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We construct the QCD equation of state at finite chemical potentials including net baryon, electric
charge, and strangeness, based on the conserved charge susceptibilities determined from lattice QCD
simulations and the equation of state of the hadron resonance gas model. For the application to
relativistic heavy ion collisions we consider the situation of strangeness neutrality and matter with
a fixed electric charge-to-baryon ratio, resembling that of heavy nuclei. The importance of finite
electric charge and strangeness chemical potentials for particle production in heavy ion collisions is
demonstrated using hydrodynamic simulations.

PACS numbers: 25.75.-q, 21.65.Qr, 12.38.Mh

I. INTRODUCTION

The nearly perfect fluidity of the quantum chromo dy-
namic (QCD) matter discovered in heavy ion collisions
at the BNL Relativistic Heavy Ion Collider (RHIC) and
CERN Large Hadron Collider (LHC) has provided us
with rare opportunities to experimentally explore the nu-
clear equation of state, which encodes the fundamental
thermodynamic properties of nuclear matter. The sys-
tem created in these collisions is expected to be decon-
fined from hadronic matter to the quark-gluon plasma
(QGP) above approximately two trillion degrees Kelvin.

The theoretical study of the non-perturbative QCD
equation of state dates back to the MIT bag model [1, 2]
where hadrons are assumed to be located in a bag em-
bedded in the QCD vacuum characterized by the bag
constant. This prescription introduces confinement phe-
nomenologically. Also, several model approaches, such
as the potential model [3] and the Nambu-Jona-Lasinio
model [4, 5], have been proposed to understand the ther-
modynamic properties of QCD. A more comprehensive
picture became available with the advent of first-principle
calculations based on lattice QCD techniques. The
quark-hadron phase transition is found to be a crossover
by (2+1)-flavor lattice QCD calculations, in contrast to
the SU(3) pure gauge case where a first-order phase tran-
sition is predicted [6–8]. Recent lattice QCD simulations
with a physical pion mass have been able to provide us
with the realistic equation of state at finite temperatures
and vanishing chemical potentials [9, 10].

At finite densities the equation of state is not well
known, owing to the fermion sign problem of the first
principle method (for a review see [11]). Several tech-
niques have been developed in lattice QCD, including
the Taylor expansion method [12, 13], the imaginary
chemical potential method [14–16], Lefschetz thimble de-
composition [17, 18], and the complex Langevin method
[19–21], but so far no complete calculations are available
at larger chemical potentials. There can be non-trivial

structures in the µB-T QCD phase diagram other than
the QGP phase [22]; it is conjectured that there is a criti-
cal point based on the chiral model that predicts that the
quark-hadron crossover becomes a first-order transition
at some finite temperature and chemical potential [23].
Beam energy scan (BES) programs are being performed
to explore finite-density QCD matter and determine its
detailed phase structure at RHIC and the CERN Super
Proton Synchrotron (SPS), and are planned at several
facilities including the GSI Facility for Antiproton and
Ion Research (FAIR), JINR Nuclotron-based Ion Collider
fAility (NICA) and JAEA/KEK Japan Proton Acceler-
ator Research Complex (J-PARC).

From the viewpoint of hydrodynamic modeling of rela-
tivistic nuclear collisions, the equation of state is needed
to close the set of equations of motion, by characterizing
the thermodynamic properties of the system. The equa-
tion of state at vanishing density obtained from lattice
QCD calculations has been employed in comparisons of
hydrodynamic simulations with experimental data from
heavy-ion collisions [24–29], where bulk observables are
generally well reproduced. For quantitative predictions
and analysis of the BES experimental data, an equation
of state at finite chemical potentials is needed as input to
hydrodynamic models. Several works have been devoted
to the construction of such quantitative models of the
finite-density equation of state, including Refs. [30–46].

In this work, we present a framework to construct
a QCD equation of state model (neos) with multiple
charges: net baryon (B), strangeness (S) and electric
charge (Q) based on state-of-the-art lattice QCD [47–52]
and hadron resonance gas results. A version of the equa-
tion of state, which only has baryon chemical potential,
has previously been introduced and used in Refs. [53–
59]. We numerically calculate the equation of state with
conditions on the conserved charges close to those in rel-
ativistic heavy-ion collisions. This analysis is expected
to be relevant in mid to low energy heavy-ion collisions
and at forward rapidity where the fragments of shattered
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nuclei are relatively abundant [60, 61]. The presence and
interplay of the chemical potentials are expected to play
an important role in for example the hadron chemistry
or particle abundances (see e.g. [62]), and the separation
of hadron and anti-hadron flow observables [63–65].

The multi-dimensional phase diagram has been studied
[66–72] and some conjecture non-trivial phase structures.
In this study, we consider a crossover equation of state
as a baseline for the application to relativistic nuclear
collisions.

The paper is organized as follows. In Sec. II, the con-
struction of finite-density equations of state based on the
Taylor expansion method for lattice QCD and the hadron
resonance gas is presented. The numerical evaluation
of the hybrid equation of state is performed in Sec. III,
where the strangeness neutrality condition and the fixed
charge-to-baryon ratio of nuclei are taken into account.
In Sec. IV, particle ratios are estimated in hydrodynamic
simulations assuming different conditions on the charge
content of the system. Sec. V presents conclusions and
discussions. Natural units c = ~ = kB = 1 and the
Minkowski metric gµν = diag(+,−,−,−) are used.

II. THE EQUATION OF STATE

Based on the Taylor expansion method [12, 13] we em-
ploy lattice QCD results of the conserved charge suscep-
tibilities to construct the equation of state in the QGP
phase. In the hadronic phase we use the equation of state
of a hadron resonance gas, because the Taylor expansion
method is not reliable at low temperatures. The use of a
non-interacting resonance gas model is partly motivated
by the good agreement between thermodynamic quanti-
ties at vanishing chemical potential, including suscepti-
bilities, from lattice QCD and the hadron resonance gas.
Also, the Cooper-Frye prescription [73] of kinetic freeze-
out requires that the hydrodynamic equation of state pre-
cisely matches that of the kinetic theory description of
the hadron resonance gas on the freeze-out hypersurface
for the successful conservation of energy-momentum and
all charges. If at low temperatures the lattice result was
used instead of the hadron resonance gas model, the trun-
cation of the Taylor expansion at finite order would lead
to an underestimation of the pressure in the hadronic
phase, because higher order susceptibilities can be large
for the hadron resonance gas in the Boltzmann limit, e.g.,
χB2n/χ

B
2 = 1.

A. Lattice QCD equation of state

We consider the Taylor expansion method of lattice
QCD as mentioned earlier. For the three-flavor QCD
system, the expansion of the pressure around the vanish-

ing density limit reads

P

T 4
=
P0

T 4
+
∑
l,m,n

χB,Q,Sl,m,n

l!m!n!

(
µB
T

)l(
µQ
T

)m(
µS
T

)n
, (1)

where P is the pressure, P0 is the pressure at vanishing
chemical potentials, T is the temperature, and µB,Q,S are
the chemical potentials of baryon number, electric charge,

and strangeness, respectively. χB,Q,Sl,m,n is the (l+m+n)-th
order susceptibility defined at vanishing chemical poten-
tials:

χB,Q,Sl,m,n =
∂l∂m∂nP (T, µB , µQ, µS)/T 4

∂(µB/T )l∂(µQ/T )m∂(µS/T )n

∣∣∣∣
µB,Q,S=0

. (2)

The number l+m+n should be even, owing to the matter-
antimatter symmetry. The expansion is valid only when
the fugacity µB,Q,S/T is sufficiently small. The lattice
QCD results are parametrically extrapolated to high tem-
peratures under the condition that they do not violate
the Stefan-Boltzmann limits. See Appendix A.

B. Hadron resonance gas equation of state

The hydrostatic pressure of the hadron resonance gas
can be written as

P = ±T
∑
i

∫
gid

3p

(2π)3
ln[1± e−(Ei−µi)/T ]

=
∑
i

∑
k

(∓1)k+1 1

k2
gi

2π2
m2
iT

2ekµi/TK2

(
kmi

T

)
,(3)

where i is the index for particle species, gi is the degen-
eracy, mi the particle’s mass, and K2(x) is the modified
Bessel function of the second kind. The index k describes
the expansion of quantum distributions around the clas-
sical ones. It is generally sufficient to take into account
the contributions of k ≤ 3 for pions, k ≤ 2 for kaons and
k = 1 for the heavier particles. The upper signs are for
fermions and the lower signs for bosons. The hadronic
chemical potential is µi = BiµB + QiµQ + SiµS where
Bi, Qi, and Si are the quantum numbers of net baryon,
electric charge, and strangeness, respectively.

C. Hybrid equation of state

The complete nuclear equation of state is constructed
by connecting the pressure of the lattice QCD equation
of state to that of the hadron resonance gas model [74]

P

T 4
=

1

2
[1− f(T, µJ)]

Phad(T, µJ)

T 4

+
1

2
[1 + f(T, µJ)]

Plat(Ts, µJ)

T 4
s

, (4)

where J = {B,Q, S}. Here f(T, µJ) is an arbitrary func-
tion for the connection of the two functions which satisfies
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f → 1 when T � Tc and f → 0 when T � Tc, where Tc
is the connecting temperature. In this work we choose f
to be a hyperbolic tangent, defined in (14). A tempera-
ture shift Ts(T, µJ) is introduced phenomenologically to
preserve the monotonicity conditions of thermodynamic
variables at larger chemical potentials. Since Ts is gen-
erally a function of T and µJ , one can define

P̃lat(T, µJ) = Plat(Ts, µJ)× T 4

T 4
s

, (5)

which is the shifted QGP equation of state. Here P̃lat

should reduce to Plat at small chemical potentials. While
in this work we will not use a temperature shift, the
shifting temperature is used in similar constructions of
the equation of state in previous works [53–59].

We require that the thermodynamic variables
monotonously increase as functions of T and µJ ,
respectively, as

∂2P

∂T 2
=

∂s

∂T
> 0, (6)

∂2P

∂µ2
J

=
∂nJ
∂µJ

> 0. (7)

Those conditions may be trivially satisfied for the hadron
resonance gas or lattice QCD equation of state when
µJ/T is not large, but the connection procedure can make
it non-trivial. The conditions can be expressed as

∂2P

∂T 2
=

1

2
[1− f(T, µJ)]

∂shad(T, µJ)

∂T

+
1

2
[1 + f(T, µJ)]

∂s̃lat(T, µJ)

∂T

+
∑
J

∂f(T, µJ)

∂T
[s̃lat(T, µJ)− shad(T, µJ)]

+
1

2

∑
J

∂2f(T, µJ)

∂T 2
[P̃lat(T, µJ)− Phad(T, µJ)]

> 0. (8)

∂2P

∂µ2
J

=
1

2
[1− f(T, µJ)]

∂nJhad(T, µJ)

∂µJ

+
1

2
[1 + f(T, µJ)]

∂ñJlat(T, µJ)

∂µJ

+
1

2

∑
J

∂f(T, µJ)

∂µJ
[ñJlat(T, µJ)− nJhad(T, µJ)]

+
1

2

∑
J

∂2f(T, µJ)

∂µ2
J

[P̃lat(T, µJ)− Phad(T, µJ)]

> 0. (9)

Assuming that the thermodynamic quantities on the lat-
tice QCD side are larger than those on the hadron reso-
nance gas side, the conditions are still not trivially satis-
fied as the second order derivatives of f can be negative.
These conditions will be handled numerically in the next
section.

The thermodynamic variables, the entropy density s,
the conserved charge densities nJ , the energy density e,
and the sound velocity cs are given as

s =
∂P

∂T

∣∣∣∣
µJ

, (10)

nJ =
∂P

∂µJ

∣∣∣∣
T,µK

, (11)

e = Ts− P +
∑
J

µJnJ , (12)

c2s =
∂P

∂e

∣∣∣∣
nJ

+
∑
J

nJ
e+ P

∂P

∂nJ

∣∣∣∣
e,nK

, (13)

respectively, using the standard thermodynamic rela-
tions. Here {J,K} = B,Q, S and J 6= K.

D. Multiple charges in nuclear collisions

A standard nucleus is made of protons and neutrons
so the averaged density of strangeness is zero, which may
be expressed as nS(T, µB , µQ, µS) = 0. However, ne-
glecting electric charge for the moment, the conventional
choice of µS = 0 leads to nS 6= 0, because the strangeness
density is dependent on µB as the strange quark carries
both net baryon number and strangeness. Thus, in the
presence of a finite net-baryon number, µS should gen-
erally be non-vanishing, so nS = 0 can be fulfilled. The
condition, of course, can in principle be locally broken
in the presence of geometrical fluctuations or diffusion
processes. The equation of state with the strangeness
neutrality condition can be expressed in terms of T and
µB because µS = µS(T, µB).

The electric charge density nQ(T, µB , µQ, µS) is non-
vanishing in nuclei as nQ = (Z/A)nB , where Z is the
proton number and A is the nucleon number. The list of
Z/A ratios of the nuclei used in collider experiments is
shown in Table I. The typical ratio for heavy nuclei such
as Au or Pb is Z/A ≈ 0.4. The precise nQ dependence
is expected to become more important when comparing
collisions of isobar systems.

III. NUMERICAL CONSTRUCTION

In this section, we numerically construct the hybrid
QCD equation of state at finite densities (4). On the
lattice QCD side, we make use of one of the latest (2+1)-
flavor calculations of the equation of state at vanishing
chemical potentials [10] and the diagonal and off-diagonal
susceptibilities up to the fourth order [50–52, 75]. In
addition, we introduce some of the most relevant sixth
order susceptibilities, to allow for a proper matching of
all quantities, as discussed later. The specific functional
forms of parametrization are summarized in Appendix B.

All hadron resonances from the particle data group
[76] with u, d, and s constituent quark components and
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Nucleus Z/A
1
1H 1.000
2
1H 0.500
3
2He 0.667
27
13Al 0.481
63
29Cu 0.460
96
40Zr 0.417
96
44Ru 0.458
127
54 Xe 0.425
197
79Au 0.401
208
82Pb 0.394
238
92U 0.387

TABLE I. Ratios of protons to nucleons Z/A for the nuclei
used in the collider experiments at RHIC and LHC.

masses smaller than 2 GeV are taken into account in the
resonance gas model. We use

f(T, µB) = tanh[(T − Tc(µB))/∆Tc] , (14)

where Tc(µB) = 0.16 GeV − 0.4 × (0.139 GeV−1µ2
B +

0.053 GeV−3µ4
B) motivated by and modified from the

chemical freeze-out curve [77]. The dependence of
the connecting temperature on strangeness and electric
charge chemical potentials is assumed to be weak and
neglected for the moment. The connecting width is
∆Tc = 0.1Tc(0). Here, we choose not to perform a tem-
perature shift and use Ts = T . It should be noted that
this is not a unique choice of the parameters, but the ther-
modynamic monotonicity conditions (6) and (7) leave a
rather narrow window for the possible parameter values.
The smooth matching leads to an equation of state with
a crossover transition. Implementation of a QCD critical
point and the first-order phase transition is also possible
for different choices of f . It will be discussed elsewhere as
the location of the critical point and the critical behav-
ior near it are currently not well known. For a possible
approach to include a critical point see [39, 41, 46].

The sixth-order susceptibilities should be relevant near
and below the crossover transition. The term involving
χB6 is naively expected to give the largest contribution
to the pressure and the net baryon number because of
the hierarchy in the chemical potentials µB > µS > µQ
in nuclear collisions. The strangeness density and the
electric charge density are not directly sensitive to χB6 ,
because they are derivatives with respect to µS or µQ,

respectively, implying that the terms involving χB,S5,1 and

χB,Q5,1 will be the important ones for them. We intro-
duce those three susceptibilities in a phenomenological
approach so that nB , µS , and µQ are smooth functions
of T and µB , and that the results of the hadron reso-
nance gas model are preserved below Tc, because of the
relatively large uncertainties in the current lattice cal-
culations of higher order susceptibilities. We find that
the effects of the sixth-order susceptibilities are limited
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FIG. 1. (Color online) (a) The dimensionless pressure P/T 4

and (b) the dimensionless strangeness density nS/T
3 as func-

tions of T and µB where µS = µQ = 0. The solid, long-
dashed, dash-dotted, and short-dashed lines are the trajecto-
ries for constant s/nB = 420, 144, 51, and 30, respectively.

to the large chemical potential regions near the crossover
transition.

For the strangeness and electric charges, we consider
three cases: (i) µS = µQ = 0, (ii) nS = 0 and µQ = 0,
and (iii) nS = 0 and nQ = 0.4nB . They are reffered to
as neos B, neos BS and neos BQS, respectively. The
first is the commonly used scenario in which one assumes
that the net baryon chemical potential is the only non-
vanishing one in the system. The second imposes the
strangeness neutrality condition but neglects the electric
charge chemical potential. The third is the most realistic
scenario for the collision of heavy nuclei where Z/A ∼ 0.4
[52]. It is also straightforward to calculate the equation
of state as functions of µB , µQ, and µS for more general
systems.
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A. Vanishing strangeness and electric charge
chemical potentials µS = µQ = 0

First, the case where µS = µQ = 0 is investigated.
The pressure of the resulting equation of state is plot-
ted in Fig. 1 (a). One can see the monotonous increase
of P as a function of T or µB . The equation of state
reduces to that of lattice QCD at µB = 0 at the van-
ishing density limit. The constant entropy density over
net baryon density lines, s/nB = 420, 144, 51, and 30,
are plotted to illustrate the most relevant regions for the
BES programs. They correspond to Au+Au collisions at√
sNN = 200, 62.4, 19.6, and 14.5 AGeV, respectively

[16]. Note that the ratio is roughly constant during the
time evolution in nuclear collisions when the entropy and
the net baryon number are conserved, which is the case
for the nearly-perfect fluid. The trajectory of s/nB is a
straight line at higher temperatures where the system is
relatively close to conformal, because s/nB ∼ T/µB . It
turns around near the crossover towards lower temper-
atures as pions begin to dominate over protons because
of the mass difference, and large baryon chemical poten-
tial is required to have protons at lower temperatures for
keeping the s/nB ratio fixed. In the limit T → 0, the
chemical potential approaches the proton mass.

As discussed earlier, the condition µS = 0, which
is often assumed in nuclear collision analyses, leads to
a non-vanishing strangeness density nS . The value of
−nS/T 3 is shown in Fig. 1 (b). Positive baryon chem-
ical potential leads to negative strangeness density be-
cause the s quark has a negative strangeness chemical
potential. The high temperature behavior can be un-

derstood as nS/T
3 ∼ χB,S1,1 µB/T ∼ −µB/3T (A6). The

strangeness density is relatively small at lower tempera-
tures because kaons, the lightest strange hadrons, have
net baryon number zero.

B. Strangeness neutrality nS = 0 and vanishing
electric charge chemical potential µQ = 0

We next study the case where nS = 0 and µQ = 0.
The pressure is shown as a function of T and µB in
Fig. 2 (a). The nQ/nB ratio is arbitrary, and approaches
nQ/nB ∼ 0.5 in the parton gas limit (A14). One can see
that the equation of state is modified at larger baryon
chemical potentials compared with that of the µS = 0
case. The constant s/nB lines are also shifted to larger
µB (Fig. 2 (b)) because the strangeness neutrality implies
µS ∼ µB/3 at high temperatures. For clarity we show
the projections of the constant s/nB lines onto the µB-T
plane in Fig. 3. Here one can see that µB has to be about
3/2 times larger for a given nB when µS 6= 0. The gray
area in the figure shows a conjectured region µB/T > 3
where the Taylor expansion method of lattice QCD is not
well-defined. A larger value of µB will result in a larger
thermodynamic force ∇µ(µB/T ) for the net baryon dif-
fusion current [57]. It will have an important effect on
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FIG. 2. (Color online) (a) The dimensionless pressure P/T 4

and (b) the strangeness chemical potential µS as functions of
T and µB where nS = 0 and µQ = 0. The solid, long-dashed,
dash-dotted, and short-dashed lines are the trajectories for
constant s/nB = 420, 144, 51, and 30, respectively.

constraining the net baryon diffusion constant in future
phenomenological studies. While initial strangeness fluc-
tuations and a strangeness diffusion current can break
strangeness neutrality locally, this should not diminish
the effect of enhanced µB on the net baryon diffusion,
since it is a sub-leading effect and the strangeness is still
globally conserved at zero.

Importantly, µs is non-zero at freeze-out, which will
affect results on particle-antiparticle ratios of strange
hadrons in hydrodynamic models, as is the case in
thermal models [62]. The potentially large effect of
the strangeness neutrality condition is also discussed in
Ref. [78].

It should be noted that while we have now imposed
more realistic conditions compared to the previous case,
the thermodynamic properties of the QCD system itself
remain the same, we merely look at different slices of the
multi-dimensional equation of state.
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spectively. The gray area shows the region where µB/T > 3
above Tc.

C. Strangeness neutrality nS = 0 and fixed electric
charge-to-baryon ratio nQ = 0.4nB

Finally, we investigate the case where nS = 0 and
nQ = 0.4nB . This is the setup most relevant to Au+Au
and Pb+Pb collisions. The dimensionless pressure P/T 4

is plotted in Fig. 4 (a). The difference from the previ-
ous case is small in this setup but should be meaningful
for correctly understanding particle-antiparticle ratios of
charged particles.

The electric charge chemical potential shown in Fig. 4
(b) is negative, owing to the interplay of multiple con-
served charges. Since the number of neutrons is larger
than that of protons in heavy nuclei, d quarks are slightly
more abundant than u quarks in the QGP phase and π−

more abundant than π+ in the hadronic phase. While
the overall system is positively charged, a negative elec-
tric chemical potential is needed for describing this situ-
ation. µQ becomes positive for the system of 3He since
Z/A > 1/2. This would have to be taken into account
for the collisions involving such nuclei.

It should be noted that µQ is small and is rather sensi-
tive to the fine structure of the equation of state, includ-
ing higher-order susceptibilities, at large chemical poten-
tials. This implies that improvement in the lattice QCD
calculations, including higher order susceptibilities, will
be important in quantitative analyses.

D. Discussion

We have constructed the nuclear equation of state un-
der several different conditions. We now study the dif-
ferences between the different scenarios in more detail.

The sound velocities of the equation of state under
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FIG. 4. (Color online) (a) The dimensionless pressure P/T 4

and (b) the electric charge chemical potential µQ as functions
of T and µB where nS = 0 and nQ = 0.4nB . The solid, long-
dashed, dash-dotted, and short-dashed lines are the trajecto-
ries for constant s/nB = 420, 144, 51, and 30, respectively.

the three different conditions along two constant s/nB
lines are plotted in Fig. 5. One can see that finite-
density effects are visible comparing the sound velocities
of s/nB = 420 and 30. Around the crossover tempera-
ture, the EoS becomes soft and c2s has a minimum. The
location of the minimum shifts towards lower tempera-
tures as the net baryon density increases. Also, the sound
velocity becomes larger in the QGP phase and smaller in
the hadronic phase at larger chemical potentials. This is
because the net baryon contribution in c2s (13) is positive
for the former phase and negative for the latter phase.
At higher temperatures, it starts to approach the Stefan-
Boltzmann limit c2s = 1/3. For the three presented equa-
tions of state, c2s reaches 94.8 % of the value the Stefan-
Boltzmann limit at T = 0.6 GeV and 97.2 % at T = 0.8
GeV for s/nB = 420.

Comparing neos B to neos BS, the strangeness neu-
trality condition is found to slightly enhance the sound
velocity in the QGP phase. It should be noted that if
one neglected the derivatives involving nS in the calcu-
lation of c2s (13) for neos B, the sound velocity would be
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FIG. 5. (Color online) The squared sound velocity as a func-
tion of the temperature along the constant trajectories of
µS = µQ = 0 (thick solid line), nS = 0 and µQ = 0 (thin
solid line), and nS = 0 and nQ = 0.4nB (thick dotted line)
under the conditions s/nB = 420 (top) and 30 (bottom).

further underestimated than our current result, because

c2s 6=
∂P

∂e

∣∣∣∣
nB

+
nB
e+ P

∂P

∂nB

∣∣∣∣
e

, (15)

when µS = 0, i.e., nS 6= 0, which again highlights the
importance of adequate treatment of the multiple con-
served charges. The effects of the fixed charge to baryon
ratio on the sound velocity is almost negligible. Since
the effect of the electric chemical potential is not large,
the difference in the sound velocity is also not large when
one neglects the derivatives involving µQ and nQ in the
definition (13).

We next focus on the interplay of the multiple con-
served charges and plot an arbitrary constant pressure
plane in the chemical potential µB-µS-µQ space at a
constant temperature in the hadronic phase in Figure 6
(a). This quantifies the chemical potential dependences
of this thermodynamic quantity. For demonstration, we
choose P/T 4 = 0.8 and T = 0.14 GeV. The inter-
cepts of each axis, defined implicitly as P (µint

B , 0, 0) =
P (0, µint

Q , 0) = P (0, 0, µint
S ), are ordered as µint

B > µint
S >

µint
Q , partly reflecting the fact that the lightest particles

that carry those charges are protons, kaons, and pions in
the hadronic phase, respectively (3).

Figure 6 (b) presents the same in the QGP phase. Here
P/T 4 = 2 and T = 0.2 GeV are considered. The ordering
of the intercepts can be seen to be µint

B > µint
Q > µint

S in
the QGP phase. This is consistent with the näıve expec-
tation that µB/3 ∼ 2µQ/3 ∼ µS in the massless parton
gas limit (A1)-(A4). The intercept µint

S is slightly larger
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FIG. 6. (Color online) The constant pressure plane as a
function of µB , µQ, and µS in (a) the hadronic phase at
P/T 4 = 0.8 and T = 0.14 GeV and (b) the QGP phase at
P/T 4 = 2 and T = 0.2 GeV.

owing to the fact that it is still close to the crossover tran-
sition and that the strange quarks have a non-negligible
mass. µB takes a maximum value at some positive fi-
nite µS because s quarks have positive net baryon num-
ber and negative strangeness (A4), i.e., the leading-order
off-diagonal susceptibility between the net baryon and
strangeness is negative. This is not the case for the cross-
coupling between the electric charge and the net baryon
or strangeness.

Constant s/nB lines for the case that nS = 0 and
nQ = 0.4nB are plotted in Fig. 7 to illustrate the typi-
cal range of the chemical potentials covered by heavy-ion
collider experiments. The trajectories coincide at high
temperatures because s/nB ∼ T/µB and the conditions
on nS and nQ make µS and µQ roughy proportional to
µB . The trajectories slightly bend towards the larger
strangeness chemical potential at large µB and small
µS regions, which correspond to low temperatures below
T ∼ 0.1 GeV. This could be caused by the suppression
of kaons compared with pions owing to the mass differ-
ence. The behavior can also be seen in Fig. 2 (b). The
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FIG. 7. (Color online) The solid, long-dashed, dash-dotted,
and short-dashed lines are the trajectories for constant s/nB

= 420, 144, 51, and 30, respectively, as functions of µB , µQ,
and µS .

bending does not occur for the charge chemical potential
because pions, the lightest hadrons, have electric charge.
It is note-worthy that broader ranges may be explored
in actual collider events since the system is geometrically
fluctuating and large local variation of the entropy-to-
conserved-charge ratios can occur.

We note that in the region where the lattice QCD con-
tribution dominates, the validity of our parametrization
is limited to the range where µB/T is sufficiently small.
From a practical point of view, for the application to nu-
clear collisions, however, these regions are not expected
to much affect the bulk physics, because most of the fluid
elements do not go through the large µB/T regions near
Tc. This can be seen in the constant s/nB lines shown in
Figs. 1 through 4.

It would also be interesting to compare our results with
the ones obtained by other lattice QCD approaches to
finite density regions, such as the one from the imaginary
chemical potential method [79].

IV. APPLICATION TO NUCLEAR COLLISIONS

To study the effects of imposing strangeness neutral-
ity and a realistic charge-to-baryon ratio on observables
in heavy ion collisions, we perform hybrid model cal-
culations of Pb+Pb collisions at center of mass energy√
s = 17.3 AGeV involving viscous hydrodynamic sim-

ulations with the three different equations of state de-
scribed above and a microscopic hadronic afterburner. A
more detailed description of the hybrid model is given
in [80]. We compute particle yields and compare parti-
cle ratios to experimental data from the Super Proton
Synchrotron (SPS) [81–86] (compiled in [87]).

For the initial state, we use the dynamical model pre-
sented in [56], which provides fluctuating distributions

of net baryon and energy-momentum densities in three
spatial dimensions. The 3+1D hydrodynamic simula-
tion Music [88–90] is run here with zero bulk viscosity
and a constant shear viscosity to entropy density ratio
of η/s = 0.08. We switch from hydrodynamics to the
hadron cascade UrQMD [91, 92] at a switching energy
density esw, whose value we vary below.

In Fig. 8 we show the particle yields (top) and parti-
cle ratios (bottom) from these simulations using esw =

0.26 GeV/fm
3
, and the neos equations of state with

different constraints on strangeness and electric charge.
One can see that imposing strangeness neutrality has a
visible effect - mainly on the strange and anti-strange par-
ticle yields. This effect is amplified in the particle ratios.
Yields of particles with positive strangeness are increased
while those of particles with negative strangeness are de-
creased, which is due to the finite positive strangeness
chemical potential present in neos BS (and neos BQS).

The agreement between the theoretical calculations
and experimental data is improved for most particles
with strangeness in neos BS. In the meson sector where
µB is absent, the ratio of K+ over K− gets enhanced by
the strangeness neutrality condition and agreement with
experimental data at SPS energy improves.

Protons, and to a lesser degree anti-protons, are mod-
ified, because in the presence of µS , the baryon chemical
potential µB also changes. The small change for pions is
likely due to the modification of resonance abundances
when going from neos B to neos BS.

Introducing the constraint on the electric charge by
using neos BQS, we find only very mild modifications
of the particle yields. The negative µQ leads to a slight
increase of negative relative to positive charged particles,
as can be best seen in the plot of the particle ratios as
the difference between the points for neos BS and neos
BQS. The introduction of µQ can explain at least qual-
itatively that π− are slightly more abundant than π+.
The ratio Ω̄/Ω behaves in the opposite way. Possibly
changes of µB and µS when introducing µQ could con-
tribute to this behavior. We note that the main effect of
baryon–anti-baryon annihilation within UrQMD is the
reduction of the anti-proton yield by approximately 35%
at
√
sNN = 17.3 GeV. Yields of Λ̄ and Ω̄ are reduced by

25% and 20%, respectively.
In Fig. 9 we study the effect of different switching en-

ergy densities on particle yields (top) and ratios (bottom)
for neos BQS. Using a lower switching energy density
means assuming that the system is fully chemically equi-
librated down to lower temperatures. Anti-baryons are
most sensitive to the switching energy density. The rea-
son could be that lower esw means lower temperature at
switching, which goes along with a larger baryon chem-
ical potential (see Fig. 3). Lower temperature tends to
decrease heavier particles’ yields, while the larger baryon
chemical potential will lead to more baryons, weakening
the effect of lower temperature, and to less anti-baryons,
adding to the effect. We find that the experimental data
on particle ratios prefers a switching temperature be-



9

π+ π− K+ K− p p̄ φ Λ Λ̄ Ξ− Ξ̄+ Ω Ω̄
10−2

10−1

100

101

102

d
N
/d
y

√
sNN = 17.3 GeV

esw = 0.26 GeV/fm3

NEOS B

NEOS BS

NEOS BQS

π−/π+K+/K− p̄/p 2φ
(π++π−)

Λ̄/Λ Ξ−/Λ Ξ̄+/Ξ− Ω̄/Ω
10−2

10−1

100

ra
ti

o

√
sNN = 17.3 GeV

esw = 0.26 GeV/fm3

NEOS B

NEOS BS

NEOS BQS

FIG. 8. (Color online) Top panel: Particle yields from cen-
tral Pb+Pb collisions at

√
s = 17.3 AGeV determined using

a hybrid calculation consisting of hydrodynamics with the
indicated equations of state and a hadronic afterburner. Bot-
tom panel: Particle ratios for the three different equations
of state from the same calculation compared to experimental
data [81–86] (compiled in [87]).

tween esw = 0.16 and 0.36 GeV/fm
3
.

V. CONCLUSIONS

By matching the Taylor expanded lattice QCD equa-
tion of state in the high-temperature region to that of
a hadron resonance gas model at low temperature, we
have constructed the QCD equation of state at finite net
baryon, electric charge, and strangeness chemical poten-
tials. We employ phenomenologically motivated sixth
order susceptibilities to allow for a smooth matching
that respects the thermodynamic monotonicity condi-
tions. The equation of state is designed to be used in
simulations of collisions of heavy nuclei such as Au or Pb
in a wide range of collision energies explored by the beam
energy scan programs.
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FIG. 9. (Color online) Top panel: Particle yields from central
Pb+Pb collisions at

√
s = 17.3 AGeV determined using a hy-

brid calculation consisting of hydrodynamics with the neos
BQS equation of state and a hadronic afterburner, using three
different switching energy densities. Bottom panel: Particle
ratios for the three different switching energy densities from
the same calculation compared to experimental data [81–86]
(compiled in [87]).

The equation of state without strangeness chemical po-
tential leads to the violation of the strangeness neutrality
condition, which should hold in heavy ion collisions. A
positive finite strangeness chemical potential is observed
when the condition nS = 0 is kept. Also enforcing the
approximate relation between electric charge and baryon
number for heavy nuclei, nQ/nB = 0.4, introduces a neg-
ative finite electric chemical potential. These constraints
should be important for understanding the difference be-
tween particle yields and flow observables of particles and
anti-particles within hydrodynamic models of heavy-ion
collisions.

We have presented the effect of enforcing different con-
straints on strangeness and electric charge on the particle
yields and ratios in

√
s = 17.3 AGeV Pb+Pb collisions.

While strange and anti-strange particles are most af-
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fected by these constraints, modifications of non-strange
particles were also observed, mostly driven by the finite
µS , less so the finite, negative, µQ. This is understood
by the fact that the introduction of µS (and µQ) will also
alter µB .

These results are also important because they imply
that we do not explore the µB-T plane in the BES ex-
periments, but a certain slice in the µB-µQ-µS-T hyper-
plane. This can affect the search of the QCD critical
point because the traditional critical point at µQ = µS =
0 may not be reached.

Further importance may arise with regard to isobar
collisions. The equation of state can be different for dif-
ferent isobar collision systems, which should be taken
into account for correctly understanding the background
signals to the chiral magnetic effect. A similar discussion
is applicable to small systems, where light nuclei such as
proton, deuteron, or 3He tend to have larger Z/A ratios,
and the sign of the electric charge chemical potential can
be flipped. It is also possible to perform event-by-event
hydrodynamic analyses distinguishing protons and neu-
trons.

Future prospects for model improvements include in-
troduction of the full sixth order susceptibilities from lat-
tice QCD calculations. Although they are vanishing in
the high temperature limit, they could play a non-trivial
role near the crossover at larger chemical potentials.

Our equation of state model neos is publicly available
[93].
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Appendix A: The Stefan-Boltzmann limit

For the massless non-interacting system of u, d and s,
the analytical expression of the pressure reads

P

T 4
=

8π2

45
+

7π2

60
Nf +

1

2

∑
f=u,d,s

(
µf
T

)2

+
1

4π2

∑
f=u,d,s

(
µf
T

)4

, (A1)

where Nf = 3 is the number of flavors. The speed of
sound (13) is independent of the temperature and chem-
ical potentials, c2s = 1/3. It is note-worthy that the
sixth and higher order susceptibilities are vanishing in
this case. The susceptibilities of the conserved charges
are given using Eqs. (1), (A1) and

µu =
1

3
µB +

2

3
µQ, (A2)

µd =
1

3
µB −

1

3
µQ, (A3)

µs =
1

3
µB −

1

3
µQ − µS . (A4)

The second-order susceptibilities in the Stefan-
Boltzmann limit are

χB2 =
1

3
, χQ2 =

2

3
, χS2 = 1, (A5)

χB,Q1,1 = 0, χB,S1,1 = −1

3
, χQ,S1,1 =

1

3
, (A6)

and the fourth-order ones are

χB4 =
2

9π2
, χQ4 =

4

3π2
, χS4 =

6

π2
, (A7)

χB,S3,1 = − 2

9π2
, χB,S2,2 =

2

3π2
, χB,S1,3 = − 2

π2
, (A8)

χB,Q3,1 = 0, χB,Q2,2 =
4

9π2
, χB,Q1,3 =

4

9π2
, (A9)

χQ,S3,1 =
2

9π2
, χQ,S2,2 =

2

3π2
, χQ,S1,3 =

2

π2
, (A10)

χB,Q,S2,1,1 =
2

9π2
, χB,Q,S1,2,1 = − 2

9π2
, χB,Q,S1,1,2 = − 2

3π2
.

(A11)

They are used as anchors for the high temperature be-
haviors of the equation of state, where lattice QCD data
are scarce, so that the basic thermodynamic features are
not violated in the large T limit.

One can analytically solve the linearized equations for
charge densities nB , nQ, and nS obtained by keeping the
second order diagonal and off-diagonal susceptibilities:nBnQ

nS

 = T 2

 χB2 χB,Q1,1 χB,S1,1

χB,Q1,1 χQ2 χQ,S1,1

χB,S1,1 χQ,S1,1 χS2


µBµQ
µS

 . (A12)

The solutions are

µB = (5nB − nQ + 2nS)/T 2, (A13)

µQ = (−nB + 2nQ + nS)/T 2, (A14)

µS = (2nB − nQ + 2nS)/T 2, (A15)

in the Stefan-Boltzmann limit. In the case where nS =
0 and nQ = 0.4nB , those can be expressed as µB =
4.6nB/T

2, µQ = −0.2nB/T
2, and µS = 1.6nB/T

2. It is
worth mentioning that the sign of µQ is rather sensitive
to the proportionality constant between the net baryon
and charge densities and turns positive at nQ = 0.5nB .
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Susceptibility h0 h1 (GeV2) T1 (GeV) ∆T1 (GeV) T2 (GeV) ∆T2 (GeV) h2 (GeV−n) n

χB
2 3.37× 10−1 9.65× 10−3 1.73× 10−1 2.13× 10−2 1.69× 10−1 1.57× 10−2 3.42× 105 8

χQ
2 6.71× 10−1 6.45× 10−3 1.40× 10−1 2.87× 10−2 1.00× 10−1 1.00× 10−3 1.00× 104 6

χS
2 1.02× 100 1.55× 10−2 1.69× 10−1 3.35× 10−2 1.52× 10−1 3.17× 10−2 1.24× 106 8

χB,Q
1,1 1.97× 10−4 −2.09× 100 1.34× 10−1 7.28× 10−2 1.59× 10−1 2.80× 10−2 9.00× 104 8

χB,S
1,1 −3.38× 10−1 1.28× 10−2 1.64× 10−1 3.16× 10−2 9.99× 10−2 2.74× 10−2 −3.42× 105 8

χQ,S
1,1 3.39× 10−1 1.46× 10−2 1.79× 10−1 3.33× 10−2 1.60× 10−1 2.90× 10−2 4.34× 105 8

TABLE II. The list of parameters used for the parametrization of the second-order susceptibilities.

Appendix B: Parametrizations of susceptibilities

The parametrizations of the diagonal and off-diagonal
susceptibilities at zero chemical potentials in the regime
above Tc are presented here. The second-order suscepti-
bilities are parametrized as

χ2 = h0

(
1− h1

T 2

)
g+1 g

+
2 + h2T

ng−2 , (B1)

where

g±i (Ti,∆Ti) =
1

2

[
1± tanh

(
T − Ti

∆Ti

)]
. (B2)

The parameters are listed in Table II.
The functional forms for the fourth-order susceptibili-

ties are

χ4 =

(
h3 +

h4
T

+
h5
T 2

)
g+3 + h6χ2g

−
3 , (B3)

where the base χ2 is chosen for purely parametric pur-
poses. The individual parameters can be found in Ta-
ble III. The Stefan-Boltzmann limits are used to regulate
the high temperature behavior of the parametrizations.
It is note-worthy that the h3 values are typically not the
exact Stefan-Boltzmann values because they are param-
eters for the fitting which is valid conservatively up to

around 600 MeV, and the convergence of the fitting func-
tions can be rather slow. Also, the lattice data itself does
not approach the limit at around 3Tc in some cases. The
fitting can be further improved when lattice QCD data
become available for a wider temperature range.

The sixth-order susceptibilities used are

χB6 = h7g
+
4 g

−
5 g

−
6 g

−
7 + h8g

+
4 g

+
5 g

−
6 g

−
7

+ h9g
+
4 g

+
5 g

+
6 g

−
7 , (B4)

χB,Q5,1 = h7g
+
4 g

−
5 g

−
6 g

−
7 g

−
8 + h8g

+
4 g

+
5 g

−
6 g

−
7 g

−
8

+ h9g
+
4 g

+
5 g

+
6 g

−
7 g

−
8 + h10g

+
4 g

+
5 g

+
6 g

+
7 g

−
8 , (B5)

χB,S5,1 = h7g
+
4 g

+
5 g

−
6 g

−
7 g

−
8 + h8g

+
4 g

+
5 g

+
6 g

−
7 g

−
8

+ h9g
+
4 g

+
5 g

+
6 g

+
7 g

−
8 , (B6)

where the parameter coefficients are listed in Table IV.
Unlike the second- and fourth order ones, they are not
based on lattice QCD but determined phenomenologi-
cally from the thermodynamic conditions as mentioned
in the main text. It should thus be noted that they are
effectively contaminated by the contributions of higher
order susceptibilities and can be different from those ob-
tained in lattice calculations.
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Susceptibility h3 h4 (GeV) h5 (GeV2) T3 (GeV) ∆T3 (GeV) h6 χ2

χB
4 1.45× 10−2 2.49× 10−3 0 1.62× 10−1 2.27× 10−2 1.00× 100 χB

2

χQ
4 1.35× 10−1 0 0 1.61× 10−1 1.74× 10−2 1.25× 100 χQ

2

χS
4 6.36× 10−1 −1.12× 10−1 2.09× 10−2 1.65× 10−1 1.93× 10−2 8.85× 10−1 χS

2

χB,Q
3,1 0 0 0 1.63× 10−1 1.16× 10−2 9.96× 10−1 χB,Q

1,1

χB,Q
2,2 4.42× 10−2 1.31× 10−3 −4.79× 10−4 1.59× 10−1 1.42× 10−2 7.95× 10−1 χB

2

χB,Q
1,3 4.25× 10−2 4.54× 10−3 −1.91× 10−3 1.58× 10−1 1.70× 10−2 8.79× 10−1 χB

2

χB,S
3,1 −2.87× 10−2 7.93× 10−3 −1.90× 10−3 1.62× 10−1 2.18× 10−2 6.60× 10−1 χB,S

1,1

χB,S
2,2 7.87× 10−2 −1.35× 10−2 2.60× 10−3 1.68× 10−1 2.46× 10−2 −8.80× 10−1 χB,S

1,1

χB,S
1,3 −2.04× 10−1 1.85× 10−3 −7.88× 10−4 1.62× 10−1 1.97× 10−2 9.85× 10−1 χB,S

1,1

χQ,S
3,1 2.31× 10−2 −9.73× 10−4 3.42× 10−4 1.60× 10−1 3.06× 10−2 1.08× 100 χB

2

χQ,S
2,2 6.88× 10−2 −2.24× 10−3 9.64× 10−4 1.63× 10−1 2.60× 10−2 1.12× 100 χB

2

χQ,S
1,3 2.02× 10−1 1.04× 10−3 −6.41× 10−4 1.80× 10−1 3.08× 10−2 1.16× 100 χB

2

χB,Q,S
2,1,1 2.24× 10−2 9.45× 10−5 −2.33× 10−5 1.62× 10−1 1.30× 10−2 5.81× 10−2 χB

2

χB,Q,S
1,2,1 −2.30× 10−2 1.00× 10−3 −4.84× 10−4 1.54× 10−1 1.51× 10−2 −1.39× 10−1 χB

2

χB,Q,S
1,1,2 −6.72× 10−2 −6.89× 10−4 3.00× 10−4 1.63× 10−1 1.66× 10−2 −1.07× 10−1 χB

2

TABLE III. The list of parameters used for the parametrization of the fourth-order susceptibilities.

Susceptibility h7 h8 h9 h10 T4 (GeV) ∆T4 (GeV) T5 (GeV)

χB
6 7.54× 10−2 2.70× 10−2 −1.64× 10−2 - 1.27× 10−1 1.73× 10−2 1.57× 10−1

χB,Q
5,1 2.59× 10−2 1.39× 10−2 1.81× 10−2 8.73× 10−4 1.21× 10−1 1.12× 10−2 1.52× 10−1

χB,S
5,1 −5.52× 10−2 4.38× 10−3 −6.94× 10−3 - 1.00× 10−1 7.50× 10−3 1.52× 10−1

∆T5 (GeV) T6 (GeV) ∆T6 (GeV) T7 (GeV) ∆T7 (GeV) T8 (GeV) ∆T8 (GeV)

χB
6 1.09× 10−2 2.17× 10−1 5.12× 10−2 2.63× 10−1 1.43× 10−2 - -

χB,Q
5,1 1.11× 10−2 1.64× 10−1 7.24× 10−3 1.96× 10−1 2.58× 10−2 2.49× 10−1 1.55× 10−2

χB,S
5,1 1.20× 10−2 1.34× 10−1 1.07× 10−2 1.72× 10−1 1.13× 10−2 2.02× 10−1 1.81× 10−2

TABLE IV. The list of parameters used for the parametrization of the sixth-order susceptibilities.
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