissipative hydrodynam-
ics, “the hydrodynamic attractor” [26, 32, 36, 38, 42, 43],
and its role in the hydrodynamization process.

Attractor behavior was first identified by considering
the hydrodynamic formulation as a gradient series expan-
sion. Recently, this gradient series was shown, for several
highly symmetric flow configurations that are amenable
to analytic treatment, to have zero radius of conver-
gence. This suggests that hydrodynamic theory cannot
be systematically improved by taking into account higher
order-terms in the gradient series [26]. The gradient ex-
pansion generates an asymptotic series which exhibits ini-
tial signs of convergence for a few terms before eventually
diverging [26, 28]. The initial appearance of convergence
may explain the observed remarkable phenomenological
success of hydrodynamic formulations based on trunca-
tions of the gradient expansion at second or third order
but, due to the ultimate divergence of the series, the the-
ory cannot be improved beyond a certain order by keep-
ing additional terms. Fortunately, the (diverging) gradi-
ent expansion series can be Borel resummed, giving rise
to a unique hydrodynamic attractor solution (hydrody-
namic mode), which is well defined even for large gradi-
ents, and a series of rapidly decaying non-hydrodynamic
modes that describe the approach towards this attractor
from arbitrary initial conditions [25, 26]. This suggests
that hydrodynamics displays a novel type of universality
even far from local equilibrium which is independent of
the initial state of the system, indicating the existence
of a new, far-from-local-equilibrium hydrodynamic the-
ory [37]. Recently, it was discovered [65] that this phe-
nomenon extends even beyond hydrodynamics: in kinetic

theory also the evolution of non-hydrodynamic higher-
order momentum moments of the distribution function
is controlled by attractors.

The theory of dynamical attractors can be complex,
and hence it is instructive to have examples were the
attractor is quantitatively understood using analytical
methods. Perhaps the most useful quantities associated
with an attractor are Lyapunov exponents which charac-
terize the rate of separation of infinitesimally close tra-
jectories in the phase-space evolution of dynamical sys-
tems [66]. While negative Lyapunov exponents are as-
sociated with dissipative systems and indicate the exis-
tence of attractors, positive values are usually associated
with chaotic systems. For a conservative system one ob-
tains vanishing Lyapunov exponents. A quantitative in-
vestigation of attractors arising in higher-order theories
of relativistic dissipative hydrodynamics using Lyapunov
exponents has not yet been reported. In this article, we
employ the theory of Lyapunov exponents to study the
attractors for MIS theory and two other, improved ver-
sions of causal relativistic dissipative hydrodynamics.

Motivated by its application to QGP evolution, several
improvements over MIS theory were proposed during the
last decade [67–78]. For Bjorken and Gubser flows, some
of these theories lead to very good agreement with the ex-
act solution of the Boltzmann equation even in situations
where the deviations from thermal equilibrium are large
[42, 72, 79, 80]. In this article, we consider the DNMR
theory [69] which is an improved version of second-order
MIS theory, as well as a third-order hydrodynamic theory
derived form relativistic kinetic theory by going to third
order in the Chapman-Enskog expansion [72]. To un-
derstand the emergent attractor behavior we go beyond
previous numerical studies of these theories by finding
analytical solutions of the corresponding hydrodynamic
evolution equations [81]. Analytical solutions of higher-
order dissipative hydrodynamics were found previously
for a few very special cases [35, 82]. We here expand this
portfolio and use the new analytical solutions to study
their dependence on initial conditions, their attractors,
and their late-time behavior.

The rest of this article is structured as follows: In
Sec. II we briefly review causal theories of second-order
(MIS and DNMR) and third-order relativistic viscous
hydrodynamics. In Sec. III we simplify these theories
for Bjorken flow and obtain a generic evolution equa-
tion for the inverse Reynolds number as a function of
the inverse Knudsen number, which can be adapted to
all three hydrodynamic theories by adjusting a set of
two parameters. This ordinary differential equation is
decoupled from the hydrodynamic evolution of the en-
ergy density (but feeds back into it), and thus it can be
solved independently. In Sec. IV we demonstrate numer-
ically that the solutions of these differential equations ex-
hibit attractor-like behavior which we analyze in terms of
Lyapunov exponents, using several different approaches.
We also compare the exact numerical attractors of the
second-order MIS and DNMR theories, as well as our
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third-order theory, with the exact solution of the rela-
tivistic Boltzmann equation in the relaxation-time ap-
proximation (RTA). We show that the third-order theory
provides a better approximation to the exact kinetic the-
ory attractor than both the MIS and DNMR attractors.
In Sec. V we provide further clarification of the numerical
behavior found in the preceding sections by working out
explicit analytical solutions for the energy density and
shear stress as a function of the inverse Knudsen num-
ber, for three different forms of the shear relaxation time.
These analytical solutions allow us to also study the at-
tractors analytically. In Sec. VI, finally, we explore the
universal behavior of these solutions at both small and
large Knudsen numbers and use the results to charac-
terize and uniquely determine the hydrodynamic attrac-
tor and its associated Lyapunov exponents in a new way.
Our results are summarized and some conclusions offered
in Sec. VII.

II. RELATIVISTIC DISSIPATIVE
HYDRODYNAMICS

In this section, we will briefly review the equations
for relativistic dissipative hydrodynamics. We consider
a conformal system, which corresponds in kinetic theory
to a system of massless particles. The energy-momentum
tensor for such a system, in the Landau frame, has the
form

Tµν = εuµuν − P∆µν + πµν , (1)

where ε and P are the local energy density and pressure.
Conformal symmetry implies an equation of state (EoS)
ε = 3P and zero bulk viscous pressure, Π = 0. We also
define ∆µν ≡ gµν−uµuν which serves as a projection
operator to the space orthogonal to uµ (i.e. onto the
spatial directions in the local rest frame (LRF)). The
shear stress tensor, πµν , is traceless and orthogonal to uµ.
The metric convention used here is gµν = diag(+−−−).

Evolution equations for ε and uµ are obtained from
energy-momentum conservation, DµT

µν = 0:

ε̇+ (ε+ P )θ − πµνσµν = 0, (2)

(ε+P ) u̇α −∇αP + ∆α
ν ∂µπ

µν = 0. (3)

Here we use the notations Dµ for the covariant deriva-

tive, Ȧ ≡ uµDµA for the co-moving time derivative,
∇α ≡ ∆µαDµ for space-like derivative, θ ≡ Dµu

µ for the
expansion scalar, and σµν ≡ 1

2 (∇µuν+∇νuµ) − 1
3θ∆µν

for the velocity shear tensor.
To close the equations (2,3) we need additional equa-

tions for the shear stress πµν . The simplest form of πµν

is the Navier-Stokes form, which is first order in veloc-
ity gradients, πµνNS = 2ησµν , where η is the shear viscos-
ity coefficient. As already mentioned in the Introduc-
tion, relativistic Navier-Stokes theory violates causality
and is unstable. The simplest way to restore causal-
ity is by introducing a relaxation-type equation for πµν .
This prescription, also known as the “Maxwell-Cattaneo

law”, requires that the dissipative forces relax to their
Navier-Stokes values in some finite relaxation time, i.e.,
τππ̇
〈µν〉+πµν = 2ησµν ,1 where τπ is the shear relaxation

time. For conformally symmetric systems one more term
must be added in the evolution of shear stress [83, 84]:

τππ̇
〈µν〉 + πµν = 2ησµν − 4

3
τππ

µνθ. (4)

This equation is a close variant [83] of the one first de-
rived by Müller, Israel and Stewart [58–60], and we will
therefore refer to it as the “MIS” theory. Its derivation
was based on an analysis of the entropy current and the
second law of thermodynamics, without recourse to a spe-
cific theory for the underlying microscopic dynamics.2

A systematic derivation of second-order (“transient”)
relativistic fluid dynamics from relativistic kinetic theory,
using an expansion of the dissipative flows in momentum-
moments of the distribution function, was performed in
[69]. For conformal systems and an RTA collision term,
the result obtained in the 14-moment approximation dif-
fers from Eq. (4) by two additional terms that are of
second order in gradients:

π̇〈µν〉+
πµν

τπ
= 2βπσ

µν+ 2π〈µγ ω
ν〉γ− 10

7
π〈µγ σ

ν〉γ− 4

3
πµνθ.

(5)
Here βπ ≡ η/τπ = 4P/5, while ωµν ≡ 1

2 (∇µuν−∇νuµ) is
the vorticity tensor. This “DNMR” theory [69] can also
be derived from a Chapman-Enskog like iterative solution
of the RTA Boltzmann equation [85].

Carrying the Chapman-Enskog expansion to one ad-
ditional order, a third-order evolution equation for the
shear stress was derived for the same system in [72]:

π̇〈µν〉 =− πµν

τπ
+ 2βπσ

µν + 2π〈µγ ω
ν〉γ − 10

7
π〈µγ σ

ν〉γ

− 4

3
πµνθ +

25

7βπ
πρ〈µων〉γπργ −

1

3βπ
π〈µγ π

ν〉γθ

− 38

245βπ
πµνπργσργ −

22

49βπ
πρ〈µπν〉γσργ

− 24

35
∇〈µ

(
πν〉γ u̇γτπ

)
+

4

35
∇〈µ

(
τπ∇γπν〉γ

)
− 2

7
∇γ
(
τπ∇〈µπν〉γ

)
+

12

7
∇γ
(
τπu̇
〈µπν〉γ

)
− 1

7
∇γ
(
τπ∇γπ〈µν〉

)
+

6

7
∇γ
(
τπu̇

γπ〈µν〉
)

− 2

7
τπω

ρ〈µων〉γπργ −
2

7
τππ

ρ〈µων〉γωργ

− 10

63
τππ

µνθ2 +
26

21
τππ
〈µ
γ ω

ν〉γθ. (6)

1 Angular brackets around pairs of Lorentz indices indicate projec-
tion of the tensor onto its traceless and locally spatial part, e.g.
π̇〈µν〉 = ∆µν

αβ π̇
αβ where ∆µν

αβ = 1
2

(∆µ
α∆ν

β+∆µ
β∆ν

α)− 1
3

∆µν∆αβ .
2 It should be noted that Eq. (4) does not include all possible

second-order terms [84], and that (unlike the theories discussed
below) its transport coefficients are not matched to an underlying
kinetic theory.
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For conformal systems the complete set of possible third
order terms was given in [86]. The specific form (6) im-
plements transport coefficients obtained from the RTA
Boltzmann equation [72]. We will here refer to Eq. (6) as
the “third-order” theory. Let us now simplify all of these
equations for Bjorken flow.

III. BJORKEN FLOW

Milne coordinates xµ = (τ, x, y, ηs) (with τ =
√
t2−z2

and ηs = tanh−1(z/t)) are the natural choice for de-
scribing ultra-relativistic heavy-ion collisions where the
colliding nuclei approach each other approximately fol-
lowing light-cone trajectories. For Bjorken flow [53]
of transversally homogeneous and longitudinally boost-
invariant systems, macroscopic fields such as the energy
density, pressure and shear stress, can depend neither on
the transverse coordinates (x, y) nor on the space-time
rapidity ηs, but only on the longitudinal proper time τ .
The hydrodynamic evolution equations thus reduce to a
set of coupled ordinary differential equations (ODEs) in
τ . The flow is irrotational (ωµν = 0) and unaccelerated
(uµ = (1, 0, 0, 0), u̇µ = 0), but (owing to the curvilinear
nature of Milne coordinates) it has a non-zero local ex-
pansion rate, θ = 1/τ , and velocity shear, e.g. σηη =
−2/(3τ3).3 Symmetries further constrain the shear ten-
sor to be diagonal and space-like in Milne coordinates,
leaving only one independent component which we take
to be the ηη component: πxx = πyy = −τ2πηη/2 ≡ π/2.4

Using the following relations that hold for Bjorken flow,

π̇〈ηη〉=− 1

τ2

dπ

dτ
, π〈ηγ σ

η〉γ =− π

3τ3
, π〈ηγ π

η〉γ =− π2

2τ2
,

πρ〈ηπη〉γσργ = − π2

2τ3
, ∇〈η∇γπη〉γ =

2π

3τ4
, (7)

∇γ∇〈ηπη〉γ =
4π

3τ4
, ∇2π〈ηη〉 =

4π

3τ4
, πργσργ =

π

τ
,

the shear evolution equations (4-6) can be brought into
the following generic form:

dε

dτ
= −1

τ

(
4

3
ε− π

)
, (8)

dπ

dτ
= − π

τπ
+

1

τ

[
4

3
βπ −

(
λ+

4

3

)
π − χπ

2

βπ

]
. (9)

The coefficients βπ, a, λ, χ, and γ appearing in Eq. (9)
above and in Eq. (11) below are tabulated in Table I for
the three theories studied in this work.

3 To avoid clutter we drop the subscript on ηs whenever we use it
as a sub- or superscript.

4 From here on we will use π (not to be confused with the mathe-
matical constant denoted by the same symbol), or its normalized
version π̄ ≡ π/(ε+P ) = 3π/(4ε), as the independent shear stress
component. Note that for Bjorken flow the Navier-Stokes value
for π is positive, πNS ≥ 0.

Since βπ = 4P/5 = 4ε/15, Eqs. (8) and (9) are mu-
tually coupled. Eq. (9) for the shear stress can be com-
pletely decoupled from the evolution of the energy den-
sity by rewriting it in terms of the normalized shear stress
(inverse Reynolds number) π̄ = π/(ε+P ) = π/(4P ). In-
troducing at the same time the rescaled time variable
[30] τ̄ ≡ τ/τπ (which is the inverse Knudsen number for
Bjorken flow), Eq. (8) can be used to obtain the relation

π̄ = 3
(τ
τ̄

) dτ̄
dτ
− 2. (10)

Here we also used that for a conformal system ε∝T 4 and
Tτπ = 5η̄ = const. where η̄ ≡ η/s is the specific shear
viscosity. Eqs. (9) and (10) can now be combined to
obtain a first-order nonlinear ordinary differential equa-
tion (ODE) for the inverse Reynolds number that is com-
pletely decoupled5 from the evolution of the energy den-
sity:6 (

π̄ + 2

3

)
dπ̄

dτ̄
= −π̄ +

1

τ̄

(
a− λ π̄ − γ π̄2

)
. (11)

The three hydrodynamic theories studied here can be
selected by choosing for λ and γ the appropriate com-
binations of constants given in Table I. All three theo-
ries share the same constant a = 4/15, but we can solve
Eq. (11) numerically7 (and the very closely related equa-
tion (28) to be discussed in Sec. V even analytically) for
general a and will therefore keep it as a free parameter
until the end.

An important feature that we observe in Eq. (11) is
that the derivative dπ̄/dτ̄ diverges for π̄ → −2, indicat-
ing a discontinuity in π̄ at −2. This feature is not present
in Eq. (9) and is merely an artifact of changing the evolu-
tion parameter from τ to τ̄ . Moreover, we notice that the

βπ a λ χ γ

MIS 4P/5 4/15 0 0 4/3

DNMR 4P/5 4/15 10/21 0 4/3

Third-order 4P/5 4/15 10/21 72/245 412/147

TABLE I. Coefficients for the causal viscous hydrodynamic
evolution of the shear stress in Bjorken flow for the three
theories studied in this work.

5 This decoupling works as long as the relaxation time has a
power law temperature dependence, τπ ∝ T−∆, in which case
in Eq. (11) the coefficient multiplying dπ̄/dτ̄ must be general-

ized to
∆(π̄−1)+3

3
.

6 Even if the relaxation time τπ depends on temperature (as it
does, for example, in systems with conformal symmetry), the
temperature evolution has been completely absorbed into the
rescaled time variable (inverse Knudsen number) τ̄ .

7 Eq. (11) has the form of an Abel differential equation of the
second kind for which, to the best of our knowledge, an analytical
solution does not exist.
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transverse pressure, PT ≡ P +π/2 = P (1+2π̄), becomes
negative for π̄ < −1/2 indicating cavitation in the trans-
verse direction which may lead to mechanical instability.
Therefore one may conclude that π̄ = −2 already lies in
the physically excluded region. In the next section, we
study several other interesting properties inherent in the
solutions of Eq. (11).

IV. GRADIENT EXPANSION, LYAPUNOV
EXPONENTS AND ATTRACTORS

Consistent formulations of relativistic dissipative
hydrodynamics involve short-lived non-hydrodynamic
modes. These cannot be captured by a standard gra-
dient expansion in terms of the Bjorken expansion rate
θ = 1/τ , causing such an expansion to be asymptotic,
with zero radius of convergence [25]. Borel resummation
of this divergent series leads to a hydrodynamic attractor
which is well defined even for large gradients. The exis-
tence of an attractor in a theory is indicated by negative
Lyapunov exponents8 which govern the rate at which the
system loses information about its initial conditions and
evolves towards the attractor. In this section, we study
the gradient expansion, Lyapunov exponents and their
implications for attractor behavior in solutions of hydro-
dynamic equations for Bjorken flow.

A. Gradient expansion

To start with we consider the late proper-time expan-
sion of π̄. Substituting a power series ansatz for π̄ in
terms of powers of 1/τ̄ ,

π̄(τ̄) =

∞∑
n=0

cn
τ̄n
, (12)

into the non-linear ODE (11), one finds a recursion rela-
tion for the coefficients cn (n ≥ 1)

cn = a δn,1 +

[
2

3
(n− 1)− λ

]
cn−1

+

n∑
m=1

(m−1

3
− γ
)
cn−m cm−1, (13)

with initial value c0 = 0. The first non-vanishing coeffi-
cient c1 = a corresponds to the Navier-Stokes term in the
gradient expansion.

8 Lyapunov exponents characterize the rate of separation of ini-
tially infinitesimally close trajectories in a dynamical system. A
Lyapunov exponent is defined as

|s(t)| ≈ eΛt |s0|,

where s0 and s(t) are the separation between two trajectories
at initial time t0 and at a later time t, respectively. Negative
Λ indicates the rate at which the system approaches a regular
attractor.

MIS

DNMR

Third-order
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FIG. 1. Factorial behavior of coefficients (13) for the three
hydrodynamic theories indicated in the legend. In the inset
the black line represents |cn+1/cn| = 2

3
n and the red dots are

for MIS theory.

For large n the behavior of the coefficients cn is dom-
inated by the term proportional to cn−1 in Eq. (13) and
shows factorial growth. This is shown in Fig. 1 where
the ratio of consecutive coefficients, |cn+1/cn|, is plotted
against n; as shown in the inset this ratio is proportional
to n for n & 5. Divergence of the hydrodynamic gradient
expansion was found before in a variety of hydrodynamic
theories [26, 29, 35]. A new observation from Fig. 1 is
that, while the coefficients of the DNMR and third-order
theories are very similar, those for MIS theory feature a
constant upward shift which can be attributed to λ = 0
in Eq. (13). The inset of Fig. 1 shows the ratio |cn+1/cn|
for MIS theory (λ= 0, red dots) compared with the same
ratio obtained from Eq. (13) without the nonlinear last
term (black line). One concludes that this nonlinear term
plays no role in the asymptotic factorial growth of the
expansion coefficients. The series solution (12) is thus
dominated by the term proportional to cn−1 in (13). We
verified that the same statement holds for the DNMR
and third-order theories.

B. “Effective MIS” and Lyapunov exponents

The nonlinear last term in Eq. (13) arises from the
quadratic terms ∝ π̄2, dπ̄2/dτ̄ in Eq. (11). At late times
π̄� 1, hence π̄2� π̄, and the nonlinear terms can be ig-
nored in (13). The late-time behavior in MIS theory is
thus controlled by

2

3

dπ̄

dτ̄
= −π̄ +

a

τ̄
(14)

which we call “effective MIS theory”. Its analytic solu-
tion is

π̄ = α e−
3
2 τ̄ +

3a

2
e−

3
2 τ̄ Ei

[
3τ̄

2

]
(15)

where Ei[z] = −
∫∞
−z (e−t/t) dt is the exponential inte-

gral and α is the integration constant. Eq. (15) implies
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that the separation between two solutions for π̄ that are
initialized with different initial conditions is damped ex-
ponentially:

∂π̄

∂α
∼ exp

(
−3

2
τ̄

)
. (16)

The negative Lyapunov exponent Λ = −3/2 in this equa-
tion confirms the existence of an attractor. This attrac-
tor, given by Eq. (15) with α= 0, is shown in Fig. 2 as
the solid black line, together with a swarm of particular
solutions of Eq. (14) with different integration constants
α 6= 0 (dashed lines) and the asymptotic Navier-Stokes
solution (red solid line) for comparison. One sees that
the attractor, as well as the other solutions with differ-
ent initial conditions, join the asymptotic Navier-Stokes
behavior after τ̄ & 3, i.e. for Knudsen number Kn. 0.3.

The solution (15) can also be written as

π̄(τ̄) = π̄0 e
− 3

2 (τ̄−τ̄0) +
3a

2
e−

3
2 τ̄

∫ τ̄

τ̄0

e
3
2 τ̄

′

τ̄ ′
dτ̄ ′ (17)

where π̄0 ≡ π̄(τ̄0) is the initial condition at time τ̄0. From
Eq. (17) one can extract the gradient expansion for π̄ by
integrating the last term by parts,

∫ τ̄

τ̄0

e
3
2 τ̄

′

τ̄ ′
dτ̄ ′ =

[
m∑
n=1

(n−1)!
e

3
2 τ̄

′

(3τ̄ ′/2)n

]τ̄
τ̄0

+
3

2
m!

∫ τ̄

τ̄0

dτ̄ ′
e

3
2 τ̄

′

(3τ̄ ′/2)m+1
, (18)

resulting in

π̄ =e−
3
2 (τ̄−τ̄0)

(
π̄0 − a

m∑
n=1

c̃n
τ̄n0

)
+ a

m∑
n=1

c̃n
τ̄n

(19)

+ a

(
3

2

)2

m! e−3τ̄/2

∫ τ̄

τ̄0

dτ̄ ′
e

3
2 τ̄

′

(3τ̄ ′/2)m+1
,

where c̃n = (n−1)!/(3/2)n−1. The first term within
parentheses contains all dependence on the initial con-
ditions memory of which is here seen to decay exponen-
tially with a decay time of 2

3τπ. The second term is the
divergent gradient series (12) up to order m. The third
term can be thought of as the error in approximating the
late time solution for π̄ using a truncated gradient series
of order m. Minimizing the error term with respect to m
would give an estimate of the optimal truncation for the
gradient series at a given value of τ̄ .

We point out that Eq. (17) also admits a convergent
series in positive powers of τ̄ of the form

π̄ =π̄0 e
− 3

2 (τ̄−τ̄0) +
3a

2
e−

3
2 τ̄ log

(
τ̄

τ̄0

)
+

3a

2
e−

3
2 τ̄
∞∑
n=1

(3/2)n

n!n
(τ̄n − τ̄n0 ) . (20)
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FIG. 2. Comparison of Eq. (15) (solid black (α= 0) and
dashed blue (α 6= 0) lines) with the asymptotic Navier-Stokes
behavior (solid red line). See text for discussion.

It is obtained by expanding the exponential term e
3
2 τ̄

′
in

the integral solution for π̄ into a power series. This series
is, however, of limited use at late times as it would require
including a large number of terms for convergence.

We conclude this subsection by offering another simple,
yet interesting, form of the “effective MIS” solution for
the inverse Reynolds number:

π̄ = π̄0 e
− 3

2 (τ̄−τ̄0) +
3a

2
e−

3
2 [τ̄−β(τ̄ ;τ̄0)] τ̄ − τ̄0

β(τ̄ ; τ̄0)
. (21)

Here the function β(τ̄ ; τ̄0) has units of time, and for any
given pair (τ̄0, τ̄) its value can be shown to lie in the inter-
val [τ̄0, τ̄ ]. To obtain this form we used the mean value
theorem for the integral in Eq. (17). It would be illu-
minating to derive an approximate analytical functional
form for β(τ̄ ; τ̄0); this is left for future work.

C. Lyapunov exponents from linear perturbation

The exercise in the preceding subsection demonstrated
exponential loss of memory of initial conditions in the
“modified MIS” theory, on a time scale ∼ 2

3τπ. One
arrives at similar conclusions without the assumption of
ignoring in Eq. (11) the terms quadratic in π̄, by studying
the fate of a linear perturbation around late-time solu-
tions of the full equation (11). This is important because,
as we will see further below, the effects on the evolution
of π̄ of the non-linear terms that were ignored in “mod-
ified” MIS theory last much longer than the memory-
decay time over which initial-state information is erased.

We employ linear perturbation theory around the so-
lution π̄, i.e. we set π̄ → π̄ + δπ̄ and insert this into
the generic evolution equation (11). To simplify the non-
linear terms ∼ π̄δπ̄ we expand the solution π̄ for late
times according to Eq. (12), keeping only the first non-
vanishing term which yields the Navier-Stokes approxi-
mation: π̄ ≈ a/τ̄ . Keeping terms up to first order in 1/τ̄
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we find

d(δπ̄)

dτ̄
= −3

2
δπ̄

[
1 +

2λ− a
2τ̄

]
, (22)

with the solution

δπ̄ ∼ τ̄ 3
4 (a−2λ) exp

(
−3

2
τ̄

)
+O

(
1

τ̄2

)
. (23)

The prefactor τ̄
3
4a in front of the exponential decay factor

is easily traced back to the quadratic term π̄ (dπ̄/dτ̄) on
the l.h.s. of Eq. (11). The λ-dependence of this prefactor
was not seen in the preceding subsection because λ= 0 for
MIS theory. The solution (23) exhibits the same negative
Lyapunov exponent Λ = −3/2 as Eq. (16). This shows
that keeping the non-linear terms in Eq. (11) does not
change the initial state memory loss rate with which the
system approaches the hydrodynamic attractor at late
times. This rate is entirely controlled by microscopic
physics and independent of the precise macroscopic dy-
namical state of the expanding system.

D. Lyapunov exponents from Borel resummation

The results in the preceding subsection may also be
looked at from the perspective of Borel resummation,
which replaces a divergent series

∑
n an by [87]

B

(∑
n

an

)
≡
∫ ∞

0

du e−u
∑
n

an
n!
un. (24)

Borel resummation interchanges the order in which the
sum and integral in

∑
n an =

∑
n(an/n!)

∫∞
0
du e−u un

are performed. While for divergent series this yields in-
equivalent results, Borel resummation of asymptotic se-
ries can help with their interpretation, as shown below.

Starting from the recursion relation (13) and ignoring
the non-linearities therein one finds the coefficients of the
gradient series to be

cn = C Γ(n−3λ/2)

(3/2)n−3λ/2
, n ≥ 1, (25)

where the normalisation C ≡ a(3/2)1−3λ/2/Γ(1−3λ/2)
ensures c1 = a. The Borel resummed version of Eq. (12)
reads

B

(
π̄(τ̄)

)
= C τ̄−3λ/2

∫ ∞
0

du

u
e−(3/2)τ̄u u−3λ/2

∞∑
n=1

un

= C τ̄−3λ/2

∫ ∞
0

du e−(3/2)τ̄u u
−3λ/2

1− u
. (26)

The Borel integrand has a pole at u= 1 which results in
an ambiguous imaginary part of the sum, Im [B(π̄)] =
±π C e−3τ̄/2τ̄−3λ/2, arising from non-unique choices of
deforming the contour around the pole. In order to re-
move the ambiguity in the Borel resummed gradient se-
ries one must include in Eq. (12) a “non-hydrodynamic”

NS
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DNMR

Third-order

exact RTA
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FIG. 3. Numerical attractors for the inverse Reynolds number
π̄(τ̄) for the MIS (dashed), DNMR (dash-dotted) and third-
order (solid) theories, compared with the exact numerical at-
tractor of the RTA Boltzmann equation (filled circles). Also
shown for comparison is the Navier-Stokes solution (dotted).

term δπ ∼ e−3τ̄/2τ̄−3λ/2.9 Notice the similarity between
this non-hydrodynamic term and that obtained via the
method of linear perturbation in Eq. (23).10

E. Numerical attractors for various theories

We close this section with a numerical study of the at-
tractor solution of Eq. (11) towards which specific solu-
tions with generic initial conditions decay exponentially.
To identify the attractor we follow the prescription out-
lined in Ref. [26]: The initial condition for the attractor
solution is obtained by imposing the boundary condi-
tions that both π̄ and dπ̄/dτ̄ remain finite as τ̄ → 0.
As shown in [26] this results in the quadratic equation
γ π̄2 + λ π̄ − a = 0 for the initial value of π̄. One finds
two solutions, one of which (the positive root) is stable
and corresponds to the attractor solution whereas the
negative root corresponds to a repulsor. With this ini-
tial condition we then solve Eq. (11) numerically, for the
different parameter combinations listed in Table I. The
resulting attractors for the MIS, DNMR, and third-order
theories are shown in Fig. 3 where we also compare them
with the exact numerical attractor of the RTA Boltzmann
equation [37]. Please note that, unlike any particular so-
lution of Eq. (11) which depends on both the initial con-

9 For a detailed study of this issue see the discussion of BRSSS
theory [84] in Ref. [28].

10 The extra factor of τ̄3a/4 in the latter stems from non-linear
terms in Eq. (13) which were here ignored. It should be em-
phasized that when considering the full non-linear version of
Eq. (11), not just one, but an entire series of exponentially
damped terms must be added to the gradient series, turning
it into a trans-series [26, 28]. In this case the above-mentioned
non-hydrodynamic term plays the role of the leading order cor-
rection.
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dition π̄(τ̄0) and the initial time τ̄0 at which it is imposed,
the attractors are universal, i.e. they attract any partic-
ular solution with initial conditions within their basin of
attraction, irrespective of its starting time.

In Fig. 3, we show the attractor solutions for π̄ for the
MIS, DNMR, and third-order theories, as well as for the
exact solution of RTA Boltzmann equation [45] and the
Navier-Stokes solution. We see that of these the MIS
attractor approaches the exact attractor most slowly,11

while the attractor of the third-order theory exhibits the
best agreement with the exact RTA BE attractor, al-
most as good as the anisotropic hydrodynamic (aHydro)
attractor studied in [38, 42]. This adds to the evidence of
the superior performance of the third-order theory over
different variants of second-order theories that are based
on expansions around a locally isotropic momentum dis-
tribution.12

V. APPROXIMATE ANALYTICAL SOLUTIONS

Up to this point we focussed our discussion of the evo-
lution of the inverse Reynolds number π̄ on Eq. (11)
which holds for conformal systems where Tτπ = const.
It has the advantage of completely absorbing any de-
pendence of the shear relaxation time τπ on the energy
density or temperature into the rescaled time variable
(inverse Knudsen number) τ̄ , but at the expense of not
being able to solve this ODE analytically. In this sec-
tion we derive analytical solutions for the evolution of
π̄ for Bjorken flow, at the expense of not being able to
ensure the conformal relation Tτπ = const. consistently
with the evolution of the energy density. Instead, we find
three separate classes of analytical solutions, correspond-
ing to three different approximations of τπ as a function
of time.

Starting from Eqs. (8,9), we decouple them as before by
rewriting them in terms of the inverse Reynolds number
π̄ but without rescaling the time [81]:

1

ετ4/3

d(ετ4/3)

dτ
=

4

3

π̄

τ
, (27)

dπ̄

dτ
= − π̄

τπ
+

1

τ

(
a− λπ̄ − γπ̄2

)
. (28)

In the following, we find analytical solutions of Eq. (28),
using different approximations for the form of shear re-
laxation time τπ.

A. Constant relaxation time

In this subsection we ignore the scaling of τπ with tem-
perature, by simply setting it constant. This constitutes

11 In light of footnote 2 this should perhaps not be too surprising.
12 aHydro, a second-order approach that is based on an expansion

around a self-consistently adjusted ellipsoidally deformed local
momentum distribution [38, 74, 76, 77, 79, 80], performs even
better than the third-order theory [42].

a rather drastic violation of conformal symmetry by in-
troducing, in addition to the inverse temperature 1/T , a
second, independent length scale τπ. In the following two
subsections we will successively improve on this approx-
imation.

The first analytical solution for the evolution in second-
order hydrodynamics with Bjorken flow of the energy
density and inverse Reynolds number for a constant shear
relaxation time τπ was found by Denicol and Noronha
[35]. For completeness we briefly review this solution,
generalizing it to the generic form (27,28) of the evolu-
tion equations which also includes third-order hydrody-
namics. Introducing again the rescaled time τ̄ = τ/τπ,
for constant τπ Eq. (28) turns directly into

dπ̄

dτ̄
= −π̄ +

1

τ̄

(
a− λπ̄ − γπ̄2

)
(29)

which is similar to Eq (11) but without the nonlinearity
on the left hand side.13 As will be discussed below, this
difference has important consequences for the attractor
solutions and Lyapunov exponents.

Equation (29) is a first-order nonlinear ODE of Riccati
type which can be written as a second-order linear ODE
with the help of the following transformation of variables,

1

y

dy

dτ̄
= γ

π̄

τ̄
⇐⇒ π̄ =

τ̄

γy

dy

dτ̄
, (30)

which turns Eq. (29) into

d2y

dτ̄2
+

(
1 +

1 + λ

τ̄

)
dy

dτ̄
− aγ

τ̄2
y = 0. (31)

The general solution of this linear ODE can be expressed
in terms of Whittaker functions Mk,m(τ̄) and Wk,m(τ̄)
[35]:14

y(τ̄) = Aτ̄ke−τ̄/2 [Mk,m(τ̄) + α Wk,m(τ̄)] . (32)

Here k = − 1
2 (λ+1) and m = 1

2

√
4aγ + λ2 while A and

α are arbitrary constants. Substituting this solution in
Eqs. (30) and (27) one finds

π̄(τ̄) =
(2k+2m+1)Mk+1,m(τ̄)− 2αWk+1,m(τ̄)

2γ [Mk,m(τ̄) + αWk,m(τ̄)]
, (33)

ε(τ̄) =ε0

( τ̄0
τ̄

)4
3 (1− kγ )

e−
2
3γ (τ̄−τ̄0)

×
(
Mk,m(τ̄) + αWk,m(τ̄)

Mk,m(τ̄0) + αWk,m(τ̄0)

) 4
3γ

. (34)

Here ε0 is the initial energy density at time τ̄0, and the
constant α encodes the initial normalized shear stress π̄0.

13 Eq. (29) can be readily derived by setting ∆ = 0 in footnote 5.
14 Note that the authors of [35] used γ = 4/3 and a different defi-

nition of a.
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Note that α can only take values for which the energy
density is positive-definite for τ̄ > 0.

It is easy to see from Eq. (33) that the solution for π̄(τ̄)
loses all memory about initial conditions at late times
when Mk,m(τ̄) dominates over Wk,m(τ̄): for large argu-
ments τ̄ →∞ the ratio

Wk,m(τ̄)

Mk,m(τ̄)
−→

Γ
(
m−k+ 1

2

)
Γ(2m+1)

τ̄2k e−τ̄ (35)

decays exponentially. Thus at late times the terms pro-
portional to α in (33-34) decay like e−τ̄ , corresponding to
a Lyapunov exponent of Λ = − 1. This obviously differs
from Λ = − 3

2 for the conformally invariant theories de-
scribed by Eq. (11); the difference is a direct consequence
of the breaking of conformal symmetry by setting τπ con-
stant instead of ∝ 1/T .

B. Relaxation time from ideal hydrodynamics

A better approximation to Eq. (11) can be obtained
by setting Tτπ = const. but, instead of using the exact
time dependence of the temperature T , approximating
the latter such that the evolution equations can still be
integrated analytically. Seeing that for Bjorken flow the
system asymptotically approaches local thermal equilib-
rium, we may approximate the time-dependence of T at
late times by the ideal fluid law [53]

Tid(τ) = T0

(τ0
τ

)1/3

, (36)

where T0 is the temperature at initial time τ0. For Tτπ =
5η̄ this yields

τπ(τ) = b τ1/3, with b =
5η̄

T0τ
1/3
0

. (37)

Using this to define the scaled time variable τ̄ ≡ τ/τπ
one finds

dτ̄

dτ
=

2

3τπ
=

2

3b
τ−1/3,

and Eq. (28) turns into

2

3

dπ̄

dτ̄
= −π̄ +

1

τ̄

(
a− λπ̄ − γπ̄2

)
, (38)

independent of b. This equation again misses the non-
linear term on the l.h.s. of Eq. (11) and, except for
the factor 2/3 on the l.h.s., has the same structure as
Eq. (29). Its analytical solution is therefore very similar
to Eq. (33), except for a change of the argument of the
Whittaker functions by a factor 2/3:

π̄(τ̄) =
(2k+2m+1)Mk+1,m(3τ̄ /2)− 2αWk+1,m(3τ̄ /2)

3γ [Mk,m(3τ̄ /2) + αWk,m(3τ̄ /2)]
,

(39)

ε(τ̄) =ε0

( τ̄0
τ̄

)4
3 ( 3

2−
k
γ )
e−

1
γ (τ̄−τ̄0)

×
(
Mk,m(3τ̄ /2) + αWk,m(3τ̄ /2)

Mk,m(3τ̄0/2) + αWk,m(3τ̄0/2)

) 4
3γ

. (40)

Here k = − 3λ+2
4 and m = 3

4

√
4aγ + λ2, different from

Eqs. (33-34). The asymptotic behavior (35) of the Whit-
taker functions now tells us that, for the choice (37),
memory of the initial conditions is lost exponentially ac-
cording to e−

3
2 τ̄ , corresponding to the same Lyapunov

exponent Λ = − 3
2 as for the conformally invariant theo-

ries described by Eq. (11).

C. Relaxation time from Navier-Stokes evolution

We can further improve our approximation by account-
ing for first-order gradient effects in the evolution of the
temperature, by replacing the ideal fluid law (36) by the
Navier-Stokes result [83, 88, 89]

TNS = T0

(τ0
τ

)1/3
[
1 +

2η̄

3τ0T0

{
1−

(τ0
τ

)2/3
}]

. (41)

For η̄= 0 this reduces to (36). Substituting this into
Tτπ = 5η̄ we find

τπ =
τ1/3

d− 2
15τ
−2/3

, d ≡
(
T0τ0
5η̄

+
2

15

)
τ
−2/3
0 . (42)

For the scaled time variable τ̄ ≡ τ/τπ we now have

dτ̄

dτ
=

2

3τπ

(
1 +

2

15τ̄

)
. (43)

Using this in Eq. (28) one obtains(
a/τ̄ + 2

3

)
dπ̄

dτ̄
= −π̄ +

1

τ̄

(
a− λπ̄ − γπ̄2

)
, (44)

independent of the constant d. This shares with Eq. (38)
the factor 2/3 on the l.h.s. which, as we saw in the
preceding subsection, leads to the correct Lyapunov ex-
ponent for conformally symmetric systems. Comparing
with Eq. (11) one sees that they are identical up to the
substitution π̄ 7→ a/τ̄ (which is the first non-zero term
in the series expansion (12)). This should not be sur-
prising as the term within parenthesis on the l.h.s. of
Eq. (11) stems solely from the energy (or, equivalently,
temperature) evolution equation (8) which, when mak-
ing the replacement π̄ 7→ a/τ̄ , leads to the Navier-Stokes
solution T

NS
.

Comparing with the preceding subsection, this sug-
gests that it might be possible to account for the time
evolution of the temperature in the relation τπ(τ) ∼
1/T (τ) with ever increasing precision by substituting the
gradient series (12) for π̄ in the prefactor on the l.h.s.
of Eq. (11) and truncating it at increasingly higher or-
der: zeroth order for ideal hydrodynamics, first order for
Navier-Stokes dynamics, and so on. Unfortunately, this
is not justified as (12) is an asymptotic (i.e. divergent)
series. The consequences of this on the hydrodynamic
attractor will be discussed in the next section.
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Equation (44) can be recast in a form similar to (29)
and solved again analytically:

π̄(τ̄) =
(2k+2m+1)Mk+1,m(w)− 2αWk+1,m(w)

3γ [Mk,m(w) + αWk,m(w)]
, (45)

ε(τ̄) =ε0

(w0

w

)4
3 ( 3

2−
k
γ )
e−

1
γ (τ̄−τ̄0)

×
(
Mk,m(w) + αWk,m(w)

Mk,m(w0) + αWk,m(w0)

) 4
3γ

. (46)

This looks formally identical to Eqs. (39-40), except for
the substitution 3

2 τ̄ 7→ w ≡ 3
2 (τ̄ + a

2 ) in the arguments
of the Whittaker functions on the r.h.s., together with
modified definitions for the indices k and m:

k =
3a− 4− 6λ

8
, m =

3

8

√
a2 + 16aγ − 4aλ+ 4λ2.

Using (35) for the asymptotic behavior of the Whittaker
functions we see that once again memory of the initial
conditions is lost exponentially according to e−

3
2 τ̄ , with

no effect from the constant shift of the time variable in
the arguments of the Whittaker functions. This corre-
sponds to the same Lyapunov exponent Λ = − 3

2 as in
the preceding subsection and, more generally, for all the
conformally invariant theories described by Eq. (11).

We note in passing that including higher order terms
cn/τ̄

n for n> 1 in the gradient series while approximating
π̄ on the l.h.s. of Eq. (44) spoils its reducibility to the
analytically solvable form explored in this work. Whether
for such approximations Eq. (11) can still be solved in
terms of known functions remains to be seen.

We summarize this section by observing that, while the
assumption of a fixed shear relaxation time τπ (i.e. of a
fixed temperature T when writing τπ ∝ 1/T ) leads to an
incorrect Lyapunov exponent describing the rate of ap-
proach towards the hydrodynamic attractor, the correct
decay rate is recovered as soon as one allows the temper-
ature T to vary with time hydrodynamically even if the
exact time dependence is replaced by an approximation
based on a truncated hydrodynamic gradient expansion.

VI. ANALYTICAL ATTRACTORS

In this section we investigate the hydrodynamic attrac-
tors associated with the analytic approximate solutions
of the evolution equation for the inverse Reynolds num-
ber π̄ found in the preceding section. In Section IV E
we saw that, as τ̄ → 0, π̄ can take one of only two fi-
nite values of opposite sign, and we identified the attrac-
tor as the unique solution which connects to the positive
value. All other solutions were found to connect in the
limit τ̄ → 0 to the negative value. An illustration of this
generic behavior is shown in Fig. 4 for the case of the at-
tractor corresponding to the analytical solution (39) for
the third-order theory.

In this section we introduce the following procedure for
identifying the hydrodynamic attractor [81]: In terms of

Attractor

Other solutions
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FIG. 4. Attractor behavior of the analytical solution (39)
for the third-order theory (λ= 10/21, γ= 412/147). The two
(attracting and repulsing) fixed points at τ̄ → 0 are clearly
visible. Please note that some of the dashed lines have poles,
i.e. as τ̄ → 0 they go to +∞ before reappearing from −∞
and approaching the negative fixed point.

the parameter α encoding the initial condition for π̄, we
search for the value α0 at which the quantity

ψ(α0) ≡ lim
τ̄→τ̄0

∂π̄

∂α

∣∣∣∣
α=α0

(47)

diverges at the time τ̄0 where the two fixed points of the
evolution trajectories (see Fig. 4) are located [32]. For
Bjorken flow, this time is usually τ0 = 0. For the numer-
ical solution of Eq. (11) in Sec. IV E this can be seen in
Fig. 3, and for the analytical solutions Eqs. (33) and (39)
in Secs. V A and V B, respectively, this can be seen by
studying their behavior near τ̄ = 0. The structural sim-
ilarity of Eqs. (45) and (39) shows that for the solution
(45) the fixed points are instead located at w0 = 0, which
corresponds to a negative (i.e. unphysical) longitudinal
proper time τ̄0 = −a/2.

We can use the same approach of studying the sensitiv-
ity to initial conditions to obtain the Lyapunov exponent
Λ from the formula

Λ = lim
τ̄→∞

∂

∂τ̄

[
ln

(
∂π̄

∂α

)]
. (48)

For the analytical solutions (33,39,45) this prescription
reproduces the same results as obtained from the late-
time behavior (35) of the Whittaker functions but its
advantage is that it can also be used numerically where
exact solutions for π̄ are not available (such as for the
numerical solutions of the generic equation (11)).

For the case shown in Fig. 4 we have verified explicitly
that indeed there are two fixed points at τ̄0 = 0 and that
only for the attractor solution, characterized by α0 = 0,
ψ(0) (defined in Eq. (47)) diverges. For all other solutions
α 6= 0 we found that ψ(α) = 0 in the limit τ̄ → 0,
indicating that they all converge to the negative branch,
as shown in Fig. 4.



11

The approximate analytical solutions (33, 39, 45) dis-
cussed in Sec. V can be written in the generic form

π̄(w) =
(k+m+ 1

2 )Mk+1,m(w)− αWk+1,m(w)

γ|Λ| [Mk,m(w) + αWk,m(w)]
, (49)

with arguments and parameters for the three cases (i.e.
for τπ ∝ 1/T with T either constant or with time depen-
dence taken from ideal or Navier-Stokes hydrodynamics)
compiled for convenience in Table II. The attractor so-
lutions are obtained from Eq. (49) by setting the initial
condition parameter α= 0:

π̄attr(w) =
k+m+ 1

2

γ|Λ|
Mk+1,m(w)

Mk,m(w)
. (50)

They are shown in Fig. 5 for the three different hydrody-

τπ= const.

τπ~ 1/Tid

τπ~ 1/TNS

exact attr.

exact RTA

0.1

0.2

0.3

0.4

π

MIS

(a)

0.05
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0.15

0.20

0.25

0.30

π

DNMR

(b)

0.05 0.10 0.50 1 5 10
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0.10

0.15

0.20

0.25

τ

π

Third-order

(c)

FIG. 5. Approximate analytical attractors for the MIS (a),
DNMR (b), and third-order (c) theories, compared with their
exact numerical attractors (solid green lines) and the exact
analytical attractor for the RTA Boltzmann equation (black
dots).

T (τ) w Λ k m

const. τ̄ −1 − 1
2

(λ+1) 1
2

√
4aγ+λ2

ideal 3
2
τ̄ − 3

2
− 3λ+2

4
3
4

√
4aγ+λ2

NS 3
2

(
τ̄+a

2

)
− 3

2
− 6λ+4−3a

8
3
8

√
16aγ+a2−4aλ+4λ2

TABLE II. Arguments and parameters of Eq. (49) for the
analytic approximations studied in Secs. V A, B, and C, re-
spectively.

namic theories discussed in this paper (MIS (a), DNMR
(b), and third-order (c)) and compared with the corre-
sponding exact numerical attractors as well as with the
attractor for the exact analytical solution of the RTA
Boltzmann equation [37] (the latter is, of course, the
same in all three subpanels). Comparison of these attrac-
tors provides insights not only about the performance of
the three different hydrodynamic theories as approxima-
tions to the underlying kinetic theory, but also about the
relative accuracy of the additional approximations made
in Sec. V in order to obtain analytical results.

For all three hydrodynamic theories, we note (espe-
cially at early times when the system is farthest away
from local equilibrium) that the differences between the
exact numerical attractors and their analytical approxi-
mations from Sec. V are significantly smaller than their
discrepancy from the attractor of the underlying kinetic
theory. At late times the breaking of conformal symme-
try by choosing a constant relaxation time leads gener-
ally to the largest difference between the exact numerical
and analytically approximated hydrodynamic attractors;
this may be attributed to the fact that the τπ = const.
approximation underestimates the rate of approach to-
wards the attractor by a factor 2/3. More surprisingly,
the analytic approximation that performs best at late
times (which uses τπ(τ) ∼ 1/T

NS
(τ)) performs worst at

early times when compared with the exact numerical re-
sult. This reflects a different value for the fixed point
of the inverse Reynolds number compared to the other
analytic approximations and may be related to the fact
that in this case the fixed point is shifted outside the
physical region to τ̄ = −a/2. As already seen in Fig. 3,
in comparison with the exact solution of the RTA Boltz-
mann equation, the third-order theory performs much
better than both the MIS and DNMR theories, both
when evaluated exactly numerically or approximately an-
alytically. The only known theory that performs even
better than the third-order theory studied here is second-
order anisotropic hydrodynamics [38, 42, 71] which effec-
tively resums terms of all orders in the inverse Reynolds
number.

Numerical studies, such as those shown in Figs. 2 and
4, show that at late times τ̄ > 1 any initial deviation
from the attractor approaches the attractor exponen-
tially, with the Lyapunov exponents discussed before.
The approximate analytical result (49) allows to under-
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stand this approach analytically over the entire range of
τ̄ , i.e. also for large Knudsen numbers τ̄ � 1. Following
the analysis [90] we write15

π̄(w) = π̄attr(w) + δ(w)

= π̄(w)|α=0 + α
∂π̄

∂α
(w)

∣∣∣∣
α=0

+O(α2) (51)

where in the last expression we expanded the deviation δ
to first order in the deviation of the initial value param-
eter α from the value α= 0 characterizing the attractor
solution. The decay of the inverse Reynolds number π̄ to-
wards its attractor value is for small deviations16 δ given
by

δ(w) =− α

γ|Λ|
Mk+1,m(w)

Mk,m(w)
(52)

×
[(
k+m+ 1

2

) Wk,m(w)

Mk,m(w)
+
Wk+1,m(w)

Mk+1,m(w)

]
.

This is a function of the scaling variable w ∝ |Λ|τ̄ which
is proportional to the inverse Knudsen number τ̄ . This
shows that the competition between the global expan-
sion rate 1/τ and the microscopic relaxation rate 1/τπ
not only rules the evolution of the hydrodynamic attrac-
tor π̄attr itself, but also the way initial excursions of the
inverse Reynolds number from this attractor decay as the
full dynamical solution approaches the attractor. This is
true not only at late times τ > τπ (where this was al-
ready noted in the preceding sections) but also at early
times τ̄ � 1, where the dynamical fixed point of the
system described by its attractor is far away from local
equilibrium.

Using the following Whittaker function properties for
small arguments,

Wk,m(x)

Mk,m(x)

∣∣∣∣
x→0

≈ Γ[2m]

Γ[m−k+ 1
2 ]
x−2m,

Mk+1,m(x)

Mk,m(x)

∣∣∣∣
x→0

≈ 1,

(53)
where the approximation holds at leading order, we see
from Eq. (52) that, in contrast to the exponential decay
(35) at late times τ̄ � 1, the decay of excursions away
from the attractor decay with a power law at early times
τ̄ � 1 [90]. The transition from power law to exponential
decay around w ∝ |Λ|τ̄ = 1 is illustrated in Fig. 6.17,18

15 Note that δ as defined in [90] differs from ours by a factor 4/3.
16 It is worth pointing out that, for fixed initial deviation δ0 at

initial time τ̄0, the corresponding initial state parameter α ap-
proaches 0 as τ̄0 → 0. Small δ0 thus implies small α (especially
for small values of τ̄0), but not vice versa.

17 Note that no early-time power-law decay of excursions away
from the hydrodynamic attractor is observed for the “effective
MIS” solution (15) discussed in Sec. IV B. We found that early-
time power-law decay of initial deviations from the attractor re-
quires that in the generic evolution equation (11) for the inverse
Reynolds number at least one of the two coefficients λ and γ
must be nonzero. This is not the case for the “effective MIS”
theory.

18 A few comments regarding the domain of validity of the linearised

Wk,m (x)

Mk,m (x)

~ x-2m

~ x2k ⅇ-x
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x
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1

FIG. 6. The ratio
Wk,m(x)

Mk,m(x)
as a function of the scaling variable

x (which is proportional to time in units of the microscopic
relaxation time, i.e. to the inverse Knudsen number). The
exact result (solid black line) is compared with the first or-
der approximation (53) for small arguments x < 1 (dashed
red line) and the analogous approximation (35) for large ar-
guments x > 1 (dashed green line). The power-law decay
at early times manifests itself as an approximately straight
line in the double-logarithmic representation of the main plot
while the transition to exponential decay at late times leads
to the approximately straight line behavior seen in the semi-
logarithmic inset plot.

An immediate consequence of this discussion is that
the decay time (defined as the time over which the magni-
tude of δ decreases by a factor 1/e) of any small deviation
δ0 ≡ δ(w0) of π̄ from its attractor value approaches zero
as the initial “time” w0 → 0, and it smoothly increases
from 0 to τπ/|Λ| (where it saturates) as w0 increases from
0 to values much larger than 1/|Λ|. Sufficiently small ex-
cursions of the inverse Reynolds number from its attrac-
tor thus decay faster at early times τ � τπ/|Λ| than at
late times τ � τπ/|Λ|.

The authors of [90] attribute this transition from
power-law decay at early times to exponential decay at
later times to a transition from the “pre-hydrodynamic”
to the “hydrodynamic” stages, i.e. they see it as asso-
ciated with the process of hydrodynamization. We have

approach are in order. Using Eq. (49) to determine the devia-
tion δ(w) from the attractor solution, one readily checks that,
for w � 1, terms beyond the linear order in Eq. (51) are pro-
portional to αn(w−2m)n for n ≥ 2. Even for fixed small values
of α, this series diverges for sufficiently early “times” w2m � α,
where linearisation in α must break down. This is closely related
to footnote 16: in order to keep δ0 ≡ δ(w0) fixed for small values
of w0, α must be tuned down to ensure αw−2m

0 � 1 such that
higher-order contributions may be safely neglected. The break-
down of the linearised method at very early times owes itself to
the presence of the repulsive fixed point at w = 0, i.e., as long as
α is not strictly equal to 0, all solutions, π̄(α,w) will ultimately
hit the repulsor at w = 0, where the deviation from the attrac-
tor no longer stays infinitesimal. This mathematical feature of
π̄(α,w = 0) being discontinuous at α = 0 was, in fact, used to
uniquely determine the attractor solution via Eq. (47) [81].
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a different view of this matter: It is known from ear-
lier numerical studies [32, 38, 42] of both Bjorken and
Gubser flows that some hydrodynamic approximations
(in particular anisotropic and third-order hydrodynam-
ics, but to a somewhat lesser degree also DNMR the-
ory) evolve the inverse Reynolds number very accurately
(when compared with the evolution predicted by the un-
derlying RTA Boltzmann equation) already at very early
times τ̄ � 1, even when initialized far away from the
attractor. That is, not only do the attractors for these
hydrodynamic approximations agree well with the exact
attractor even for large Knudsen numbers, as shown for
DNMR and third-order theories here in Fig. 3 and for
anisotropic hydrodynamics in Fig. 3 of [38], but the the-
ories also describe accurately the evolution of the sys-
tem towards the attractor even when initialized far away
from it. To us this implies that the system hydrody-
namizes well before τ̄ = 1, and exponential rather than
power-law decay of deviations from the attractor are not
a tell-tale signature for “pre-hydrodynamic” behavior.

VII. SUMMARY AND CONCLUSIONS

We studied analytically and numerically the evolu-
tion of the inverse Reynolds number in causal theories
of second- and third-order relativistic viscous fluid dy-
namics for Bjorken flow. In this situation there is only a
single non-vanishing component of the shear stress, de-
scribing an anisotropy between longitudinal and trans-
verse pressure, which is generically very large at early
times. For Bjorken flow the evolution of the associated
inverse Reynolds number (i.e. the ratio of the shear stress
to the enthalpy density of the system) decouples from
that of the energy density and temperature and thus can
be solved independently. When expressed as a function
of time in units of the microscopic shear relaxation time
(which measures the inverse Knudsen number of Bjorken
flow), the solution is universal, i.e. independent of the
specific shear viscosity of the medium. For three dif-
ferent macroscopic hydrodynamic theories, we studied
these solutions, numerically and with various analytical
approximations, their hydrodynamic attractors, the rate
of initial state memory loss and approach to the attractor
(expressed through Lyapunov exponents), and compared
all these with the corresponding solution of the relativis-
tic Boltzmann equation in RTA approximation which de-
scribes the underlying microscopic dynamics and can, for
Bjorken flow, be solved exactly.

When comparing the exact numerical solutions for the
attractor of the inverse Reynolds number for the three
different hydrodynamic theories studied here with the
exact solution from the Boltzmann equation we find sig-
nificant differences at early times, i.e. at large Knud-
sen numbers where the dynamics happens far away from
equilibrium. While for the third-order theory the discrep-

ancy remains always below 10%,19 it increases to ∼ 30%
for DNMR theory and to almost a factor of 2 for MIS
theory (both being second-order hydrodynamic theories).
Compared to these, the additional discrepancies caused
by the various approximations we made to arrive at ana-
lytical solutions for the dynamics of π̄ are small. At late
times (small Knudsen numbers) all attractors approach
the Navier-Stokes solution. Again third-order hydrody-
namics is closest to the exact solution of the underly-
ing Boltzmann kinetics, but the excellent agreement is
spoiled somewhat if conformal symmetry is broken by an
approximation that sets the relaxation time τπ to a con-
stant rather than allowing it to vary inversely with the
temperature.

As τ → 0, the Navier-Stokes value of the inverse
Reynolds number diverges while its attractor value ap-
proaches the finite value π̄ = 0.25, corresponding to a
shear stress over thermal pressure ratio π/P = 1. The
Lyapunov exponent associated with the evolution of π̄,
Λ = − 3

2 , indicates that even far-from-equilibrium initial
conditions, π̄0/P0 � 1, relax exponentially to the attrac-
tor value with a decay time of order 2

3τπ = 10
3
η̄
T . For

minimal specific shear viscosity η̄ = 1
4π and a medium

temperature of, say, T = 0.5 GeV, this corresponds to a
decay time of ≈ 0.1 fm/c. Subsequently, the hydrody-
namic evolution follows essentially the hydrodynamic at-
tractor of the theory which agrees, within the precision
stated above, with the exact attractor associated with of
the underlying microscopic Boltzmann kinetics.

While the ODE describing the evolution of the inverse
Reynolds number for Bjorken flow is easily solved on a
computer, with arbitrary precision, the analytic approxi-
mations studied here are surprisingly accurate, and they
yield valuable insights into the details of initial state
memory loss and the approach to attractor dynamics
in Bjorken flow. Similar methods may be applicable to
different situations (for example, Gubser flow, which is
physically quite different from Bjorken flow but shares
with it many mathematical similarities) where they can
lead to similarly valuable qualitative insights. General-
ization to Gubser flow should be particularly interesting
because it does not thermalize at late times but rather
approaches an asymptotic free-streaming state. In such
a situation the questions of initial state memory loss and
the approach to a hydrodynamic attractor [32, 42, 43]
have not yet been fully understood.
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Gradient expansion for anisotropic hydrodynamics,
Phys. Rev. D94 (2016) 114025 [1608.07558].

[30] M. P. Heller, A. Kurkela, M. Spaliński and V. Svensson,
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