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The ground-state energies and radii for 4He, 16O, and 40Ca are calculated with the unitary-model-
operator approach (UMOA). In the present study, we employ similarity renormalization group (SRG)
evolved nucleon-nucleon (NN) and three-nucleon (3N) interactions based on chiral effective field
theory. This is the first UMOA calculation with both NN and 3N interactions. The calculated
ground-state energies and radii are consistent with the recent ab initio results with the same inter-
action. We evaluate the expectation values of two- and three-body SRG evolved radius operators,
in addition to those of the bare radius operator. With the aid of the higher-body evolution of the
radius operator, it is seen that the calculated radii tend to be SRG resolution-scale independent.
We find that the SRG evolution gives minor modifications for the radius operator.

I. INTRODUCTION

Recent nuclear ab initio studies are encouraged by
the development, in particular, of nuclear interactions
from the chiral effective field theory (χEFT) [1, 2]. In
χEFT, nuclear interactions are obtained through the low-
momentum expansion of the chiral Lagrangian which is
the effective Lagrangian of quantum chromodynamics.
By taking into account higher-order expansion terms,
the systematic improvement of the nuclear interactions
can be expected (for recent example, see Refs. [3–5]).
As another advantage, χEFT allows for the systematic
derivation of the three-nucleon (3N) interaction. With
the development of χEFT interactions, the impacts of
the 3N force on nuclear structure calculation have been
discussed extensively, for example, in light nuclei [6–9],
medium-mass nuclei [10–18], and infinite nuclear mat-
ter [19–22].

Besides the progress in nuclear forces, advances
in many-body methods are also necessary. To deal
with nuclear many-body problems, one can use the
ab initio calculation methods such as no-core shell
model (NCSM) [23], quantum Monte Carlo meth-
ods [24], nuclear lattice EFT calculations [25], coupled-
cluster method [26], self-consistent Green’s function
method [27], in-medium similarity renormalization group
approach [28], and many-body perturbation theory [29,
30]. Over the past decade, much effort has been made in
nuclear ab initio studies. The capability of the ab initio
calculations has reached mass region A ∼ 100 [18, 29, 31].
Another alternative to these methods is the unitary-
model-operator approach (UMOA) [32, 33]. In the

UMOA, a unitary transformation of the Hamiltonian is
constructed so that the one-particle-one-hole and two-
particle-two-hole excitations do not occur. So far, we
have calculated the ground-state energies and radii for
some closed shell nuclei with only the nucleon-nucleon
(NN) interactions [33]. In this work, we include 3N in-
teractions in the UMOA for the first time.

Due to the non-perturbative nature of the nuclear
force, in most cases it is not possible to apply directly
the nuclear interactions to the many-body calculations.
To bridge the gap between nuclear forces and many-
body calculations, we evolve the nuclear Hamiltonian
with the similarity renormalization group (SRG) flow
equation [34]. Through the SRG evolution, we obtain
the Hamiltonian whose coupling between low- and high-
momentum states is suppressed. With such nuclear in-
teractions, recent ab initio results significantly underesti-
mate the nuclear radii, see for instance Refs. [16, 17, 28,
35]. Since the nuclear size can affect the single-particle
level structure of a nucleus, the reproduction of nuclear
radii is one of the fundamental issues to discuss the nu-
clear structure. As seen in NCSM calculations for few-
body systems [36, 37], one should also evolve other op-
erators consistently with the Hamiltonian. In this work,
we demonstrate the effect of the SRG evolution on the
radius operator.

This paper is organized as follows. The Hamiltonian
and radius operators employed in this work are intro-
duced in Sec. II. Section III briefly describes the formal-
ism of the UMOA. In Sec. IV, numerical results for 4He,
16O, and 40Ca are given. After confirming convergence
and consistency with the other ab initio results, the ef-
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fects of the SRG evolution on the radius operator are
discussed. The summary of the present work is given in
Sec. V.

II. HAMILTONIAN AND RADIUS OPERATORS

Our starting Hamiltonian is composed of the kinetic,
NN , and 3N terms:

H = T + V NN + V 3N . (1)

Here, T is the kinetic energy operator and V NN and
V 3N indicate the NN and 3N interactions, respectively.
Usually, the bare Hamiltonian H is too hard for use
in the many-body calculation. It causes slow conver-
gence with respect to the size of model space and calcula-
tions demand a huge amount of computational resources.
To obtain converged results from feasible model space,
similarity-renormalization group (SRG) evolution [34] is
employed in this work. We consider a unitary transfor-
mation of the original Hamiltonian:

H(α) = U†SRG(α)HUSRG(α). (2)

Here, USRG(α) is the unitary transformation operator
and is evolved by the flow equation:

dUSRG(α)

dα
= USRG(α)η(α) (3)

and α is the resolution scale parameter of the flow equa-
tion in units of fm4. η is called the generator of the SRG
evolution and is taken as η(α) = [T,H(α)]. Note that
the initial condition for USRG(α) is USRG(0) = 11. As
an alternative to α, it is common to use λSRG = α−1/4

for controlling the flow equation Eq. (3). The Hamilto-
nian is transformed by Eq. (2) from λSRG = ∞ fm−1 to
lower values where the interaction is soft enough to en-
able convergence of the many-body calculation methods.
As discussed, for example in Ref. [38], the SRG evolution
induces the many-body forces:

H(λSRG) = T + V NN (λSRG) + V 3N (λSRG) + · · · . (4)

Consequently, during the SRG evolution, one should keep
many-body terms, even if the starting Hamiltonian does
not include many-body interactions. In this work, three
types of Hamiltonians are used. The first one, labeled
by NN–only, is obtained by keeping only the NN in-
teraction during the SRG evolution, starting without the
genuine 3N interaction. The second one, NN + 3N–ind
is obtained by keeping the NN and 3N interactions dur-
ing the SRG evolution, starting without the genuine 3N
interaction. The third one, NN + 3N–full is obtained
by keeping the NN and 3N interactions during the SRG
evolution, starting with the genuine 3N interaction.

To evaluate nuclear root-mean-squared radii, we trans-
form the radius operator in the same manner as the

Hamiltonian:

r2(α) = U†SRG(α)r2USRG(α). (5)

The original radius operator is defined as

r2 = r2(2) =
1

A2

∑

i<j

(ri − rj)
2 (6)

with the coordinate vector of the i–th nucleon ri and
number of nucleons A. In the same manner as the Hamil-
tonian, many-body contributions to the radius operator
can be induced through the SRG evolution:

r2(λSRG) = r2(2)(λSRG) + r2(3)(λSRG) + · · · . (7)

Following to Refs. [36, 37], we keep up to three-body
terms.

To perform many-body calculations, it is numerically
efficient to transform to the laboratory frame. Then, our
Hamiltonian and radius operators can be rewritten as

H = T (1) + [T (2) + V NN (λSRG)] + V 3N (λSRG), (8)

r2 = r2(1) + [r2(2)(λSRG)− r2(1)] + r2(3)(λSRG). (9)

Here, we use T (1) =
∑

i(1 − 1/A)p2
i /2m with the i–

th nucleon momentum pi and nucleon mass m, T (2) =
−∑i<j pi · pj/mA, and r2(1) = (1 − 1/A)

∑
i r

2
i . Note

that r2(1) is chosen so that r2(2)(λSRG) − r2(1) goes to
−∑i<j ri · rj/A in the limit of λSRG → ∞. In second
quantization form, an operator is

O =
∑

a1a2

oa1a2
c†a1

ca2

+

(
1

2!

)2 ∑

a1a2a3a4

o(2)
a1a2a3a4

c†a1
c†a2

ca4
ca3

+

(
1

3!

)2 ∑

a1a2a3a4a5a6

o(3)
a1a2a3a4a5a6

c†a1
c†a2

c†a3
ca6

ca5
ca4

.

(10)

Here, ca (c†a) is the annihilation (creation) operator of the
nucleon at the state a. In Eq. (10), the matrix elements
are

o(1)
a1a2

= 〈a1|T (1)|a2〉, (11)

o(2)
a1a2a3a4

= 〈a1a2|V NN (λSRG) + T (2)|a3a4〉, (12)

o(3)
a1a2a3a4a5a6

= 〈a1a2a3|V 3N (λSRG)|a4a5a6〉, (13)

(14)

for the Hamiltonian, with analogous expressions for the
radius operator. Because of the computational limita-
tion, however, the direct treatment of the three-body ma-
trix elements is still challenging. Therefore, we follow the
recent nuclear ab initio studies and introduce the normal-
ordered two-body (NO2B) approximation [39, 40]. The
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key of the approximation is a rearrangement of the three-
body term with respect to a reference state |Φ〉. After the
rearrangement, one obtains zero-, one-, two-, and three-
body terms. In the NO2B approximation, the residual
three-body part is discarded. To apply to the UMOA
framework, we take normal order again with respect to
the nucleon vacuum state. Then, the operator can be
approximated as

O ≈ o(0),NO2B +
∑

a1a2

o(1),NO2B
a1a2

c†a1
ca2

+

(
1

2!

)2 ∑

a1a2a3a4

o(2),NO2B
a1a2a3a4

c†a1
c†a2

ca4ca3 (15)

The matrix elements are

o(0),NO2B =
1

6

∑

abc

v
(3)
abcabcnanbnc, (16)

o(1),NO2B
a1a2

= ta1a2
− 1

2

∑

bc

v
(3)
a1bca2bc

nbnc, (17)

o(2),NO2B
a1a2a3a4

= v(2)
a1a2a3a4

+
∑

b

v
(3)
a1a2ba3a4b

nb. (18)

for the Hamiltonian, with analogous expressions for the
radius operator. Here, na is an occupation number for
the orbit a, i.e. na = 1 (na = 0) where a is below (above)
the Fermi level. To minimize the effect of the truncated
residual three-body term, the choice of |Φ〉 is crucial. In
this work, we use the Hartree-Fock ground state as |Φ〉.

III. UNITARY-MODEL-OPERATOR
APPROACH

To solve the many-body Schrödinger equation associ-
ated with the Hamiltonian Eq. (15), the UMOA [32, 33,
42, 43] is employed in this work. In the UMOA, we con-
struct the effective Hamiltonian with the unitary trans-
formation:

H̃ = U†HU. (19)

The operator U is defined as the product of two expo-
nential operators,

U = eS
(1)

eS
(2)

, (20)

where S(1) and S(2) are anti-hermitian one- and two-body
correlation operators, respectively. Note that the sole use
of S(1) (S(2) = 0) reduces the UMOA to Hartree-Fock
(HF) theory. S(1) and S(2) are specified by iteratively ap-

plying the Okubo-Lee-Suzuki method [44–46] so that H̃
does not induce one-particle-one-hole and two-particle-
two-hole excitations from the reference state |Φ〉. Since
the unitary transformation (19) can induce many-body

interactions, H̃ can include many-body operators even if
the original Hamiltonian is restricted up to the two-body

4

TABLE I. Hugenholtz diagrams for the ground-state energy
up to the third order. Note that the first order contributions
are omitted. The cross and dot indicate the one- and two-
body part of Hamiltonian, respectively. The diagram rules
are same as in Ref. [41].

Second order

S1 S2

Third order

T1 T2 T3 T4

T5 T6 T7 T8

T9 T10 T11 T12

T13 T14

by

Eg.s. ⇡ E1,2BC + E3BC, (29)

E1,2BC =
X

a

eH(1)
aa na +

1

2

X

ab

eH(2)
ababnanb, (30)

E3BC =
1

6

X

abc

eH(3)
abcabcnanbnc. (31)

Since the direct treatment of three-body term demands
huge computational resources, however, the contribution
of three-body cluster term is approximately evaluated up

to second order of S(2) [32]:

E3BC ⇡ 1

4

X

abcd

X

ef

eH(2)
abcdS

(2)
efabS

(2)
efcdnanbncndn̄en̄f

+
X

abc

X

def

eH(2)
adcfS

(2)
debcS

(2)
efabnanbncn̄dn̄en̄f . (32)

The S
(2)
abcd is the matrix element of the two-body corre-

lation operator and n̄a = 1 � na is used. To clarify the
contribution of each cluster term, the comparison with
the many-body perturbation theory (MBPT) would be
useful. Table I shows the diagrams for the ground-state
energy from the third-order MBPT. Following to the per-
turbative derivation of correlation operators, shown for
example in Refs [47, 48], the contribution of each cluster
term to the ground-state energy can be derived. In terms
of the many-body perturbation theory, E1,2BC, E3BC,
and Eg.s. are

E1,2BC = E1 +

2X

i=1

Si +

12X

i=1

Ti � T13

+ (higher order terms), (33)

E3BC = 2T13 + T14 + (higher order terms), (34)

Eg.s. = E1 +

2X

i

Si +

14X

i=1

Ti

+ (higher order terms). (35)

Here, Si and Ti are the second- and third-order contri-
butions shown in Table I, respectively, and E1 is the first
order ground-state energy. At one-plus-two-body clus-
ter level, the third-order diagrams are not completed.
The three-body cluster term contributions compensate
the third order [49]. Note that S1 and T1 to T11 vanishes
when the HF basis is employed.

To evaluate the expectation value of the radius opera-
tor obtained in Eq. (22), the e↵ective operator er2 is used:

er2 = U†r2U. (36)

Similarly to the Hamiltonian, the unitary transforma-
tion of the radius operator induces the many-body terms.
However, results examined here are calculated keeping
up to two-body terms and does not include any contri-
butions from three- and higher-body terms [33]:

er2 ⇡
X

a1a2

er2(1)
a1a2

c†
a1

ca2

+
1

4

X

a1a2a3a4

er2(2)
a1a2a3a4

c†
a1

c†
a2

ca4ca3 . (37)

Then, the mean-squared radius r2
g.s. is approximately

evaluated as

r2
g.s. ⇡

X

a

er2(1)
aa na +

1

2

X

ab

er2(2)
ababnanb. (38)

FIG. 1. Hugenholtz diagrams for the ground-state energy
up to the third order. Note that the first order contributions
are omitted. The cross and dot indicate the one- and two-
body part of Hamiltonian, respectively. The diagram rules
are same as in Ref. [41].

interaction. In actual calculations, we decompose H̃ with
the cluster expansion and truncate the effect of the four-
and higher-body cluster terms:

H̃ ≈
∑

a1a2

H̃(1)
a1a2

c†a1
ca2

+
1

4

∑

a1a2a3a4

H̃(2)
a1a2a3a4

c†a1
c†a2

ca4
ca3

+
1

36

∑

a1a2a3a4a5a6

H̃(3)
a1a2a3a4a5a6

c†a1
c†a2

c†a3
ca6

ca5
ca4

,

(21)
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where H̃
(1)
a1a2 , H̃

(2)
a1a2a3a4 , and H̃

(3)
a1a2a3a4a5a6 are the one-,

two-, and three-body matrix elements, respectively (see
Ref. [33] for more details). The ground-state energy Eg.s.

is approximately

Eg.s. ≈ E1,2BC + E3BC, (22)

E1,2BC =
∑

a

H̃(1)
aa na +

1

2

∑

ab

H̃
(2)
ababnanb, (23)

E3BC =
1

6

∑

abc

H̃
(3)
abcabcnanbnc. (24)

Since direct treatment of the three-body term demands
huge computational resources, the contribution of three-
body cluster term is approximately evaluated up to sec-
ond order in S(2) [32]:

E3BC ≈ 1

4

∑

abcd

∑

ef

H̃
(2)
abcdS

(2)
efabS

(2)
efcdnanbncndn̄en̄f

+
∑

abc

∑

def

H̃
(2)
adcfS

(2)
debcS

(2)
efabnanbncn̄dn̄en̄f . (25)

S
(2)
abcd is the matrix element of the two-body correlation

operator and n̄a = 1 − na is used. To clarify the contri-
bution of each cluster term, it is useful to compare with
many-body perturbation theory (MBPT). Figure 1 shows
the diagrams for the ground-state energy from the third-
order MBPT. Following to the perturbative derivation of
correlation operators, shown for example in Refs [47, 48],
the contribution of each cluster term to the ground-state
energy can be derived. In terms of the many-body per-
turbation theory, E1,2BC, E3BC, and Eg.s. are

E1,2BC = E1 +

2∑

i=1

Si +

12∑

i=1

Ti − T13

+ (higher order terms), (26)

E3BC = 2T13 + T14 + (higher order terms), (27)

Eg.s. = E1 +

2∑

i=1

Si +

14∑

i=1

Ti

+ (higher order terms). (28)

Here, Si and Ti are the second- and third-order contri-
butions shown in Fig 1, respectively, and E1 is the first
order ground-state energy. At the one-plus-two-body
cluster level, the third-order diagrams are not complete.
The three-body cluster term contributions compensate
the third order [49]. Note that S1 and T1 to T11 vanish
when the HF basis is employed. Since the other ab initio
methods also complete up to the third order, it is use-
ful to investigate fourth order contributions taken into
account in the UMOA. The fourth order contributions
assuming the HF basis are discussed in Appendix A.

To evaluate the expectation value of the radius opera-
tor, the effective operator r̃2 is used:

r̃2 = U†r2U. (29)

Similarly to the Hamiltonian, the unitary transforma-
tion of the radius operator induces the many-body terms.
However, results examined here are calculated keeping
up to two-body terms and does not include any contri-
butions from three- and higher-body terms [33]:

r̃2 ≈
∑

a1a2

r̃2(1)
a1a2

c†a1
ca2

+
1

4

∑

a1a2a3a4

r̃2(2)
a1a2a3a4

c†a1
c†a2

ca4ca3 . (30)

Then, the mean-squared radius r2
g.s. is approximately

evaluated as

r2
g.s. ≈

∑

a

r̃2(1)
aa na +

1

2

∑

ab

r̃
2(2)
ababnanb. (31)

IV. RESULTS AND DISCUSSIONS

In this work, we use the next-to-next-to-next-to lead-
ing order (N3LO) NN interaction by Entem and Mach-
leidt [51] and local form N2LO 3N interaction [52] from
χEFT. Both two- and three-body SRG evolutions are
done in the harmonic-oscillator (HO) space. The two-
body interactions are obtained from the Nmax = 200
space calculations. Here, Nmax is the boundary of the HO
quantum number for the two-body relative coordinate
and is Nmax = max(2n+l) with the radial quantum num-
ber n and angular momentum l. Following Ref. [53], the
three-body SRG evolution is done in ramp A model space
defined in Fig. 3 in Ref [53]. To obtain the three-body
matrix element, the frequency conversion technique [53]
is used with the parent HO energy ~ω = 35 MeV matrix
elements. For N2LO 3N interaction, we use cD = −0.2,
cE = 0.098, and Λ3N = 400 MeV/c [39], so as to compare
with the other ab initio calculation results. Note that
the low-energy constant cD used here does not fit the 3H
half-life as claimed in the past [54, 55]. The impact of
the modification of the 3N force with the cD that fits 3H
half-life will be discussed in the forthcoming publications.
The size of the contributions from induced many-body
forces can be estimated from the dependence of calcu-
lated results on the SRG resolution scale λSRG. To do so,
we employ three SRG resolution scales λSRG = 1.88, 2.0,
and 2.24 fm−1. The NO2B approximated Hamiltonian is
obtained through HF calculations at e3 max = 14. Here,
e3 max is introduced to handle the three-body matrix ele-
ment and is e3 max = max(2n1+l1+2n2+l2+2n3+l3) with
the single-particle radial quantum number ni (i = 1, 2, 3)
and angular momentum li (i = 1, 2, 3). We checked that
the changing from e3 max = 12 to e3 max = 14 changes
the ground-state energy by less than 1%. UMOA calcu-
lations are done in the model space defined by emax =
max(2n1 + l1) [33].
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TABLE I. Ground-state energies for 4He, 16O, and 40Ca. All the calculation results are obtained at emax = 14 and ~ω = 25
MeV.

Eg.s. (MeV)

Nuclide λSRG (fm−1) NN–only NN + 3N–ind NN + 3N–full Exp.[50]

1.88 −27.94 −25.19 −27.81
4He 2.0 −27.73 −25.18 −27.76 −28.30

2.24 −27.23 −25.16 −27.62

1.88 −167.79 −119.33 −127.16
16O 2.0 −162.69 −119.51 −126.33 −127.62

2.24 −152.88 −119.56 −124.50

1.88 −615.62 −349.08 −368.44
40Ca 2.0 −588.45 −352.03 −366.14 −342.05

2.24 −536.26 −355.61 −360.23

20 25 30 35 40
ω (MeV)

29

28

27

26

25

24

En
er

gy
 (M

eV
)

(a) 4He

20 25 30 35 40
ω (MeV)

130

120

110

100

En
er

gy
 (M

eV
)

(b) 16O

20 25 30 35 40
ω (MeV)

380

360

340

320

300

280

En
er

gy
 (M

eV
)

(c) 40Ca
emax = 2
emax = 4
emax = 6
emax = 8
emax = 10
emax = 12
emax = 14

emax = 2
emax = 4
emax = 6
emax = 8
emax = 10
emax = 12
emax = 14

w/o 3BC w/ 3BC

FIG. 2. (color online) Ground-state energies for 4He, 16O,
and 40Ca as functions of ~ω with the NN + 3N–full inter-
action. The dashed (solid) lines calculated without (with)
the three-body cluster term energy. The interaction is ob-
tained by SRG evolution of chiral N3LO NN [51] and N2LO
3N [6, 39] interactions up to λSRG = 1.88 fm−1.

A. Ground-state energies

Figure 2 shows the convergence of the ground-state
energies for 4He, 16O, and 40Ca calculated with the
NN + 3N–full interaction evolved to λSRG = 1.88 fm−1.
Our calculations are done with varying ~ω and emax to
see the numerical convergence. Note that the final results
should not depend on ~ω because the initial Hamiltonian

1.5

1.0

0.5

0.0
(a) 4He

4

3

2

1

(b) 16O

10
8
6
4
2

(c) 40Ca

HF
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T
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OA
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M

29
28
27
26

HF
-M
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T
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OA
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M

130
128
126
124
122

HF
-M

BP
T

UM
OA

CC
M

380

370

360

En
er

gy
 (M

eV
)

FIG. 3. (color online) Ground-state energies from the
Hartree-Fock basis many-body perturbation theory (HF-
MBPT), UMOA, and coupled-cluster method (CCM). The
energies of HF-MBPT are calculated with Eqs. (32)-(34). The
CCM results are taken from Refs. [18, 56]. The interaction
is obtained by SRG evolution of chiral N3LO NN [51] and
N2LO 3N [6, 39] interactions up to λSRG = 1.88 fm−1. For
the HF-MBPT and UMOA energies, E1,2BC (square), E3BC

(star), and Eg.s. (circle) are shown. For the CCM energies,
CCSD (down triangle), triple correction (up triangle), and
CR-CC(2,3) energies (pentagon) are shown.

Eq. (1) does not include ~ω. Similar to other ab initio cal-
culations, our ground-state energies show parabolic ~ω-
dependence at small emax and gain with increasing emax.
For all cases examined here, ~ω- and emax-independent
results are obtained in emax = 14. The results with
emax = 14 and ~ω = 25 MeV are used in the following
discussion.

To investigate the role of each cluster term, the com-
parison between energies from UMOA, Hartree-Fock ba-
sis many-body perturbation theory (HF-MBPT), and
coupled-cluster method (CCM) is illustrated in Fig. 3. In

terms of HF-MBPT, the energies E1,2BC
MBPT, E3BC

MBPT, and
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FIG. 4. (color online) Ground-state energies for 4He, 16O,
and 40Ca. All the calculation results are obtained at emax =
14 and ~ω = 25 MeV. The experimental data are taken from
Ref. [50]

Eg.s.,MBPT are evaluated as

E1,2BC
MBPT = EHF + S2 + T12 − T13, (32)

E3BC
MBPT = 2T13 + T14, (33)

Eg.s.,MBPT = EHF + S2 + T12 + T13 + T14, (34)

with the Hartree-Fock energy EHF. Note that Eg.s.,MBPT

is the third-order HF-MBPT energy. In the figure, the
UMOA and HF-MBPT energies are reasonably close to
each other, and it can be seen that the main contribu-
tions of E3BC are from the third order hole-hole (T13)
and particle-hole (T14) ladder diagrams. Also, the sum
of fourth order diagrams taken into account in the UMOA
seems to be repulsive (see Appendix A for details). Com-
paring to CCM energies, total UMOA energies (circle)
look closer to the CCSD energies (down triangle) than
to the CR-CC(2,3) energies (pentagon). Note that the
agreement of HF-MBPT and CR-CC(2,3) implies the
non-trivial cancellations of higher order diagrams. The
E3BC are −0.71, −3.04, and −7.07 MeV for 4He, 16O,
and 40Ca, respectively, and are only a few percents of
the total energies. Since the contributions from four-
and higher-body cluster terms are expected to be smaller
than those from the three-body cluster term, the UMOA
results are converged with respect to the cluster expan-
sion. For 16O, our ground-state energy −127.16 MeV is
slightly underbound compared to the experimental en-
ergy (−127.62 MeV), while the recent ab initio calcula-
tion results show mildly overbound to the experiment,
for example, −130.6(1) MeV from in-medium SRG ap-
proach [14] and −129.7 MeV from CCM [18]. Again, this
disagreement between our and other ab initio results is
same order of magnitude as the perturbative three-body-
cluster contribution and consistent with the expected ac-
curacy of the UMOA calculations.

As for calculations with NN–only and NN + 3N–ind
interactions, we observe the similar convergence pattern
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FIG. 5. (color online) Expectation values of bare root-mean-
squared radius operator for 4He, 16O, and 40Ca as functions
of ~ω. Here, NN + 3N–full interaction at λSRG = 1.88 fm−1

is employed.

and find the converged results at emax = 14 calculations.
In Figure 4, the calculated ground-state energies are sum-
marized together with the comparisons to the experimen-
tal data. In the case of the NN–only interaction, as the
mass number increases, the ground-state energies show
overbinding and λSRG-dependence becomes considerable.
By taking the SRG induced 3N interaction into account,
the λSRG-dependence is drastically reduced and ground-
state energies rise. This λSRG-independence of ground-
state energies implies that the contributions from SRG
induced four- and many-body interactions are negligible.
With the genuine χEFT N2LO 3N interaction, the cal-
culated ground-state energies are comparable to the ex-
perimental data for 4He and 16O, while overbinding is
seen for 40Ca. The current choice of the genuine 3N in-
teraction gives 9%, 6%, and 4% attractions for 4He, 16O,
and 40Ca, respectively. The energies presented in Fig. 4
are also displayed in Table I. Our ground-state energies
show reasonable agreement with the other ab initio re-
sults from the same interaction [14, 16, 29, 39, 40, 57].
The explicit treatment of the three-body cluster term
seems to be necessary to discuss more precisely the ac-
curacy of the UMOA calculation. Such work is ongoing
and will be reported in a future publication.

B. Root-mean square radii

In the same manner as the ground-state energy cal-
culations, we calculate the expectation values of the
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FIG. 6. (color online) Charge radii for 4He, 16O, and 40Ca.
All calculation results are obtained at ~ω = 25 MeV and
emax = 14. To evaluate the charge radii, the bare mean-
squared radius operators are used. The experimental data
are taken from Ref. [58].

bare root-mean-squared radius operator with the chiral
NN + 3N–full interaction at λSRG = 1.88 fm −1 varying
both ~ω and emax to examine the convergence. The re-
sults for 4He, 16O, and 40Ca are illustrated in Fig. 5. As
demonstrated in the figure, calculated radii become ~ω-
and emax-independent with increasing emax. At ~ω = 25
MeV, we find the converged radii within 0.01 fm for all
nuclei calculated here. Note that our converged radius
of 2.84 fm for 40Ca from the interaction evolved up to
λSRG = 2.0 fm−1 shows reasonable agreement with the
SCGF result of 2.89 fm [16] with the same interaction.

We also calculate radii for 4He, 16O, and 40Ca with
the NN–only and NN+3N–ind interactions in the same
manner as with the NN + 3N–full interaction. Then, we
find converged results at emax = 14 and ~ω = 25 MeV
within 0.01 fm. The results are summarized in Fig. 6 with
the comparison to the experimental charge radii [58]. To
compare with the experimental charge radii, our charge
radii rch are evaluated as [59],

r2
ch = r2

g.s. + r2
p +

N

Z
r2
n +

3

4m2
. (35)

Here, we use rp = 0.8751(61) fm [60], r2
n = −0.1161(22)

fm2 [60], and 3/4m2 = 0.033 fm2, with the averaged
nucleon mass m = 938.919 MeV/c2. Note that we as-
sume the equivalence of point-proton and point-nucleon
distributions in Eq. (35). This assumption is reasonable
because our targets are N = Z stable nuclei. In Fig. 7,
the charge radii from NN–only interactions are obviously
smaller than experimental data, especially for 16O and
40Ca, and consistent with overbinding ground-state en-
ergies from those. The SRG-induced three-body opera-
tor acts to spread the nuclear distribution out, and the
λSRG-dependence is slightly enhanced. With this par-
ticular Hamiltonian, the genuine 3N interaction shrinks
nuclei and the calculated radii are clearly smaller than
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FIG. 7. (color online) Charge radii evaluated with the ex-
pectation values of bare, two-body (2B) SRG evolved, and
three-body (3B) SRG evolved mean-squared radius operator
for 4He [(a) and (d)], 16O [(b) and (e)], and 40Ca [(c) and
(f)]. All calculation results are obtained at ~ω = 25 MeV and
emax = 14. The calculation results in panels (a), (b), and (c)
are calculated with NN + 3N–ind interactions and the cal-
culation results in panels (d), (e), and (f) are calculated with
NN + 3N–full interactions.

the experimental data.

One possible reason for the small calculated radii is
the employed nuclear interaction. In fact, the simul-
taneous reproduction of ground-state energies and radii
were accomplished with a χEFT N2LO NN + 3N in-
teraction fitted by using some selected data of nuclei up
to A = 25 [61]. In addition, the saturation property of
infinite nuclear matter was reproduced with the combi-
nations of the softened N3LO NN and bare N2LO 3N in-
teractions whose low-energy constants are fitted to repro-
duce data of the few body systems [19]. The ground-state
energies and radii for finite nuclei with such interactions
were discussed in Ref. [62]. As another possibility, we can
consider amending the treatment of radius operator [63].
In earlier no-core shell model (NCSM) studies [36, 37],
the effect of the SRG evolution to several operators was
investigated for few-body systems. However, such effects
for medium-mass nuclei have not been clarified yet. In
this work, we investigate the effect of the SRG evolution
of the radius operator.

We calculate the expectation value with the bare, two-
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TABLE II. Root-mean-squared radii rg.s. for 4He, 16O, and 40Ca calculated with the bare, two-body evolved (2B), and three-
body evolved (3B) radius operators. The results from both NN+3N–ind and NN+3N–full are displayed. All the calculation
results are obtained at emax = 14 and ~ω = 25 MeV.

rg.s. (fm)

NN+3N–ind NN+3N–full

Nuclide λSRG (fm−1) Bare 2B 3B Bare 2B 3B

1.88 1.48 1.47 1.46 1.42 1.40 1.39
4He 2.0 1.47 1.46 1.45 1.41 1.40 1.39

2.24 1.46 1.45 1.45 1.39 1.39 1.38

1.88 2.32 2.29 2.26 2.28 2.24 2.22
16O 2.0 2.30 2.27 2.25 2.27 2.23 2.21

2.24 2.28 2.25 2.24 2.25 2.22 2.20

1.88 2.91 2.89 2.85 2.86 2.83 2.79
40Ca 2.0 2.89 2.86 2.83 2.84 2.82 2.79

2.24 2.84 2.82 2.80 2.83 2.80 2.78

body evolved, and three-body evolved mean-squared ra-
dius operators. As with the bare radius operator, we
check the convergence pattern and find the root-mean-
squared radius results converged within 0.01 fm. Eval-
uated charge radii are illustrated in Fig. 7. Final re-
sults for root-mean-squared radii from NN+3N–ind and
NN + 3N–full interactions are exhibited in Table II. For
all nuclei, as we calculate with the higher-body evolved
operator, the radii tend to become smaller and go away
from the data. This behavior is consistent with the earlier
NCSM results [36]. As was observed for the SRG induced
three-body interaction, the consistently evolved opera-
tor moderately reduces the λSRG-dependence of radii.
Therefore, it can be concluded that the consistent SRG
evolution of the radius operator does not give the signifi-
cant change compared to the experimental data. This is
consistent with the long-range nature of the radius opera-
tor [36]. In this work, we do not observe the enhancement
of radii discussed in Ref. [63]. The quantitative reproduc-
tion of nuclear size is still an open question, and further
investigations for nuclear interaction are indispensable.
To examine and explore the nuclear Hamiltonian, feed-
backs from many-body calculations for medium-mass sys-
tems can be a useful tool. Such studies are ongoing.

V. CONCLUSION

We have calculated the ground-state energies and radii
for 4He, 16O, and 40Ca with the UMOA using NN and
3N interactions based on χEFT for the first time. To
obtain a computationally tractable Hamiltonian for the
UMOA, we employed the SRG evolution and the NO2B
approximation.

The resulting ground-state energies and radii agree
with the recent ab initio calculation results within a few

percent. Through the comparison with the MBPT, we
discussed which contributions are taken into account in
the UMOA. To improve the accuracy of the UMOA cal-
culation, we need to take into account the many-body
cluster terms. Following the systematic cluster expan-
sion discussed in Ref. [33], an iterative treatment of the
three-body cluster term is in progress. Also, this exten-
sion enables the direct inclusion of three-body interac-
tions beyond the NO2B approximation. The results will
be discussed in the future publication.

In addition to expectation values for the bare radius
operator, we have investigated the two- and three-body
SRG evolved radius operators. By taking higher-body
evolved operators into account, calculated radii slightly
shrink, while the λSRG-dependence of radii is reduced as
we keep up to three-body terms. Therefore, it is unlikely
to reproduce the nuclear radii with the interactions em-
ployed in this work, even if we continue to include many-
body terms induced by SRG evolution. The simultaneous
reproduction of the ground-state energies and radii is still
an open question.
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Appendix A: Fourth order contributions in UMOA

Here, we present the connection between the UMOA
and MBPT at fourth order. For the sake of simplicity,
we work out with the HF basis which means off-diagonal
matrix elements of one-body Hamiltonian are zero. At
the fourth order of the MBPT, the contribution to the
ground-state energy is

E
[4]
MBPT =

39∑

i=1

Fi. (A1)

Here, Fi corresponds to each diagram exhibited in Fig. 8.
After the straightforward perturbative expansion, the
fourth order contributions in the UMOA are

E[4]1,2BC = −F5 − F6 + F14 + F15 − F35 − F36, (A2)

E[4]3BC = 2(F5 + F6) + F8 + F9 + F10 + F11

− 4F15 + 2(F35 + F36), (A3)

E
[4]
UMOA = F5 + F6 + F8 + F9 + F10 + F11

+ F14 − 3F15 + F35 + F36. (A4)

While the hole-hole and particle-particle ladder type di-
agrams are included, the particle-hole and complicated
topologies are missing in the UMOA. Since the difference
between the UMOA and third-order HF-MBPT shown
in Fig. 3 mainly comes from fourth order contributions

taken into account in the UMOA, contributions E
[4]
1,2BC,

E
[4]
3BC, and E

[4]
UMOA give repulsion. Comparison with the

other methods is useful. According to Ref. [28], up to
third order contributions are completed in CCSD, Λ-
CCSD(T), and IM-SRG. The fourth order contributions
in these methods are [28]

E
[4]
CCSD =

16∑

i=1

Fi +

39∑

i=33

Fi, (A5)

E
[4]
Λ−CCSD(T) =

39∑

i=1

Fi, (A6)

E
[4]
IM−SRG =

16∑

i=1

Fi + F35 + F36 + F37

+
1

2
(F33 + F34 + F38 + F39) . (A7)

Note that E
[4]
IM−SRG is obtained with IM-SRG(2) trunca-

tion.
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Table 1: Hugenholtz diagrams for the ground-state energy at the fourth order. The diagrams are classified into
single, double, triple, and quadruple topologies, depending on the number of intermediate particle-hole excitations.

Singles

F1 F2 F3 F4

Doubles

F5 F6 F7 F8 F9 F10

F11 F12 F13 F14 F15 F16

Triples

F17 F18 F19 F20 F21 F22 F23 F24

F25 F26 F27 F28 F29 F30 F31 F32

Quadruples

F33 F34 F35 F36 F37 F38 F39

7
FIG. 8. Hugenholtz diagrams for the ground-state energy at the fourth order. The diagrams are classified into single, double,
triple, and quadruple topologies, depending on the number of intermediate particle-hole excitations. The diagram rules are
same as in Ref. [41].
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genson, and P. Navrátil, Phys. Rev. C 92, 014320 (2015),
arXiv:1304.5491.
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