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Radiative capture reactions play a crucial role in stellar nucleosynthesis but have proved chal-
lenging to determine experimentally. In particular, the large uncertainty (~100%) in the measured
rate of the 12C(oe7 7)160 reaction is the largest source of uncertainty in any stellar evolution model.
With development of new high current energy-recovery linear accelerators (ERLs) and high density
gas targets, measurement of the **O(e,e’a)'?C reaction close to threshold using detailed balance
opens up a new approach to determine the IQC(Oz7 7)160 reaction rate with significantly increased
precision (<20%). We present the formalism to relate photo- and electro-disintegration reactions
and consider the design of an optimal experiment to deliver increased precision. Once the new ERLs
come online, an experiment to validate the new approach we propose should be carried out. This
new approach has broad applicability to radiative capture reactions in astrophysics.
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I. INTRODUCTION.

Radiative capture reactions, i.e., nuclear reactions in which the incident projectile is absorbed by the target nucleus
and y-radiation is then emitted, play a crucial role in nucleosynthesis processes in stars [1]. For example, knowledge
of their reaction rates at stellar energies is essential to understanding the abundance of the chemical elements in
the universe. However, determination of these reaction rates has proven to be challenging, principally due to the
Coulomb repulsion between initial-state nuclei and the weakness of the electromagnetic force. For example, the decay
of unbound nuclear states by the emission of a particle of the same type as that captured, or by the emission of some
other type of particle, is often 10% — 10° times more probable than decay by ~-emission.

In stellar nucleosynthesis, at the completion of the hydrogen burning stage, the core of a massive star contracts
and heats-up. When the temperature and the density of the core reaches sufficiently high values, the helium starts
to burn via the triple-a — 2C process. Subsequently, the « radiative capture reaction 12C(a, )0 also becomes
possible. The helium burning stage is fully dominated by these two reactions and their rates determine the relative
abundance of '2C and 60, after the helium is depleted. At helium burning temperatures, the rate of the triple-a
process is known with an uncertainty of about +10%, but the uncertainty of the 2C(a, )0 reaction rate is much
larger. In fact, it is the largest source of uncertainty in any stellar evolution model. Therefore, for many decades it
has been the paramount experimental goal of nuclear astrophysics to determine the rate of 12C(a, )0 reaction at
astrophysical energies with better precision [2].

This task has been proven to be very difficult, not withstanding heroic experimental efforts for more than half a
century. For the generic radiative capture reaction

A+B—-C—D+~, (1)

the Coulomb repulsion is characterized by the Gamow factor (or Coulomb barrier penetration factor) between A and

B
P, =exp—\/Ey/E , (2)

where E, = 2m,c*(raZaZp)? is the Gamow energy and m, = AT

then expressed [3] as a product of P, and the astrophysical S-factor

is the reduced mass. The cross section o is

o= %exp [—27nZaZpa/v]S(E) . (3)
o is further extrapolated to the Gamow energy, which is representative of stellar energies.

At the helium burning temperature ~ 2 x 108 K and corresponding Gamow energy E, ~ 300 keV, the cross
section for the '2C' + a — v + 00 reaction is ~ 10~° pb, which makes the direct measurement at stellar energies
impossible. Unfortunately, the extrapolation is not simple, since the structure of the cross section is complex. It
involves interference of the high-energy tail of the J™ = 1~ subthreshold state in %0 (see [4]) at 7.12 MeV and
the broad 1~ resonance at 9.59 MeV, and interference of the subthreshold state 27 at 6.92 MeV and the narrow 2+
resonance at 9.85 MeV. Additionally, cascade transitions to the ground state of 10 need to be taken into account as
well as the direct capture for the E2 amplitude.

Through the years, different experimental approaches have been used to determine the rate of the 2C(a, )0
reaction. These include measurements of the direct reaction [5-18], f—delayed a-decay of 1N [19-21] and elastic
scattering 12C(a, )'2C [22, 23]. As described below, we have fit the world’s data in the region 0.7 < ES™ < 1.7
MeV, for both multipoles, where ES™ is the kinetic energy of the a-particle in the center-of-mass (c.m.) of the 12C—a
system. The resulting Sg;(ES™ ) dependence was approximated by fitting the data to second-order polynomials,
which are represented by the dashed curves in Fig. 1.

However, due to the rapid decrease of the cross section in the region where ES ™ falls below 2 MeV, the uncertainty
in the S-factor experimental determination is increasingly dominated by the large statistical uncertainty. Further, as
ES™ decreases, the statistical uncertainties from the different experiments increase rapidly. A comprehensive review
of the experiments and methods developed so far, and the full list of astrophysical implications of the 2C(a,~)¢O
rate can be found in [25].

In recent years, there have been new experimental approaches pursued. One novel approach is based on a bubble
chamber detector [26] where the number of photodisintegrations is counted and the total astrophysical S-factor could
be measured even at very low energies [27]. However, the isotopic impurities of 17O and %0 have to be greatly
suppressed [28]. Another 0O photodisintegration experiment is based on the optical time projection chamber [29]
where the angular distribution of a-particles is measured and the Sgi- and Sgo-factors can be determined. This
approach works well for higher a-particle energies, but for lower energies the density of the gas needs to be reduced.
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FIG. 1. Measured astrophysical Sgi- and Sgo-factors for E, < 1.7 MeV from Dyer and Barnes [5], A. Redder [6], R. M.
Kremer [7], J. M. L. Ouellet [8], G. Roters [9], R. W. Kunz [11, 12], L. Gialanella [10], M. Fey a) turning table measurement
and b) EUROGAM measurement [13], M. Assungao a) two parameters fit and b) three parameters fit [15], H. Makii [16] and
R. Plag [18]. An R-Matrix fit to the data, represented by the solid line, was performed using the AZURE2 code [24].

In this paper, we present in some detail a new approach to the determination of radiative capture reactions at
stellar energies. We consider the inverse reaction initiated by an electron beam rather than a photon beam. The
idea has been previously proposed [30], but not measured, and more recently discussed by [31, 32]. The theoretical
formalism to relate electro- and photo-disintegration has been developed [33]. Most importantly, a new generation
of high intensity (= 10 mA) low-energy (=~ 100 MeV) energy-recovery linear (ERL) electron accelerators is under
development [34, 35] which, when used with state-of-the-art gas targets [36], can deliver luminosities of ~ 1036 cm~2
s~ for experiment [37]. In this way, the weakness of the electromagnetic force can be overcome. Here, we have chosen
to focus specifically on determination of the reaction rate of 12C(a, )00 at stellar energies using this new approach.
However, our approach is generally applicable to all radiative capture reactions.

To provide a basis for the theory used to make estimations of event rates for the electrodisintegration reaction we
have begun by revisiting what is typically done for photodisintegration. In the latter case, shell model or cluster
model approaches have had some degree of success in yielding the general shape of the cross section, but fail to get its
overall magnitude correct. On the one hand, since the electrodisintegration cross section demands even more of any
modeling — specifically, not only the energy dependence of the cross section, but also its momentum transfer behavior
(see the following section) — at present one cannot depend on typical modeling to provide reliable estimates of the
cross section. On the other hand, our focus is on very low energies (typically within an MeV or so of threshold) and
relatively low momentum transfers (much smaller than a characteristic nuclear value of 200-300 MeV /c¢). This means
that the form of the cross section as a function of the momentum transfer is tightly constrained. Indeed, as we show in
the following sections, the momentum transfer dependence of the cross section can be characterized by a small number
of constants, and, importantly, these few constants can be determined experimentally by making measurements at
several values of the momentum transfer. In effect, at present it is possible to make reasonable estimates of the
electrodisintegration cross section despite the lack of a satisfactory detailed model. Of course, our parametrization of
the cross section has been designed to recover what is presently known about the photodisintegration cross section,
namely, what must be recovered for the electrodisintegration cross section in the real-photon limit, as discussed in
the next section.

We have considered the optimal experimental kinematics in terms of the incident electron energy, the oxygen gas
target, the scattered electron spectrometer, and the final-state, low-energy a-particle detection. We have considered
systematic uncertainties such as both isotopic and chemical contamination of the '60; energy, angle and timing
constraints of the final-state particles; energy loss in the gas jet and radiative corrections. Using realistic experimental
assumptions, we propose an initial measurement of %O(e, ¢’a)'2C using an ERL with incident energy of order 100
MeV. The experiment would take data at higher ES™ where the reaction rates are relatively high and the running
time is of order a month. This initial measurement would aim to validate the extrapolation to photodisintegration
and determine the contributions of different multipoles. If successful, it would set the stage for a longer experiment
(of order 6 months) with the highest electron intensity available to determine the ?>C(a,~)'%0O reaction rate with
unprecedented precision in the astrophysical region.

In Sect. II, the general relationship between electro- and photo-induced reactions is presented, while in Sect. III,
following the general formalism presented in [33], these developments are applied to the exclusive 60(e, e’a)?C(g.s.)



process in which all nuclear species have J™ = 0. In Sect. IV the multipole decomposition of the response functions
involved is discussed, truncating the set of multipoles at the quadrupole response, and thus including C0, C1/E1
and C2/E2 multipoles*. Following this general discussion, in Sect. V the model adopted for the semi-inclusive
electrodisintegration cross section is presented. Specifically, in Sect. VA the present knowledge from studies of
photodisintegration and radiative capture reactions is employed in a determination of the leading-order behavior of
the C1/E1 and C2/E2 multipoles. Following this, in Sect. VB our way of treating the next-to-leading order coefficients
in expansions in ¢ is discussed, together with the approach taken for the CO multipole. Section V C concludes the
discussion of the model with presentations of the electrodisintegration cross section for typical choices of kinematics
in the desired low-w/low-¢ region. Given the model, Sect. VI then continues with the central section of this paper
in which it is shown that, by making assumptions concerning the experimental capabilities that are projected to
exist in the not-too-distant future, measurements of electrodisintegration of '°0 appear to be feasible and that such
measurements can be employed to significantly reduce the statistical uncertainties of the Sgi- and Spgo-factors in
the ES™ < 2 MeV region. Additionally, in that section a discussion of how a smart choice of observable should
allow one not only to identify the final-state o, but also to identify and remove background events such as a-particles
from electrodisintegration of other oxygen isotopes (17O and '80) or other ions emerging from electrodisintegration
of impurities found in an oxygen gas target, e.g., protons from “N(e, e'p)'*C. We conclude with a summary and a
perspective on the future in Section VII.

II. RELATIONSHIPS BETWEEN PHOTO- AND ELECTRO-DISINTEGRATION

We begin with a brief discussion of how studies of photodisintegration can be extended to those of electrodisinte-
gration, focusing on the disintegration of *°O into the ground states of *He (the « particle) and *2C. For the reader
who is unfamiliar with the basic formalism that relates the two processes we can recommend the recent book involving
two of the authors [3], in particular Chapters 7 and 16, including references therein.
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FIG. 2. Feynman diagram for the photodisintegration of O involving a real photon, +, which requires that ¢ = w = E,. The
kinematic variables here will be discussed in more detail in Sect. I11.

As discussed above, studies aimed at determinations of the alpha + carbon capture reaction ?C(a,~)'%0 have
made use of the inverse process, namely the photodisintegration of oxygen, %0(y,a)'?C, together with detailed
balance. In the present work we describe an extension of these ideas by focusing on the electrodisintegration reaction
160(e, e’a)2C. Both photo- and electro-disintegration reactions are assumed to be exclusive, i.e., to have the a-
particle in the final state detected. However, they differ in that the former involves real photons whose momenta ¢
must be equal to their energies w = I, corresponding to so-called real-photon kinematics, as illustrated in Fig. 2f.
In contrast, as illustrated in Fig. 3, in the one-photon-exchange approximation, which is generally good at the percent
level for light nuclei, the latter involves virtual photon exchanges that may be shown to be spacelike, ¢ > w. That is,

* For completeness, the multipole decompositions of the response functions up to C3/E3 are given in the Appendix.
T In most of this work we use natural units where i = ¢ = 1, although later, when writing expressions for the cross sections, we include
them to make the units explicit.



by knowing the electron scattering kinematics it is possible to focus on a specific value of the excitation energy of the
final-state a+412C system, for instance quite close to threshold, but to vary the three-momentum transfer ¢ for any
value that keeps the exchanged virtual photon spacelike. Of course, the real-photon result is recovered by taking the
limit where ¢ — w.
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FIG. 3. First-order Feynman diagram for the electrodisintegration of %O involving one virtual photon v* exchange, to be
compared with Fig. 2. Again, the kinematic variables here will be discussed in more detail in Sect. III.

A sketch of the general landscape is given in Fig. 4 which illustrates a typical response (see later sections of the
present work for specifics) as a function of ¢ and w together with the real-y line; here wy is the threshold value of w
for the reaction. The strategy in photodisintegration studies is to perform experiments at values of w = E, where
the cross section is large enough to be measured and then extrapolate along the real- line to the very low energies of
interest for astrophysics. The electrodisintegration reaction extends these ideas: now one can focus on small values of
w but have ¢ large enough to yield measurable cross sections. The extended strategy is then to extrapolate in both
dimensions, namely, for the responses as functions of ¢ to approach the real-v line and as functions of w to reach the
interesting low-energy region. As will be discussed in the following sections, an advantage of having ¢ large enough is
that one may work near threshold but have sufficient three-momentum imparted to the a-particles in the final state
that they can emerge from the target and be detected.
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FIG. 4 (color online). Transverse response function Rr as function of the photon energy w and the three-momentum transfer
g, for the real photon case ¢ = w (solid line) and virtual photon case ¢ > w (surface plot), where wr denotes the value of the
threshold photon energy for the reaction.

Both photo- and electro-disintegration reactions have in common that the angular distribution of the a-particles in
the final state can be measured. This yields information on the various multipoles that contribute to the process. We
assume that w is always quite small compared with a typical energy scale; in addition, for the electrodisintegration
reaction we assume that g is smaller than a typical scale for nuclear momenta, qg, taken to be roughly of order 200-250
MeV/c. Given this, it is possible to limit the multipoles to a relatively small number. This is commonly done for the
photodisintegration reaction near threshold where only E1 (electric dipole) and E2 (electric quadrupole) multipoles
are assumed, although one can ask how important electric octupole E3 multipoles might be. Since the nuclear ground



states involved are all 0T states only electric multipoles can occur, and magnetic multipoles are absent. Here we have
assumed that only the ground states of *He and '2C are involved and that any excited states can be ignored by using
the over-determined kinematics of the reaction. The electrodisintegration reaction is richer, as will be discussed in
detail in the following sections of the paper. Since virtual photons are involved, now one has Coulomb as well as
electric multipoles; in the body of the paper we consider C0, C1/E1 and C2/E2 multipoles, although in an appendix
we give some of the relevant formalism for a larger set that includes C3/E3 contributions.

At low values of the momentum transfer, ¢ < qo, each multipole is dominated by its low-¢ behavior which enters
as a specific power of q. For instance, later we show that the CJ mulipole matrix elements go as (¢/qo)” at low
q. Accordingly another advantage of electron scattering where ¢ may be varied while keeping w fixed is that the
balance of the multipole contributions can be varied. An example of this could, for instance, be the potential C3/E3
contributions: by increasing ¢ (still, of course, staying in the region where ¢ < ¢go) one may increase the relative
importance of the octupole effects over the monopole, dipole and quadrupole effects to explore whether or not the
former need to be taken into account.

Not only is there a richer set of mutipoles involved in the electron scattering case, but there are more response
functions to be exploited. For real photons one has the transverse response RT at ¢ = w and potentially the
transverse interference response R?77 also at ¢ = w if linearly polarized real photons are involved (see Sect. III for
more discussion). For unpolarized electron scattering there are four types of responses, RT and RTT as for real
photons but now with virtual photons and thus at ¢ > w and also R, the longitudinal/charge response and an
interference between transverse and longitudinal contributions, RT*, both at ¢ > w. In the T and TT responses only
EJ multipoles enter, not simply squared but through interferences. The L response contains only CJ multipoles, again
with interferences, while the TL response has interferences between CJ and EJ mutipoles. All of this means that
potentially one has more information with which to disentangle the various contributions. The angular distributions
as functions of the alpha angles 8, and ¢, (see the next section) will be discussed in detail. These may be written
as expansions in terms of Legendre polynomials where the expansion coefficients that enter and may be determined
experimentally contain valuable information on all bilinear products of the multipole matrix elements.

We now proceed to a summary of the kinematics and basic form of the semi-inclusive electron scattering cross
section in the following section.

III. KINEMATICS AND THE CROSS SECTION

We start this section with a brief discussion of exclusive-1 electron scattering A (e, ¢'z), following [33]*, although, in
contrast to the more general study in [33], here the discussion will be limited to the scattering of unpolarized electrons
from an unpolarized target nucleus, i.e., polarization degrees of freedom will be neglected. We limit our consideration
to the one-photon exchange contributions (lowest order, see Fig. 3), and take the electron wave functions to be
plane waves, namely, we invoke the plane-wave Born approximation (PWBA). The four-momenta of the incident and
scattered electrons are labeled X*(E,, p.) and K'/(E., B!), respectively. E. and E’ are their energies, while p. and
P are their three-momenta. The four-momentum transfer is defined by Q" = (w, q) = Kt =K/ = Pls, — Pl — PL,
where P/ o TP‘I‘QC and PH are the four-momenta of the target nucleus 160, residual nucleus 2C and exclusive nucleus
a. Also, w = E. — E, = E, + Fi2c — Eisp is the energy transfer and § = P. — P, = Pa + Pi2c — Piso is the
three-momentum transfer.

In order to identify the events belonging to the electrodisintegration of 10 a scattered electron needs to be detected
in coincidence with a produced a-particle and the four-momenta of both have to be measured. The remaining
12C nucleus does not need to be detected, since its final state can be reconstructed by using energy-momentum
conservation. The variables typically used to characterize the semi-inclusive reaction are the following (see [3]): the
missing momentum P ,,;ss and missing energy F,,;ss are given by

ﬁmiss = 7 - T))a (4)

Emiss =w+ MlGO - Eou (5)
and then the missing mass

Mmiss = E?niss - 5?niss (6)

¥ An ecarlier version of the relevant formalism, based on the more general discussions presented in [33] was developed by Donnelly and
Butler for a proposed measurement at the MIT-Bates Laboratory in 2000 [30]; see also [38].



may be calculated by subtracting the mass of the unobserved '2C nucleus, Miz2c. One then obtains the excitation
energy of the 12C,

Eep = Muniss — M12Ca (7)

where events which contribute to the astrophysical S-factor are those where one finds the 2C nucleus in its ground
state, that is, F., = 0.

Scattering plane

FIC. 5. Kinematics of the exclusive '°O(e, ¢’a)'*C reaction.

The differential cross section in laboratory frame (where the target is at rest, P, = (Misp,0)) is given by [39)]

2m8 d pe M d Pa M12C d pPr2¢ 4 m "
i I (KE -K P -7 8
U E Bezi| f| ) (27’(’)3 ElZC (271') ( ) ( + IFO e 120) ( )
where B, = |Pe|/Ee = |V.| and Sﬁ represents an average over initial states and sum over final states, under

the assumption that all particle states are normalized to unity. If we assume the momenta of the scattered electron
and a-particle to be measured but not the residual '>C nucleus, we need to perform an integration over the recoil
momentum pizc:

. mZ M, M120 o P2dpl dQep? dpad, ,
do = Z|sz| N §(E. 4+ Ewo — E, — E, — En2g). (9)

We continue to integrate the energy-conserving delta-function of energy conservation over p, and make use of the
following formula

50D =3 rre (10)

“op

Pi

where f(p;) =0 and

f(pa) =@+ Miso = V/[Fal? + M2 = \/(T = Pa)2 + Mg (1)

After the integration we obtain

24
/Ma(Ee t Eiop — Bl — Ey — Eig)

EoErc
_ _Pa 1
Misg - Wpa Lij.ﬁlzos O
Pa_ -1 (12)

Mo "¢%



where f,. is the hadronic recoil factor and 6, is the angle between ¢ and P o; see Fig 5. The cross section is now

mEiMoMizc E! - p
do = @ e o —1§ M) 13
g (27T)5M160 Ee frec i | f | ( )

The Lorentz-invariant matrix element My, is given by

1

ie (EB.E.\®
Mfi = @( 7:7%6> je(xévgce)#‘]#(?va(Poc;:PlGO)fi’ (14)

where jo (K¢, X.), is the electromagnetic electron current, J* (P12, Po; P16o) i is the hadronic electromagnetic tran-
sition current and the square of the four-momentum transfer in the extreme relativistic limit (ERL) is given by
|Q?| = 4E.E! sin*(0./2), where 6, is the electron scattering angle; see Fig. 5. When we square M;, sum over final
states and average over initial states, we end up with

E |M _|2 (1 [Z) IIr/LlI (]5)
fi

where 7, is the leptonic tensor and W#" is the hadronic tensor. Note that the contraction of the leptonic and
hadronic tensors is Lorentz invariant. Accordingly it can be evaluated in any frame and it is given by

v Yo §
nqu'u - ) UKRK (16)
4m? %

with vg = 4E.E!, cos?(6./2). For the unpolarized exclusive electron scattering we have four nuclear response functions
Ry the longitudinal Ry and transverse Ry nuclear electromagnetic current components (L and T with respect
to the direction of the virtual photon ¢), and two interference responses, namely transverse-longitudinal Ry and
transverse-transverse Rpp. In this notation Ry will have dimension of fm3. The functions vy are electron kinematic
factors and in terms of ERL can be expressed as [33]

2
v = p

1
v = §p+tan2 96/2

1
vrL = —Ep\/p—i—taun2 0./2

1

5P (17)

vrr = —
2

where as usual 0 < p =|Q?/¢*| =1 — (w/q)* < 1. The most general discussion concerning the leptonic and hadronic
tensor contraction, which also includes polarization degrees of freedom, can be found in [33, 40].
It is convenient to group variables to form the ERL Mott cross section

2 (52 T 2
a?(he)?El v _ (ahccos@e/Q) (18)

OMott =
Mot (Q?)?E, 2F, sin? 0./2
Note that here we include the factor Aic = 197.327 MeVfm so that o0 has dimensions of fm?2. Finally, the semi-

inclusive electrodisintegration cross section for the reaction of interest in the laboratory frame takes the form

do
dwdQ.d,,

o MaM12C paf;eiUMott
n 87T3M160 (hc)3

(vLRL +vrRr +vrp Ry +UTTRTT)- (19)
(e,e’ @)

Often it also very convenient to have an expression for the cross section in the center-of-mass (c.m.) frame, where the
transformation between the frames involves a Lorentz boost along ¢. We note that W = \/(Misp + w)? — ¢? is the
total invariant mass of the y+1%0 and a+'2C systems, here evaluated in the incident channel laboratory frame with

the 100 target nucleus at rest. Furthermore, p&™ = |P &™| is the a-particle three-momentum in the c.m. frame,




Ry now represent quantities in the c.m. frame and the lepton kinematic factors in the c.m. frame are given by the
following:

7L = (W/Mso)?o,
5TL - (W/Mlﬁo)vT,

U = vr,
vrT. (20)

uTT

Finally, the cross section in the c.m. frame can be written as

do ] Mo Mo pg™ oMot
( )

Toddem e (hc)3 <5LRL +vrRr +vrp Ry + 5TTRTT> . (21)

Note that ¢, = ¢%™, although 0, # 05™ . Again, we encourage the reader who is unfamiliar with these developments
to look at [3], especially Chapter 7 where the current matrix elements are discussed, multipole operators are introduced
and the real-photon limit is briefly treated, as well as Chapter 16 where semi-inclusive electron scattering is the focus
(there one also finds Exercises 16.4, 16.6 and 16.7 which are relevant for the present purposes, especially Exercise 16.7
where a problem involving the real-photon limit of semi-inclusive electron scattering is posed).

An analysis similar to the one in [33] can be performed both for the photodisintegration process **O(y, a)'2C and

for the radiative capture reaction 2C(a, v)'®O, where here for simplicity we take the real photons to be unpolarized
(see the comment regarding linearly polarized photons in the next section). For the former reaction the differential

cross section is given by
do MaM12C pc'm' «
= | === | — |R 22
lngm»]( : ( AW ) he <E7> (r.e) (22)
¥,

where W = /Miso(Miso + 2E,) (that is, ¢ = w = E., above) and R(y,a) is transverse response function having
dimension of fm?3. Namely, one has the real-photon limit of the electrodisintegration result summarized above. The
radiative capture cross section is then related by detailed balance and may be written in the form

MyMuoc \E, [ «
- = R 2
- ( 2 )hc (pa-m) e 23
a,y

where W is the invariant mass above, which, in the incident channel laboratory frame where the 2C target is at
rest, is equal to W = \/Mg + M?Z

do
dQgm:

oo T 2MicELeb. As above, R, 4) is the transverse response function, here for real

photons to be evaluated at ¢ = w = E,; it has dimensions of fm?.

IV. MULTIPOLE DECOMPOSITION OF RESPONSE FUNCTIONS INVOLVING SPIN 0 NUCLEI

Let us discuss the L/T decomposition a little further. For the specific initial and final nuclear states involved there
are three independent current matrix elements, p(q), J*(¢) and JY(¢q), with J*(¢) = (w/q)p(q) as required by
current conservation. From them, we can obtain three independent quantities, which transform as a rank-1 spherical
tensor under rotations:

JOT) = I () = (w/9)p(T) (24)
JEDV(G) = F(I9(Q) £ (D)) / V2. (25)
The inverse relationships for Cartesian transverse projections are then given by Jf = —(J J(c;rl) - J ;;1)) / V2 and

Ji = z'(Jﬁl) - J}i_l)) /v/2. Following [33] we define the generic quantity

X)\/>\ _ J>\/*J>\ (26)
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and each structure function can be written in terms of the X . Furthermore,

JO(7) = “/ar 20T 00 27
(7) . > [ |T50|"°0) (27)

J<0

J(:I:l Tf /9 Z 12 C|f]7:|:1|160> (28)

J<0

with notation [J] = v/2J + 1 and the general form of structure functions can be now written as

—47TZ I (=) (8) (@,'2 C| Ty x| '0)* (0,2 C| T 2|0 0). (29)
Specifically, one has
RE = X0 (30)
R =x" 4+ x ! (31)
R =x"14 x 71 (32)
RTE = —9Re{X " — X1, (33)

where the transverse cases are labeled by the polarization that a photon would have in the real-y limit. In particular,
it is clear that the T-response involves transverse projections of the current in a form corresponding to unpolarized
photon exchange, while the TT-response enters when the photon is linearly polarized. Indeed, in the previous section
where expressions for the real-y photodisintegration and radiative capture reactions were given we could have extended
the analysis to include both T- and TT-contributions at ¢ = w = FE, and thereby obtained expressions for linearly-
polarized real-y processes.

The responses are calculated from most general expressions Eqgs. (2.54 — 2.58) in [33]. For the initial and final states
160 and a+'2C, we have Jisp = Jo = Ji2¢c = 0 which implies that Tey = I, = 2 = 0. We have S’ = S = 0 which
yields § = J = L and J' = J' = L’. In the case of the completely unpolarized situation, Eqs. (2.79-2.81) in [33] yield

F~ 1 (34)

- . 1

D~ DO (005, 0x) = (~M gy YN 05 —05) (35)
W)\’)\ ~ (_1)J'+J+E+>\’[J][J/][€]2 <té L(])/ g) <_J/\ 3{: _EA>7 (36)

where here the 6-j symbols in [33] have been evaluated. The response functions will then involve sums of products of
these elements

WA = STWNML Gty (37)
J'J
__ 4 ’
X)\f)\ — _1 A Y C — @y W)\ A 38
fi ;( ) 20+ 1 4 ( x ¢ ) ’ ( )

where ¢ ;) are reduced matrix elements defined by

tyx =i’ (J|Tsall; = 0) (39)
tog A=0

- 40

{%g(tm,x + Marga) A==+l (40)

with the initial °O state being J; = 0, and J represents the total angular momentum of the partial wave of the
final-state a-particle plus 2C system. We note that this result is simplified enormously when the final state of 12C is
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the ground state, and not an excited state, and we shall assume that the kinematics of the reaction are well enough
determined for this to be the case — not an especially stringent requirement since the 2% first excited state of 2C
lies at 4.4389 MeV. This prevents excitation to unnatural parity states, in turn restricting the study to natural-parity
CJ and EJ multipoles.

Following the developments in [33] we can now describe the nature of the angular distributions themselves, account-
ing for both relative phases and magnitudes. In terms of the Coulomb and electric multipoles up to the quadrupole
contribution J = 28, the responses may be written in terms of Legendre polynomials

RL = Po(COS 9a) <|tco|2 —+ |t01|2 —+ |t02|2>
3
+ P, (COS 6‘(1) (2\/§|tco||t01| COS((SCl — 5(;0) + 4\/;|t01||t02| COS((SCQ — 6(;1)>
2 10 2
+ Py(cosby) | 2|ter]” + 7|tcz| + 2\/5|tco||tcg| cos(dc2 — d¢co)

3
+ P3(cosby) (6\/;|t01||t02| cos(dca — 6@1)>

18
+ Py(cosb,) 7|t02|2> (41)

RT = PO COS |tE1| |tE2|2>

9 (
+ Pi(cosby) it [ltg2| cos(dpa — dp1)
1 ( \/5 E1lltB2 B2 — OE1

+P2 cos — |tE1| |tE2|2>

ol

9 <
+ P5(cosb,,) it [[tg2|cos(dpe — 0p1)
5( \/— E1|[tE2 E2 — 0E1
+ Py(cosb,) <

12 2
- [te2] ) (42)

Ry, = cos ¢q-

6
{Pl C089 <2\/_|t00||tE1| COS((SEl 5(}0 — 2\/7|t02||tE1| COS((Scz 5E1) \/5|t01||tE2| COS(501 — 5E2)>
1 5 10
+ P2 (COS Ha) 2|t01||tE1| COS(601 — 5E1) +2 §|t00||tE2| COS((SE2 — 6()0) =+ 7—\/§|t()2||tE2| COS((SCQ — 5E2)
X 3 4
+ P5(cosfy)| 2 g|t02||tE1| cos(dca — 0p1) + %|t01||t}52| cos(dc1 — 0g2)
63
+ P41 (COS Ha) <T|t02||tE2| COS(6()2 - 6E2)> } (43)
RTT = —RT COS(2¢Q). (44)

§ For clarity, we restrict our attention in the body of the paper to CO, C1/E1 and C2/E2 multipoles; however, in the Appendix we extend
the analysis to include C3/E3 octupole multipoles. Additionally, for completeness there we also re-express the angular distributions in
terms of sines and cosines of the angles involved, rather than in terms of Legendre polynomials as here.
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The t(c, g)s represent the Coulomb and electric reduced matrix elements, and are functions of ¢ and w. Similarly, the
functions é(¢, gys represent the phases of the (in general complex) reduced matrix elements of each multipole current
operator, and these too can be functions of ¢ and w. As expected only phase differences occur, and one overall phase
may be chosen by establishing some specific phase convention.

It is now straightforward to obtain expressions for the angular distributions for specific choices of kinematics. For
instance, assume that 6, = 0°,180°. In this case, cosf, = +1, so let 8 = £1 present these two possibilities. First
Ry = Ry, = Rpr = 0 in this case, and one has

Rr = |tcol® + 3|tor|? + 5ltea|?
+2\/5|tco||tcg| COS(602 —dc0)
+B(2\/§|tco||t01| cos(dc1 — dco)

+2V/15|t e |[te| cos(dcs — 501)). (45)

Or, consider the case where 6, = 90°. Here

5
Rp = |tcol* + Z|lfcz|2
—V5ltcolltez| cos(dcz — dco) (46)
3
Rr = 5|ztE1|2 (47)
Rrp = cos %{ — 2V3]tcol|tp| cos(dm1 — dco)
VAt oo |tm| cos(8cn — 5E1)} (48)
RTT = —RT COS 2(;51 (49)

If we assume that the cross section is completely dominated by Ry, as is likely (see below), then there are as many
unknowns as there are linearly independent Legendre polynomials in the expansion. One should also remember as
noted above that, while we have stopped at J = 2 partial waves, there can be higher partial waves present. While
these are likely small for the kinematics of interest, any fit should test the convergence of these expansions by looking
for higher-order Legendre polynomials.

We end this section with a discussion of our chosen parametrizations of the multipole matrix elements. These all
depend on both ¢ and w (which then determine the c.m. energy of the final state); here we suppress the w-dependence,
although one should remember that all functions written below should be taken to vary with w. Our focus is placed
on kinematics where the excitation energies are near threshold and hence where w is small, typically below a few
MeV, and where ¢ is taken to be small compared with the typical nuclear scale for three-momentum denoted ¢q.
For gy we can use something like 2/b, where b is the oscillator parameter (roughly 1.7 fm for our case, which yields
qo = 1.2fm~! = 230 MeV/c). Accordingly, we can make use of the low-q limits of the spherical Bessel functions
involved in the definitions of the multipole operators, namely the fact that j;(¢r) — (¢r)” when ¢r becomes small
compared with unity. We may then with no loss of generality write the multipole matrix elements in a way that
exposes the low-g behavior which goes as (¢/qo)’, where K is some constant determined by the multipolarity of the
transition (see below). For instance, the Coulomb multipole matrix elements may be parametrized in the form:

J
q
tes(q) = (q—0> acy

with J > 0. Here ag; is independent of ¢ while b}, ;(¢) depends on g; as noted above, they both depend on w. The
powers of ¢/qo in the polynomial come from the nature of the spherical Bessel functions insofar as the leading power
is fixed (the factor (¢/qo)”) and the next term must begin two powers of q/qo higher, but otherwise, since b’ remains
a general function of ¢, the expression is still completely general. The Gaussian factor is included to allow the results
to have better behavior at high ¢ and may just as well be omitted if one wishes, since the entire focus here is on low-q
kinematics. Since we are assuming that (¢/qo) < 1, the multipoles are less and less important as the multipolarity
J increases, in fact by (q/qo)? for each additional increase in mutipolarity. This is a familiar result that leads one to
characterize low-q processes including real-y reactions by degrees of forbiddeness (see, for instance [41]). The converse
is also true: if (¢/qp) ~ 1 or larger, then one cannot order the multipoles by forbiddeness. A very old example —

2
1+(2) b’qu)] o~tala” (50)
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from more than 50 years ago — of this is provided by the first study of high-spin states in the giant resonance region
where at values of ¢ of order go M4 multipoles dominate over E1 multipoles [42].
It also proves useful to rewrite these expressions by letting

acy = gy (1+ (@/20) e () ) e~ /o7 (51)
bes(a) = oy (@)e /)" (52)

and then the parametrizations become

tos(q) = (q—qO)J(ICJ 1+ (%)ch(q)] e1Q%/a, (53)

The electric multipole parametrizations may be written similarly:

trs(q) = <§> (q%) JCLEJ

1+ (i)Q 'EJ(Q)] e~ (@/a)” (54)

do
J 2
_ <£> (i) ars |1t (@)b};,}(q) o-lal/a, (55)
q q0 do
where now J > 1 since there are no monopole electric multipoles, and where
aps = gy (14 (@/00) g (a) ) e /)" (56)
b (@) = Vg (@)e™ /™" (57)

From the continuity equation the long wavelength limit (¢ < go) requires that

J w
li —t =—|— |t 58
Jim A £J(q) (q) ci(q), (58)
[J+1
a/EJ = Ta/CJv (59)

from which relationships involving the unprimed coefficients may be established.

For real photons all of the above parametrizations are to be evaluated at ¢ = w = E, and usually one invokes the
above relationship between electric and Coulomb multipoles to employ the latter in real-y studies (see, for example,
[41]), although this is actually an approximation.

for J > 1, implying that

V. DEVELOPMENT OF A MODEL FOR THE ELECTRODISINTEGRATION CROSS SECTION

Having developed general expressions for the cross sections in Sect. III and for the leading contributions to the
angular distributions as functions of 6,, in Sect. IV, here we proceed to make use of the still general parametrizations
of the multipoles presented in Sect. IV and discuss our model for the EM response. We do this in two steps: first, we
use the present knowledge of the real-y cross sections to constrain the leading-order behavior (i.e., as functions of ¢)
of the E1 and E2 multipoles. In the low-¢ limit, current conservation then yields the leading-order behavior of the C1
and C2 multipoles. Second, we invoke “naturalness” — to be explained below — to model the next-to-leading order
(NLO) dependences on ¢ in the C1/E1 and C2/E2 multipoles, which are not simply related by current conservation,
as well as make an assumption concerning the behavior of the CO multipole. Our goal is to develop a “reasonable”
model and, using this model, to explore the feasibility of making electrodisintegration measurements in the interesting
low-w/low-¢q region. We emphasize that the model is used only to determine the feasibility of such experiments; in
undertaking them the actual higher-order ¢g-dependences will be measured and the region where the parametrizations
are operative will be determined.
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A. Using Photodisintegration to Limit the Leading-order Behavior

The first step is to use the fact that the traverse response function Ry in electrodisintegration at ¢ = w is the
same as the one in the real-vy reactions and to establish the connection between our parameterization of electric
multipole matrix elements and the E1 and E2 astrophysical S-factors. In the capture reaction 2C(a, v)1¢O the radial
distribution of the v-rays is measured as a function of the a-particle beam energy. The cross sections of the the E1
and E2 components, og1 and opgo, are then extracted by fitting the data obtained to the differential cross section
formula given in [43]:

do o OF1 OF2 5 12
ldQ%m'} - = e (Qopo — Q2P»(cos 9)) R (QOPO + Q25P2(COS 0) — Q47P4(COS 9)) (60)
o,y

@ cOS(¢12)% (Q1P1 (cos ) — Q3Ps(cos 9)) :

where @, are attenuation factors [44] determined by the geometry of v detectors. This is just a rewriting of Eq. (42).
Furthermore, ¢12 = 0g2 — 01 is the phase between the E1 and E2 components (sometimes also used as a third fitting
parameter). From multilevel R-Matrix theory [45] the phase ¢15 can be expressed as

+

¢12 = 0q — 0, + arctann/2;

7oz Mo Mizc 1
he My + Miz2g 2E5™ ’

n= (61)

where 7 is the Sommerfeld parameter, while J, and 4 are p- and d-wave phase shifts from elastic a scattering on
carbon. Barker derived first equation 61 for single-level R-Matrix [46], and later Barker and Kajino for multi-level
R-Matrix [45]. For the general case Knutson [47], used Watsons theorem [48] to show that the phase shifts of the
radiative capture data at low energy can be related to elastic scattering phase shifts. This also holds for elastic
20(a, a)*2C and radiative capture >C(a,~)'%0 phase shifts. The final step is to convert the extracted og; and
op2 into S-factors Sgy(ES™ ) = ES™ - oy - 2™ as shown of Fig. 1. Note that here and below, following common
practice in studies of photodisintegration, we assume that the nuclear phase difference is small and therefore that
the complete phase difference arises largely from the term containing the Sommerfeld parameter. However, a word
of caution should be inserted here: the result above may be either as written or could be 7 minus that result. Said
another way, the E1/E2 interference term may have the sign as written or might have the opposite sign. Upon fitting
the angular distributions in photodisintegration it was found that typically in the kinematic region of interest the sign
is as written above [49]. We shall discuss this in more depth below for the case of electrodisintegration.

We will go in opposite direction: by using earlier obtained differential cross sections for the real-y reaction, Eq. (23),
and parameterization of the electric multipole matrix elements in the real-photon limit, tg;(w) = (w/q0)’a},, we
can express the leading coefficients a; and a’y, in terms of S-factor data:

() [ hepgm W Spy(Bgm et
EJ — w 20( w MaM12C Egm )

J=1,2. (62)

For the sake of simplicity we did not perform an R-Matrix fit on the S-factor data. Instead, for both multipoles, the
Sps(ES™ ) dependence was approximated by fitting the data to second-order polynomials, which are represented by
the dashed curves in Fig. 1.

The feasibility of performing measurements will be discussed in detail in the next section. For the present purposes
we assume typical values for the kinematics of interest and postpone their justification for later. In this section we
shall assume an electron beam energy of £, = 114 MeV and work in the region 0.7 < ES™ < 1.7 MeV. Accordingly
the other kinematic variables must lie in relatively narrow ranges. Specifically, the scattered electron energy is found
to lie roughly in the range 105 < E. < 107 MeV for the assumed value of E. and the electron scattering energy
loss w = E, — E/ then falls in the range 7 < w < 9 MeV. The electron three-momenta are, as usual, given by

pe = /E2+m2 and p/, = \/E'? + m2 (see Fig. 3), from which one can obtain the square of the three-momentum
transfer

@ =p2 47— 2pep/, cosb. (63)
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In Fig. 6 (a) we show W — Wy versus E. for the range discussed here for three typical values of the electron
scattering angle, from which we see that E! goes from about 105 MeV to 107 MeV when W — Wrp goes from 0 to 2
MeV, as stated above. Within this range one finds that ¢ behaves as shown in the (b) panel. Clearly ¢ is nearly, but
not exactly, constant as a function of E’ for the chosen kinematics. The two lower panels illustrate the virtuality of
the electron scattering reaction, showing the ratio w/q in the (c) panel and p = |Q?/¢?| in the (d) panel. Each varies
both as a function of E/ and 0., as shown. As is clearly seen in the w/q ratio plot, one can go from rather virtual
photons (¢ significantly larger than w; larger angles) towards real-y kinematics (¢ comparable to w; smaller angles).
And the invariant mass above threshold (effectively the excitation energy of the a+'2C system) has a nearly linear
relationship with E?.

2.5¢ 0, = 35° - @, = 15°
i 80r (b) D L
2.0} I 6,=25° - 6,=5

S RN .

< 15 < 60

g : >
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1050 1055 106.0 1065  107.0 105.0 1055 106.0 1065  107.0
E. [MeV] E, [MeV]
1.0 © — 0,=35° - @, =15° 1.2
0.8’ -------- Qe = 250 == e = 50 10, (d) ___________________________

e — 0.8}

Toe T %

o G 0.6 T -

I 0.4F T

S Q0_4,

I —— — B, =35° --- B, =15°

: 0.2r 0, = 25° - B, =5°

ool v o o L ‘Eel(*’T 0.0 | | | | Ee_AwT

1050 1055 106.0 1065  107.0 1050 1055 106.0 1065 107.0
E: [MeV] Ee [MeV]

FIG. 6 (color online). The dependences of the invariant mass above threshold W — Wr (a), of the transferred three-momentum
q (b), of the ratio of the transferred energy to the transferred three-momentum w/q (c), and of the virtuality of the exchanged
photon p = |Q?/¢?| (d), on the scattered electron energy E. for kinematics corresponding to within 2 MeV above threshold.
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FIG. 7. Leading-order coefficients a’z; and a’z, as functions of electron scattering angle 6. at a beam energy F. of 114 MeV.

Given these choices of kinematics in Fig. 7 we then present the leading-order E1 and E2 coefficients, a’;, and a’,, as
functions of 6. for two values of the a-particle c.m. kinetic energy ES™, 0.7 and 1.7 MeV (one should remember that
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these coefficients are constants as functions of ¢ but still depend on w). One sees that the values of both leading-order
coeflicients decrease over almost two orders of magnitude when ES™ changes from 1.7 to 0.7 MeV, reflecting the
steep falloff of the cross section when approaching threshold.

Note that, in the case of the radiative capture reaction, ES"™ denotes the kinetic energy in the center-of-mass frame
of the relative motion of the o and '2C pair in the incident channel and can be expressed as EL% Mz /(M + Mi2¢),
where EL is the a-particle kinetic energy in the laboratory frame. For the electrodisintegration of 160, E$™: is the
difference between the invariant mass W and its value Wy, at threshold.

Finally, from the continuity equation and in the long wavelength limit (¢ < go) we know how to relate electric a; ;
and Coulomb a.; coefficients (Eq. (59)):

acyg = — T+ 1aEJ' (64)

B. Next-to-leading Order ¢g-dependences

Presently we have no information concerning the next-to-leading order contributions in our general parametrization
of the multipoles, b(. ; ;(¢) with J = 1,2. These are independent functions of ¢, i.e., cannot be related via current
conservation as can the leading-order contributions. It should be remembered that, at this higher order in ¢, even
the way real-y processes are traditionally treated is an approximation, since the electric multipole matrix elements
are typically computed as Coulomb matrix elements using the current conservation assumption. Since w/qo = E~/qo
is not zero, but is small, one is actually making an assumption when following this procedure. In the virtual-vy case
that occurs with electron scattering the expansion is via higher-order contributions in ¢/qo, and, since ¢ can take on
any value where the virtual photon is spacelike, ¢ > w, as stated earlier, one now has a different situation where when
q < qo these NLO terms are likely safely negligible; however, if ¢ is allowed to become too large compared with the
scale qo, then the form taken by these NLO functions may not be simple.

Accordingly, we now make the basic assumption involved in our parametrization of the C1/E1 and C2/E2 multipoles,
namely, we shall assume that the general functions of ¢, b’ch 5s(q), are in fact constants. When measurements are
made these constants will be determined experimentally using the ¢-dependences inherent in the semi-inclusive cross
sections. And, with fine enough measurements, one may look for evidence of ¢-dependences that involve even higher
powers of (q/qo)? to validate the truncations of the expansions.

This strategy is what can be followed when making measurements of the semi-inclusive electrodisintegration cross
section as a function of both ¢ and w. For the present, lacking such measurements, our approach is to make “reason-
able” assumptions for these NLO coefficients. Since the multipole matrix elements were parameterized to reflect the
nature of spherical Bessel functions, it is reasonable to expect that they are of order unity and accordingly the simplest
approximation at present is to assume that b ; ;| ~ 1 for J = 1,2, and thus the C1/E1 and C2/E2 multipole matrix

elements will be parametrized as
2
14+ (i) e*(ll/qo)z;
do

J q 7
~ 1 /
tcs(q) = V71 (qO) apg
w q 4 q 2 2
ts(q) ~ (5) (q—0> apy |1+ (&) ]e_(q/q‘)) : (65)

A special case involves the monopole Coulomb matrix element tcg: there the leading dependence, which from
above would appear to be (¢/qo)” with J = 0, cannot occur due to the orthogonality of the initial and final nuclear
wave functions and in fact the leading behavior of tco(q) at low-q is proportional to (q/qo)?. Again, there are no
experimental data which would fix the value of the product ¢y = ap - byy. Therefore, in our feasibility study
we investigated the contribution of the ¢ to the rate of the 1°O(e, e’a)!?C reaction by setting the |bj,| = 1 and
replacing ag, first with a’;,, denoted Case A, and then with 0.5 - a’5,, denoted Case B. In general, when dealing with
experimental data from electrodisintegration of 10, ¢/, needs to be handled as a fit parameter, as with the coefficients
b'CJ_’EJ for J = 1,2 discussed above. As noted above, we do not know the sign of the CO multipole (i.e., with respect to
the other multipoles) and so could have either choice of sign for all interferences between CO and the other multipoles
(see below). When presenting results in the following, for the sake of simplicity we have usually chosen the sign to
be positive, although both sign choices have been investigated. The detailed angular distributions that result from
changing the sign of the CO multipole are found to be comparable but clearly different and accordingly the sign can be
determined from the data, as was the case for the E1/E2 interference contribution in photodisintegration (see above).

In Figs. 8 ((a) and (b)) we show the semi-inclusive electrodisintegration cross section as a function of 05™ for two
values of ES™, at a beam energy F. of 114 MeV and an electron scattering angle 6. of 15°. In each case there are 16
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FIG. 8 (color online). The semi-inclusive electrodisintegration differential cross section as a function of 5™ at a beam energy
E. of 114 MeV and an electron scattering angle 0. of 15°, for ES™ = 0.7 MeV (a) and ES™ = 1.7 MeV (b). There are 16
curves on each plot corresponding to “+” and “—” sign choices for each of the four next-to-leading order coefficients bgy, beo,
by, and bls. The difference introduced by the change of the sign is so small that the most of the lines are overlapping. At each
of the local maxima, it is possible to distinguish two groups of lines which correspond to +bg, and —bg, contributions. Here
all interferences involving the CO multipole have been taken to have a plus sign together with the choices of phase differences
discussed in the text. Alternatively, all such inteferences could enter with a minus sign.

curves corresponding to the two sign choices for each of the next-to-leading order coefficients. Clearly, for the selected
kinematics these higher-order effects are quite small, typically less that 6.4%. We again stress that this is not the
limiting factor in making such measurements, since, in any actual experiment, the slight extra dependence on ¢ will
be determined by varying the kinematics. Having found that the next-to-leading order effects are small, for simplicity
henceforth we make the choice by sgg = t1for J=1,2, and, given this choice, Fig. 9 then shows the ¢ dependence
of the electric tp; and Coulomb |t¢ ;| multipole matrix elements for the selected kinematics.

Finally, we note that in the region of interest 0.7 < ES™ < 1.7 MeV, the elastic phase shifts of the s-, p- and
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FIG. 9. Electric (tg1, tg2) and Coulomb (|tc1|, |tc2|) multipole matrix elements as functions of the electron scattering angle
f. at a beam energy E. of 114 MeV.
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d-waves are almost equal to zero [22, 23] and therefore we neglected them in our calculation of the rate. The only
contribution to the phase shift then comes from the Coulomb field, which is equal to the difference of the Coulomb
phase shift o; = arg'(1 + [ 4 in) of partial wave [ and the phase shift of the Coulomb monopole oy = argI'(1 + in)
[50]:

l
wy =0 — 09 = arctanﬂ. 66
1 1 0 nz::l I (66)
We see that the last term in ¢12, Eq. (61), follows from the general expression, Eq. (66). At the end, we will assume
that the phase-shift differences that occur in the electrodisintegration response functions written above, dc; — dco and
dp1 — 0go, are both equal to w; for the corresponding partial wave [.

Having chosen to use these for the phase-shift differences, as noted above, we must allow for either plus or minus
signs to enter for the interferences between the various mutipoles. For the E1 and E2 cases we follow the lead from
photodisintegration and choose the relative sign to be positive. The low-q relationships between CJ and EJ multipoles
then fix the signs of the C1 and C2 multipoles relative to the E1 and hence E2 multipoles. However, we do not have
any information concerning the relative sign of the CO multipole compared with the C1, C2, E1 and E2 multipoles.
Hence, all terms involving interference with the CO multipole could occur with either sign. During the rest of what
is presented in this study usually we arbitrarily choose the sign to be positive, although we have examined what
happens when the opposite sign choice is made: the detailed angular distributions change, although are roughly of
similar sizes. When measurements are made the appropriate sign choice should be clear following what was done in
studies of photodisintegration.

C. Electrodisintegration Cross Section Predictions

Having specified the model, we employ this to make projections of the electrodisintegration cross sections in the
low-w and low-q region and to explore these projections for a range of kinematics, and, in the following section, to
provide estimates for the uncertainties that might be expected in practical experiments in extrapolating towards the
real-y line and towards threshold. These estimates will then be used to make projections for the desired astrophysical
S-factors.
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FIG. 10 (color online). Angular distribution of the ®O(e,e’a)'?C differential cross section for beam energy of E. = 114 MeV,
electron scattering angle . = 15° and a-particle c.m. kinetic energies ES™ = 1.3, 1.4 and 1.5 MeV. The electron beam lies on
a ray from 180° to 0°, the direction of the scattered electron is represented by a dashed line, and the direction of the virtual
photon by a solid line. The results were calculated as a function of a-particle c.m. production angle 05™", but plotted with
respect to the direction that the virtual photon has in the laboratory system. Figure (a) shows tco Case A and (b) Case B.

Figure 10 shows polar plots of the differential cross section for 6O electrodisintegration as a function of the a-
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particle c.m. production angle 8¢ with respect to the direction of the virtual photon for A (a) and B (b) cases for
the choice of tgg discussed above. A very rapid fall-off of the differential cross section can be observed as the c.m.
kinetic energy of the a-particle decreases. By comparing the (a) and (b) panels in the figure, we see that the choice
of the CO coefficient influences to some extent the shape of the differential cross section around the virtual photon
direction and its contribution is more important around +90° with respect to the virtual photon direction (see later
discussion of what impact the monopole contributions have on the extraction of the astrophysical S-factors).
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FIG. 11 (color online). Angular distribution of the **O(e, ¢’a)'*C differential cross section multiplied by sin . for beam energy
of E. = 114 MeV, ES™ = 1.5 MeV, for different electron scattering angles 6. = 5°,7.5°,10°(a); 15°,25°,35°(b). The electron
beam lies on a ray from 180° to 0°, the directions of the scattered electrons are represented by dashed lines, and the other type
of lines on the positive angle side represents the direction of the virtual photon in the laboratory system.

Figure 11 shows the product of the differential cross section and the electron’s solid angle factor sin 6. as a function of
a production angle 5™ for several values of electron scattering angle .. The plots suggest that there is no advantage
to reaching very low values of 6., since the product saturates and only increases in magnitude when increasing the
electron scattering angle 6.. The increase in magnitude comes from the response functions — at fixed beam energy FE.
larger 6. means larger ¢, that is larger values of the response functions. In addition, one needs to keep in mind that a
finite sized collimator in a typical electron spectrometer accepts larger angular phase space (sin0.df.d¢.) at smaller
electron scattering angle 6.. Later, we will make clear that these two competing effects, for specific experimental
conditions, influence the final coincidence rate and, consequently, the statistical uncertainty.

The polar plot of the product of the differential cross section and the solid angle factor sin 6. sin #5"", shown in
Fig. 12, indicates the values of 5™ for which we can expect the maximum rate of a-particle production. For 6. >
15° the maximum rate is around +90° with respect to the direction of the virtual photon. At energies (ELab > 2
MeV) this can be a good guide to where to place an a-particle detector, but at lower energies the placement of the
a-particle detector will be governed by the minimization of the energy loss and the angular spread of the a-particles
when traveling through the target material.

Figure 13 shows the product of the differential cross section and the solid angle factors sinf. and sin 6, sin 5™,
and illustrates that at fixed electron scattering angle 6. one can increase the magnitude of the product by increasing
the electron beam energy F..
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FIG. 13 (color online). Angular distribution of the **O(e, ¢’a)'?C differential cross section multiplied by sin 6. (a) and sin @, -
sin 0™ (b) for beam energies of E. = 78, 114 and 150 MeV, E5™ = 1.5 MeV and electron scattering angle of . = 15°. The
electron beam lies on a ray from 180° to 0°, the directions of the scattered electrons are represented by dashed lines, and the
other type of lines on the positive angle side represents the direction of the virtual photon in the laboratory system.
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FIG. 12 (color online). Angular distribution of the O(e, ¢’a)'?>C differential cross section multiplied by sin . - sin 65™ for
beam energy of F. = 114 MeV, ES™ = 1.5 MeV, for different electron scattering angles 6. = 5°,7.5°,10°(a); 15°,25°,35°(b).
The electron beam lies on a ray from 180° to 0°, the directions of the scattered electrons are represented by dashed lines, and
the other type of lines on the positive angle side represents the direction of the virtual photon in the laboratory system.
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VI. CONSIDERATION OF AN EXPERIMENT TO MEASURE THE '°O(e,¢'a)'?C REACTION IN THE
ASTROPHYSICALLY INTERESTING REGION

Alpha-cluster knockout in the 190 (e,e’a)'2C reaction has been previously studied [51] at 615 and 639 MeV incident
electron energy. The shape of the measured missing-momentum distribution is reasonably well described by shell-
model and cluster-model calculations, but the theoretical curves over-predict the data by a factor of three to four.
However, at present, there exists no dedicated set-up for measuring the electrodisintegration of 0 at lower energies
with the astrophysical goals above in mind. Assuming the availability of high intensity energy-recovery linacs (ERLs)
in the near future [34, 35|, we here develop a conceptual experiment based on these new, advanced accelerator
technologies. In doing so, there are nevertheless practical constraints on what is likely to be possible, and these are
discussed below.

A. Experimental Considerations
1. FElectron Detection

The detector system suitable for measuring the four-momentum of the scattered electron is a high precision, focusing
magnetic spectrometer, equipped with focal plane detectors, capable of achieving a momentum resolution Ap./pe
better than < 10~* and an in-plane scattering angle resolution A#, better than < 0.5°. Spectrometers of this type
are standard in electron scattering nuclear research, but they differ in angular and momentum acceptance ranges, and
in the type of focal plane detector systems used.

2. Isotopic and Chemical Contamination

When dealing with the photodisintegration of %0 into an a-particle and '?C one needs to take into account a
large background coming from a-particles produced on 17O and '#0. The average isotopic abundances of the oxygen
isotopes are 99.7570% for 160, 0.03835% for 170 and 0.2045% for 180 [52]. The cross sections for photodisintegration
of 170 and 'O into an a-particle and corresponding carbon isotope are several orders of magnitude larger than
for the case of photodisintegration of 60; see Fig. 14(a). Further, there is always some finite amount of nitrogen
present in the oxygen gas (depending on the vendor usually 5 ppmv or less). This will give rise to protons from the
photodisintegration reaction N(v, p)!3C and also contribute to the background. Even if one depletes the 17O and
180 by a factor of 1000, and normalizes the cross sections accordingly as shown in the (b) panel of Fig. 14, in the
region of interest (E, = ES™+ 7.162 MeV) E, < 8.5 MeV, photodisintegration of 17O significantly contributes to
the background and the contributions of 0 and '“N are comparable or at some energies even larger. The same
problem can also be expected in the case of electrodisintegration.
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.................... R AN 100 . 180(V’a)14c I "/_,,
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FIG. 14 (color online). (a) the theoretical photo-nuclear cross section o, n as a function of the gamma energy E. for the signal
reaction '°O(v, a)'?C, and background reactions "O(7y, @)'*C, ¥0(y,a)'*C and “N(v,p)'*C, from [53]. The same curves
are shown on (b), but now the cross sections of the oxygen isotopes were normalized under the assumption that the natural
abundances of 17O and 'O were depleted by a factor of 1000, and that oxygen gas is contaminated with 5 ppmv of **N.

The modern photodisintegration experiments, [26, 28] and [29], address these isotopic and chemical contamination
issues. Here, we investigate how the background problems can be mitigated in an electrodisintegration experiment
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FIG. 15 (color online). Energy-loss corrected kinetic energy EF*® and time-of-flight ToF as functions of laboratory ion produc-

tion angle 0% assuming that the ions were produced by electrons involved in the electrodisintegration of 0, at E. = 114

MeV and . = 15°: (a) and (b) cut on 0.7 < E§™ < 0.8 MeV, (c¢) and (d) cut on 1.0 < E§™ < 1.1 MeV.

with a gas jet target.

In the presented study, SRIM-2013 simulation software [54, 55] was used for calculation of the average energy loss
of the a-particle or proton at a given kinetic energy in a 2 mm wide '°O gas jet having a density of 6.65x10~% g/cm?.
The full electrodisintegration kinematics calculation was performed for oxygen isotopes and N target nuclei, and
the data were sorted by selecting the electrons having momenta capable of producing a-particles on %0 in a given
E&™ -range. The kinetic energy of selected a-particles and protons was corrected for the energy loss assuming that
these particles are created at different positions inside the gas jet. The maximum correction was applied when the
particle is created at the edge of the jet and needs to travel through the full extension of the gas jet. In this way, the
corrected kinetic energies where converted to time-of-flight (ToF), assuming a flight path of 30 cm between the gas
jet and the ion detectors. Figure 15 shows the energy-loss corrected kinetic energies and ToF of the a-particles and
protons for two ES ™ -ranges. In both cases, we see that the kinetic energy can be used to distinguish the signal from
the background a-particles. However, to distinguish between protons and a-particles from 0, the ToF observable
is the most effective. It allows a clear background identification and removal from the collected events for all ES™ of
interest. Furthermore, it is easier to determine the final state of low-energy ions by measuring the ToF and not their
kinetic energy — this method is very well known in experimental nuclear physics. Most importantly, such detectors
can be designed to be electron blind.

Very close to the reaction threshold one has to deal with a-particles having very small kinetic energies, i.e., so
small that the target material itself can smear their angular resolution significantly. To quantify the angular smearing
by the target material, we used data obtained from a SRIM simulation to calculate the standard deviation of the
a-production angle A§L as a function of the a-particle kinetic energy EX: see Fig. 16. At kinetic energy of EL =
0.7 MeV, the standard deviation of the a-production angle is already equal to A§L® = 2.1° and, with deceasing EZ?°,
the AL starts to increase even faster.

Since the circular profile of the jet can be easily changed to a different one, like demonstrated in [56]. For the
fixed luminosity, the problem of the multiple scattering inside the jet can be minimized by extending the jet in the
direction of the beam. But in this case, the electron spectrometer will need to have good spatial resolution to be able
to reconstruct the position of the vertex along the extended gas jet. Another option, to partially solve this problem,
is to make use of the virtual photon properties: at fixed w one can independently dial the value of the transferred



23

12r

A6 [deg]

0 05 10 15 20 25 30
EZ" [MeV]

FIG. 16. Standard deviation of the a-production angle AL a5 a function of a-particle kinetic energy EL® for an a-particle
passing through a 2 mm wide 'O gas jet with a density of 6.65x10™* g/cm®.

3-momentum ¢. Figure 17 shows examples of angular distributions of the a-particle kinetic energy for fixed w but
for two different values of ¢. For larger-¢, around the direction of the virtual photon (~ —67°), the kinetic energy
of the a particles is larger compared with the lower-q case. In the opposite direction the larger-¢ E£ is decreased.
Ultimately, the measurement close to threshold will need to be performed at an optimized value of ¢, with a gas jet
having an optimized density and shape.
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FIG. 17 (color online). Energy-loss corrected kinetic energy of a-particles EZ®? as functions of laboratory a production angle
0L for two values of transferred 3-momentum of the virtual photon ¢g. The (a) panel shows a-particles in the range of
0.7 < ES™ < 0.8 MeV, and in the range of 1.0 < E5™ < 1.1 MeV for the (b) panel.

3. Alpha-particle Detection

The a-particle detector system has to be able to cover the maximum possible solid angle around the beam-target
interaction. Further, the detectors have to be blind to electrons, positrons and ~-rays, due to high rates from elastic,
inelastic, and Mgller electrons, gammas from radiative processes, and positrons and electrons from radiative pair
production. In the region of interest (0.7 < ES™ < 1.7 MeV) it is straightforward to measure the time-of-light of the
a-particle to obtain its energy. Thus, these detectors should have a good timing resolution.

Measuring the time-of-light has a crucial advantage since it can be used for ion identification purposes, as well as
for distinguishing the a-particles coming from different oxygen isotopes.

We have given some consideration to the choice of a-particle detector, which is required to detect ions with kinetic
energies of about 1 MeV. At 1 MeV kinetic energy, the range in silicon is about 1 mg/cm?. Silicon has a density
of 2.33 g cm~2 and so this corresponds to a thickness of 4.3 microns. The count rate for the (e,e’a) process is low,
~ 1 — 10 Hz. It is required:

e to measure the total energy of the a to about ~ £10%
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e to distinguish between protons, a-particles and 2C

e to measure the position to ~mm and the timing to a few nsec

e that the ion detection system be blind to scattered electrons and photons.
There are a several different detector possibilities:

e Silicon detector [57]
Silicon detectors have a high position resolution in tracking charged particles but are expensive and require
cooling to reduce leakage currents. They also suffer degradation over time from radiation; however, by cooling
them to low temperatures, this effect can be significantly reversed.

e Micro-channel-plate electron (MICP) detector [58]
A micro-channel plate is a slab made from highly resistive material of typically 2 mm thickness with a regular
array of tiny tubes or slots (microchannels) leading from one face to the opposite, densely distributed over
the whole surface. The microchannels are typically approximately 10 microns in diameter (6 micron in high
resolution MCPs) and spaced apart by approximately 15 microns; they are parallel to each other and often enter
the plate at a small angle to the surface (= 8° from normal).

The gain of an MCP is very noisy, meaning that two identical particles detected in succession will often produce
wildly different signal magnitudes. The temporal jitter resulting from the peak height variation can be removed
using a constant fraction discriminator. Employed in this way, MCPs are capable of measuring particle arrival
times with very high resolution, making them an ideal detector for mass spectrometers.

e Parallel-plate avalanche counter (PPAC)
The PPAC detector consists of two parallel thin electrode films separated by 3—4 mm and is filled with 3—50 Torr
of gases such as isobutane (C4H;0) or perfluoropropane (C3Fg). When a voltage gradient corresponding to a
few hundreds of volts per millimeter is applied between the anodes and cathodes, ionized electrons from incident
heavy ions immediately cause an electron avalanche. Because there is no time delay before the avalanche occurs
and the electrons move at high mobile velocity (mobility), the resulting signals have good timing properties,
with rise and fall times of a few nanoseconds, as compared with other types.

A PPAC detector has been developed at RIKEN RIBF in Japan [59] that has a sensitive area of 240 mm x 150
mm, and the position information is obtained by a delay-line readout method. Being called a double PPAC, it is
composed of two full PPACs, each measuring the particle locus in two dimensions. High detection efficiency has
been made possible by the twofold measurement using the double PPAC detector. The sensitivity uniformity
is also found to be excellent. The root-mean-square position resolution is measured to be 0.25 mm using an «
source, while the position linearity is as good as +0.1 mm for the detector size of 240 mm.

e Time Projection Chamber
A time projection chamber (TPC) is a type of particle detector that uses a combination of electric and magnetic
fields together with a sensitive volume of gas or liquid to perform a three-dimensional reconstruction of a particle
trajectory or interaction.

A Micromegas TPC is under development [60] for the detection of low-energy heavy ions. The first prototype
consists of a 10 x 10 x 10 cm? gaseous vessel equipped with a filed shaping cage and a Micromegas detector.
With 1 atm of gas, the energy resolution for 6 MeV a-particles is about 10%. The window is 10 um of Mylar

(polyethylene terephthalate) which has a thickness of 1.4 mg cm™2.

The DMTPC detector technology has been developed at MIT [61] to search for dark matter. It consists of a
TPC filled with low pressure CF, gas. Charged particles incident on the gas are slowed and eventually stopped,
leaving a trail of free electrons and ionized molecules. The electrons are drifted by an electric field toward an
amplification region. Instead of using MWPC endplates for amplification and event readout, as in the traditional
TPC design, the DMTPC amplification region consists of a metal wire mesh separated from a copper anode
with a high electric field between them. This creates a more uniform electric field in order to preserve the shape
of the original track during amplification. The avalanche of electrons also creates a great deal of scintillation
light, which passes through the wire mesh. Some of this light is collected by a CCD camera located outside
the main detector volume. This results in a two dimensional image of the ionization signal of the track as it
appeared on the amplification plane. Information about the charged particle, including its direction of motion
within the detector, can be reconstructed from the CCD readout. Additional track information is obtained from
readout of the charge signal on the anode plane. The largest existing prototype detectors each have a total of
20 liters of CF4 gas within the drift region, where measurable events can occur. Recoil *F and '2C nuclei with
energies from 20 keV to 200 keV and a-particles from an 24! Am source have been detected in DMTPC [61].
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e Low-Pressure Multistep Detector for Very Low Energy Heavy Ions [62]

A large-area timing and position-sensitive multistep gaseous detector designed for the detection of very low
energy heavy ions has been developed [63]. It consists of a preamplification stage operating as a parallel plate
avalanche chamber directly coupled to a multiwire proportional chamber. The multistep avalanche counter
(MSC) was tested with a-particles, fission fragments and heavy ions. The detector operates at a pressure range
of 1-4 Torr isobutane, with very thin (~ 50 pug cm~2) polypropylene window foils. It has a high gain and good
time resolution (better than 180 ps fwhm) and a position resolution better than 0.2 mm (fwhm). Its efficiency
for low-energy, high-mass ions was tested with '°Gd ions and found to be 93% down to kinetic energies of
1.3 MeV. In its original design, the MSC does not provide AE information. Information concerning the energy
loss, in addition to timing and localization, can be obtained by adding an independent wide-gap collection and
low-gain element.

‘We note that:

e A large area, thin, silicon detector with adequate position resolution and with threshold set so that minimum
ionizing particles do not trigger, is an attractive option.

e The first stage could be a thin gas detector, e.g., 10 cm length of gas at 5 Torr. For isobutane (C4Hig), the
thickness is 0.15 mg cm 2. The energy lost by a 1 MeV a-particle in such a detector is of order 0.2 MeV.

e This gas detector must be contained in the vacuum system of the gas target. The detector gas volume can be
isolated from the gas jet volume by a thin window, e.g., 50 ug cm ™2 of polypropylene. The energy loss of the
a-particle will be small in this window.

e The energy lost by a minimizing particle (stopping power ~2 MeV/(g cm~2)) will be of order 0.5 keV so the
gas detector will be blind to scattered electrons.

e The detailed technical aspects of the gas detector (e.g., charge collection mechanism, amplification, transverse
size, gas type, etc.) need to be considered in detail. The gas pressure could be high enough to stop the « or
it could be thin enough to have another detector (e.g., thin silicon) behind it. Note that a higher detector gas
pressure will require a thicker entrance window. Until the details of the gas detector are specified, it is hard to
characterize the energy, position and time resolutions.

e Finally, the possibility to integrate the oxygen gas target and the a-detector by using the oxygen gas as the
ionizing gas for the detector is worthy of consideration.

Below we continue with the calculation of the 0 (e, ¢’a)!?C reaction rate and perform an estimate of the statistical
uncertainties by using established parameters of existing cluster gas-jet targets [36] and expected performance of
electron accelerators (MESA [34] and CBETA [64]) under construction. In the rate calculations, we identify and
consider the most significant sources of systematic uncertainty. Furthermore, systematic effects due to scattering in
the gas jet target can be reduced by extending the profile of the jet and/or by increasing the transferred g-value;
optimization here needs to be carried out experimentally. Nevertheless, in calculation of the rate, we will use what we
have learned in this section and restrict the accepted range of the a-production angle §5™ and the accepted a-particle
kinetic energy EL? to reasonable values.

B. Proposed Experiment Concept

First, having made exploratory projections using our model, we have come to the conclusion that the luminosity
should be larger than 103° cm=2s~!, but that the density of the target oxygen has to be low enough to allow the
a-particles that exit the target to be detected. A suitable target design here is a windowless oxygen cluster-jet target,
like the one described in [36]. The areal thickness of 2.4x 108 atoms/cm? was measured for (=~ 2 mm wide) hydrogen
jet at a gas temperature of 40 K and gas flow of 40 [/min. For our purposes, we will assume one has an oxygen
cluster-jet target capable of achieving an areal thickness of 5x10*® atoms/cm?, which for a 2 mm wide jet corresponds
to a density of 6.65x10~* g/cm3. We also require an electron accelerator which can deliver a beam energy of about
100 MeV and a beam current of at least 10 mA. Two suitable electron accelerators are currently being constructed,
namely, MESA, which should deliver a beam current of 10 mA [34] and CBETA which should be able to go up to 40
mA [64] for beam energies of 42, 78, 114 and 150 MeV. In what follows, we assume a beam current of 40 mA and a
jet target as described above, which is equivalent to a luminosity of 1.25x103% cm=2s~1.

To identify events belonging to the °O(e, ¢’a)'?C reaction we need to detect the scattered electron in coincidence
with the produced a-particle. Fig. 18 shows a schematic layout of a possible experiment.
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A high precision magnetic spectrometer is suitable for detection of the scattered electron. For the purpose of defining
electrons accepted by the electron spectrometer, we will assume that the spectrometer has an in-plane acceptance of
42.08° and out-of-plane acceptance of £4.16°; this amounts to a solid angle of 10.5 msr.

TABLE I. Summary of experimental parameters for the rate calculation.

Parameters
Thick 5x10'® at 2
Oxygen Target ickness a o;ns/cm3
Density 6.65x107" g/cm
t 40 mA
Electron Beam Curren 0m
Energies 78, 114, 150 MeV
. In-plane +2.08°
Electron arm o
acceptance Out-of-plane +4.16
Solid angle 10.5 msr
In-plane 60°
a-particle arm ol o
acceptance Out-of-plane 360
Solid angle 3.14 sr
Luminosity 1.25%10%0 cm 257!
Integrated Luminosity (100 days) 1.08x107 pb~*
Central electron scattering angles 15°, 25°, 35°
E¢& ™ -range of interest 0.7 < E™ < 1.7 MeV

Since we want to obtain S-factors close to the Gamow energy (300 keV), we will need to deal with a-particles
having very low kinetic energy E'® (see Fig. 17), where the energy loss in the target and the multiple scattering in
the target material play important roles as shown in Fig. 16. In order to select a-particles with reasonable energy
and angular spread one should either reduce the density of the gas jet or set a cut on the minimum accepted kinetic
energy EL .. to accept a-particles within a certain range around the direction of the virtual photon. We decided
to go with the second option and set a cut to accept a-particles having a kinetic energy EL® > 0.55 MeV. This cut
also imposes a limit on the maximal accepted in-plane scattering angle 6™, and to cover all settings listed in Table I
within an equal angular range, only a-particles having an in-plane scattering angle 65™ in the range from 0° to 60°
were accepted. For the out-of-plane angle ¢,,, the full acceptance from 0° to 360° was assumed. Note that by selecting
the full range of ¢, the integral of interference response functions Rpp and Rpy over ¢, will be equal to zero and
only longitudinal Ry, and transverse Ry response functions will contribute to the total cross section. Figure 19 shows
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lon Detectors

Catcher

FIG. 18. Schematic layout of our proposed 160(6,6’(1)12C experiment: 10, inside a gas cluster-jet target, is disintegrated
by the electron beam into a-particles and 2C nuclei. The scattered electron is detected in an electron spectrometer and the
produced a-particle in the ion detectors.
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FIG. 19. Top-view layout of proposed 160(6, e’a)uC experiment, showing the in-plane angular acceptance of the ion detectors.

a top-view layout of the experiment.

Table IT summarizes the assumptions for the parameters used in the differential cross section (Eq. (21)) used for
the calculation of the rate and subsequent statistical uncertainties.

TABLE II. Summary of theoretical assumptions for the rate calculation.

Assumptions
, Value ~1for J=1,2
crBs Sign 747 for J =1,2
Value of by |~ 1
Coo = aco X beg Value of alg = algs, Case A
= 0.5a’z, Case B
tco Sign "4

In ES ™ -region of interest only the Coulomb phase

contributes.

C. Estimation of Event Rates

Since it is difficult to calculate the rate analytically, we have carried out a numerical simulation of the conceptual
experiment illustrated in Fig. 18. By using Monte Carlo integration and explicit experimental parameters (see Table I)
and theoretical assumptions (see Table IT), we have estimated the rate of the coincidences per day in the energy range
0.7 < ES™ < 1.7 MeV divided into 100 keV wide bins; see Fig. 20. For t-9 Case A the coincidence rate ranged from
73 day—! up to 30602 day ', and for Case B from 55 day~' up to 23123 day—'. In total, the coincidence rate of tcq
Case A is &32% larger than for Case B.

In order to mimic the data treatment in a real experiment, the accepted events in the energy range 0.7 < ES™ < 1.7
MeV were placed in 100 keV wide bins, for which, as shown in figure 15, it is possible to identify the a-particles from
electrodisintegration of 'O and fully separate them from the background. Additionally, the full range of accepted
electron scattering angle #. was divided into four bins corresponding to four different g-values, and events in each
f.-bin were finally sorted into six 65" -bins ranging from 0° to 60°. An example of the sorting can be seen in Fig.
21. The rate was converted into the number of events collected over 100 days by multiplying it with the integrated
luminosity of 1.08x107pb~".

The number of events per bin was used to calculate the corresponding statistical uncertainty and this is the quantity
for which we performed the above described procedure, since it determines how large an advantage one might have
measuring the electrodisintegration of 10O compared with previous experiments.
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FIG. 21 (color online). Number of events as a function of 5™ assuming 100 days of data taking at the luminosity of 2.5 x 10
cm ™ 2s7 . The left column represents tco Case A and right one Case B. Horizontal bars denote the width of the 85 ™ -bin which
here is equal to 10°. Horizontal placement of the data point within a bin was done according to the procedure recommended
in [65]. The g¢-bins are 1.91 MeV/c wide and Eg "™ -bins 100 keV. For all events inside a particular ¢- and ES™ -bin, the
specified g-values represent the average value, and the stated Eg "™ -values represent the average of the expected and averaged
B¢ -value.

D. Estimated Uncertainties in Determination of Astrophysical S-Factors

Now that we have determined the angular distribution of the number of events, we can proceed to predict the as-
trophysical S-factors, with associated uncertainties. First, the event distribution is converted back into the differential
cross section distribution by dividing it with the Monte Carlo integrated phase space covered by each bin and the
integrated luminosity, but now including the statistical uncertainties; see Fig. 22.

The Levenberg-Marquardt method was used to extract three fitting parameters a,El, a,EQ and alco (from the Coulomb
monopole) from the data, as well as their uncertainties. At given ES™-bin we obtained four values for each fitting
parameter originating from four g-bins, which were combined together by taking the average value of each parameter
and by calculating their total uncertainty. The last step is to invert Eq. (62) and for each ES™-bin calculate the
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SE1- and Sga-factors and their uncertainties; see Fig. 23 as an example for t¢y Case A and Case B at E, = 114 MeV
and 0. = 15°. When we compare tco Cases A and B, the value of af,, has a minor effect (~3%) on the uncertainties
in Sg;. For the same comparison, the relative uncertainties in Sgo are approximately 25% larger in Case A, but the
uncertainties in S, in Case B are twice as large as in Case A. The "bump” in the relative uncertainties of S,co
Case B is caused by fluctuation in 6™ -position of the data point inside the last bin 50° < #5™ < 60°.

Figure 24 shows one example of the calculated Sgi- and Sgs-factors with projected statistical uncertainties for
parameters F, = 114 MeV, 6, = 15° and tgg Case A, as well as data from past experiments. These results are also
plotted in terms of relative uncertainties in Fig. 25 to point out a clear advantage of measuring the 1%0(e, ¢’a)'2C
reaction for several ES™ energies. Compared with the most accurate measurements from [13] and [16], the relative
uncertainties in Sg; and Sge at a given energy are improved at least by factors of x5.6 and x23.9, respectively.

In the following Figs. 26—27, we summarize the calculation of the projected relative uncertainties in the Sgi-, Sgo-
and S,co-factors as functions of the beam energies E. = 78, 114 and 150 MeV and the electron scattering angles
0. = 15°, 25° and 35°. Even for values of E., 8. and tco, which give the worst projected statistical uncertainties,
improvements in the relative uncertainties of Sp; and Spo at a given energy, compared with previous experimental
data from [13] and [16], are at least x2.6 and x15.5, respectively.

In general, with increasing electron beam energy F. all uncertainties are reduced. This can be easily understood,
because at fixed central electron scattering angle 6. the accepted angular phase space of the electron is also fixed, but
at larger beam energy F. we also get a larger ¢ value, and thus the coincidence rate is larger.

If we vary the central electron scattering angle 6. at fixed beam energy E., the uncertainty in Sg; is smaller at
smaller values of angle 6., which favors the kinematic setting having a larger accepted electron angular phase space,
thus having the larger rate for fixed E.. The uncertainty in Sgo behaves the opposite way, favoring the kinematic
setting with larger ¢ value at fixed E..

E. Discussion of Results

The results summarized in Figs. 24—25 offer significant potential that the S-factors associated with the E1 and
E2 multipoles of the °O(e, e’a)2C reaction at astrophysical energies can be determined with significantly reduced
uncertainties. We would like to emphasize important details about the assumptions we have made:

e Although we obtained excellent results in reducing the statistical uncertainties, note that our calculation does
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counterpart and it just a conversion of the third fitting parameter into an S-factor and corresponding uncertainty in order to

put it in perspective with Sg1 and Sga.

not include detailed consideration of systematic uncertainties, which are always present in experimental data.
However, we are not aware of any systematic effect that can reduce the large improvement in the determination
of the radiative capture reaction with our new approach. At fixed beam energy F. and electron scattering angle
0., the electron spectrometer detects scattered electrons in a narrow range of electron momenta Eé and the 6..
Therefore, one can expect that the systematic uncertainty connected with the detection of the electron will not
vary significantly over these ranges. As discussed in section VIA 2, the systematic uncertainties related to the
detection of the a-particles are very energy dependent. They increase rapidly as the a-particle kinetic energy
ELab decreases; see for example Fig. 16. However, we note that the kinetic energy of the a-particle can be
controlled by the transferred momentum ¢ and the thickness of the jet-target traversed by the a-particle can be
reduced by extending the shape of the jet’s profile. This optimization needs further consideration.

One significant source of systematic uncertainty which needs to be considered is the uncertainty of the electron
beam energy F., which is especially important at low ES™-values. In a coincidence measurement of the
electrodisintegration of '°0, the kinematics are over-determined. Thus, an attractive method to determine the
electron beam energy would be to reconstruct the energy of the electron beam E, for each coincidence €'« pair
separately.
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e The Coulomb and electric multipole matrix elements have only been expanded up to the NLO, see Eq. (50)

and (54), and for the corresponding NLO coefficients we assumed b ; p; ~ 1. In general these coefficients are

functions of ¢ and, when dealing with experimental %0(e,e’a)'?C data, their magnitude and g-behavior will
have to be verified by including them as four additional fitting parameters. If values of b/CO,Cl,CQ, F1,p2 are
smaller than unity for large range of ¢, truncating the expansion of multipole matrix elements at the NLO term
is justified. But, if the values are larger than 1, we may need to include the third-order in the expansion with
corresponding coefficients ¢/, s,z Which order in this expansion needs to be included can easily be verified by

measuring the rate of electrodisintegration of 10 at several larger g-points.

The calculations here were focused on the ES ™ -range from 0.7 to 1.7 MeV, but a typical electron spectrometer
has at least a momentum acceptance of 10% and for E. = 78 MeV the full available ES™ -range would be
from 0.0 to 6.7 MeV, or for F, = 150 MeV from 0.0 to 13.6 MeV. By choosing the appropriate beam energy,
a single 100 electrodisintegration measurement could cover the ES ™ -range of almost all previous experiments,
and crosscheck their results. Furthermore, at higher a-energies, multipoles E3 and C3 could start to significantly
contribute to the cross section (although this was not yet observed [25]). Because of this we have provided the
multipole decomposition of the response functions up to octupole terms in the Appendix .

For all choices of the parameters E. and 6. we obtained a smaller uncertainty for Sgo compared to Sgi. There
are two reasons for this result. Firstly, the C2/E2 matrix elements which enter in the response functions
Rp 7o rr differ from C1/E1 matrix elements by a factor ¢/w. This is the dominant contribution, which does
not exist in the case of real photon experiments, since ¢/w = 1. Secondly, a minor contribution comes from the
0c ™ -distribution of the relevant multipoles. In the 5™ -range from 0° to 60°, the magnitudes of the C2/E2
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6™ -distributions are larger compared with those of the C1/E1. The same behavior can also be observed for
the E1 and E2 multipoles in the case of real-photon experiments; for example this is shown in Fig. 5 in [25].

e In section VI A 2 we have considered the most probable sources of background and demonstrated how to identify
the a-particles from the electrodisintegration of 0. If one takes a closer look at figures 14 and 15, in the same
experiment, we can also identify the proton and measure the rate of the *N(e, 'p)!3C reaction. Furthermore,
the photodisintegration cross section of 20 is much larger compared with that of 'O and, with further work,
it would also be possible to extract the rate of the 80(e,e’a)*C reaction. Note that with minor modifica-
tions, the same formalism presented in this paper for electrodisintegration of 'O can also be be applied to
electrodisintegration of 20.

VII. CONCLUSION AND OUTLOOK

In summary, we have considered in some detail a new approach to determine radiative capture reactions at astro-
physical energies. Using detailed balance, we consider the inverse electron-induced disintegration process. Specifically,
in this paper we have focused on the 1°O(e,e’a)!2C reaction as a means to determine the astrophysically crucial radia-
tive capture process 2C(a, v)160. We have applied a multipole decomposition constrained to fit existing data together
with some reasonable theoretical assumptions to extrapolate from the electrodisintegration process to the photodis-
integration reaction. We have developed a Monte Carlo simulation of an experiment where an external electron beam
is directed on an oxygen gas jet target; the forward scattered electron is detected in a magnetic spectrometer and the
coincident, low-energy, recoil a-particle is detected in a large acceptance detector centered around the direction of
three-momentum transfer. We assume what we believe are reasonable experimental parameters to carry out such an
experiment at the upcoming ERLs. With an electron beam of energy 114 MeV and beam current of 40 mA incident
on a hydrogen gas target of 5 x 10'® cm™2, we estimate that Sgi- and Sga- factors can be determined at ES™ =
0.75 MeV to of order £20% and +5%, respectively, in 100 days of continuous data taking.

Assuming that the multi-Megawatt ERLs are realized with electron energy of about 100 MeV, a key technical
challenge is to realize efficient, large solid-angle, low-energy a-particle detection that is blind to the large rate of
electromagnetic background. We note that previous work has shown [66] that the electron beam quality of 100 MeV
Megawatt ERLs is high, with ~50 ym 1o spatial size and with minimal halo. To reach high precision, the experiment
must be efficient and stable over months of data taking. However, we stress that the initial, key experiment to validate
our proposed approach should focus on higher E™ where the coincident electrodisintegration rates are significantly
higher than in the astrophysical region and accordingly the running time is a more modest several weeks. Such
an experiment should elucidate the multipole structure of the electrodisintegration reaction, whose understanding is
essential for extrapolation to the photodisintegration reaction. If our approach is validated experimentally, one can
then embark on the more ambitious measurement to determine the S-factors in the astrophysically interesting region
at low a-particle energies, where the electrodisintegration count rate drops precipitously.

In the present study, we have focused on electrodisintegration of 10 into the ground states of “He and '2C in the
low momentum transfer ¢ region near threshold for the reaction. We have provided the bridge to photodisintegra-
tion and radiative capture (real-photon) reactions through the limit where the virtual photon involved in electron
scattering becomes close to the real-photon line. Measurements of electrodisintegration thereby have the potential
to provide a new way to approach the real-y photodisintegration cross sections and hence, through detailed balance,
the capture reaction cross section and ultimately the astrophysical S-factors involved in that process. As discussed
in the Introduction, obtaining information on these last quantities provides one of the high-priority goals in nuclear
astrophysics.

After developing the general formalism for the electrodisintegration reaction °O(e, e’a)!2C following past gen-
eral treatments of such semi-inclusive reactions, together with some discussion of the photodisintegration reaction
60 (y,a)'?2C and radiative capture reaction a + 2C— ~ + 160, we have proceeded to develop parametrizations
for the dynamical content in the problem. Since our focus is the region near threshold for the photo- or electro-
disintegration reactions we are assured that the energy of the photon, E, is small. Additionally, we have limited our
attention to kinematics where the three-momentum transfer carried by the virtual photon in electrodisintegration, g,
is also small. Here one needs to state what is meant by “small”. We expect that the nuclear dynamics involved in the
reactions occur with a typical nuclear scale gg 2 200 — 250 MeV /¢, and accordingly we measure both quantities versus
qo, taking both ratios 1 = E,/qo and po = ¢/qo to be small. This allows us to expect that the lowest multipoles will
dominate over higher multipolarity contributions and also to expand each of the small number of remaining multipoles
in powers of p; ». Ultimately, as we have shown in detail in the body of this work, there are only a few parameters
left that determine the dynamical content of the problem in the kinematic region of interest. Such procedures are
simply an extension of what is typically done for photodisintegration or radiative capture.
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Of course, it would be valuable to have a microscopic model for the reactions of interest here, although this is far
from realizable at present. Even relatively crude models might be of some interest as they could help set the scales
in the problem. For example, a cluster model in which the '2C ground state might be taken to be a cluster of three
a-particles and the ground state of 'O might involve four a-particles could be pursued. We have not done so in this
initial study, but instead have limited our attention to the parametrizations discussed above. When measurements
are made of the kinematical dependences on ¢ and the angular distributions of the a-particles are determined for each
energy above threshold there is ample information to fix all of the parameters involved experimentally.
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Appendix: Extended Angular Distributions

Following [33], the responses in terms of Legendre polynomials up to octupole contributions may be written
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5 10
+ Py (cos ) <2Itc1IItE1| cos(6c1 — dp1) + 2\/;|t00||tE2| cos(dp2 — dco) + 7—\/§|t02||tE2| cos(dc2 — dg2)

3 2 2 /2
- 2\/;|t03||tE1| cos(dcs — dp1) + 4\/;|t01||tE3| cos(dc1 — Oms3) + g\/;|t03||tE3| cos(dcz — 5E3)>

3 4
+ P31 (COS HQ) (2\/;|t02||tE1| COS(5CQ — 5E1) + %|t01||tE2| COS(501 — 5E2)

7 2 /7 7
+ 2\/g|t00||tE3| cos(6ps — dco) + 3\ E|t03||tE2| cos(0cs — Op2) + 24/ %|tcz||tE3| cos(dca — 5E3)>

6v/3 3
+ P41 (COS Ha) <T|t02||tE2| COS(6CQ — 6E2) =+ 2\/;|tcg||tE1| COS(503 — 5E1)

6 6 3
+ ——=|tc1||tes| cos(dc1 — dg3) + ﬁ\/;|t03||tE3| cos(dc3 — 5E3)>

V14
+ P2 (cos0u) | 2011t it el cos(Ocs — Oma) + 104/ —= [tcn|[tms| cos(des — dms)
° 3 /105 105
. 50 [2
+ PG (COS HQ) @ §|tcg||tE3| COS(503 — 5E3) (A4)

For completeness we can also evaluate the Legendre polynomials to write expressions involving only sines and cosines
of 0,:

Ry, = X;);O
2 2.2 5 2 2 1 2 2
= |tcol” + 3|tc1|” cos® O, + 1—6|t02| (14 3cos20,)° + 6—4|tcg| (3cosfy + 5cos36,)
+ 2V3|tcol[ter] cos(bor — deo) cos by

5
+ §|tco||tcg| COS(5CQ — 500)(1 + 3 cos 2904)

7
+ % [tcolltes| cos(des — dco) (3 cos by, + 5 cos36,)

V15
+ T|t01||tcz| cos(dca — dc1) (5 cos by + 3 cos30,,)
V21
+ T|t01||tcg| cos(dc3 — dc1) (3 + 8cos 26, + 5 cosdb,)
v35
+ ¥|t02||tcg| cos(d¢c3 — dc2) (30 cos Oy, + 19 cos 30, + 15 cos5,,) (A.5)

11 g
Ry = Xfi + Xfi
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3 15 21
— —|tE1|2 sin? 0, + _|tE2|2 sin? 20, + —|tE3|2(Sin 20, + 5Sin39a)2
3
+ —\/_|tE1||tE2| cos(dga — dp1)(sin b, sin 26,,)

+ 5\/;|tE1||tE3| cos(0ps — 0p1)(sin® 20, — sin® 0,)

3 /35
+ Z —2 |tE2||tE3| COS(5E3 — 5E2) sin 29a(sin 9(1 + sin 39(1 — sin3 904) (AG)
1—-1 , v—1,1
Rpr = X377 + X, = —Rrcos 200 . (A

Ry = —2Re [X?;l - X?;l]
= cos ¢a{ — 2\/§|tco||tE1| cos(dp1 — dco) sin By, — V15|tco||tma| cos(dp2 — dco) sin 20,

1 /21
_ = _|tCO||tE3| COS(5E3 — 500)(sin 9(1 + 5sin 39&) — 3|t01||tE1| COS(501 — 5E'1) sin 290(

3 3 |7

— —\/_|t01||tE2| COS(501 5E2)(sin Qa + sin 3904) — —\/j|t01||tE3| COS(501 — 5E3)(6 sin 29(1 +5 sin49a)
V15 5

+ T|t02||tE1| COS((SCZ — 5E1)(sin Qa — 3sin 36 ) — —\/_|t02||tE2| COS((SCZ — 5E2)(2 sin 29 — 3311149 )

1 3
+ 3—2\/ 7—O|tcg||tE3| cos(dca — 0p3) (278 sin b, — 455 sin 360, — 525 sin56,,)

V21
+ —|tc3||tE1|cos(5c3 —0p1)(2sin 20, — 5sin46,)
vV 10
+ ——|tes||tp2| cos(dos — 0p2)(28in 6, — 3sin 36, — 5sinb6,)
7
~ 8 \/>|t03||tE3|cos(5cg — dp3)(13sin 26, + 20sin46,, + 25 sin 66, )} (A.8)
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