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A new method is proposed for extrapolation of elastic-scattering data to the negative-energy
region for a short-range interaction. The method is based on the analytic approximation of the
modulus-squared of the partial-wave scattering amplitude and can serve as an alternative to the
traditional one based on continuation of the effective-range function. The new method has been
applied to determine the asymptotic normalization coefficients for the 17O and 13C nuclei in the
n+16O and n+12C channels, respectively. The asymptotic normalization coefficients obtained by
the new method are compared with the ones obtained in the effective-range function approach.

I. INTRODUCTION

Neutron-induced processes and neutron transfer reac-
tions play an important role in nuclear reactions, nuclear
astrophysics, and applied physics. In recent years these
reactions have attracted a great interest due to their role
in primordial nucleosynthesis of light elements [1] and in
inhomogeneous Big Bang models where (n, γ) processes
take part in reaction chains leading to the synthesis of
heavy elements [2, 3]. While the elements lighter than
iron are either created during the Big Bang or fusion re-
actions in stars, most of the elements heavier than iron
are produced via neutron-induced reactions [1]. There-
fore, the knowledge of neutron-capture cross sections
for stable and unstable isotopes is essential. In many
cases low-energy neutron radiative-capture reactions and
neutron-transfer reactions populate loosely-bound states
of final nuclei. To calculate the cross sections of such
reactions one needs to know full information about the
final bound states, in particular, their quantum num-
bers, binding energies, and asymptotic normalization co-
efficients (ANCs).

Using scattering data may give valuable information
on ANCs, which, in contrast to binding energies, can-
not be directly measured. The ANCs are fundamental
nuclear characteristics that are important, for example,
for evaluating cross sections of peripheral astrophysical
nuclear reactions [4–7]. One of the direct ways of extract-
ing ANCs from experimental data is the analytic contin-
uation in the energy plane of the partial-wave elastic-
scattering amplitudes, obtained by the phase-shift anal-
ysis, to the pole corresponding to a bound state. Such
a procedure, in contrast to the method of constructing
optical potentials fitted to scattering data, allows one to
circumvent an ambiguity problem associated with the ex-
istence of phase-equivalent potentials [8, 9].

The conventional procedure for such extrapolation is
the analytic approximation of the experimental values
of the effective-range function (ERF) Kl(E) with the
subsequent continuation to the pole position (l and E
are the orbital angular momentum and the relative ki-

netic energy of colliding particles, respectively). The
ERF method has been successfully employed to deter-
mine the ANCs for bound (as well as resonant) nuclear
states in a number of works (see, e.g. [10–12] and refer-
ences therein).

In our previous works [13–15] we investigated analyt-
ical continuation of scattering data for charged particles
to the negative-energy region to obtain information about
ANCs. In the present paper, a new method is proposed
for extrapolating data on elastic scattering of neutrons.
When analyzing neutron scattering, in contrast to scat-
tering of charged particles, one deals only with a short-
range interaction. The method developed here makes use
of the modulus-squared, denoted asMl(E), of the partial-
wave scattering amplitude fl(E). Since Ml(E) is a real
analytic function of E on the real positive semi-axis of E
including E = 0, it can be analytically approximated by
polynomials in E for E > 0 and then analytically con-
tinued to the bound state pole to obtain information on
the ANC. The method is based on the well-known and
reliably established fact that the partial-wave amplitude
of elastic scattering has a pole of the first order in energy
at the point corresponding to the bound state, and the
residue at this point is expressed in terms of the square
of the ANC.

Within an exactly solvable model, it is shown that the
proposed method has an advantage over the traditional
one based on the continuation of the ERF. Using the
available data on phase shifts, two versions of the new
method, along with the ERF method, have been applied
to determine the ANCs for the 17O and 13C nuclei in the
n+16O and n+12C channels, respectively.

Performing experiments on neutron elastic scattering is
not an easy task. However, for heavier nuclei, where the
Coulomb interaction significantly complicates extrapola-
tion of the proton elastic-scattering phase shifts, progress
in new experimental facilities and methods can make
measurements of neutron elastic scattering a valuable
technique to obtain information about neutron ANCs us-
ing the extrapolation method suggested in this paper.
The method provides faster convergence than the tradi-
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tional one based on ERF. This is a significant advantage
especially when experimental data have bigger uncertain-
ties. In addition, using the mirror symmetry one can
determine the proton ANCs from the extracted neutron
ANCs.
The paper is organized as follows. In Sec. II, the theo-

retical backgrounds of the proposed method are outlined.
Sections III and IV deal with the n+16O and n+12C sys-
tems, respectively.
Throughout the paper we use the system of units in

which ~ = c = 1.

II. NEW METHOD OF ANALYTIC

CONTINUATION OF A PARTIAL-WAVE

ELASTIC-SCATTERING AMPLITUDE

Consider the partial-wave amplitude of elastic two-
particle scattering fl(E) for a short-range interaction (l
is the orbital angular momentum, E = k2/2µ is the rela-
tive kinetic energy of colliding particles, k is their relative
momentum, µ is the reduced mass). Denote E = E+ if
E > 0 and E = E− if E < 0.
Suppose that in the system under consideration there

is a bound state with energy E = −ε = −κ
2/2µ < 0.

For E > 0, we have

fl(E+) =
k2l

Dl(E+)
, f∗

l (E+) =
k2l

D∗

l (E+)
, (1)

Dl(E+) = k2l+1(cot δl − i). (2)

Introduce a quantity Ml(E) according to

Ml(E+) ≡ |fl(E+)|
2 =

k4l

Nl(E+)
, (3)

Nl(E+) = k4l+2(cot2 δl + 1). (4)

Since

Nl(E) = K2
l (E) + k4l+2, (5)

Kl(E) = k2l+1 cot δl, (6)

and the effective-range function Kl(E) can be expanded
in a series in k2 near k = 0, the function Nl(E) can
also be expanded in a series in k2 (or in E) near E = 0.
Therefore, one can approximate Nl(E) with the expres-
sion

Nl(E) = (E + ε)Fl(E), (7)

where Fl(E) is a polynomial or a rational function of E.
The function Nl(E) as given by Eq. (7) can be analyti-
cally continued to the domain E < 0. The E + ε factor
provides the pole of the amplitude fl(E) at the energy
corresponding to the bound state. When E → −ε we
have

lim
E→−ε

[(E + ε)Ml(E)] = lim
E→−ε

[

(E + ε)
k4l

(E + ε)Fl(E)

]

=
κ
4l

Fl(−ε)
. (8)

On the other hand, using the connection between the
residue of fl(E) and the asymptotic normalization coeffi-
cient Cl (see, for example, [13, 16]) and considering that
as E → −ε, cot δl → i, we have

lim
E→−ε

[(E + ε)fl(E)] = −
1

2µ
C2

l , (9)

lim
E→−ε

f∗

l (E) = lim
E→−ε

k2l

k2l+1(cot δl + i)
= −

1

2κ
. (10)

Combining (9) and (10), we get

lim
E→−ε

[(E + ε)Ml(E)] = lim
E→−ε

[(E + ε)fl(E)f∗

l (E)]

=
C2

l

4µκ
. (11)

Comparing (8) and (11) gives the final result

C2
l =

4µκ4l+1

Fl(−ε)
. (12)

In this method, in contrast to the method based on the
continuation of the ERF Kl(E), when defining the ANC
Cl, there is no need to use the procedure of differentia-
tion, impairing the accuracy of the results.
Consider a slightly different version of the approxima-

tion of Ml(E) for E > 0:

Ml(E) = |fl(E)|2 = |eiδl sin δl/k|
2 = sin2 δl/k

2. (13)

Note that δl is an odd function of k and sin2 δl is an
even function of k. Therefore, taking into account the
threshold behavior of δl, one can write:

Ml(E) =
k4l

E + ε
Gl(E), (14)

where Gl(E) is a polynomial or a rational function of E.
From here, taking into account (11), we obtain:

lim
E→−ε

[(E + ε)Ml(E)] = κ
4lGl(−ε) =

C2
l

4µκ
(15)

and

C2
l = 4µκ4l+1Gl(−ε). (16)

The expression (16) differs from (12) only by replacing
1/Fl(E) with Gl(E).
Unfortunately, it is not clear how to generalize this

method to include the Coulomb interaction since the
renormalized Coulomb-nuclear partial-wave amplitude
f̃∗

l (E), unlike f̃l(E), has an essential singularity on the
physical sheet of E at E = 0 and is complex at E < 0
[13, 14].
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III. n+16O SYSTEM

In this section, we consider the n+16O system in the
Jπ = 1/2+ state, since only for this state data on the
phase-shift analysis are available in the literature. By
continuing these data to a point corresponding to the
bound state energy E = −ε1 we determine the ANC
C0 for the excited state of the nucleus 17O(1/2+; 0.8707
MeV) in the n+16O (ground state) channel. Various con-
tinuation methods are compared: the continuation of the
ERF K0(E) and the continuation of the functions F0(E)
and G0(E) introduced in Section II. Note that the de-
termination of the ANC for the mirror nucleus 17F in
the p+16O channel by extrapolating the elastic-scattering
data was carried out in [15].
The following mass values are used in the calculations:

m17O = 15830.501 MeV, m16O = 14895.079 MeV, and
mn = 939.565 MeV.

A. Theoretical n+16O phase shifts

In this subsection, theoretical phase shifts δ0 calcu-
lated for the square-well potential from [17] are used to
compare different ways of continuing the scattering data
to the negative-energy region. The parameters of the
potential are: V0 = 35.14 MeV, R = 4.21 fm. This po-
tential leads to two bound s-states, the lower of which
is forbidden. The upper (allowed) state corresponds to
the values of the binding energy ε1 = 3.59515 MeV and
ANC C0 = 2.83896 fm−1/2. Note that a more accurate
experimental value of the binding energy is ε1 = 3.27227
MeV.
This paper uses a more traditional deviation estimate

based on the method of least squares [18],

χ2 =
1

Np −Nf

Np
∑

i=1

[

F (Ei)− f(Ei)

ǫi

]2

, (17)

where Np is the number of points, and Nf is the number
of parameters of the approximating function, ǫi is the er-
ror of the approximated function. Equation (17) takes
into account the number of degrees of freedom and has
several advantages over the definition used in the pre-
vious work [15]. This paper uses the approximation of
continued functions by polynomials in energy E. For a
polynomial of degree N , Np −Nf = Np −N − 1.
For theoretical phase shifts, the errors of the approx-

imated functions are assumed to be equal to each other
(for simplicity, ǫi = 1 for all i). We start with the con-
tinuation of the ERF K0(E). While continuing K0(E)
in all calculations in this work, a point corresponding to
the energy of a bound state E = −ε is added to points
where phase shifts are known.
The results of the continuation are presented in Table

I. As one can see, for large degrees of the approximat-
ing polynomial, a breakdown occurs due to the excess of
accuracy, and the approximation becomes very different

TABLE I: ANC obtained by approximating ERF K0(E) for
the n+16O, Jπ = 1/2+ state using a polynomial of degree N .

N C0, fm
−1/2 χ2

1 - 0.360438×10−3

2 2.06155 0.204316×10−5

3 5.33880 0.104794×10−7

4 2.73289 0.382649×10−10

5 3.08486 0.916381×10−13

6 2.74633 0.221163×10−15

7 2.88457 0.811685×10−18

8 2.81882 0.130191×10−19

9 2.84815 0.143192×10−20

10 2.83505 0.666668×10−20

11 - 0.153103×10−15

exact 2.83896

from the approximated function. It can be seen that the
visible breakdown occurs at N = 11. The best ANC
value according to the χ2 criterion corresponds to N = 9
and is equal to C0 = 2.84815 fm −1/2, that is, the de-
viation from the exact value is about 0.3 %. Dashes in
the tables indicate the absence of a bound state with the
correct theoretical energy.
We now consider the continuation of the function

G0(E) introduced in Eq. (14). The results of the con-
tinuation are presented in Fig. 1 and in Table II. The
best result is achieved again with N = 9. As we can
see the ANC at N = 9 reproduces the exact ANC to six
significant digits.

TABLE II: ANC obtained by approximating function G0(E)
for the n+16O, Jπ = 1/2+ state using a polynomial of de-
gree N .

N C0, fm
−1/2 χ2

1 2.50251 0.278856×10−4

2 2.79892 0.204894×10−7

3 2.84871 0.255913×10−11

4 2.84452 0.285314×10−13

5 2.84042 0.270672×10−16

6 2.83926 0.197367×10−19

7 2.83902 0.743249×10−23

8 2.83897 0.217671×10−26

9 2.83896 0.548333×10−28

10 2.83897 0.668000×10−28

exact 2.83896

Finally, we consider the continuation of the function
F0(E) introduced in Eq. (7). The results of the ex-
trapolation are presented in Table III. The best result
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FIG. 1: Function G0(E) for n+16O, Jπ = 1/2+. Solid red
line represents the results obtained from the theoretical phase
shifts, long-dashed blue line - the 1st-order polynomial, short-
dashed black line - the 2nd-order polynomial, dotted pink line
- the 3rd-order polynomial, dash-dotted yellow line - the 4th-
order polynomial, dash-double-dotted green line - the 5th-
order polynomial. Starting from the 3rd-order polynomial,
the results are indistinguishable from the solid red line.

corresponds to N = 12 and the relative error of the ANC
at N = 12 with respect to the exact ANC is 1.5× 10−4.

TABLE III: ANC obtained by approximating function F0(E)
for the n+16O, Jπ = 1/2+ state using a polynomial of de-
gree N .

N C0, fm
−1/2 χ2

1 - 0.652168×10−2

2 1.73852 0.826223×10−4

3 - 0.542466×10−6

4 2.22777 0.205841×10−8

5 3.48689 0.695829×10−11

6 2.61596 0.333772×10−13

7 2.98402 0.989157×10−16

8 2.77309 0.250929×10−18

9 2.87203 0.753178×10−21

10 2.82183 0.293600×10−23

11 2.84813 0.380000×10−26

12 2.83852 0.183333×10−26

13 2.85509 0.150000×10−26

14 2.62132 0.220000×10−26

exact 2.83896

Comparison of the data from Tables I-III reveals that
the fastest convergence with increasing degree N of the
approximating polynomial and the highest accuracy of
the results for ANC C0 occur in the case of approximation
of the function G0(E). In fact, in this case a good level

of convergence is achieved already at N = 3.

B. Experimental n+16O phase shifts

In this subsection, we use 16 values of phase shifts
δ0 from [17, 19, 20], which correspond to the following
neutron energy values En in the laboratory system: En

= [0.20, 0.30, 0.40, 0.51, 0.60, 0.698, 0.73, 1.00, 1.21,
1.50, 1.75, 1.833, 2.15, 2.250, 2.353, 3.000] MeV.
For illustration, we also use the theoretical square-well

potential with the parameters V0 = 34.90941226 MeV, R
= 4.191822098 fm. This potential is close to the potential
used in subsection III A. For the upper (allowed) s-state
of 17O, it leads to the correct experimental binding en-
ergy ε1 = 3.27227 MeV and ANC C0 = 2.6 fm−1/2. As
in subsection III A, we compare the results of the extrap-
olation of the functions K0(E), G0(E), and F0(E).
Experimental and theoretical phase shifts for the n +

16O system in the Jπ = 1/2+ state are depicted in Fig.
2. We see that the above potential describes the experi-
mental data quite well.
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FIG. 2: Experimental and theoretical phase shifts for n +16

O, Jπ = 1/2+. The experimental points are from [17, 19,
20]. The theoretical results are obtained using the square-
well potential described in the text.

The results of the extrapolation of ERF K0(E) are
presented in Fig. 3. As can be seen from this figure, for
large degrees of the approximating polynomial, a break-
down occurs, and the approximation becomes very dif-
ferent from the approximated function. The best vari-
ant according to the χ2 criterion is N = 2 and leads to
C0 = 2.20716 fm−1/2. In case of continuing G0(E) (see
Fig. 4), the best ANC value by the χ2 criterion is C0

= 2.67254 fm−1/2, which, as in the case of ERF contin-
uation, corresponds to N = 2. When extrapolating the
F0(E) function (Fig. 5), again, the N = 2 variant is best
by the χ2 criterion leading to C0 = 1.80667 fm−1/2.
We see that different ways of continuing the experi-

mental data lead to slightly different results for the ANC
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FIG. 3: ERF for n+16O, Jπ = 1/2+. Solid red line represents
the results obtained from theoretical phase shifts, long-dashed
blue line - the 1st-order polynomial, short-dashed black line
- the 2nd-order polynomial, dotted pink line - the 3rd-order
polynomial, dash-dotted yellow line - the 4th-order polyno-
mial, dash-double-dotted green line - the 5th-order polyno-
mial. Starting from the 3rd-order polynomial, the results are
indistinguishable. Points represent the results obtained from
the experimental phase shifts.
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FIG. 4: The same as in Fig. 3 but for function G0(E).

C0. This may be due to the low accuracy of the phase
shift analysis used. The mean value of C0, corresponding
to the above three values, is C0 = 2.23± 0.30 fm−1/2.

IV. n+12C SYSTEM

This section discusses the n+12C system in the 1/2+

state for which phase-shift data are available. By con-
tinuing the scattering data to a point corresponding to
the experimental energy of the bound state E = −ε2 =
1.856557 MeV, the ANC C0 is determined for the ex-
cited state of the nucleus 13C(1/2+; 3.089 MeV) in the
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FIG. 5: The same as in Fig. 3 but for function F0(E).

channel n+12C(ground state). As in Section III, the re-
sults obtained by extrapolating functions K0(E), F0(E),
and G0(E) are compared. The following mass values are
used: m13C = 12109.481 MeV, m12C = 11174.862 MeV,
and mn = 939.565 MeV.

A. Theoretical phase shifts n+12C

In this subsection, the theoretical phase shifts δ0, cal-
culated for the square-well potential with the parameters
V0 = 35.6753320221032MeV and R = 4.02818653449678
fm, are used to compare the effectiveness of various con-
tinuation methods. This potential leads to two bound
s-states of 13C, the lower of which is forbidden. The
upper (allowed) state corresponds to the experimental
value of the binding energy ε2 = 1.856557 MeV and ANC
C0 = 1.60 fm−1/2.
For theoretical phase-shift values, the errors of the ap-

proximated functions are assumed to be equal to each
other (for simplicity, ǫi = 1 for all i).
The results of the continuation of the functions K0(E),

G0(E), and F0(E) are presented in Tables IV, V and VI.
For all continuation versions, the best ANC values C0 by
the χ2 criterion are close to the exact result. Compar-
ing Tables IV-VI we conclude that, as in the case of the
n+16O system, the fastest convergence with increasing
degree N of the approximating polynomial and the high-
est accuracy of the results for ANC C0 takes place in the
case of extrapolating the function G0(E). The results of
the continuation of the function G0(E) are shown in Fig.
6.

B. Experimental n+12C phase shifts

We use 16 neutron-energy points (laboratory system)
from [21]: En = [0.050, 0.100, 0.157, 0.207, 0.257, 0.307,
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TABLE IV: ANC obtained by approximating ERF K0(E) for
the n+12C, Jπ = 1/2+ state using a polynomial of degree N .

N C0, fm
−1/2 χ2

1 2.28097 0.867724×10−5

2 1.52384 0.448646×10−8

3 1.60788 0.434737×10−10

4 1.11353 0.411513×10−8

5 0.157698 0.431582×10−6

exact 1.60
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FIG. 6: Function G0(E) for n+12C, Jπ = 1/2+. Solid red
line represents the results obtained from theoretical phase
shifts, long-dashed blue line - the 1st-order polynomial, short-
dashed black line - the 2nd-order polynomial, dotted pink line
- the 3rd-order polynomial, dash-dotted yellow line - the 4th-
order polynomial, dash-double-dotted green line - the 5th-
order polynomial. Starting from the 2nd-order polynomial,
the results are indistinguishable.

0.357, 0.407, 0.457, 0.507, 0.530, 0.630, 0.730, 0.830,
0.930, 1.040] MeV.
Phase-shift errors are assumed to be ±1◦. Note that

increasing errors to ±2◦ only leads to negligible changes
in the results.
Experimental and theoretical phase shifts for the n +

12C system in the Jπ = 1/2+ state are depicted in Fig. 7.
Theoretical phase shifts are calculated using the potential
described in Subsection IV A. As in the case of the n +
16O system, there is good agreement between theory and
experiment.
The results of the continuing the ERF K0(E) are pre-

sented in Fig. 8. The best ANC value by the χ2 crite-
rion corresponds to N = 1 and is equal to C0 = 2.14638
fm−1/2. With the continuation of the function G0(E)
(Fig. 9), the best ANC value is C0 = 1.87563 fm−1/2, cor-
responding to N = 2. Extrapolating the function F0(E)
(Fig. 10) leads to the best value of C0 = 2.19107 fm−1/2,
corresponding to N = 1. The mean value of C0, corre-

TABLE V: ANC obtained by approximating function G0(E)
for the n+12C, Jπ = 1/2+ state using a polynomial of de-
gree N .

N C0, fm
−1/2 χ2

1 1.56036 0.125628×10−6

2 1.60147 0.131839×10−12

3 1.60109 0.816387×10−14

4 1.60018 0.243129×10−17

5 1.60002 0.330466×10−21

6 1.60000 0.263367×10−25

7 1.60000 0.513375×10−27

8 1.60000 0.132814×10−26

9 1.60002 0.213933×10−26

10 1.59955 0.286980×10−26

exact 1.60

TABLE VI: ANC obtained by approximating function F0(E)
for the n+12C, Jπ = 1/2+ state using a polynomial of de-
gree N .

N C0, fm
−1/2 χ2

1 1.83289 0.708967×10−4

2 1.54553 0.700486×10−7

3 1.61637 0.616769×10−10

4 1.59590 0.386920×10−13

5 1.60102 0.238136×10−16

6 1.59976 0.111939×10−19

7 1.60006 0.548256×10−23

8 1.59999 0.119700×10−24

9 1.59990 0.213267×10−24

10 1.60057 0.298720×10−24

exact 1.60

sponding to the above three values, is C0 = 2.07 ± 0.13
fm−1/2.

V. CONNECTION BETWEEN MIRROR

NEUTRON AND PROTON ANCS

In this section we discuss the possibility of obtaining
the ANC for charged particles based on the ANC for un-
charged particles (and vice versa). The ANC is the am-
plitude of the tail of the overlap function. While for neu-
trons the spherical Hankel function determines the radial
shape of the tail, for protons the radial shape of the tail
is determined by the Whittaker function. Nevertheless,
the ratio of the proton and neutron ANCs of mirror state
is practically model independent. The calculated proton
and neutron ANCs themselves depend strongly on the
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FIG. 7: Experimental and theoretical phase shifts for n+12C,
Jπ = 1/2+. The experimental points are from [21]. The
theoretical results are obtained using the square-well potential
described in the text.
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FIG. 8: ERF for n+12C, Jπ = 1/2+. Solid red line represents
the results obtained from theoretical phase shifts, long-dashed
blue line - the 1st-order polynomial, short-dashed black line
- the 2nd-order polynomial, dotted pink line - the 3rd-order
polynomial, dash-dotted yellow line - the 4th-order polyno-
mial, dash-double-dotted green line - the 5th-order polyno-
mial. Points represent the results obtained from the experi-
mental phase shifts.

choice of the nucleon-nucleon (NN) force but their ratios
for mirror pairs should not depend on the choice of the
NN force. This observation is based thus far entirely on
the calculations using detailed models of nuclear struc-
ture. It follows naturally as a consequence of the charge
symmetry of nuclear forces. Mirror nuclei have the same
quantum numbers of mirror states.

The ratio of the proton and neutron ANCs is given by
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FIG. 9: The same as in Fig. 8 but for function G0(E).
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FIG. 10: The same as in Fig. 8 but for function F0(E).

[25]

Cp

Cn

=

∣

∣

∣

∣

∣

W [rpA IBpA(rpA), Fl(i κp, rpA)]|rpA=Rch

κp W [rnA IA+1

nA (rnA), rnA jl(i κnA rnA)]|rnA=Rch

∣

∣

∣

∣

∣

.

(18)

Here, Cn ≡ C0 is the neutron ANC of the bound state
A + 1 = (nA) and Cp is the proton ANC of the mirror

bound state B = (pA), IA+1

nA (IBpA) is the radial overlap
function of the bound-state wave functions of nuclei A+1
and A (B and A); jl(i κnARch) is the spherical Bessel
function in the partial wave l calculated at the imaginary
momentum i κnA, κnA is the bound-state-wave number

of the mirror bound state (nA); ei σ
C
l Fl(i κpA, rpA) is

the p−A Coulomb regular solution in the partial wave l
calculated at the imaginary momentum i κpA, κpA is the
bound-state wave number of the bound state (pA), σC

l
is the partial Coulomb scattering phase shift; Rch is the
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N −A nuclear interaction radius, which is assumed to be
the same in both mirror states; W [f, g] is the Wronskian
of the function f and g.
The Coulomb potential varies little over the nuclear

volume and can be replaced by a constant equal to the
difference between the neutron and proton binding en-
ergies. Hence, in the nuclear interior, which is all that
matters on the right-hand side of Eq. (18), we can use
[24, 25]

ei σ
C
lB FlB (i κpA rpA) ≈

ei σ
C
lB FlB (i κpA, Rch)

Rch jlB (i κnA Rch)

× rpA jlB (i κnA rpA). (19)

Taking into account that the mirror nucleon overlap
functions are similar in the nuclear interior we can neglect
their difference in Eq. (18). Then, in view of Eq. (19),
we get the ratio of the proton and neutron ANCs of the
mirror bound states:

Cp

Cn
≈

∣

∣

∣

∣

∣

ei σ
C
l Fl(i κpA, Rch)

κpA Rch jl(i κnA Rch)

∣

∣

∣

∣

∣

. (20)

Thus, despite the fact that in the external region the
behavior of the proton and neutron overlap functions is
different, we can determine the ratio of the mirror proton
and neutron ANCs in a model-independent way calcu-
lating the ratio of the internal scattering wave functions
given by Eq. (20). From this ratio one can determine the
proton ANC if the neutron experimental ANC is known.
Using Eq. (20) and the mean value of the neutron

ANC 2.23± 0.30 fm−1/2 for the 17O(1
2

+
) state obtained

in Subsection III B we get the mirror ANC 68.0 ± 21.0
fm−1/2. Taking into account the low accuracy of the
experimental neutron phase shifts the obtained proton
ANC is in a reasonable agreement with the proton ANC

for 17F(1
2

+
) of 81±8.0 fm−1/2 reported in [26]. Note that

if we use the neutron ANC value of 2.67 fm−1/2 then the
mirror proton ANC would be 81.9 fm−1/2, in the perfect
agreement with that from [26].
We draw attention of the reader on the huge difference

between the neutron and proton ANC [25]. To under-
stand this difference we can rewrite Eq. (20) as

Cp

Cn
≈ R1 R2 R3, (21)

where the first factor

R1 =
Γ(l + 1 + η)

Γ(l + 1)
(22)

is the major Coulomb renormalization factor [25, 27].
Here η is the Coulomb parameter of the (pA) bound state.
In the case under consideration R1 = 17.4.
The second factor R2 takes into account the difference

between the neutron binding energy 3.27 MeV and the
proton binding energy 0.105 MeV. The binding energy

of the neutron analogue state is larger than the corre-
sponding proton binding energy (the Hamiltonian of the
Schrödinger equation for the mirror proton state con-
tains additional repulsive Coulomb interaction potential,
which decreases the proton binding energy). R2 is given
by

R2 =
jl(i κpA Rch)

jl(i κnARch)
. (23)

It can be obtained by replacing the Coulomb reg-

ular solution ei σ
C
l Fl(i κpA, Rch) in Eq. (20) with

κpA Rch jl(i κpA Rch) taken at the proton bound-state
wave number κpA. In the case under consideration
R2 = 0.64.
The third factor affecting the proton ANC takes into

account the final Coulomb effects which are left after re-
moving the first two factors and is given by

R3 =
F̃l(i κpA, Rch)

κpA Rch jl(i κpA Rch)
. (24)

To obtain this factor one can replace

ei σ
C
l Fl(i κpA, Rch) in Eq. (20) with F̃l(i κpA, Rch) =

ei σ
C
l Fl(i κpA, Rch)/R1 and in the denominator the

neutron bound-state wave number κnA with the proton
one κpA. For the case under consideration R3 = 2.73.
Then we can write that the Coulomb ANC is Cp =

17.4×0.63×2.73×Cn = 30Cn. It is important to under-
score that all these estimations do not require the knowl-
edge of the mirror proton and neutron bound state wave
functions. All we need is the Coulomb regular solution
and the spherical Bessel functions.
It is worth noting that due the additional Coulomb

interaction the proton mirror state can be a resonance.
In this case the neutron ANC allows one to determine
the resonance width of the mirror proton state. For more
detailed discussion, see [23].

VI. CONCLUSIONS

In the present paper, we proposed a new method of
extrapolating elastic scattering data to the negative en-
ergy region for a short-range interaction. The method
is based on the well-known and reliably established fact
that the partial-wave amplitude of elastic scattering has
a pole of the first order in energy at the point correspond-
ing to the bound state, and the residue at this point is
expressed in terms of the square of the ANC. The de-
veloped method, being an alternative to the traditional
ERF one, provides an independent method of extrapola-
tion of the elastic scattering data to the bound-state poles
to determine the neutron ANCs. Taking into account
the low accuracy of the neutron elastic scattering phase
shifts, application of two independent extrapolation tech-
niques will provide more reliable information about the
neutron ANCs. Moreover, we demonstrate that using
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the mirror symmetry one can determine from the neu-
tron ANC the mirror proton ANC. This connection is
especially important for heavier nuclei where the mea-
surements of the low-energy Coulomb-modified nuclear
phase shifts to determine the proton ANC is practically
impossible. We demonstrated here how one can deter-

mine the proton ANC for 17F(1
2

+
) using the mirror neu-

tron ANCs 17O(1
2

+
) determined by three different ex-

trapolation techniques. Moreover, if the mirror proton
ANC is well established, one can determine the mirror
neutron ANC. It will allow one to determine which ex-
trapolation method has an advantage for a case under
consideration. For example, for the case considered in
this paper, the method based on extrapolation of func-
tion F0 gave too low neutron ANC. On the other hand,
using the neutron ANC value based on extrapolation of
function G0, the results are in the perfect agreement with
the mirror proton ANC from [26].
Using the available phase-shift data, two versions of

the new method, as well as the ERF method, have been
applied to determine the ANCs for the excited s states of
17O and 13C nuclei in the n+16O and n+12C channels,
respectively. Due to the low accuracy of the phase-shift
analysis used different ways of continuing the experimen-
tal data lead to slightly different results for the ANCs.
The mean values of the ANCs obtained with all different
methods used in this paper are 2.23±0.30 fm−1/2 for 17O
and 2.07±0.13 fm−1/2 for 13C. For comparison, the ANC
values obtained from the analysis of data on radiative
neutron capture are 3.01 fm−1/2 for 17O and 1.61 fm−1/2

for 13 C [22]. These results are based on the assumption
of the peripheral character of the s-wave radiative cap-
ture which is not justified. Therefore, the accuracy of
these ANC values is difficult to estimate. On the other

hand, the method proposed in this work is equally suit-
able for extrapolation of elastic scattering data for any l.

We emphasise that though the potential of a rectangu-
lar well form supporting two bound states is used in our
work, the potential is not used to obtain any informa-
tion about the real values of the ANC. For this purpose,
we use the analytical continuation of experimental phase
shifts. The potential model is used for methodological
purposes since it allows one to accurately calculate the
values of the ANC and phase shifts. Knowing these val-
ues, we establish which of the approximate methods of
continuation of the scattering data to the negative-energy
region allows us to better reproduce the exact theoreti-
cal values of the ANC. To achieve this goal, the number
of bound states in the potential under consideration is
irrelevant. We used the potential with two bound states
simply because such a model better describes the prop-
erties of the actual systems under consideration and is
commonly used in the literature. Although in principle,
for our methodological purposes, one could use a poten-
tial with one bound state. The result does not depend
on this choice.
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