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We present a study of the role played by realistic three-body forces in providing a reliable monopole
component of the effective shell-model Hamiltonian. To this end, starting from a nuclear potential
built up within the chiral perturbation theory, we derive effective shell-model Hamiltonians with
and without the contribution of the three-body potential and compare the results of shell-model
calculations with a set of observables that evidence shell-evolution properties. The testing ground of
our investigation are nuclei belonging to fp shell, since the shell-evolution towards shell closures in
48Ca and 56Ni provides a paradigm for shell-model Hamiltonians. Our analysis shows that only by
including contributions of the three-body force the monopole component of the effective shell-model
Hamiltonian is then able to reproduce the experimental shell evolution towards and beyond the
closure at N = 28.

PACS numbers: 21.60.Cs, 21.30.Fe, 21.45.Ff, 27.40.+z10

I. INTRODUCTION11

The evolution of the nuclear spectroscopic properties12

along isotopic and isotonic chains, towards the formation13

of magic numbers, is the feature that reveals the central14

role of the nuclear shell model (SM) and its success during15

the past 70 years [1–3]. Consequently, it is very desirable16

that effective Hamiltonians, which are employed to study17

the nuclear structure in the framework of the shell model,18

should be able to reproduce the observed shell evolution19

and closures.20

Zuker and coworkers have extensively investigated the21

properties of the two-body matrix elements (TBMEs) of22

the residual interaction derived from realistic potentials23

by way of many-body perturbation theory [4], and, hav-24

ing performed a multipole decomposition of realistic SM25

Hamiltonians, have shown that their monopole compo-26

nent needs to be modified in order to reproduce the evo-27

lution of shell closures as a function of the number of va-28

lence nucleons [5–7]. They have inferred that this should29

trace back to the lack of a three-nucleon force (3NF) in30

the nuclear realistic potentials employed to derive the ef-31

fective SM Hamiltonian Heff , affecting its monopole com-32

ponent that, consequently, has to be corrected [8].33

Extensive direct investigations about the role of 3NFs34

in realistic Heffs have been carried out by Schwenk and35

coworkers, who have performed studies of oxygen [9–13]36

and calcium [11, 13–15] isotopic chains. In the aforemen-37

tioned works, the Heffs blue have been derived starting38

from nuclear potentials built up within the chiral per-39

turbative expansion and softened by way of the Vlow−k40

technique [16, 17] or the similarity renormalization-group41

(SRG) approach [18, 19], and the results have supported42

the need of introducing three-body forces to reproduce43

the experimental behavior of the ground-state and yrast44

excitation energies as a function of the valence-nucleon45

number.46

In order to investigate the role played by three-body47

forces in driving the shell evolution, we have found inspi-48

ration from the calculation of the effective single-particle49

energies (ESPEs) for p-shell nuclei, whose results we have50

presented in Ref. [20]. More precisely, we have found that51

the ESPEs calculated from the Heff that includes contri-52

butions from both two- and three-body chiral potentials,53

provide a constant energy-splitting of the spin-orbit part-54

ners 0p3/2, 0p1/2 as a function of the mass number A.55

This splitting characterizes the correct reproduction of56

the subshell closure at Z,N = 6 observed in 12C, at vari-57

ance with the result we have obtained omitting the con-58

tribution of the 3NF. As a matter of fact, the relative59

ESPE rapidly drops down if only the two-nucleon force60

(2NF) is included, and becomes even negative around61

A = 8. Then, the reproduction of the shell closure de-62

teriorates, namely the observed energy of the 12C yrast63

Jπ = 2+ state is underestimated by ∼ 1 MeV.64

Since the ESPE of a level is calculated in terms of the65

bare single-particle (SP) energy and the monopole part66

of the TBMEs [21], it is clear that the above mentioned67

results point to an intimate relationship between 3NF68

and the monopole component of Heff .69

On the above grounds, we devote the present paper to70

studying this connection choosing, as a testing ground,71

the nuclei belonging to the fp shell, namely those that72

can be described in terms of the degrees of freedom of va-73

lence nucleons outside doubly-closed 40Ca, interacting in74

the model space composed by 0f1p orbitals. This region75

represents a paradigm to investigate the shell evolution76

within the shell model, since, as is well-known, the spin-77

orbit component of the SM mean field separates the 0f7/278

orbital from the others leading to the appearance of the79
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magic number Z,N = 28 and, consequently, of the two80

doubly-magic nuclei 48Ca and 56Ni.81

The starting point of our calculation is a nuclear poten-82

tial based on chiral perturbation theory (ChPT) [22, 23],83

a choice that is motivated by two main considerations.84

a) First, within this class of potentials long-range85

forces are ruled by the symmetries of low-energy86

quantum chromodynamics (QCD) - in particular87

the spontaneously broken chiral symmetry - and88

the short-range dynamics is absorbed into a com-89

plete basis of contact terms that are proportional to90

low-energy constants (LECs) fitted to two-nucleon91

data.92

b) The second major characteristic of ChPT is that93

nuclear 2NF and many-body forces are generated94

on an equal footing [23–25], since most interaction95

vertices that appear in the 3NF and in the four-96

nucleon force (4NF) also occur in the 2NF.97

For the sake of completeness, we point out that, as in Ref.98

[20], a high-precision 2NF potential derived within the99

ChPT at next-to-next-to-next-to-leading order (N3LO)100

[23, 26] is considered in our calculation, without any101

renormalization of its high-momentum components, jux-102

taposed with a N2LO 3NF potential, since this many-103

body contribution appears from this order on. Nowadays,104

these potentials are widely employed in nuclear theory105

aiming to link the fundamental theory of strong interac-106

tions, the QCD, to nuclear many-body phenomena.107

Then, the Heffs for systems with one- and two-valence108

nucleons outside the 40Ca core are derived by way of109

the energy-independent linked-diagram perturbation the-110

ory [27], where 2NF-vertices diagrams are included up to111

third order and contributions of 3NF up to first order in112

the perturbative expansion.113

For those nuclei with a number of valence nucleons114

larger than 2 - we will report calculations for Z = 20,115

22, 24, 26, and 28 up to N = 40 - the effect of many-116

body correlations is taken into account by including the117

contributions of three-body diagrams calculated at sec-118

ond order in perturbation theory [28]. These correla-119

tions arise from the interaction via the two-body force of120

the valence nucleons with excitations outside the model121

space [29]. Since our SM code cannot manage three-body122

Hamiltonians, we have derived a density-dependent two-123

body contribution at one-loop order from the three-body124

correlation diagrams, summing over the partially-filled125

model-space orbitals.126

A description of the perturbative approach to the127

derivation of our effective SM Hamiltonian is reported128

in Section II, where the perturbative properties are also129

discussed in some detail. In Section III we introduce first130

the results of the calculation of the ESPEs, in order to131

analyze the properties of the monopole component of the132

effective Hamiltonians, obtained with and without the133

contribution from a chiral 3NF. Then, we compare the134

results of the full diagonalization of these Heffs with ob-135

servables that are sensitive to the shell evolution of fp136

isotopic chains. We focus on the evolution of collectivity137

in N = 28 isotones too, that is a key point to evalu-138

ate the balance between the monopole and quadrupole139

components of the effective SM Hamiltonian. Finally, in140

Section IV we draw the conclusions of our study and the141

outlook of our future work.142

II. OUTLINE OF CALCULATIONS143

As mentioned in the Introduction, we choose, as 2NF,144

the chiral N3LO potential derived by Entem and Mach-145

leidt in Ref. [26], and as 3NF a chiral N2LO potential,146

which shares the regulator function of a nonlocal form147

and some of the LECs with the 2NF. It is worth pointing148

out that the N2LO 3NF is composed of three compo-149

nents, namely the two-pion (2π) exchange term V
(2π)
3NF ,150

the one-pion (1π) exchange plus contact term V
(1π)
3NF , and151

the contact term V
(ct)
3NF .152

For the sake of consistency, the c1, c3, and c4 LECs153

appearing in V
(2π)
3NF , are the same as those in the N3LO154

2NF, their values being determined by the renormaliza-155

tion procedure that fits the nucleon-nucleon (NN) data156

[23].157

Moreover, the 3NF 1π-exchange and contact terms are158

characterized by two extra LECs (known as cD and cE ,159

respectively), which cannot be constrained by two-body160

observables, but need to be determined by reproducing161

observables in systems with mass A > 2.162

We adopt the same cD, cE values employed in Ref. [20],163

namely cD = −1 and cE = −0.34, that have been deter-164

mined by way of no-core shell model (NCSM) calcula-165

tions [30, 31]. More precisely, in Ref. [30] it has been166

identified a set of observables in light p-shell nuclei that167

are strongly sensitive to the cD value in order to fix it,168

then cE has been constrained to reproduce the binding169

energies of the A = 3 system.170

Details about the calculation of our 3NF matrix ele-171

ments in the harmonic-oscillator (HO) basis are reported172

in Appendix of Ref. [20]. Note that the Coulomb poten-173

tial is explicitly taken into account in our calculations.174

In the same paper, a comprehensive description of175

the derivation of our effective SM Hamiltonians for one-176

and two-valence nucleon systems, starting from 2NF and177

3NF, can also be found, while in the following we present178

only a short summary.179

As mentioned before, our Heff is derived in the model180

space spanned by the four 0f1p proton and neutron or-181

bitals outside doubly-closed 40Ca.182

To this end, an auxiliary one-body potential U is in-183

troduced in order to break up the Hamiltonian H for a184

system of A nucleons as the sum of a one-body term H0,185

which describes the independent motion of the nucleons,186
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and a residual interaction H1:187

H =

A∑
i=1

p2
i

2m
+

A∑
i<j=1

V 2NF
ij +

A∑
i<j<k=1

V 3NF
ijk = (1)

= T + V 2NF + V 3NF = (T + U) +

+(V 2NF − U) + V 3NF = H0 +H2NF
1 +H3NF

1 .

In our calculation we use the HO potential, U = 1
2mω

2r2,188

with an oscillator parameter ~ω = 11 MeV, according to189

the expression [32] ~ω = 45A−1/3 − 25A−2/3 for A = 40.190

Once H0 has been introduced, the reduced model space191

is defined in terms of a finite subset of H0’s eigenvectors.192

The diagonalization of the many-body Hamiltonian in193

Eq. (1) within the infinite Hilbert space, that it is ob-194

viously unfeasible, is then reduced to the solution of an195

eigenvalue problem for an effective Hamiltonian Heff in196

a finite space.197

Our approach to the derivation of Heff is the time-198

dependent perturbation theory [27, 33, 34]. Namely, Heff199

is expressed through the Kuo-Lee-Ratcliff (KLR) folded-200

diagram expansion in terms of the vertex function Q̂-box,201

which is composed of irreducible valence-linked diagrams202

[35, 36]. We include in the Q̂-box one- and two-body203

Goldstone diagrams through third order in H2NF
1 and up204

to first order in H3NF
1 .205

In Fig. 1 we report the contribution at first order in206

perturbation theory to the single-particle component of207

the Q̂-box of a three-body potential, whose explicit ex-208

pression is:209

〈ja|1b3N |ja〉 =∑
h1,h2
J12J

Ĵ2

2ĵa
2 〈[(jh1

jh2
)J12 , ja]J |V3N | [(jh1

jh2
)J12 , ja]J〉 .

(2)

The expression of the first-order two-body diagram with210

a 3N vertex, shown in Fig. 1, is the following:211

〈(jajb)J |2b3N |(jcjd)J〉 =∑
h,J′

Ĵ ′
2

Ĵ2
〈[(jajb)J , jh]J′ |V3N | [(jcjd)J , jh]J′〉 , (3)

The three-body matrix element (3BME)212

〈[(jajb)Jab
, jc]J |V3N | [(jdje)Jde , jf ]J〉, expressed within213

the proton-neutron formalism, is antisymmetrized but214

not normalized.215

We recall that the expressions in Eqs. (2) and (3) are216

the coefficients of the one-body and two-body terms, re-217

spectively, arising from the normal-ordering decomposi-218

tion of the three-body component of a many-body Hamil-219

tonian [37].220

As mentioned in the Introduction, we include in the221

calculation of the Q̂-box also the effect of second-order222

a b

c da

a

hh
1

h
2

FIG. 1. First-order one- and two-body diagrams with a three-
body-force vertex. See text for details.

three-body diagrams, which, for those nuclei with more223

than 2 valence nucleons, account for the interaction via224

the two-body force of the valence nucleons with core ex-225

citations as well as with virtual intermediate nucleons226

scattered above the model space.227

a
b

c d

e

f

b

d

a

c

m

J’

J’

J

J

J

J

ab

cd

(A) (α)

FIG. 2. Density-dependent two-body contribution that is ob-
tained from a three-body one. α is obtained by summing over
one incoming and outgoing particle of the three-body graph
A (see text for details).

The SM code we employ [38] cannot perform the di-228

agonalization of a three-body Heff , so we derive from229

the leading-order three-body contribution a density-230

dependent two-body term. To this end, we calculate nine231

one-loop diagrams - the graph (α) in Fig. 2 - from the232

corresponding diagrams reported in Fig. 3 of Ref. [28].233

Their explicit form, in terms of the three-body graph234

(A), is the same as in Eq. 3:235

〈(jajb)J |V α|(jcjd)J〉 =∑
m,J′

ρm
Ĵ ′

2

Ĵ2
〈[(jajb)J , jm]J′ |V

A| [(jcjd)J , jm]J′〉 ,

(4)

where the summation over m-index runs in the model236

space and the expressions of the nine second-order dia-237

grams (A) are reported in Appendix of Ref. [28]. ρm238
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is the unperturbed occupation density of the orbital jm239

according to the number of valence nucleons.240

Finally, the perturbative expression of the Q̂-box con-241

tains one- and two-body diagrams up to third order in242

the N3LO 2NF [34], one- and two-body first-order contri-243

butions in the N2LO 3NF [20], and a density-dependent244

two-body contribution that accounts for three-body dia-245

grams at second-order in the N3LO 2NF [28, 29].246

It should be pointed out that the latter term will lead247

to the derivation of specific effective shell-model Hamil-248

tonians depending on the number of valence protons and249

neutrons, that obviously differ only for the two-body ma-250

trix elements.251

The folded-diagram series is then summed up to all252

orders using the Lee-Suzuki iteration method [39].253

We stress that the input chiral 2NF and 3NF have not254

been modified by way of any renormalization procedure,255

and here we will show a few details about the pertur-256

bative properties of the effective Hamiltonian. A similar257

discussion about the perturbative expansion of the Q̂-box258

from N3LO 2NF potential has been reported in Ref. [34].259

First, it should be pointed out that the truncation of260

the number of intermediate states appearing in the per-261

turbative expansion is the same as in Ref. [34], i.e. the262

intermediate states whose unperturbed excitation energy263

is greater than a fixed value Emax = Nmax~ω are disre-264

garded. As mentioned above, the value we have cho-265

sen for the HO parameter is ~ω = 11 MeV. Because of266

our present limitation of the storage of the total number267

of two-body matrix elements, we can include a maxi-268

mum number of intermediate states that do not exceed269

Nmax = 18.270

After these clarifying details, we present in Fig. 3 the271

first excited states of 42Ca spectrum, which have been272

obtained employing Heffs with contributions of 3NF,273

and starting from Q̂-boxes at first-, second-, and third-274

order in perturbation theory, and their Padé approximant275

[2|1][40]. We employ the Padé approximant in order to276

obtain a better estimate of the convergence value of the277

perturbation series [34], as suggested in [41]. The num-278

ber of intermediate states is the largest we can employ,279

corresponding to Nmax = 18.280

As can be seen, the results show a very satisfactory281

convergence of theHeff with respect to the order-by-order282

behavior of the perturbative expansion.283

We now move our focus to the issue of the dependence284

of Heff with respect to the number of intermediate states285

included in the calculation of second- and third-order di-286

agrams.287

In Fig. 4 they are reported the energy spectra of 41Ca,288

obtained from one-valence-neutron Heffs derived by em-289

ploying the Padé approximant [2|1] of the Q̂-box, and290

including a number of intermediates states ranging from291

Nmax = 2 to 18.292

From the inspection of Fig. 4, it is evident that there is293

no sign of convergence of the single-particle spectrum of294

41Ca up to Nmax = 18. Since the cutoff of both 2NF and295

3NF is slightly larger than 2.5 fm−1 and we have chosen296

1 2 3
perturbative order

-8

-6

-4

-2

0

En
er

gy
 (M

eV
)

 42Ca J=0+

J=2+

J=4+

J=6+

Pade` [2|1]

FIG. 3. Low-lying energy spectrum of 42Ca, obtained starting
from Q̂-boxes at first-, second-, and third-order in perturba-
tion theory, and their Padé approximant [2|1]. See text for
details.
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J=7/2-
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J=1/2-
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FIG. 4. Low-lying energy spectrum of 41Ca relative to 40Ca
as a function of Nmax (see text for details).

a value of the HO parameter to be equal to 11 MeV, we297

estimate that we need at least Nmax ≈ 24− 26 to reach298

the convergence. However, it can be clearly seen that299

from Nmax ≈ 12 − 14 on the energy spacings are stable300

with respect to the increase in the number of intermediate301

states. This is an important feature, since the Heff for302

one valence-nucleon systems provides the SP energies for303

the SM calculations, and it is highly desirable to obtain304

a convergent set of theoretical SP energies to calculate305

excitation spectra of fp-shell nuclei.306

Actually, the fact that the SP energies which are cal-307

culated with respect to the closed 40Ca do not converge308

with the increasing number of intermediate states affects309

only the value of the ground-state energy of open-shell310

systems. Consequently, from now on we will employ, for311

our calculations, SP spacings obtained from the theory312

while the value of the SP energy of the 0f7/2 orbital is313

fixed at -1.1 MeV for protons and -8.4 MeV for neutrons,314

consistently with experimental values of 41Sc and 41Ca315

[42].316
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After the above considerations, we move to discuss the317

convergence of two-valence-nucleon Heff with respect to318

the number of intermediate states. As a matter of fact,319

this will be a test for our theoretical TBME, since we have320

just observed that the SP energy spacings are convergent.321

The calculated low-lying energy spectra of 42Ca, as a322

function of Nmax, are reported in Fig. 5 up to Nmax =323

18. The Padè approximant [2|1] of the Q̂-box has been324

calculated to derive the Heffs, and the theoretical SP325

spacings are considered relative to the experimental SP326

energy of the 0f7/2 orbital, as mentioned before.327

2 4 6 8 10 12 14 16 18
Nmax

-19.2

-18.4

-17.6

-16.8

-16

En
er

gy
 (M

eV
)

 42Ca J=0+

J=2+

J=4+

J=6+

FIG. 5. Low-lying energy spectrum of 42Ca as a function of
the number of intermediate states included in the perturbative
calculation of the Q̂-box. See text for details.

As it happens for 41Ca, we observe that also the 42Ca328

spectrum converges from Nmax = 12− 14 on. This leads329

to the conclusion that both SP spacings and TBME of330

our Heff , calculated with Nmax = 18, can be considered331

substantially stable.332

Besides the convergence behavior of our Heff , it is also333

important to point out that, owing to the presence of334

the −U term in H2NF
1 , U -insertion diagrams arise in the335

Q̂-box, and that are responsible for controlling the ~ω336

dependence introduced by the auxiliary potential U .337

We have already addressed this issue in Ref. [34] (see338

Fig. 11 therein) and, in order to consider it within the339

present study, we show the results of the calculated yrast340

Jπ = 2+ excitation energies and two-neutron separation341

energies (S2n) for calcium isotopes up to N = 36 in Fig.342

6, obtained with different values of the HO parameter.343

The results reported in Fig. 6 have been obtained vary-344

ing ~ω from 10 to 12 MeV. The blue bands represent the345

variation that is obtained if only first-order U -insertion346

diagrams are included in the calculation of the Q̂-box,347

while the red bands are obtained if U -insertion diagrams348

are calculated through third order in perturbation the-349

ory.350

We observe a substantial reduction of the dependence351

on the choice of the HO parameter as higher-order con-352

tributions of the U -insertion diagrams are included, in353

particular the closure properties at N = 28 are very sen-354

sitive to this issue.355
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FIG. 6. Excitation energies of yrast Jπ = 2+ states and S2n

obtained for valuest of ~ω ranging from 10 to 12 MeV. Blue
bands corresponds to the Q̂-boxes including U -insertion dia-
grams only at first order, red bands represent results obtained
including U -insertion diagrams up to third-order in perturba-
tion theory. See text for details.

As mentioned before, the Heff derived for one-valence356

nucleon systems contains only one-body contributions357

and provides the SP energies for the SM calculation,358

while the two-body matrix elements are obtained from359

Heff derived from the two-valence nucleon systems, once360

the theoretical SP energies are subtracted from its diag-361

onal matrix elements.362

In order to perform our study, we have derived for each363

nucleus two classes of Heffs; one has been obtained cal-364

culating Q̂-box diagrams with 2NF vertices only, dubbed365

as H2NF
eff . The other, indicated as H3NF

eff , has been built366

up including also H3NF
1 first-order contributions in the367

collection of Q̂-box diagrams (see Fig. 1). In the Sup-368

plemental Material [43] the TBMEs of H2NF
eff , H3NF

eff for369

systems with two valence nucleons only can be found,370

while the proton and neutron SP energies calculated with371

respect to 0f7/2 orbital - επ and εν respectively - are re-372

ported in Table I.373

TABLE I. Theoretical proton and neutron SP energies (in
MeV) from H2NF

eff and H3NF
eff .

H2NF
eff H3NF

eff

επ εν επ εν

0f7/2 0.0 0.0 0.0 0.0
0f5/2 4.2 5.1 5.5 7.4
1p3/2 0.0 0.5 1.6 2.8
1p1/2 1.0 2.0 2.9 4.9

In order to accomplish our goal to investigate the shell374

evolution of spectroscopic properties of fp nuclei, we have375

performed a multipole decomposition of H2NF
eff and H3NF

eff376

for any isotope under investigation [44, 45], focussing our377
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interest on their monopole components. It is worth re-378

calling that the angular-momentum-averaged monopole379

component of the shell-model Hamiltonian is defined as380

follows:381

〈i, j|Hmon
eff |i, j〉 = εi + εj +

∑
J(2J + 1)〈i, j|Veff |i, j〉J∑

J(2J + 1)
=

= εi + εj + V monij , (5)

where Veff is the two-body component of Heff , i and j382

indicate the quantum numbers of the SP states, and the383

εi are the SP energies. Consequently, we have also stud-384

ied the evolution of the proton and neutron ESPEs as a385

function of the valence nucleons, that are defined as:386

ESPE(j) = εj +
∑
j′

V monjj′ nj′ , (6)

where the sum runs over the model-space levels j′, nj387

being the number of particles in the level j.388

III. RESULTS389

A. Monopole components of the effective SM390

Hamiltonians391

Before we start our discussion about the characteristics392

of the monopole component of H2NF
eff and H3NF

eff , it is393

worth coming back to the calculated SP energies of both394

effective Hamiltonians, which can be found in Fig. 7 as395

single-particle spectra of 41Sc and 41Ca. We do not show396

in this figure any experimental counterpart, because the397

experimental information about the spectroscopic factors398

of both nuclei are rather scanty, and consequently we399

have no clear indications on the SP nature of the observed400

low-energy levels [46].401
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FIG. 7. Calculated SP spectra of 41Sc and 41Ca, as obtained
fromH2NF

eff andH3NF
eff . They represent the proton and neutron

SP energies, respectively, employed in our calculations.

From the inspection of Fig. 7, we observe that H2NF
eff402

does not provide enough spin-orbit splitting between the403

0f7/2,5/2 orbitals in both 41Sc and 41Ca. Moreover, the404

0f7/2 and 1p3/2 orbitals are not well-separated and, con-405

sequently, it can be inferred that calculations with H2NF
eff406

might not be able to describe the shell closure that is407

observed at Z,N = 28. On the other hand, the contri-408

bution coming from the 3NF is able to heal this defect of409

the SM Hamiltonian, and in the SP spectrum of H3NF
eff410

the 0f7/2 orbital is lowered enough with respect to the411

1p3/2, 1p1/2, 0f5/2 orbitals to lay the foundation of a bet-412

ter shell closure at N,Z =28.413
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FIG. 8. Neutron ESPEs from H2NF
eff TBMEs for calcium and

nickel isotopes as a function of the neutron number (see the
text for details).

Actually, a shell closure cannot be guaranteed only by414

the SP energy spacings, since the TBMEs of Heff play a415

crucial role in their evolution as a function of the valence-416

nucleon number. As a matter of fact, in Ref. [20] the417

SP energies of p-shell nuclei, calculated with and with-418

out 3NF contributions, start both from a sufficient spin-419

orbit splitting to provide, in principle, the Z,N = 6 sub-420

shell closure. However, we have found that the monopole421

component of H2NF
eff compresses the separation between422

the 0p3/2 and 0p1/2 orbitals when increasing the valence-423
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nucleon number, at variance with the H3NF
eff monopole424

term that preserves a constant energy spacing.425

On the above ground, a study of the evolution of426

the ESPEs of H2NF
eff and H3NF

eff in terms of the valence-427

nucleon number is highly desirable to understand how428

to obtain a sound description of their shell closure prop-429

erties. This evolution of the ESPEs depends only on430

the TBMEs, and in the following we decide to report431

the neutron ESPEs of calcium isotopes and both neu-432

tron and proton ESPEs of nickel isotopes, as a function433

of the number of valence neutrons, calculated employing434

the TBMEs of H2NF
eff and H3NF

eff , but starting from the435

same set of SP energies, namely those of H3NF
eff . This436

is done to evidence the relevant features of H2NF
eff , H3NF

eff437

monopole components, and to infer their different shell-438

evolution properties around doubly-closed 48Ca and 56Ni.439

Figure 8 shows the neutron ESPEs of calcium and440

nickel isotopes obtained with H2NF
eff TBMEs, starting441

from H3NF
eff SP energies, and evolved as a function of the442

valence neutrons up to N = 40. Black dots, blue squares,443

green diamonds, and indigo triangles indicate the 0f7/2,444

0f5/2, 1p3/2, and 1p1/2 ESPE, respectively.445

As can be seen, the spacings between the fp orbitals re-446

main almost constant with respect to the evolution of the447

valence-neutron number, with the 0f7/2 ESPE well sepa-448

rated from the other ones. For the calcium isotopes also449

1p1/2, 0f5/2 orbitals are separated from the 1p3/2 one and450

between themselves too, while neutron ESPEs of nickel451

isotopes reveal that these three orbitals are grouped and452

very close to each other.453

This feature seems to point to a reasonable shell clo-454

sure in doubly-closed 48Ca when employing the H3NF
eff455

neutron SP spacings reported in Table I and TBME ob-456

tained from H2NF
eff , and also to a pronounced subshell clo-457

sure at N = 32 and N = 34 for calcium isotopes. This458

is consistent with the results we obtained in a previous459

work [47], whose focus was the study of the spectroscopic460

properties of neutron-rich calcium isotopes. In that pa-461

per, the TBME were extracted from a H
Vlow−k

eff derived462

from the CD-bonn potential [48] renormalized by way of463

the Vlow−k procedure, while the SP energies were fitted464

on experimental SP states in 47,49Ca. As a matter of fact,465

the role of three-body forces is mainly absorbed by the466

procedure of fixing SP energies to reproduce SP observ-467

ables; actually, in a recent paper [49] we have shown that468

the theoretical SP energies obtained from H
Vlow−k

eff do not469

reproduce the observed shell-closure of the neutron 0f7/2470

orbital in 48Ca, the agreement between the experimental471

and calculated spectra of this nucleus being only quali-472

tative.473

As regards the nickel isotopes, the close values of 1p3/2,474

1p1/2, 0f5/2 ESPEs may influence the shell closure in 56Ni475

and provide the disappearance of N = 32 and N = 34476

subshell closures.477

The neutron ESPEs obtained from H3NF
eff TBME are478

presented in Fig. 9 for both calcium and nickel isotopes.479

The inclusion of 3NF effects does not affect the general480

behavior of the neutron ESPEs for both isotopic chains,481
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FIG. 9. Same as in Fig. 8, but for H3NF
eff .

but some specific details may reveal relevant features that482

will show up in the results of the full SM calculations in483

the next section.484

As regards the calcium isotopes, at N = 28 the neutron485

monopole component of H3NF
eff enlarges the 0f7/2− 1p3/2486

gap by 0.7 MeV, inducing a stronger shell closure. Also487

the 1p1/2 − 1p3/2 and 0f5/2 − 1p1/2 splittings at N =488

32 and N = 34, respectively, grow and strengthen the489

corresponding subshell closures, as we will show in the490

next section.491

The 3NF contribution to the neutron ESPEs provides492

also a stronger closure in 56Ni since the gap between 1p3/2493

and 0f7/2 orbitals at N = 28 is 1 MeV larger than the494

one reported in Fig. 8, that is calculated with TBME495

obtained from H2NF
eff .496

The above considerations about the 56Ni shell closure497

are strengthened if we consider also the evolution of pro-498

ton ESPEs of nickel isotopes as a function of the valence-499

neutron number.500

As can be seen in Figs. 10, 11, the separation in energy501

between the 0f5/2 and 0f7/2 ESPEs is about 5.8 MeV and502
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FIG. 10. Proton ESPEs from H2NF
eff TBMEs for nickel iso-

topes as a function of the neutron number.

8.6 MeV at N = 28, calculated with H2NF
eff and H3NF

eff , re-503

spectively. Moreover, the gap between the proton ESPEs504

of 0f5/2 and 1p3/2 orbitals reduces to 0.8 MeV at N = 28,505

if only 2NF is considered to derive the shell-model effec-506

tive Hamiltonian, while the 3NF contributions limit this507

reduction to 1.6 MeV.508

These features should induce a collective effect at509

N = 28, and a less pronounced shell-closure for 56Ni510

than 48Ca. This collectivity affects the results obtained511

with H2NF
eff more than those with H3NF

eff , as we will see in512

the next section.513
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FIG. 11. Same as in Fig. 10, but for H3NF
eff proton ESPEs.

B. Shell-model calculations514

There are some spectroscopic features which reveal the515

shell closure properties, and among them two of the most516

important ones are the behavior of the excitation energy517

of Jπ1 = 2+ states and the evolution of the ground-state518

(g.s.) energy in even mass isotopic/isotonic chains, with519

respect to the number of valence neutrons/protons.520

22 24 26 28 30 32 34 36 38
N

0

1

2

3

4

2+  e
xc

ita
tio

n 
en

er
gy

 (M
eV

) Calcium isotopes
Expt
H3NF

H2NF

Hmon

FIG. 12. Experimental and calculated excitation energies of
the yrast Jπ = 2+ states for calcium isotopes from N = 22
to 38. See text for details.

These properties will be investigated by diagonalizing521

the two classes of Hamiltonians H2NF
eff and H3NF

eff , and522

employing for both of them the set of SP energies pro-523

vided by H3NF
eff . We refer to class of effective Hamiltoni-524

ans since, as reported in Sec. II, they change according525

to the number of valence protons and neutrons because526

of the density dependence introduced by accounting for527

three-body correlation diagrams.528

In addition to these two classes of effective SM Hamil-529

tonians, we have built another one, that we dub Hmon
eff ,530

by summing the monopole component of H3NF
eff and the531

multipole ones belonging to H2NF
eff . The scope of this op-532

eration is to evidence the interplay of the monopole and533

multipole components through the diagonalization of the534

effective SM Hamiltonian, and will be better clarified in535

the discussion of the result of our calculations.536

The experimental and theoretical results obtained with537

H2NF
eff , H3NF

eff , and Hmon
eff will be indicated in the figures538

with red dots, blue triangles, black diamonds, and indigo539

squares, respectively.540

We start our study with calcium isotopes, and in Fig.541

12 they are shown the Jπ = 2+
1 excitation energies from542

N = 22 up to N = 38.543

We observe that the results obtained with all three544

Hamiltonians are very similar. The shell closure at545

N = 28 is very-well reproduced by H3NF
eff and Hmon

eff ,546

while the Jπ = 2+
1 excitation energy obtained with H2NF

eff547

is about 0.7 MeV lower than the experimental one [46].548

The different results for the 48Ca shell-closure trace back549

to the different energy gap between the 1p3/2 and 0f7/2550

neutron ESPE when we employ the monopole term of551

H2NF
eff and H3NF

eff , as can be seen in Figs. 8 and 9.552

There are present also two subshell closures at N =553

32, 34, the second one being too strong when compared554

with experiment. As a matter of fact, a preliminary study555

of calcium isotopes, performed with a larger model space556
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that includes the 0g9/2 orbital too, shows that this en-557

largement of the model space is mandatory to reproduce558

the observed behavior at N = 32, 34 [50].559
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FIG. 13. Experimental and calculated two-neutron separation
energies for calcium isotopes from N = 22 to 40. Data are
taken from [42, 51, 52], open circles correspond to estimated
values reported in Ref. [42]. See text for details.

Different closure properties, related to whether 3NF560

are included or not in the derivation of the effective SM561

Hamiltonian, are present also in the calculation of the562

S2n that are shown in Fig. 13 for the calcium isotopes563

up to N = 40. As already mentioned in the previous564

section, we have shifted the SP energies in Table I in565

order to reproduce the experimental g.s. energy of 41Ca566

and 41Sc with respect to 40Ca.567

As can be seen, both experimental [42, 51, 52] and the-568

oretical S2n show a rather flat behavior up to N = 28,569

then a sudden drop occurs at N = 30 that is a signa-570

ture of the shell closure due to the 0f7/2 filling. Another571

decrease appears at N = 34 because at that point the572

valence neutrons start to occupy the 1p1/2 and 0f5/2 or-573

bitals.574

It should be recalled that recently the comparison be-575

tween experimental and calculated masses at N = 32, 34576

of neutron-rich calcium isotopes has been spotted as a577

way to pin down the role of 3NF in nuclear structure578

calculations [15, 51].579

The results obtained with H3NF
eff and Hmon

eff follow580

closely the behavior of the experimental S2n up to N =581

34, while those obtained with H2NF
eff provide a less satis-582

factory energy drop between N = 28 and 30.583

At N = 36, the repulsive 3NF effects contribute to a584

sudden drop of the two-neutron separation energies, in585

contrast with the experimental values. As for the case586

of the calculated yrast Jπ = 2+ excitation energies, we587

need to point out that a larger model space, including588

at least the 0g9/2 orbital, improves the depiction of the589

spectroscopic properties of heavy-calcium isotopes [50].590

Within such an enlarged model space, we have found that591

H3NF
eff and Hmon

eff provide a limit of the neutron dripline592

that is consistent with the recent observation of a bound593

60Ca [53], while from the inspection of Fig. 13 we observe594

that present results predict the calcium dripline located595

at N = 38.596

Now we move from systems with identical valence par-597

ticle to those with both valence protons and neutrons,598

in order to investigate the changes in the shell evolution599

and closure properties originating from the collectivity600

ignited by the T = 0 channel of the residual interaction.601

In Fig. 14 the calculated Jπ = 2+
1 excitation ener-602

gies of titanium isotopes are reported and compared with603

data [46]. We observe that the experimental behavior is,604

overall, well reproduced by all three SM Hamiltonians up605

to N = 34, the largest discrepancies occurring for 42Ti606

and 52Ti with all effective Hamiltonians, and for 54Ti607

with H2NF
eff .608

As regards the results for heavier isotopes, the under-609

estimation of the experimental results points to the need610

to employ a larger model space, as already mentioned.611
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FIG. 14. Same as in Fig. 12, but for titanium isotopes from
N = 20 to 40. See text for details.
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FIG. 15. Same as in Fig. 13, but for titanium isotopes from
N = 22 to 40. See text for details.

From the inspection of Fig. 15, we observe that also612

the S2n experimental behavior [42] is well reproduced by613

H3NF
eff and Hmon

eff , while the calculations with H2NF
eff un-614

derestimate the drop of two-neutron separation energy615
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between N = 28 and 30. The latter feature evidences616

that also when the T = 0 channel is involved, the contri-617

bution of 3NF helps to obtain a better comparison with618

experiment up to N = 34.619

The collective behavior increases with the number of620

interacting protons and neutrons, as can be observed for621

the chromium and iron isotopes. In Figs. 16,17 we report622

the experimental [46] and calculated excitation energies623

of the yrast Jπ = 2+ states up to N = 40 for both iso-624

topic chains. We observe in both cases that the calcula-625

tions with H2NF
eff provide too much collectivity at N = 28,626

while effective SM Hamiltonians, whose monopole com-627

ponent includes 3NF contributions, are able to reproduce628

the experimental behavior up to N = 34−36 rather well.629
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FIG. 16. Same as in Fig. 14, but for chromium isotopes. See
text for details.
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FIG. 17. Same as in Fig. 14, but for iron isotopes. See text
for details.

Similar considerations follow from the inspection of630

Figs. 18,19, where the experimental [42] and calculated631

S2n for chromium and iron isotopes up to N = 40 are632

shown, respectively. We remind that empty red circles633

refer to estimated values reported in Ref. [42].634

As can be seen, for these isotopes the observed S2n de-635

crease from N = 28 to N = 30 is no longer as steep as in636

calcium and titanium isotopes, evidencing the quenching637

of the N = 28 shell closure.638

Once again the 3NF contribution, which is included in639

the monopole component of H3NF
eff and Hmon

eff , provides a640

better reproduction of the experimental behavior at least641

up to N = 34.642

Finally, we examine the nickel isotopes whose study643

is pivotal to understand the shell-closure properties of644

SM Hamiltonians. As we have seen, the proton closure645

at Z = 28 is eroded by the increment of the number646

of valence neutrons approaching doubly-closed 56Ni be-647

cause of the collectivity induced by the proton-neutron648

interaction. Consequently, reproducing the evolution of649

the spectroscopic properties of nickel isotopes towards650

the shell closure may represent a challenging test for the651

theoretical SP energies and TBMEs.652
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FIG. 18. Same as in Fig. 15, but for chromium isotopes. See
text for details.
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FIG. 19. Same as in Fig. 15, but for iron isotopes. See text
for details.

In Fig. 20 we show the behavior of the experimen-653

tal Jπ = 2+
1 excitation energies of nickel isotopes up to654

N = 40 [46], and the calculated ones up to N = 38.655

This different choice is due to the fact that the calcu-656

lated values of the yrast Jπ = 2+ excitation energies for657

68Ni are larger than 7 and 5 MeV with and without 3NF658
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contribution, respectively. Such an overestimated result659

overshoots the energy scale of Fig. 20 - we have chosen660

to have the same scale in all similar figures for the sake of661

consistency - and is a mere consequence of the limitation662

of fp-shell model space to describe heavier systems.663
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FIG. 20. Same as in Fig. 14, but for nickel isotopes. See text
for details.

As can be seen, the three effective Hamiltonians pre-664

dict a shell closure at N = 20 (48Ni), although less665

marked with H2NF
eff , that confirms the ability of their666

monopole components to provide a similar behavior in667

the identical-particle channel.668

Actually, both H3NF
eff and Hmon

eff results compare them-669

selves quite well with 52,54,56Ni data, while those obtained670

with H2NF
eff exhibit a too strong collective behavior, fail-671

ing to reproduce the shell closure at N = Z = 28. As672

a matter of fact, the comparison between the results ob-673

tained with H2NF
eff and Hmon

eff evidences very clearly that674

the correct shell evolution may be obtained only includ-675

ing 3NF contributions in the monopole component of the676

SM Hamiltonian, the SP energies being not sufficient to677

balance the collectivity induced by the T = 0 multipole678

component of the TBMEs.679
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FIG. 21. Same as in Fig. 15, but for nickel isotopes. See text
for details.

The same conclusions may be drawn from the inspec-680

tion of the behavior of the S2n as a function of the valence681

neutrons, which are reported in Fig. 21. For nickel iso-682

topes the drop in energy between N = 28 and N = 30683

appears again, and the experimental behavior [42] is ob-684

tained correctly by means of H3NF
eff and Hmon

eff .685

We conclude our discussion about the evolution of686

N = 28 shell closure summarising our results in Fig. 22,687

where we have reported, for the N = 28 isotones, the688

experimental and calculated behavior of both Jπ = 2+
1689

excitation energies and B(E2; 2+
1 → 0+

1 ) transition rates.690

The proton and neutron effective charges to calculate the691

B(E2)s have been obtained by way of many-body per-692

turbation theory using only 2NF vertices, and details of693

the derivation of effective SM one-body operators can be694

found in Ref. [49].695

As can be seen, the filling of the proton 0f7/2 orbital696

tunes the collectivity at N = 28 between the doubly697

closed 48Ca and 56Ni, and the evolution of such a col-698

lective behavior is well reproduced including 3NF contri-699

butions, but it is a failure by considering only 2NF.700
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FIG. 22. Experimental and calculated excitation energies of
the yrast Jπ = 2+ states and B(E2; 2+

1 → 0+
1 ) transition

rates for the N = 28 isotones. See text for details.

IV. CONCLUDING REMARKS AND OUTLOOK701

In this paper we have presented the results of SM cal-702

culations for fp-shell nuclei in the framework of the re-703

alistic shell model, starting from chiral 2NF and 3NF,704

and deriving effective SM Hamiltonians within the many-705

body perturbation theory. These effective Hamiltonians706

account also, in their two-body matrix elements, of the707

different number of valence protons and neutrons char-708

acterizing each nucleus under investigation.709

In particular, we have calculated the contribution at710

first order in perturbation theory of a N2LO chiral 3NF711

potential to the Heff , in order to study how it affects712

its monopole component and the ability to describe the713
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observed shell-closure properties of fp isotopic chains.714

To this end, starting from two different class of Heffs -715

one including 3NF contributions and the other one not716

- we have first carried out an analysis of the effective717

single-particle energies for calcium and nickel isotopes as718

a function of the valence-neutron number. This study719

has provided information about shell-closure properties720

and their dependence on the 3NF effects included in the721

monopole components of Heff .722

Successively, we have performed a full diagonalization723

of our Heffs for the calcium, titanium, chromium, iron,724

and nickel isotopes, and focussed our attention on the725

shell evolution of the excitation energies of the yrast Jπ =726

2+ states and the two-neutron separation energies.727

The conclusion of our study can be summarised as fol-728

lows:729

• Starting from realistic potentials, derived within730

the chiral perturbation theory, the role of the 3NF731

is fundamental to obtain SP energies and TBMEs732

that may reproduce the shell evolution as observed733

from the experiment.734

• The TBMEs of Heff derived from 2NF only own735

deficient monopole components, which cannot bal-736

ance the collectivity induced by higher multipole737

components in the proton-neutron channel. The738

result is an erosion of the N = 28 shell closure739

when the number of valence protons increases.740

• The central role of the monopole component of741

the Heff is testified by the fact that when it is742

subtracted from H2NF
eff , and substituted with the743

monopole ofH3NF
eff , the observed shell evolution and744

the N = 28 shell closure is restored.745

The outlook of our future work points towards the im-746

provement of the derivation of H3NF
eff by including higher-747

order contributions with 3N vertices in the perturbative748

expansion of the Q̂ box, and the investigation of heav-749

ier systems in order to assess the reliability of present750

approach in exotic neutron-rich nuclear systems.751
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