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The dynamic linear response of a quantum system is critical for understanding both the structure
and dynamics of strongly-interacting quantum systems, including neutron scattering from materials,
photon and electron scattering from atomic systems, and electron and neutrino scattering by nuclei.
We present a general algorithm for universal quantum computers to calculate the dynamic linear
response function with controlled errors and to obtain information about specific final states that
can be directly compared to experimental observations.

Quantum computers should enable dramatic new capa-
bilities in simulating quantum many-body systems, par-
ticularly their dynamic properties [1, 2]. Quantum dy-
namics is in general extremely difficult to treat on a clas-
sical computer except for a few special cases such as very
low-energy scattering where spectral decomposition in fi-
nite volumes enable direct connections between spectra
and phase shifts in the scattering of 2- or 3-clusters [3–
6] or very high-energy scattering that can be treated as
nearly non-interacting final states, including y-scaling in
neutron or electron scattering [7, 8] or inclusive deep in-
elastic scattering in QCD [9]. The general problem is
essentially intractable because of quantum interference,
the rapidly oscillating phases that arise in the relevant
path integrals.

Perhaps the simplest quantum dynamics problem is
the dynamic linear response, framed as the response of
a quantum system to a small perturbation. Examples
are ubiquitous, including for example neutron scatter-
ing on materials, photon scattering in atomic systems,
and electron and neutrino scattering from atomic nuclei.
The response of the system can in principle tell us much
about the structure of the system being probed as well
as important properties of the dynamics. In the case
of neutrinos scattered by nuclei it is also used to infer
properties of the neutrino itself including masses, mix-
ing angles, the mass hierarchy and CP violation in the
neutrino sector (eg. [10]).

The ability to accurately calculate the dynamic re-
sponse over a wide range of energy and momentum trans-
fers, augmented by the possibility of determining specific
features of the final states, would revolutionize our ability
to extract information from many kinds of scattering ex-
periments. Some information on quantum dynamics can
be obtained using classical computers even for relatively
large systems, typically by computing imaginary-time
correlation functions [11–13]. Even for systems where
the ground state or thermal ensembles can be simulated
free of any sign problem, it is extremely difficult to invert
these correlation functions to obtain the exact dynamic
response. In this paper we discuss methods to determine
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the dynamic response on a universal quantum computer,
as well as to detect important features of explicit final
states that can be directly compared to experimental
data. Our approach is particularly well suited for prob-
lems defined on a lattice, but these lattice methods can
of course also be used to simulate systems in the contin-
uum over a wide but finite range of energy and momenta,
for example in lattice studies of cold atoms [14, 15] and
nuclear systems [16, 17]. Also we restrict ourselves to the
response from the quantum ground state (T=0), gener-
alizations to finite temperature are possible by prepar-
ing states in thermal equilibrium rather than the ground
state [18].

We note that the similar problem of evaluating chemi-
cal reaction rates [19, 20] and time-dependent correlation
functions [21–23] have been already investigated in the
quantum-chemistry literature. Our proposed algorithm
improves on these earlier techniques in that our strategy
is completely general, does not depend on simplifying as-
sumptions on the excitation operator (for example, being
able to diagonalize it as in [21]) and requires only a poly-
nomial number of measurements (instead of exponential
like in [19]). Also, working directly in frequency space
allows us a direct access to the final states of a reaction
which can be further analyzed. This is particularly im-
portant for neutrinos where the momentum and energy
transfer are a priori unknown.

Furthermore we are able to provide rigorous cost and
error estimates of the computed dynamical properties.
Available algorithms for evaluating energy spectra [23–
25] can in principle be adapted to compute response func-
tions but they require resolution of individual excited
states which grows exponentially in number for large sys-
tems.

The paper is organized as follows, in Sec. I we provide
detailed definition of the Dynamical Response Function
and describe the implementation of our method.In Sec. II
we provide an example of final state characterization by
discussing the estimation of the one- and two-body mo-
mentum distribution and conclude in Sec. III.
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I. METHOD

In the linear regime the response of a system of inter-
acting particles due to a perturbative probe characterized
by the excitation operator Ô can be fully characterized
using the Dynamical Response Function, which can be
expressed as

SO(ω) =
∑
ν

|〈ψν |Ô|ψ0〉|2δ(Eν − E0 − ω) (1)

where |ψ0〉 is the ground-state of the system with energy
E0, |ψν〉 are the final states of the reaction with ener-
gies Eν and ω is the energy transfer. It is convenient
to rescale the response function so that it’s zero moment
(the integral over frequencies) is 1; this can be achieved
by defining

SrO(ω) =
∑
ν

|〈ψν |Ô|ψ0〉|2

〈Ô2〉0
δ(Eν − E0 − ω) . (2)

The final normalization can be restored by either us-
ing the knowledge of one of the sum rules or by di-
rect evaluation of the ground state expectation value
〈Ô2〉0 ≡ 〈ψ0|Ô2|ψ0〉. Understanding this, in the follow-
ing we will drop the superscript r.

Our goal is to estimate the dynamical response func-
tion SO(ω) with energy resolution ∆ω and a precision
δS with probability 1 − ε. We will indicate the differ-
ence between the largest eigenvalue of Ĥ and the ground
state energy by: ∆H = Emax−E0. Note that this quan-
tity grows only polynomially with system size for most
Hamiltonians of interest (see discussion below).

In the following we will assume to have access to three
black-box quantum procedures (oracles):

• a unitary ÛG which prepares the ground-state of
the Hamiltonian of interest

• a unitary ÛO which implements time evolution un-
der Ô for a short time γ < poly(δS)

• a unitary Ût which implements time evolution un-
der the system Hamiltonian for time t

Even though the oracle ÛG may be impractical to im-
plement for a general Hamiltonian, for most systems of
interest many different algorithms are available in the
literature ([26–34]) and some have already be tested on
simple nuclear systems [35]. Also, close to optimal strate-
gies to implement the time-evolution operator for sparse
Hamiltonians are known [36, 37] and for Hubbard-type
Hamiltonians (like those derived within lattice-EFT [17])
efficient implementations of Trotter steps with sub-linear
circuit depth are available [38]. For the common case

where Ô is a one-body operator the latter strategies can
be used to implement ÛO efficiently.

Our scheme is composed of two quantum circuits

• a state preparation routine requiring O(1) calls to

ÛG and ÛO with a success probability (see Sec. I A)

Psuccess = O

(
δS
〈Ô2〉0
‖Ô‖2

)
(3)

‖ · ‖ is the operator norm;

• a second routine that provides access to SO(ω)
which requires W = log2 (∆ω/∆H) auxiliary (an-

cilla) qubits, the application of Ût for a maximum
time tmax = 2π/∆ω and additional O (Wlog(W )))
gates

As we explain in more detail in Sec. I A, for typical
situations where the implementation of ÛG requires con-
siderable effort the success probability of the first routine
can be amplified to O(1) with additional O(1/P 2

success)

calls to the oracle ÛO. An alternative algorithm which
removes the dependence of Psuccess on δS but is more
difficult to make deterministic is also presented.

This whole circuit needs to be run a number of times
given approximately by

Nrep ≈ ln
(

2

ε

)
1

2δ2S
(4)

independent of the target resolution ∆ω which instead
controls the number of operations executed per run.

In summary, for a given choice of the excitation oper-
ator Ô our algorithm can be described by the following
steps:

while iteration number less than Niter do
prepare the ground state using ÛG
run the first quantum algorithm (Sec. I A)
if algorithm succeeds then

we have prepared |ΦO〉 ∝ Ô|ψ0〉
run the second quantum algorithm (Sec. I B)
store result for classical post-processing
if final state information needed then

measure final state (eg. Sec II)
end if

end if
end while

In the next sections we describe in detail the implementa-
tion of the two quantum routines introduced above. We
also present examples obtained by classical simulation of
a simple 2D fermionic system described by the Hubbard
hamiltonian

H = −t
2∑

σ=1

M∑
〈i,j〉

(
c†i,σcj,σ + ci,σc

†
j,σ

)

+ U

M∑
i=1

n̂i,↑n̂i,↓ ,

(5)

where 〈i, j〉 indicates the nearest-neighbor lattice sites

and n̂i,σ = c†i,σci,σ denotes the number operator. The
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results shown here were obtained for A = 2 ”nucleons”,
M = 312 lattice sites and U/t = −2. These parameters
are chosen to give a bound state considerably smaller
than the lattice.

A. State preparation algorithm

The first problem we have to solve is the preparation
of the state |ΦO〉 given a quantum register initialized in
the ground-state |ψ0〉. Let’s start by adding an ancilla
qubit and defining the unitary operator

ÛγS = e−iγÔ⊗σy =

(
cos(γÔ) − sin(γÔ)

sin(γÔ) cos(γÔ)

)
(6)

where the Pauli σy operator acts on the ancilla and the
final matrix representation is on the basis spanned by the
states {|0〉, |1〉} of the ancilla. Note that this unitary can
be implemented efficiently with just 2 calls to a controlled
version of the oracle ÛO and additional O(1) one-qubit
gates (see Appendix A for a possible implementation).

By initializing the ancilla register to |1〉, applying ÛγS
and measuring the state |0〉 we have effectively produced

(1⊗|0〉〈0|) ÛγS |ψ0〉⊗|1〉 =
|ΦO〉√
〈ΦO|ΦO〉

+O
(
γ2‖Ô‖2

)
(7)

which differs from the wanted state by corrections of or-
der γ2. In the expression above we used the shorthand
|ΦO〉 = Ô|φ0〉.The error in the implementation of the

unitary ÛO needs to be at least of the same order, which
means a simple single Trotter step will suffice. The state
preparation has a success probability of

Psuccess = P (|0〉) = 〈ψ0|sin(γÔ)2|ψ0〉
= γ2〈Ô2〉0 +O

(
γ4
)
.

(8)

This approach for the application of a non-unitary
transformation is similar in spirit to earlier work (see eg.
[39, 40]) and it suffers from a possibly very low efficiency
since we may need O(1/γ2) trials to succeed. One op-
tion is to perform the algorithm at a few relatively large
values of γ and fit a quadratic function to extrapolate
out the error from the final response function. This ap-
proach is however complicated if one is interested also
in properties of the final states. A second approach, al-
ready proposed in [39], is to repeat the application of the

unitary ÛγS until success. This works because cos(γÔ) is
approximately the identity. In order to obtain a success
probability P (|0〉) = O(1) we will need O(1/γ2) repeti-

tions. In addition, if the inverse Ô†G of the ground-state
preparation circuit is available then it’s possible to use
Amplitude Amplification [41] to gain a quadratic speedup
over this [42].

Note that by using the normalized state |ΦγO〉 we will
compute the normalized response function Eq. (2). If no
sum-rules are known one can estimate the normalization

constant by estimating the success probability Eq. (8) at
different values of γ and extrapolating.

Since the state preparation through the unitary ÛγS is
only approximate, the parameter γ would need to de-
pend on the final target accuracy. As mentioned in the
introduction an alternative scheme that avoids this prob-
lem by removing the error in Eq. (7) can be obtained by

representing the excitation operator Ô as a linear combi-
nation of D unitary matrices

Ô =

D∑
k=1

αkÛk α =

D∑
k=1

|αk| ≥ ‖Ô‖ (9)

which can be efficiently implemented employing addi-
tional m = log2(D) ancilla qubits using known tech-
niques [36, 37, 43]. The success probability in this case
is given by

P̄success =
〈Ô2〉0
α2

(10)

which depending on the particular case may be larger
than Eq.(3). The main drawback of this approach is
that Amplitude Amplification is the only process that
can make the algorithm deterministic since upon failure
the output state can in general be very different from the
starting point.

B. Response Function estimation

We now present our strategy to obtain the response
function trough the standard Phase Estimation Algo-
rithm (PEA) [44]. It is convenient to shift and scale the
original Hamiltonian:

H =
H − E0

∆H
⇒ H|ψν〉 = λν |ψν〉 (11)

so that we map the energy spectrum to λν ∈ [0, 1].
By direct calculation we see that the response function

SO(ω) obtained from H is related to the original one by

∆HSO(ω) = SO(ω) , (12)

for a scaled frequency ω ∈ [0, 1].
Our goal is to estimate SO(ω) efficiently. We do this

by using PEA on an auxiliary register of W qubits with
the evolution operators

Uk = ei2kπH ⇒ Uk|ψν〉 = ei2kπλν |ψν〉 (13)

for k = 0, . . . , 2W − 1. The resulting circuit will have
depth O (Wlog(W ) +Ntmax), where the first term comes
from the inverse Quantum Fourier Transform [45] and
Ntmax is the gate count needed for a time evolution of

tmax = O (2π/∆ω) using the oracle Ût. The resulting
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probability of measuring the W ancilla qubits in the bi-
nary representation of the integer y ∈ [0, 2W − 1] is (see
eg. [46] for more details)

P (y) =
1

22W

∑
ν

|〈ψν |ΦO〉|2
sin2

(
2Wπ

(
λν − y

2W

))
sin2

(
π
(
λν − y

2W

))
≡ 1

2W

∑
ν

|〈ψν |ΦO〉|2F2W

(
2π
(
λν −

y

2W

)) (14)

where F2W (x) is the well-known Fejer kernel from Fourier
analysis (see eg. [47]). The probability distribution P (y)
is a good approximation of SO(ω) since this kernel can
be seen as a representation of the delta function with
width ∆x ≈ 2−W . Therefore if we require a frequency
resolution ∆ω we will need W = log2 (∆H/∆ω) auxiliary
qubits and a polynomial number of applications of the
time evolution operator to obtain a sample from P (y).

As mentioned above, for most Hamiltonians of interest
the energy gap ∆H scales only polynomially with the size
of the system.

We now need to estimate P (y) from N samples drawn
from it. Since y is a discrete variable an efficient way of
reconstructing the probability distribution is by produc-
ing an histogram hN (y) from the samples. Using Hoeffd-
ing’s inequality [48] we find that

Pr (|hN (y)− P (y)| ≥ δ) ≤ 2e−2Nδ
2

, (15)

which implies in order to obtain a precision δ with prob-
ability 1− ε we need approximately

N = ln

(
2

ε

)
1

2δ2
(16)

independent samples.

FIG. 1. Approximations of the true response function SO(ω)
for the model system described by the hamiltonian of Eq. (5)
for different numbers of the work qubits: W = 6 (blue line),
W = 8 (red line) and W = 12 (green line). The exact re-
sponse is also shown with black dots. The inset shows the
maximum error in the sample estimate of P (y) as a function
of the number of samples.

In Fig. 1 we plot the approximate response P (y) for
the model Hamiltonian Eq. (5) at three different values
of W (6,8,12). By comparing with the exact result shown
as black dots, we see that for W = 12 the effect of energy
resolution is negligible but already with W = 8 we ob-
tain a rather accurate estimate for SO(ω). Even W = 6
reproduces important features of the response, which in
experiments is convoluted with the detector resolution.
The inset shows the convergence of the maximum error

δmax = sup
y∈[0,...,2W−1]

|hN (y)− P (y)| (17)

as a function of the sample size N . As expected the error
do not scale with the resolution ∆ω. Response functions
relevant for ν and e− scattering are typically smooth at
high energy and hence require small W and short prop-
agation times.

Finally, in order to obtain a negligible bias from the
state preparation we need the parameter γ to scale as

γ / C

√
δ

‖Ô‖
(18)

for some constant C = O(1). Note that the Hamilto-

nian evolution implemented in Ût has to have an error
εt ≤ γ2‖Ô‖2 to be negligible (luckily algorithms with
only logarithmic dependence on εt are known [36, 43]).

This concludes the proof of the scalings (3) and (4).

II. FINAL STATE MEASUREMENTS

In electron- or neutrino-nuclear scattering experi-
ments [10, 49–62] one would like to infer the probability
P (q, ω|~p) that the probe transferred energy-momentum
(q, ω) to the nucleus and simultaneously that the final
state includes a nucleon (or neutron or proton) of mo-
mentum (~p). More concretely this amounts to an infer-
ence procedure of the form

P (q, ω|~p) = P (~p|q, ω)
P (q, ω)

P (~p)

= P (~p|q, ω)
P (ω|q)P (q)

P (~p)

(19)

where P (~p) results from the experimental measure,
P (~p|q, ω) is the momentum distribution of the final states
for a process with given (q, ω) and P (q|ω) ≡ S(q, ω). The
prior probability P (q) depends on the static response of
the nucleus and the characteristic of the probe beam and
can be updated given the other ones by a Bayesian pro-
cedure. The above section explains how to obtain S(q, ω)
with a given accuracy and in the following we will show
how to evaluate few-body momentum distributions given
by the final state of the algorithm above. Note that af-
ter measuring the W ancilla qubits of Sec.I B the main
register will be left in a state |Ψf 〉 composed by a lin-
ear superposition of final states corresponding to energy
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transfer ω ±∆ω. Imagine we want now to compute ex-
clusive 1 and 2-body momentum distributions

n1(A) = 〈Ψf |n̂A|Ψf 〉 n2(A,B) = 〈Ψf |n̂An̂B |Ψf 〉 (20)

where n̂k ≡ n̂(~pk, σk, τk) is the number operator for a
state with momentum ~pk, spin σk and isospin τk. We
can define a unitary operator UnA = exp(−iπn̂A) (which
is efficiently implementable) and run the circuit depicted
in Fig. 2 with an ancilla qubit. By using the idempotence

FIG. 2. Circuit for measuring the momentum distribution.

of n̂A we find

P (|0〉) = 1− n1(A) P (|1〉) = n1(A) (21)

and we can then extract the expectation value by esti-
mating these probabilities. Note that we may use the
same procedure with UnA,nB = exp(−iπn̂An̂B) to es-
timate n2(A,B) (and possibly higher body momentum
distributions). We can get a better strategy by reusing
the final state of the circuit of Fig. 2 upon measuring the
ancilla in |1〉 and running it again with UnB since the
probabilities now will be

P ′(|0〉) = 1− n2(A)

n1(A)
P ′(|1〉) =

n2(A)

n1(A)
. (22)

Note that |Ψf 〉 will in general be contaminated by final
state interactions but we can access a better approxima-
tion to an asymptotic state by evolving it in time using
Ût.

This measurement procedure will need to then be re-
peated a polynomial number of times for all the ob-
servables of interest. Given the expensive procedure
needed to generate the final states a better strategy
to estimate multiple observables per iteration may be
needed for greater efficiency. One option is using state
reconstruction techniques developed in quantum tomog-
raphy [63, 64] or devising strategies tailored to the par-
ticular system studied and it’s encoding on the quantum
computer.

III. CONCLUSIONS

We presented a complete quantum algorithm for cal-
culating the linear response of a quantum system to ex-
ternal perturbations with controllable accuracy. This
is achieved by probabilistically preparing the perturbed
state (even though a deterministic preparation with poly-
nomial cost is in general available) and then analyzing it
by using the standard Phase Estimation Algorithm [44].
Our approach is efficient (scaling is polynomial in system
size and required accuracy) and provides direct access to
the final states resulting from the perturbation, a prop-
erty that potentially makes it extremely valuable to the
interpretation of ongoing and planned scattering experi-
ments.
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[43] G. Hao Low and I. L. Chuang, ArXiv e-prints (2016),

arXiv:1610.06546 [quant-ph].
[44] D. S. Abrams and S. Lloyd, Phys. Rev. Lett. 83, 5162

(1999).
[45] L. Hales and S. Hallgren, in Proceedings 41st Annual

Symposium on Foundations of Computer Science (2000)
pp. 515–525.

[46] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, Pro-
ceedings of the Royal Society of London A: Mathemati-

cal, Physical and Engineering Sciences 454, 339 (1998).
[47] A. Jerri, The Gibbs Phenomenon in Fourier Analysis,

Splines and Wavelet Approximations, Mathematics and
Its Applications (Springer US, 1998).

[48] W. Hoeffding, Journal of the American Statistical Asso-
ciation 58, 13 (1963).

[49] O. Benhar, D. Day, and I. Sick, Rev. Mod. Phys. 80,
189 (2008).

[50] R. Subedi, R. Shneor, P. Monaghan, B. D. Ander-
son, K. Aniol, J. Annand, J. Arrington, H. Benaoum,
F. Benmokhtar, W. Boeglin, J.-P. Chen, S. Choi, E. Cis-
bani, B. Craver, S. Frullani, F. Garibaldi, S. Gilad,
R. Gilman, O. Glamazdin, J.-O. Hansen, D. W. Higin-
botham, T. Holmstrom, H. Ibrahim, R. Igarashi, C. W.
de Jager, E. Jans, X. Jiang, L. J. Kaufman, A. Kelleher,
A. Kolarkar, G. Kumbartzki, J. J. LeRose, R. Lindgren,
N. Liyanage, D. J. Margaziotis, P. Markowitz, S. Mar-
rone, M. Mazouz, D. Meekins, R. Michaels, B. Moffit,
C. F. Perdrisat, E. Piasetzky, M. Potokar, V. Punjabi,
Y. Qiang, J. Reinhold, G. Ron, G. Rosner, A. Saha,
B. Sawatzky, A. Shahinyan, S. Širca, K. Slifer, P. Solvi-
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keep the discussion simple we implement the unitary
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γÔ
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γÔ
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γÔ
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γÔ
)  (A1)

which apart from a global phase achive the same trans-
formation we needed ÛγS for. The circuit implementing
this gate is represented in Fig. 3 where X indicates a
Pauli σX matrix applied to the ancilla qubit. The time
evolution unitary ÛO described in the main text can be
written as

ÛO = e−iγÔ , (A2)

and it’s controlled version appearing in the circuit above
can be obtained with known techniques (see eg. [65].
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