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Background: In current simulations of fission, the number of protons and neutrons in a given fission fragment
is almost always obtained by integrating the total density of particles in the sector of space that contains the
fragment. The semi-classical nature of this procedure and the antisymmetry of the many-body wave function of
the whole nucleus systematically leads to non-integer numbers of particles in the fragment.

Purpose: We seek to estimate rigorously the probability of finding Z protons and N neutrons in a fission
fragment, i.e., the dispersion in particle number (both charge and mass). Knowing the dispersion for any possible
fragmentation of the fissioning nucleus will improve the accuracy of predictions of fission fragment distributions
and the simulation of the fission spectrum with reaction models.

Methods: Given a partition of the full space R3 in two sectors corresponding to the two prefragments, we discuss
two different methods. The first one is based on standard projection techniques extended to arbitrary partitions
of space. We also introduce a novel sampling method that depends only on a relevant single-particle basis for
the whole nucleus and the occupation probability of each basis function in each of the two sectors. We estimate
the number of particles A in the left (right) fragment by statistical sampling of the joint probability of having A
single-particle states in the left (right) sector of space.

Results: We use both methods to estimate the charge and mass number dispersion of several scission configu-
rations in 240Pu using either a macroscopic-microscopic approach or full Hartree-Fock-Bogoliubov calculations.
We show that restoring particle number symmetry naturally produces odd-even effects in the charge probability,
which could explain the well-known odd-even staggering effects of charge distributions.

Conclusions: We discuss two methods to estimate particle number dispersion in fission fragments. In the limit of
well-separated fragments, the two methods give identical results. It can then be advantageous to use the sampling
method, since it provides a N -body basis for each prefragment, which can be used to estimate fragment properties
at scission. When the two fragments are still substantially entangled, the sampling method breaks down and one
has to use projector techniques, which gives the exact particle number dispersion even in that limit. Note that in
this work, we have assumed that scission configurations could be described well by a static Bogoliubov vacuum:
the strong odd-even staggering in the charge distributions could be somewhat attenuated when going beyond this
hypothesis.

I. INTRODUCTION

The theoretical understanding of nuclear fission, dis-
covered in 1938 by O. Hahn and F. Strassmann, remains
a vexing challenge even to this day. The fission of a
heavy atomic nucleus presents a number of conceptual
as well as practical difficulties. A fissioning nucleus is a
particular example of a quantum many-body system of
strongly-interacting Fermions, whose interaction is only
known approximately. Fission dynamics is explicitly
time-dependent and involves open channels (mostly neu-
trons, but also photons). From a fundamental perspec-
tive, the physics of scission, or how an interacting, quan-
tum many-body system splits into two well-separated,
interacting, quantum many-body systems, is very poorly
known. Although there has been a considerable body of
experimental work on fission in general, the most accu-
rate data involves the decay of the fission fragments. The
mechanism by which these fragments are formed in the
first place must be described by theory.
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Several approaches have been developed over the years
to describe the fission process. Since fission times are
rather slow compared with single-particle types of exci-
tations [1, 2], quasi-static approaches are well justified.
Most incarnations of these approaches rely on identifying
a few collective variables that drive the fission process,
mapping out the potential energy surface in this collec-
tive space (which fixes all properties of fission fragments)
and computing the probability for the nucleus to be at
any point on the surface, e.g. with semi-classical dynam-
ics such as Langevin [3–5], random walk [6–9] or with
fully quantum-mechanical dynamics such as the time-
dependent generator coordinate method [10–13]. One
major limitation of these approaches is the need to iden-
tify scission configurations in the potential energy sur-
face, that is, the arbitrary frontier that separates con-
figurations where the nucleus is whole from those where
it has split into two fragments [14–16]. In practice, such
scission configurations happen to always be characterized
by non-integer values of average particle numbers in the
fragments.

The arbitrariness of the very concept of scission is
strongly mitigated in explicitly non-adiabatic theories of
fission such as the various formulations of time-dependent
nuclear density functional theory [1, 2, 17–23]. Since
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these approaches simulate the real-time evolution of the
nucleus and explicitly conserve energy, one can obtain
excellent estimates of fission fragment properties well
past the actual scission point [1, 2, 18]. However, these
theories still simulate the evolution of the fissioning nu-
cleus instead of the fragments themselves: the latter re-
main entangled even after scission and thus have also
non-integer values of proton and neutrons [20]. Particle
number symmetry in the fragments could in principle be
restored by using standard projection techniques. This
approach was pioneered initially in the case of particle
transfer in heavy ion fusion reactions [24–27]. However,
as we will discuss below, projection techniques do not
allow to identify independent configurations in the frag-
ments. While this does not impact the estimate of pri-
mary charge or mass yields, it would be very useful to
have access to a basis of N -body Slater determinants of
particles to calculate other observables.

Our goal is thus to explore an alternative method to
estimate the number of particles in the fission fragments.
More precisely, given a description of the fissioning sys-
tem by a A-body Slater determinant or a quasiparticle
vacuum, we seek to determine both the probability that
the total N -body wave function contains a Slater de-
terminant of particle with A1 (A2) particles in the left
(right) fragment, both A1 and A2 being integers and
A1 +A2 = A, as well as a suitable basis of single-particle
states to describe them. In this paper, we propose a
new method that only depends on a physically-relevant
single-particle basis for the fissioning nucleus and a set
of occupation probabilities.

We present our theoretical framework in Section II.
This includes some general notations, the presentation
of our Monte-Carlo sampling method, and a reminder
of projection techniques adapted to the case of fission
fragments. Section III is focused on the validation and
numerical implementation of the sampling method. In
Section IV, we study in more details the fragmentation
probabilities for scission configurations in 240Pu, before
concluding in Section V.

II. THEORETICAL FORMALISM

The prediction of the primary mass/charge distribu-
tion in fission can be decomposed in three steps [16].
First, one calculates the energy of the fissioning system
for a set of configurations with different geometric shapes
or constraints. This potential energy surface (PES) is di-
vided into two regions, one where the nucleus has split
into two fragments, the other where it has not; scission
configurations correspond to the frontier between the two
regions. In a second step, one estimates the probability
to populate each scission configuration. This can be done
either semi-classically by solving the Langevin equation
as in [5, 28–36] or with a random walk approach [6–9, 37],
or more microscopically by using time-dependent config-
uration techniques such as the time-dependent generator

coordinate method with the Gaussian overlap approxi-
mation (TDGCM-GOA) [11, 12, 38–42]. Finally the re-
sult of the time-dependent evolution are coupled with an
estimate of fragment properties to estimate the actual
distribution of nuclear observables such as charge, mass,
total kinetic energy (TKE), etc.

In the case of charge and mass distributions, the last
step of the procedure outlined above involves estimating
the particle number in the fission fragments. Until re-
cently, all fission calculations have used a semi-classical
estimate of the average particle number based on inte-
grating the one-body density. Below, we describe two
methods to obtain integer values of particle number. The
first method, which is developed in this paper, involves
a Monte-Carlo sampling of single-particle configurations.
Its main advantage is that it indirectly provides a set of
single-particle wave functions for each of the fragments,
which could then be used to estimate quantities such as,
e.g., the level density. The second method is based on ex-
tending standard projection techniques to arbitrary space
partitionings and was introduced originally by Simenel in
[24] for Slater determinants and later extended in [25] to
the case of superfluid systems.

A. Space partitioning

Let us first assume that the state |Φ〉 of the fissioning
system is a Slater determinant of particles,

|Φ〉 ≡
A−1∏
k=0

ĉ†k|0〉, (1)

where |0〉 is the particle vacuum. The operator ĉ†k creates
a fermion in the single-particle state k and reads

ĉ†k =

∫
V

d3r ϕk(r)ĉ†(r), (2)

where ϕk(r) is the single-particle wave function for state
k and the operator ĉ†(r) creates a well-localized fermion
at point r (we omit spin and isospin degrees of freedom
for the sake of simplicity). Recall that the set of all func-
tions ϕk(r) form a basis of the L2 Hilbert space of square-
integrable functions.

We also assume that it is possible to partition the full
space V ≡ R3 into two sectors V0 and V1 such as V0

(V1) is the region where the left (right) fragment is lo-
calized. Such a partitioning could, for instance, be de-
fined by introducing the coordinates of a neck between
the two prefragments at scission, as illustrated schemati-
cally in Figure 1. The two prefragments are separated by
the red line located at the neck position. It is then always
possible to decompose the single-particle wave functions
into

ϕk(r) = α
(0)
k ϕ

(0)
k (r) + α

(1)
k ϕ

(1)
k (r), (3)
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FIG. 1. Illustration of the partition of the space V into V0

and V1 using the local density. The color scale corresponds
to the value of the local density associated with a Slater de-
terminant |Φ〉. The red line separates V0 (to the left of the
line) and V1 (to the right of the line).

where ϕ
(p)
k (r) is defined in Vp (p = 0, 1) and α

(p)
k are nor-

malization coefficients obtained by integrating the single-
particle wave functions in the domain Vp,

α
(p)
k =

√∫
Vp
d3r |ϕk(r)|2. (4)

In terms of operators, the expansion of Eq.(3) simply
translates into

ĉ†k = α
(0)
k ĉ

(0)†
k + α

(1)
k ĉ

(1)†
k . (5)

The ladder operators ĉ
(0)†
k , ĉ

(1)†
k and their Hermitian

conjugates verify the following anti-commutation rela-
tions (p, r = 0, 1){

ĉ
(p)†
k , ĉ

(r)†
l

}
=
{
ĉ
(p)
k , ĉ

(r)
l

}
= 0 (6){

ĉ
(p)†
k , ĉ

(r)
l

}
= δpr

∫
dr ϕ

(p)
k (r)ϕ

(r)∗
l (r) (7)

In the general case,
{
ĉ
(p)†
k , ĉ

(p)
l

}
6= 0 when k 6= l. How-

ever, it is always possible to restore all the Fermion anti-
commutation relations by orthonormalizing (for example

with the Gram-Schmidt procedure) the bases {ĉ(0)†
k } and

{ĉ(1)†
k } separately. Given these prerequisites, the goal of

our method is to estimate the relative probability of find-
ing a many-body state with Np particles in the subspace
Vp.

B. Monte-Carlo Approach

We first present a method that only requires the coef-
ficients (4). Calculating them requires in turn only two
ingredients: a set of single-particle wave functions and a
partitioning of R3. Let us emphasize that from a math-
ematical/algorithmic point of view, the partitioning of

the space is entirely arbitrary. We refer to our method
as Monte Carlo (MC) sampling.

1. Orthonormal Bases

We first introduce the general principles of our method

for the idealized case where the ϕ
(p)
k form an orthonormal

basis of Vp. We emphasize very clearly that in the most
general case, this condition is not satisfied. In the context
of fission, however, it can be approached asymptotically
in the limit of infinitely-separated fragments. In practice,
it is reasonable to assume that scission configurations will
sufficiently well approximate this limiting case so that
the method can still provide reasonable estimates of the
particle numbers.

If the ϕ
(p)
k form an orthonormal basis of Vp, then the

Fermion anti-commutation relations between the corre-
sponding s.p. operators are satisfied. Let us insert
Eq. (5) in Eq. (1). We obtain

|Φ〉 =
∑

p=(p0,...,pA−1)
pk∈(0,1)

[
A−1∏
k=0

α
(pk)
k

][
A−1∏
k=0

ĉ
(pk)†
k

]
|0〉. (8)

In Eq. (8), we sum over all possible A-uplets of 0 and 1.

Since we assume that the ĉ
(0)†
k and ĉ

(1)†
k correspond to

orthonormal bases, the A-body state |p〉 defined by

|p〉 =

A−1∏
k=0

ĉ
(pk)†
k |0〉 (9)

is a Slater determinant. By using the Fermion anti-

commutation relations of the ĉ
(p)†
k , we see that the set

of all the possible |p〉 forms an orthonormal basis of the
A-body space. By construction, each state |p〉 is an eigen-
vector of the particle number operators for both V0 and
V1 and contains two sets of particles. The first set is com-
pletely in V0 and will contribute only to the left fragment,
the second set is completely in V1 and will contribute only
to the right fragment. Therefore, we can easily calculate
the number of particles in the left (right) fragment for
|p〉, N0(p) (N1(p)). Since pk is either 0 or 1, it is easy to
show that

N0(p) =

A−1∑
k=0

(1− pk), N1(p) =

A−1∑
k=0

pk. (10)

and that N0(p) +N1(p) = A as expected. We can there-
fore rewrite Eq. (8) in the form

|Φ〉 =

A−1∑
N0=0

cN0 |N0〉, (11)

where |N0〉 is the normalized component of |Φ〉 with N0
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Fermions in the left fragment, which is given by

|N0〉 ≡
1

cN0

∑
p=(p0,...,pA−1)
N0(p)=N0

[
A−1∏
k=0

α
(pk)
k

]
|p〉, (12)

cN0
≡

√√√√√√ ∑
p=(p0,...,pA−1)
N0(p)=N0

(
A−1∏
k=0

α
(pk)
k

)2

. (13)

Let us consider two different states |N0〉 and |N ′0〉 such
that N0 6= N ′0. The states |N0〉 and |N ′0〉 are expanded
on disjointed subsets of the basis |p〉. Since we already
showed that this basis is orthonormal, it implies that
the states |N0〉 and |N ′0〉 are orthogonal and the squared
norm of |N0〉 is given by

〈N0|N0〉 = 1. (14)

We can now define the probability P0(N0) to measure the
left fragment with N0 particles as

P0(N0) ≡ 〈Φ|N0〉〈N0|Φ〉 = c2N0
. (15)

Calculating all the probabilities P0(N0) using (13)
and (15) scales like A × 2A. While this can certainly
be done for nuclei with A < 30, it becomes problem-
atic in heavy systems such as actinides. Instead, we
can use a statistical approach to sample this probabil-
ity. Specifically, we will use Monte-Carlo sampling tech-
niques to estimate the distribution of probability. For a
A-body Slater determinant, this only requires drawing A
uniformly-distributed random numbers at each iteration.

2. Non-orthonormal Bases

As briefly mentioned earlier, the set of single-particle

functions ϕ
(p)
k (r) does not, in general, form a basis of the

subspace Vp. Note that Vp is a Hilbert space very similar
to the usual Hilbert space of square-integrable functions
L2(R3). Therefore, it could in principle be equipped with
a proper basis. The problem is that such bases are not
necessarily related to the original basis of functions ϕk(r)
through a simple relation such as Eq.(3).

The only case where the functions entering Eq.(3) do
form a basis of their respective Hilbert space is when
the two fragments are infinitely separated. This can be
most easily seen from exactly solvable models. In one
dimension, for example, a double harmonic oscillator po-

tential of the type V (x) = ω2

8a2 (x−a)2(x+a)2, somewhat
simulates the potential well between two (identical) pre-
fragments separated by an average distance of 2a. At the
limit of infinite separation (a → ∞), the two harmonic
oscillators completely decouple and the solution of the
Schrödinger equation for the full system tends toward
the sum of two Harmonic oscillators shifted by ±a; see,
e.g., [43] for a comprehensive presentation. Note that a

full treatment of the problem with path integrals would
still lead to a non-zero tunneling probability between the
two systems, which is beyond the scope of this work.

The point of this short discussion is that our hypothesis

that the two sets of functions ϕ
(0)
k and ϕ

(1)
k are approxi-

mately orthonormal should be reasonable.

3. Inclusion of Pairing Correlations

Pairing correlations play an essential role in the fission
process [1, 18, 21]. In static calculations, they are typi-
cally described within the BCS or HFB approximations
(with or without projection). In both cases, one can al-
ways define a set of single-particle wave functions ϕk(r)

associated with the operators ĉ†k. This basis can be, for
instance, made of the eigenstates of some realistic aver-
age potential (macroscopic-microscopic approaches) or of
the nuclear mean field (Hartree-Fock theory), or it can
be the canonical basis in the HFB theory. Together with
single-particle states, pairing theories also provide the
occupation amplitudes uk and vk, such that u2

k + v2
k = 1.

Based on these remarks, one can extend our method of
calculation for the probability P(N0) of finding N0 par-
ticles in the left fragment in presence of pairing correla-
tions by performing two consecutive statistical samplings.
We first draw random sets of A occupied levels from the
canonical basis based on the values of the probability am-
plitudes u2

k and v2
k. For any such sample, we can then

apply the method outlined in the previous sections. In
more details, the procedure is thus the following:

1. For each energy level k in the canonical basis, draw
a uniformly-distributed random number 0 ≤ rk ≤ 1
and select the level for occupation if rk ≤ v2

k. The

Slater determinant |Φ̃p〉 thus formed out of all the
occupied levels occurs with the probability P(p)

P(p) =
∏
o

po=1

v2
o

∏
n

pn=0

u2
n; (16)

2. For each such state |Φ̃p〉 with good particle num-
ber, we calculate the probability P(N0) that the
left fragment has N0 particles by using the method
presented earlier;

3. We repeat this two-step sampling as many times as
needed for the final probability distributions P(N0)
to converge. In practice, this requires of the order
of a few thousands of iterations.

It is important to realize that the first step of the proce-
dure described above can be used to estimate the proba-
bility P(N0) that an arbitrary BCS or HFB state contains
exactly N0 particles. Therefore, it is an alternative way
to project on particle number without introducing any
projector. We will take advantage of this observation to
validate our method.
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C. Projectors Method

The number of particles in fission fragments can also
be recovered by using projector techniques as developed
in [24, 25]. Here, we give a brief summary of projection
with emphasis on practical aspects and possible differ-
ences between the MC sampling presented previously.

In the standard approach to projection, see e.g. [44,

45], the particle-number projection operator P̂ q(N) reads

P̂ q(N) ≡ 1

2π

∫ 2π

0

dθ eiθ(N̂
q−N), (17)

where q = neutron,proton is the type of particle and N̂q

is the particle number operator. The idea in [24] is the
following: instead of using the particle number on the
full space, one may define an operator N̂q

p that count
the number of particles only in the partition Vp. This
operator can be written

N̂q
p ≡

∫
dx ĉ†(x)ĉ(x)Θp(r), (18)

where, as usual, we note x ≡ (r, σ, q) and
∫
dx ≡∑

σ

∫
d3r. In (18), p indexes the partitions Vp and Θp(r)

represents the indicator function of Vp, i.e.

Θp(r) ≡

{
1 if r ∈ Vp,
0 otherwise.

(19)

Obviously, we have the operatorial equality∑
p

N̂q
p = N̂q. (20)

In Ref. [24], Vp is denoted R and corresponds to the set
of points with a positive value of x. In this case, ΘR(r) ≡
Θ(x) and therefore, we obtain the equation (1) of [24].

Based on this definition, we can construct P̂ qp (N), the
particle number projector on the partition Vp, as follows

P̂ qp (N) ≡ 1

2π

∫ 2π

0

dθ eiθ(N̂
q
p−N). (21)

Computing the action of P̂ qp (N) on an arbitrary HFB
vacuum |Φ〉 can be done by defining shift operators ẑp ≡
zN̂

q
p with z = eiθ and following the same approach as in

[46]. By working directly with these field operators in
coordinate space, one may show that(

N̂q
p

)n
ĉ†(x) = ĉ†(x)

[
Θp(x) + N̂q

p

]n
, (22)

which leads to

ẑpĉ
†(x)ẑ−1

p = eiθΘp(x)ĉ†(x). (23)

By introducing the expansion of the field operators ĉ†(x)
on a basis, we arrive at

b†k(θ) ≡ ẑpĉ†kẑ
−1
p =

∑
l

Fkl(θ)ĉ
†
l , (24)

with

Fkl(θ) =

∫
dxϕ∗k(x)ϕl(x)eiθΘp(x) = δkl + S

(p)
kl (eiθ − 1),

(25)

where S
(p)
kl is the overlap matrix of the basis ϕ

(p)
k . We

then find that the action of the shift operator on the HFB
vacuum reads, in the canonical basis,

ẑp|Φ〉 =
∏
k>0

[
uk + vkb

†
k(θ)b†

k̄
(θ)
]
|0〉. (26)

The calculation of the norm overlap can then be effi-
ciently computed with the Pfaffian techniques of [47] as
outlined in [20].

In order to estimate the probability Pqp(N) to find N
nucleons of type q in the spatial partition Vp, we must
also make sure that the total number of particles in the
fissioning system is restored. Therefore, the probability
Pqp(N) involves a double projection

Pqp(N) ≡
〈Φ|P̂ qp (N)P̂ q(Ntot)|Φ〉
〈Φ|P̂ q(Ntot)|Φ〉

, (27)

where Ntot is the total number of particles of species q for
the fissioning nucleus. As mentioned in [25], the double
projection involves the integration over two gauge angles
θ and θ′. One can easily show that the rotated wave
function will simply read

ẑpẑ|Φ〉 =
∏
k>0

[
uk + vkb

†
k(θ, θ′)b†

k̄
(θ, θ′)

]
|0〉, (28)

where b†k(θ, θ′) is given by (24), only replacing Fkl(θ) by

Fkl(θ, θ
′) = Fkl(θ)e

iθ′ .

III. PROOFS OF PRINCIPLE

In this section, we study how the MC sampling method
can be used to restore particle number. First, we val-
idate the approach against the projector method in a
“standard” case of particle number restoration for a fully-
paired HFB vacuum. We then apply MC sampling to es-
timate fragmentation probabilities in different subspaces
and analyze the numerical convergence of the method.

A. Validation

The validation consists in using our sampling method
to compute the coefficients cN of the expansion of an
arbitrary HFB state |Φ〉 on good-particle number Slater
determinants,

|Φ〉 =
∑
N

cN |N〉, |N〉 =
P̂ (N)|Φ〉√
〈Φ|P̂ (N)|Φ〉

. (29)
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This is done simply by following Step 1 of the procedure
discussed in Section II B 3. We chose (arbitrarily) the
nucleus Z = 60 and N = 70 for the tests. We used the
code HFBTHO 3 [48] to solve the HFB equation for this
nucleus in a deformed HO basis of 16 shells (oscillator
length: b0 = 2.0 fm, β2 = 0.2). We took the SkM*
parametrization of the Skyrme functional, a surface-
volume pairing interaction with V0n = V0p = −250 MeV
and an infinite quasiparticle cutoff. Note that it does not
matter if these characteristics are realistic or not: they
were chosen exclusively to make sure there was a sub-
stantial amount of pairing correlations for both protons
and neutrons.

TABLE I. Comparison of the sampling method and exact par-
ticle number projection for the calculation of the coefficients
of the expansion of Eq. (29) for both protons and neutrons;
see text for additional details.

|cN |2 |cZ |2
Number PNP sampling PNP sampling

N 0.3706 0.3707 0.3906 0.3905
N-2 0.3208 0.3207 0.3363 0.3362
N-4 0.2079 0.2079 0.1971 0.1972
N-6 0.1006 0.1007 0.0760 0.0760

We then projected the HFB solution on N0 = 70, 68,
66 and 64 as well as on Z0 = 60, 58, 56 and 54 using the
Fomenko discretization of the particle number projector
with L = 13 gauge points. Since number parity is con-
served in this case, the coefficients cN of the expansion
of Eq. (29) are then simply given by [49–51]

c2N = 〈Φ|P̂ (N)|Φ〉 =
1

L

L−1∑
l=0

〈Φ|eiθl(N̂−N)|Φ〉, (30)

where θl = πl/L are the gauge angles. To ensure that∑
N∈I |cN |2 = 1 for our subset I of particle numbers, we

renormalized the coefficients. The table I compares the
results obtained with direct projection and with our sam-
pling method applied on the canonical basis. They are
exact to within 10−4, which corresponds to the precision
of the sampling.

B. Fragmentation Probabilities

We now examine how MC sampling can be used to esti-
mate the particle number in different subspaces. For sim-
plicity, we focused on the nucleus 240Pu. For this proof
of principle, we consider a macroscopic-microscopic ap-
proach where the shape of the nucleus is described by the
Matched Quadratic Surface (3QS) parametrization [52–
54]. The single-particle states are obtained by solving the
Schrödinger equation for a few specific elongated shapes
listed in Table II in an axial harmonic oscillator (HO) ba-
sis of Nsh = 35 shells. Pairing correlations are treated in

the Lipkin-Nogami approximation with a seniority pair-
ing force characterized by Eq. (107) of [55]. We used
an energy window of ±5 MeV around the Fermi level to
define our valence space; further details of the theoretical
framework can be found in [55].

The quantities AL and ZL listed in Table II refer to
the mass and charge of the prefragments obtained by in-
tegrating the one-body local density at the left and right
of the neck position. The latter is defined as the point
with the lowest density between the two prefragments.

TABLE II. Characteristics of scission configurations: shape
parameters and average mass and charge fragmentation.

Shape α2 α3 σ1 σ2 σ3 AL ZL

I 0.30 0.192 3.500 -0.576 0.640 99.61 39.78
II 0.25 0.203 3.889 -0.365 0.810 101.33 40.91
III 0.25 0.250 3.500 -0.450 1.000 102.36 41.82
IV 0.20 0.605 3.182 -0.545 1.210 112.29 44.95

We have calculated the fragmentation probabilities as-
sociated with the configurations of Table II. We drew
npair = 10000 A-body Slater determinants and for each
of them used nloc = 10000 Monte-Carlo samples to esti-
mate the number of particles in the fragments. Since the
configurations are not fully scissioned, we take into ac-
count the uncertainty associated with the position zneck

of the neck by assuming that zneck follows a normal distri-
butionN (z̄neck, Aneck×Qneck), where z̄neck is the position
of the minimum between the two fragments of the local
density along the z-axis, Aneck = 1 fm/nuc and Qneck is
the average value of the Gaussian neck operator [15, 56].

FIG. 2. Mass fragmentation probabilities (light fragment) for
all the configurations listed in Table II.

The mass fragmentation probabilities are shown in Fig-
ure 2. We note that all curves are smooth and are peaked
near the values of A corresponding to the geometric split
between the fragments. There is no visible odd-even stag-
gering for any of the mass probabilities. In the case of the
charge fragmentation probabilities shown in Figure 3, we
note that the maximum of each curve is always associated
with an even number of protons. Moreover, the proba-
bility for any even proton number is always higher than
the probability of any of the two odd-proton neighbors.
In other words, we observe a clear odd-even staggering
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(OES). The different behavior of the mass and charge
fragmentations is most likely caused by the Coulomb po-
tential between the fragments, which increases the height
of the effective barrier between them and therefore tends
to localize the protons better than the neutrons.

FIG. 3. Charge fragmentation probabilities (light fragment)
for all the configurations listed in Table II

Note that the fragmentation probabilities shown in
Figures 2-3 cannot be compared to experimental data [57,
58]: they give only the dispersion around 4 specific frag-
mentations. In contrast, experimental fission fragment
distributions include all possible fragmentations of the
compound nucleus. To compare with experimental data,
the first step is to explicitly simulate the nuclear dynam-
ics, e.g., with semi-classical methods such as Langevin
or random walk [5–9, 28–37] or microscopic methods
such as the time-dependent generator coordinate method
[11, 12, 38–42]. This would provide the probability distri-
bution P(S) for the nucleus to be in a given scissionned
or quasi-scissionned state S. The second step would be to
fold the probability distribution thus obtained with the
probabilities PS(A) or PS(Z) that our method provides
via

Y (X) =
∑
S

P(S)PS(X), X = Z,A (31)

Y (A,Z) =
∑
S

P(S)PS(A)PS(Z). (32)

Note that even if we do not consider correlations between
protons and neutrons in the fragment probabilities in our
method, the yields Y (A,Z) obtained with the dynamics
contains them.

C. Numerical Convergence

The MC method of Sec. II B is statistical and relies on
sampling a probability distribution. When pairing cor-
relations are included, the sampling is characterized by
two numbers: npair, the number of draws of the particle
Slater determinants (first step of the algorithm presented
in II B 3, page 4), and nloc, the number of draws of a local-
ized Slater determinant of A particles from the left/right
basis (c.f. Eq. (8)). Here, we evaluate the uncertainty

associated with these two integers for the particular case
of configuration II in Table II.

FIG. 4. Standard deviations associated with the probabilities
to measure the light fragment with a mass A for the shape
II. Top: For different values of npair and with nloc = 10000.
Bottom: For different values of nloc and with npair = 10000

FIG. 5. Same as Figure 4 for the charge fragmentations.

We considered 12 cases: npair = 50, 100, 500, 1000,
5000, 10000 with nloc = 10000; and npair = 10000 with
nloc = 50, 100, 500, 1000, 5000, 10000. For each of them,
we calculated the fragmentation probability in mass and
charge S = 200 times. We then calculated the unbi-
ased estimator of the standard deviation σII(X) for the
distributions in mass and in charge using the following
expression, for X = A,Z,

σII(X) ≡

√√√√ 1

S − 1

S−1∑
k=0

[
Y

(k)
II (X)− ȲII(X)

]2
, (33)
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where Y
(k)
II (X) is the k-th calculation of the yields with

our method and ȲII(X) is the mean value of all the

Y
(k)
II (X). The standard deviations are shown on Figure 4

for the mass distributions, and on Figure 5 for the charge
distributions. The most sensitive parameter is npair with
an improvement of 1.6% of the standard deviations on
the masses and 5.5% on the charges between the cases
npair = 50, nloc = 10000 and npair = nloc = 10000 as
shown on the upper panels of Figure 4 and Figure 5. For
all the cases with npair = 10000, the standard deviations
are always below 0.5% and the improvement of the stan-
dard deviations is below 0.2% for the masses and not
visible for the charges between the cases nloc = 50 and
nloc = 10000.

FIG. 6. Probabilities to measure the light fragment with a
mass A for the shape II for different number of shells Nsh in
the basis.

FIG. 7. Same as Figure 6 for the charge of the light fragment.

The two other numerical parameters in our method are
the number of shells Nsh and the truncation in the BCS
occupation numbers v2

thresh. To analyze the impact of
Nsh, we have calculated the fragmentation probabilities
in mass and charge for Nsh = 15, 20, 25, 30, 35, in the
case of the configuration II. The corresponding curves
are presented in Figure 6 and Figure 7. The increase of
the number of shells shifts the most probable mass of the
light fragment from A = 100 to A = 101 (and therefore
shifts the most probable mass of the heavy fragment from
A = 140 to A = 139). The increase of the number of
shells does not change the most probable charge of the
fragments. However, it drastically reduces the odd-even
staggering in the charge distribution between the cases

Nsh = 15 and Nsh = 35.

FIG. 8. Probabilities to measure the light fragment with a
charge Z for the shape II different values v2thresh of the occu-
pation numbers threshold.

To study the influence of the BCS occupations v2
thresh,

we have calculated the fragmentation probability in mass
and charge for the 4 cases v2

thresh = 1.0 × 10−1, 2.8 ×
10−3, 1.7× 10−9, 1.0× 10−15. The corresponding proba-
bilities are shown in Figure 8 for the charge distributions
only. All the distributions, for the mass and the charges,
have converged below 1% for v2

thresh ≤ 2.8× 10−3.

IV. NUMBER OF PARTICLES AT SCISSION

In this section, we apply both the MC sampling and
projector methods to estimate the dispersion in particle
number of realistic scission configurations for the case of
240Pu.

A. Macroscopic-microscopic Calculations

First, we compare our approach with the projec-
tor method presented in [24, 25] for the macroscopic-
microscopic approach. The Schödinger equation was
solved in a basis of Nsh = 35 shells. Pairing correlations
are treated in the same way as in Sec. III C. We con-
sider a scission configuration in 240Pu characterized by
the following values of the 3QS parameters: rneck = 2.50
fm, α2 = 0.448, α3 = 0.6259, σ1 = 3.0613, σ2 = −0.5349,
and σ3 = 0.9047. This configuration corresponds to the
most likely trajectory for a series of random walks on the
5-dimensional potential energy surface [59].

Starting from this initial configuration, we vary the
parameter σ2 in order to reduce the size of the neck –
and thus approach the limit of two orthonormal single-
particle bases for each of the prefragments. In practice,
the values of σ2 were chosen such that the neck radius
takes the values 0.04, 1.0, 1.25, 1.5, 1.75, 2.0 fm. Figure 9
gives a visual representation of these configurations. For
the MC sampling, we use npair = 10000 and nloc = 1000;
together with our basis size of a Nsh = 30 and a BCS
threshold of v2

thresh = 10−5, this gives a statistical preci-
sion of approximately 0.5% on the charge and 0.15% on
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the mass fragmentation probabilities.

FIG. 9. Geometric shapes associated with the scission config-
urations of Table III.

TABLE III. Characteristics of scission configurations: neck
radius, shape parameters and average mass/charge fragmen-
tations of the left fragment.

rneck α2 α3 σ1 σ2 σ3 AL ZL

0.04 0.448 0.6259 3.0613 -0.8431 0.9047 138.8 53.1
1.00 0.448 0.6259 3.0613 -0.7876 0.9047 139.5 53.5
1.25 0.448 0.6259 3.0613 -0.7576 0.9047 139.8 53.7
1.50 0.448 0.6259 3.0613 -0.7219 0.9047 140.1 53.8
1.75 0.448 0.6259 3.0613 -0.6812 0.9047 140.6 54.0
2.00 0.448 0.6259 3.0613 -0.6361 0.9047 141.4 54.3

FIG. 10. Upper panel: Neutron fragmentation probabilities
(light fragment) for all the configurations listed in Table III
obtained with our method. Lower panel: same probabilities
obtained with the method presented in [24].

The neutron fragmentation probabilities are shown
in Figure 10: the top panel shows results with MC sam-
pling, while the bottom panel shows results with projec-

FIG. 11. Same as Figure 10 for the charge fragmentation
probabilities (color online).

tors. We first note that there are substantial differences
between the two approaches. Projectors yield an OES in
the neutron fragmentations probabilities for rneck < 2.00
fm. In contrast, there is no such OES in the sampling
method except for very small values of the neck radius
(rneck < 0.50 fm).

The main explanation for this discrepancy is related
to the parametrization of the nuclear surface. In gener-
ating the family of shapes of Figure 9, we started from
the 3QS parameters corresponding to rneck = 2.5 fm, and
reduced only the value of σ2 to obtain the other shapes.
As a consequence of volume conservation, the fragments
become more and more oblate with decreasing values of
rneck, which increases the value of the neutron Fermi en-
ergy. This facilitates tunneling for the states with ener-
gies around and above the Fermi level, even more so since
pairing correlations for neutrons are rather high with our
parametrization of the pairing force (the pairing gap is of
the order of ∆n ≈ 2.25 MeV for all configurations). This
spurious “geometrical” effect could have been avoided
with a more rigorous exploration of the nuclear shapes
around our initial scission configuration, by making sure
that, as we vary the size of the neck, all deformation pa-
rameters are adjusted so that the the energy remains a
minimum. Such an exploration of the deformation space
is automatic in self-consistent calculations, but should be
done by hand in semi-phemenological methods. The cost
of doing so in a a five-dimensional PES as the one we
were working with is rather substantial.

Because of the Coulomb barrier, the proton Fermi en-
ergy is much lower than the top of the barrier between the
two prefragments: tunneling is much less of an issue and
protons are better localized. This could explain why the
agreement between the two methods is much better for
the charge fragmentation probabilities, as shown in Fig-
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ure 11: the probability associated with an odd Z vanishes
for a value of rneck below 1.00 fm with both methods, and
a strong odd-even staggering appears, at rneck = 1.25 fm
for the MC sampling and at rneck = 1.75 with projectors.
The quantitative agreement between the two approaches
is in fact relatively good for rneck ≤ 1 fm.

B. EDF Calculations

To gain further insight, we performed similar calcula-
tions in a fully microscopic framework. Specifically, we
considered the scission configurations near the most likely
fission of 240Pu which are discussed extensively in Sec.
IV of [15]. These configurations were obtained by per-

forming constrained HFB calculations with 〈Q̂20〉 = 345

b, and 〈Q̂neck〉 varying between 0.1 and 4.5. All calcu-
lations were performed with the Skyrme SkM* energy
functional; numerical details such as the size and charac-
teristics of the basis, the parameters of the pairing force,
etc. can be found in [15].

FIG. 12. Left panel: Comparison of the neutron fragmen-
tation probabilities obtained with our Monte-Carlo sampling
(full lines) and the projection method (dashed black lines) for

different values of 〈Q̂neck〉. Right panel: same for the proton
fragmentations (color online).

For each value of the Gaussian neck parameter, we
used the double projection method to estimate the frag-
mentation probabilities of the system. We also computed
the occupation probabilities v2

k in the canonical basis as
well as the coefficients αk of Eq.(8) needed for the MC

method. Figure 12 summarizes the results for the proton
and neutron fragmentation probabilities obtained in the
two methods.

We note that the agreement between projection and
MC sampling at the limit of very small necks is much bet-
ter than in the macroscopic-microscopic approach. One
might attribute this better agreement to the fact that in
HFB calculations, the shapes of both the fissioning nu-
cleus and the prefragments are automatically determined
so that the energy of the fissioning system is minimum.
As a consequence, such self-consistent calculations do not
suffer from the geometrical artifact described in the pre-
vious section and the Fermi energy of both protons and
neutrons does not vary much in the range of 〈Q̂neck〉 con-
sidered here, in contrast to the macroscopic-microscopic
case.

V. CONCLUSION

We have presented a new method to estimate the un-
certainty of particle number in the fission fragments. It
relies on sampling the probability distribution of finding
N particles in the fragments based solely on the knowl-
edge of a relevant single-particle basis for the fission-
ing nucleus together with occupation probabilities. We
showed that our approach can be used to emulate results
of particle number projection techniques, but also pro-
vides single-particle bases for each subsystem – provided
the latter are sufficiently well separated. We emphasize
that it is applicable both for Slater determinants and
for generalized Slater determinants (= quasiparticle vac-
uum of the HFB theory), and is readily applicable when
the energy states are not degenerate (e.g. when parity
is internally broken). Indeed, when parity is conserved,
single particles or quasiparticles are by definition spread
over the two prefragments, and the splitting of the indi-
vidual particle states might lead to non-orthogonal bases
for each parition. In such cases, the degree of orthogonal-
ity of the basis within each partition should be tested to
know if the Monte-Carlo sampling method is applicable.

We showed that restoring particle number in the pre-
fragments formed at scission produces an odd-even stag-
gering of probability fragmentations. When combined
with full simulations of fission dynamics, this result could
be key to reproducing the experimentally observed odd-
even staggering of the charge distributions. In addition,
restoring particle number could also be used to elimi-
nate one of the free parameters typically associated with
the calculations of fission fragment distributions (folding
with a Gaussian, see [13]).

While we have illustrated our method in the case of the
fission process of heavy atomic nuclei, it is in principle ap-
plicable to a much broader range of problems, such as, for
example, the localization of electrons inside a molecule.
In this case, space partitions would correspond to a small
volume near each nucleus of the molecule, and we could
calculate the number of electrons around each of them.
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