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An outstanding problem in the theory of nuclear fission is to understand the Hamiltonian dynamics
at the scission point. In this work the fissioning nucleus is modeled in self-consistent mean-field
theory as a set of Generator Coordinate (GCM) configurations passing through the scission point. In
contrast to previous methods, the configurations are constructed in the Hartree-Fock approximation
with axially symmetric mean fields and using theK-partition numbers as additional constraints. The
goal of this work is to find paths through the scission point where the overlaps between neighboring
configurations are large. A measure of distance along the path is proposed that is insensitive
to the division of the path into short segments. For most of the tested K-partitions two shape
degrees of freedom are adequate to define smooth paths. However, some of the configurations and
candidate paths have sticking points where there are substantial changes in the many-body wave
function, especially if quasiparticle excitations are present. The excitation energy deposited in
fission fragments arising from thermal excitations in the pre-scission configurations is determined by
tracking orbital occupation numbers along the scission paths. This allows us to assess the validity of
the well-known scission-point statistical model, in which the scission process is assumed to be fully
equilibrated up to the separated fission fragments. The nucleus 236U is taken as a representative
example in the calculations.

PACS numbers:

I. INTRODUCTION

The final step of nuclear fission, namely the scis-
sion into two (or more) distinct fragments, has always
been difficult to understand in fully microscopic models.
In particular, self-consistent mean-field theory has been
very successful in treating many aspects of fission the-
ory but has shed little light on the final scission dynam-
ics. The problem can be seen in typical constructions
of fission paths by the Generator Coordinate Method
(GCM) [1]. This involves a constrained minimization
of the mean-field configurations, treating the expectation
value of each constraining field as a coordinate. Most im-
portant among the coordinates is the elongation of the
system. Configurations along the fission path are step-
wise defined by re-minimizing the previous configuration
at a slightly larger elongation, but more sophisticated
propagation methods are possible [2–4]. At the scission
point these procedures break down: the re-minimization
produces a configuration very different from the previous
one. Efforts to construct a continuous path have often
focused on introducing more shape constraints, but the
difficulties remain [5, 6].

In this work we will also follow the GCM approach,
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but with some differences from previous work. We will
use the Hartree-Fock rather Hartree-Fock-Bogoliubov ap-
proximation to represent the configurations. We assume
that the mean-field potential is axially symmetric, so the
angular momentum of the orbitals about the fission axis
K is conserved. Then the dynamics conserves the number
of particles in orbitals of a given K. The set consisting of
the number of occupied orbitals for each K will be called
theK-partition. The resulting dynamics, preventing par-
ticles from jumping orbitals, is called1 diabatic [10–12].
In Ref. [14] we have explored some of the diabatic con-
figurations in 236U leading to scission. In this work we
study in more detail the changes in the wave functions
and energies going through the scission point.

One may question whether the axially symmetric ba-
sis is adequate for representing configurations along the
fission path. It is accepted wisdom that axial symmetry
is broken at the first fission barrier and triaxial shapes
should be taken into account for computing the barrier
height2. But the computed shapes farther along the fis-
sion path are axially symmetric or nearly so. In particu-
lar, the mean-field shapes we found at the scission point
have minima at axial symmetry.

1 See Refs. [7–9] for examples of its application in other research
fields.

2 See [15] and references cited therein.
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There are several characteristics of a diabatic path
through scission that we will examine. The first is to de-
termine the difficulty in defining a smooth path in terms
of the number of shape constraints need. Our original
hope was that a single elongation constraint would suf-
fice, but that turns out not to be adequate. We also
define and evaluation a measure of the length of the path
through the scission point; long path are more difficult
to traverse and the quantum theory would require more
GCM configurations to describe them. An important
physical question is how the scission dynamics affects the
energies in the final state fragments. The configurations
on the fission path are the lowest energy ones subject to
the constraints, which we call the zero-quasiparticle con-
figurations (ZQP). The excitation energy above the ZQP
configuration can be affected by the scission in two ways.
First, the diabatic dynamics could induce quasiparticle
excitations, thereby increasing the total excitation energy
in the final state. Even if this does not occur, the dia-
batic evolution will change the excitation energy because
the quasiparticle energies will change. Also, the excita-
tion energy sharing between fragments is determined at
the scission point. In Sect. II below we take the example
of the configuration named Glider in Ref. [14] to explain
how we calculate the various properties of interest. An
important question is how much of the behavior seen for
Glider is generic with respect to different K-partitions
or different energy functionals. In Sect. III we analyze
several more K-partitions with two quite different en-
ergy functionals to see what general conclusions can be
made. One particular question is how well statistical ap-
proaches to the scission dynamics can be justified in a
microscopic approach. There has been considerable suc-
cess of the scission-point statistical model [16–18] which
assumes that the excitation energy is fully equilibrated
between the two fragments at some fixed separation be-
tween their surfaces. In particular, Ref. [18] finds good
agreement with experiments sensitive to the energy shar-
ing.

II. GLIDER

We first summarize how the GCM scission configura-
tions were constructed in Ref. [14]. The calculations are
carried out3 with the code HFBaxial [20] using the Gogny
D1S energy functional [21]. The code finds minima in the
Hartree-Fock-Bogoliubov energy functional constrained
by the expectation values of external fields that serve as
generator coordinates. The GCM fields available are the
mass multipole moments4

Q̂L = rLPL(cos θ), (1)

3 See Supplementary Materials [19] for sample wave functions and
the codes used to analyze them.

4 Note that Q2 defined here is one-half the conventional definition.

and fields associated with particle number and its fluc-
tuations in the HFB wave functions. The code assumes
that the single-particle Hamiltonian is axially symmetric.
To find typical scission configurations, we constructed a
fission path by HFB minimizations with only one shape
constraint, namely the mass quadrupole moment Q2.
The minimizations were carried out iteratively starting
from the ground-state configuration. At each cycle in
the iteration, the Q2 was increased by a small amount
using the previous minimum as the starting configura-
tion. For the nucleus 236U, the configuration underwent
a major rearrangement at Q2 ≈ 168 b. At that point
the shape changed abruptly with a near disappearance
of the neck joining the two proto-fragments. To get a
closer view of the wave function dynamics at that point
we determined the dominant Hartree-Fock configuration
in the HFB wave functions. This was carried out by re-
minimization of the HFB configuration with an added
constraint on the number operator N̂2, effectively turn-
ing off the pairing field. Since the single-particle Hamil-
tonian is axially symmetric, the HF configurations can be
characterized by its K-partition as well as by its density
moments.

Among the HF states found, Glider is an intermediate
configuration just at the edge of the scission point; its
K-partition is given in Table I.

K-partition protons neutrons
2K 1 3 5 7 9 11 1 3 5 7 9 11

Glider 22 14 6 3 1 0 31 20 11 6 3 1
A 22 14 7 3 0 0 31 21 12 6 2 0
B 21 13 7 4 1 0 30 20 11 7 3 1
C 21 14 7 3 1 0 30 21 11 6 3 1
C’ 22 14 7 3 0 0 31 21 12 6 2 0

TABLE I: K-partition of the configuration Glider and others
to be discussed in Sec. III. The entries are the number of oc-
cupied orbits of a given K > 0. The total number of particles
of given |K| is twice that.

From that point the HFB fission path jumps abruptly
to a configuration of separated fragments with very dif-
ferent shapes. The HF reduction shows that this is ac-
companied by a major rearrangement of orbital occupan-
cies. However, constraining the K-partition allows one
to track Glider over a wide range of deformations going
into post-scission shapes. Its energy as a function of de-
formation is shown in Fig. 1. One can see a transition
at Q2 = 168 − 170 b where the neck disappears. Inter-
estingly, there are two local minima at Q2 = 168 and
170 b in the HF energy surface when constrained only by
the Q2 moments. The higher energy configurations are
obtained by stepping from smaller to larger Q2 values,
and the lower ones by stepping in the opposite direction.
Beyond these two Q2 points, the iteration gives identi-
cal configurations in both directions. The density distri-
butions of the Q2 = 166 b configuration |166〉 and the
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FIG. 1: Energy of Glider with the D1S energy functional and
constrained by the quadrupole field Q2.
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FIG. 2: Density distributions of the Glider configurations at
two HF minima at the scission point. Top panel: configura-
tion |168p〉; bottom panel: |166〉. Contour lines of the mass
density are spaced by ∆ρ = 0.016 fm−3.

post-scission Q2 = 168 b configuration |168p〉 are shown
in Fig. 2. These configurations have a substantial over-
lap (〈166|168p〉 = 0.29) and there is no obvious change
in structure besides the disappearance of the neck. To
analyze the transition in more detail, we will introduce
an additional GCM coordinate based on a field sensitive
to the number of nucleons in the neck region [22]. The
definition is

N̂neck = exp
(
−(z − zA)2/a2N

)
, (2)

with zA chosen at the point along the fission axis z for
which the density has a minimum, and aN = 1 fm. Its
expectation value as function of Q2 is shown in Fig. 3.
One sees that there is a discontinuous change in Nneck

from ∼ 1.7 to ∼ 0.6 where there are two local minima.
In Table II we show some of the characteristics of the
two solutions. A continuous scission path can be con-
structed by adding N̂neck as a generator coordinate. For
example, we can define a unique intermediate configura-

150 160 170 180 190 200
Q2  (b)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
n
ec

k
  

FIG. 3: Neck parameter Nneck as a function of deformation
for Glider. The circles starting from the upper left are the HF
minima constrained byQ2 stepping from the previous solution
at Q2 − 2 b. The minima starting from the lower right are
similarly constrained stepping from the previous solution at
Q2 + 2 b. There are two distinct minima at Q2 = 168 and
170 b.

|166〉 |168p〉 heavy light
Z 92 92 52 40
N 144 144 84 60

E (MeV) -1775.8 -1776.1
Q2 (b) 166 168 1.5 4.8
Q3 (b3/2) 50.2 51.4 0.06 0.06
Nneck 2.0 0.7

TABLE II: Properties of the configuration Glider at the pre-
scission point Q2 = 166, and the post-scission solution at
Q2 = 168 b. The last two columns report properties of the
daughter nuclei, extracted from the density distribution of the
post-scission configuration at 168 b.

tion |167m〉 by constraining Q2 = 167 b and Nneck = 1.1,
as both |166〉 and |168p〉 converge to it when the wave
functions are re-minimized with the new constraint. The
overlaps of the configurations are given in Table III. In

Overlaps 166 167m 168p
166 1.0 0.79 0.29
167m 0.79 1.0 0.67
168p 0.29 0.67 1.0

TABLE III: Overlaps of Glider configurations near the scis-
sion point.

principle, imposing a neck constraint will affect the mass
split following scission. However, since we only impose
the constraint when the neck is already formed, the ef-
fects will be small. We have checked that imposing the
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neck constraint as we do does not change the mass split
in the generated post-scission configurations.

It will be useful to have a cumulative measure of the
overlaps along the scission path that is insensitive to the
details of the step sizes used to construct the path. This
is achieved by the distance function ζ defined as

ζ =

N−1∑
n=1

(− log |〈n|n+ 1〉|)1/2 . (3)

for diabatic paths consisting of a chain of N configura-
tions |n〉. Applying Eq. 3 to the path between end con-
figurations in Table III, we find ζ = 1.13, 1.12, and 1.13
with 0, 1, and 3 intermediate configurations. Clearly this
satisfies our insensitivity demand.

A. Orbitals

Here we examine properties of the HF orbitals and
how they evolve during the scission. An important goal
is to calculate the changes in excitation energy associ-
ated with the scission and how that energy is distributed
between the final state fragments. Up to now we have
only treated ZQP configurations, but the theory can be
easily extend by allowing partial occupation numbers nα
for orbitals α in the vicinity of the Fermi level. In the
independent-quasiparticle approximation the excitation
energy E∗ above the ZQP value is given by

E∗ =
∑
α

εα
(
nα − n0α

)
(4)

where n0α = 0 or 1 is the occupation number in the ZQP
configuration. In the diabatic approximation, the orbital
energies will change but the occupation factors will be
frozen at the their initial values.

To calculate the sharing of excitation energy between
the two fission fragments, we need to understand the lo-
calization of the orbitals onto one fragment or the other.
A rough indicator the expectation value of the orbital
density along the fission axis,

〈z〉α =

∫
d3r z|φα(~r)|2 (5)

Fig. 4 shows the orbital energies and their z-averaged
positions for the configurations |166〉 and |168p〉, cover-
ing the energy band −12 < ε − εf < 5 Mev. The more
deeply bound orbitals have 〈z〉 close to −7.3 or 9.6 fm,
corresponding to the cm positions of the heavy or light
fragment, respectively. For the post-scission configura-
tion (upper panel of Fig. 4), practically all of the occu-
pied orbitals follow that pattern. The situation is quite
different for the pre-scission configuration shown in the
lower panel. There are 10-20 orbitals that have much
smaller 〈z〉, indicating a significant probability on both
proto-fragments. One would expect that the extent of
the bridging between the two fragments would depend
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FIG. 4: Orbital locations and their energies as a function their
expection value 〈z〉α. Panel (a): |168p〉; panel (b): |166〉. Pro-
ton and neutron orbitals are shown as circles and diamonds,
respectively. The markers are red for K = 1/2 orbitals and
otherwise blue.

strongly on K: orbitals with high K quantum numbers
have small densities near the fission axis and would not
have a substantial presence in the neck region. This is
confirmed by the data shown in the Figure. One can see
that most of the bridge orbitals have K = 1/2.

It is important for the diabatic treatment of the energy
that the evolution of the orbitals can be tracked across
the scission shape changes. This is hardly possible with
the HFB wave functions constrained only by shape. With
the HF wave functions and the two shape constraints Q2

andNneck, the orbitals evolve smoothly and one can iden-
tify the individual orbitals in the two end-point configu-
rations with little ambiguity. This is illustrated in Fig. 5,
showing how the orbital energies and their location vary
as the neck size of the configuration decreases. For most
of the orbitals (marked with ‘A’), the absolute value of
〈z〉 increases as the neck becomes smaller. This is exactly
what we expect: the bridge states straddling both proto-
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fragments but become concentrated on one fragment or
the other when the neck disappears. Orbitals that are
already localized on one of the fragments ( marked with
‘B’) hardly move at all. Interestingly, there are two or-
bitals that don’t fit into the pattern. The orbitals near
the ‘C’ marker move in the opposite direction. Undoubt-
edly, the reason is that there are two orbitals at nearly
the same energy that mix together. When diagonal en-
ergies become degenerate, the mixing becomes maximal.
This seems to occur in a configuration close to |168p〉.
The orbital evolution marked with ‘D’ does not have any
physical explanation. Perhaps the chain of orbitals was
incorrectly assigned. Another feature seen in the bot-
tom part of Fig. 5 is the effect of Coulomb repulsion
when the neck becomes increasingly thinner: the repul-
sion between protons tend to remove proton orbitals off
the neck region while those of neutrons progress more or
less randomly.

B. Excitation energy

In principle there are three contributions to the energy
of the pre-scission configurations. The first is the ZQP
energy depending only on the shape parameters and the
K-partition. The second contribution is the excitation
energy associated with quasiparticle excitations. In this
work we assume that it can be computed from the dif-
ference in the single-particle energies εα of the ZQP con-
figuration. The last contribution, the collective kinetic
energy, will not be treated explicitly in our work here.

We relate the excitation energy of the configuration
to its quasiparticle spectrum using the standard grand
canonical ensemble for occupation numbers nα,

nα =
1

1 + exp ((εα − µ)/T )
. (6)

Here µ is the chemical potential and T plays a role like
temperature. The qualification “plays a role" is needed
because a true temperature is a property of a fully equi-
librated system rather than a system constrained by a
specific K-partition. The T in the above equation is only
used to relate the partial occupation probabilities to the
total excitation energy. It is also important that µ be
adjusted to give the correct average particle number in
the ensemble.

We will calculate total excitation energies with using
single-particle energies from both pre-scission and post-
scission configurations |166〉 and |168p〉. We separate the
orbitals into two sets, H and L depending on the or-
bital’s location as indicated by 〈z〉α. For the pre-scission
configuration, the orbital occupation numbers and single-
particle energies are denoted by a superscript (−) as n−α
and ε−α , and similarly with (+) for the post-scission or-
bitals. The excitation energy of the pre-scission config-
uration is given by Eq. (4) with nα = n−α . We make a
preliminary division between the two nascent fragments
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FIG. 5: K = 1/2 orbital energies and location parameters
〈z〉 as the Glider neck parameter changes. Panels (a) and
(b) show proton and neutron orbitals respectively, for |ε −
εf | < 4 MeV. Red diamonds: initial configuration |166〉; Blue
diamonds: final configuration |168p〉. See text for comments
on the marked orbitals.

from the energies

E∗−S =
∑
α∈S

(
n−α − n0−α

)
ε−α (7)

where S is the set H or L. This changes to

E∗dS =
∑
α∈S

(
n−α − n0+α

)
ε+α (8)

after scission. Here the orbital occupation numbers are
taken from pre-scission occupation factors but the quasi-
particle energies from the post-scission configuration. As
mentioned earlier, Eq. (8) requires tracking individual
orbitals along the scission path. We saw in the last sec-
tion that this can be carried out fairly confidently, at
least for the orbitals near the Fermi energy. More details
of how we link the pre-scission and post-scission orbitals
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are given in the Appendix. For Glider orbitals, our pro-
cedure satisfies the check n0+α = n0−α required for a ZQP
diabatic path.

Table IV shows the energy partition calculated by the
above equations for |166〉 and |168p〉 at initial excitation
energies of 10 and 20 MeV. For each set of orbital ener-
gies, the parameter T in Eq. (4) is chosen to reproduce
a given total E∗. The orbitals are assigned to H or L
sets according to the sign of 〈z〉α. The average number
of quasiparticles is given as Nqp in the Table. The final
column in the table is the fraction of excitation energy
in the heavy fragment,

fH =
E∗H
E∗

. (9)

The first point to notice is that the excitation energy
hardly changes during the diabatic evolution. This is con-
trary to the expectation that diabatic transformations in-
crease the internal energies of the system. Evidently this
is not the case for Glider, which in fact evolves almost
adiabatically within its K-partition constraint. However,
we will see below an example of a diabatic evolution that
explicitly injects excitation energy into the final state
fragments.

Another important observable is the energy sharing
between the post-scission fragments. We see from the
Table that the quasiparticle excitation energy sharing
is about the same in the pre-scission (Ensemble I) and
post-scission (Ensemble II) states. To make contact with
the scission-point statistical model, we also show energy
sharing in an ensemble based entirely on the final state
quasiparticle energy (Ensemble III). Here the occupation
probabilities are computed with Eq. (4) without any
K-dependent chemical potential. This ensemble shows
some slight favoring of the lighter fragment. The com-
puted energy fraction fH is shown in the bottom entries
to the Table. Experimentally, there is a strong favoring
of the lighter fragment at this mass splitting. It is at-
tributed to the proximity of the magic numbers 50 and
132 in the charge and mass numbers of the heavy frag-
ment. Of course, our results should not be compared
directly with experiment because the ZQP energy has
not been included.

III. OTHER EXAMPLES

Glider is perhaps one of hundreds of configurations
that can carry the 236U nucleus past the scission point.
Any general conclusions would require investigating a
representative sample of them. Toward this end, we have
found several other K-partitions that transition from
shapes with distinct necks to separated fragments. Also,
we present calculations with a different energy functional
to get some indication of which qualitative features of the
dynamics are generic or strongly functional-dependent.

Ensemble T Nqp E∗ E∗
H E∗

L fH

I 0.893 5.4 10.0 4.8 5.2 0.48
1.164 8.7 20.0 10.4 9.6 0.52

II 0.896 5.4 10.1 5.4 4.6 0.54
1.164 8.7 20.6 11.8 8.8 0.57

III 0.923 7.5 10.0 4.6 5.4 0.46
1.21 10.7 20.0 9.8 10.2 0.49

TABLE IV: Thermal energy associated with Glider at the
scission point. Ensemble I: Eq. (4) with n−

α , ε
−
α and preserv-

ing K-partition on average; Ensemble II: Eq. (8), diabatic
with occupation numbers from I; Ensemble III: Eq. (4) with
post-scission n+

α , ε
+
α and unrestricted by K-dependent chemi-

cal potentials. There are two rows for each method giving re-
sults for starting energies of 10 and 20 MeV. The third column
is the number of quasiparticles Nqp =

∑
α |nα−n

0
α|. The last

two entries are from a scission-point statistical model. The
parameter T and excitation energies E∗ are in units of MeV.

A. Other K-partitions

We consider here the three additional K-partitions la-
beled A,B,C in Table I. We have two measures of the
dissimilarity of the configurations on either side of the
scission. The first measure is the number of jumps in oc-
cupation numbers for the Q2-constrained path through
the scission region. In the case of Glider, there is a sin-
gle jump down stepping from the left and a correspond-
ing jump up stepping from the right; the two are very
close in the Q2 coordinate. These numbers are compared
with the other configurations in Table V. The number

K-partition Functional Nj Q2 ζ

Glider D1S 1 152-162 2.2
A D1S 2 149 4.1
B D1S 0 136 1.7
C D1S 0 134 2.4

Glider BCPM 2 156-175 2.6
A 1 158 3.1
B 1 141 1.7
C 1 138 2.7

TABLE V: Characteristics of the GCM paths through the
scission point. Nj is the number of jumps in Nneck going
from pre-scission to post-scission shapes in steps of ∆Q2 = 2
b.

of downward jumps range from zero for K-partition B
to two for A. Partition A is an especially difficult case
for constructing a path through the scission point. Its
energy as a function of the single Q2 constraint is shown
in Fig. 6. There are two configuration jumps step-
ping from smaller to larger Q2, and one jump stepping
from the other side, The coexistence of two configura-
tions at the same Q2 extends over a much larger range
(143 < Q2 < 171 b) than for the other cases. Add the
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FIG. 6: Energy of the A configuration with the D1S energy
functional and constrained by the quadrupole field Q2. Black
circles: iteration from the left; Red diamonds: iteration from
the right.
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FIG. 7: Overlap distance ζ from Nneck = 3.0 to 0.7 for the
four configurations Glider,A,B, and C with the D1S energy
functional. The A configuration is distinguished by red lines
and markers.

neck constraint brings the two paths close together but
there remains a small region with two local minima.

Another measure of difficulty in traversing the scission
point is the overlap distance ζ. Table V shows ζ for a
path through the scission point defined by Q2 and the
neck size, with Nneck decreasing from 3.0 to 0.7. For
most cases the distance is insensitive to the choice of
Q2. However, varying the Q2 constraint along the path
may make it somewhat shorter. To get a sense of the
smoothness of the diabatic paths through the scission
point we show ζ in Fig. 7 as a function of the neck
constraint. One can see that partitions B and C are quite
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FIG. 8: Hartree-Fock potential energy surfaces for 236U along
the fission valley constrained by Q2. The energies function-
als are the D1S (black lines) and the BCPM (red lines). The
cusps in the curves mark the positions where the orbital occu-
pancies and K-partitions change. While the Q2 is continuous
by construction, the other moments of the shape distribution
have discontinuities at these points. For example, the Q3 mo-
ment jumps by ∼ 2 b3/2 at Q2 = 96 b where a neutron pair
in a K = 3/2 orbital jumps to a K = 1/2 orbital.

similar to Glider, but A has a major rearrangement at
(Q2, Nneck) ≈ (149 b, 2.1). We have traced this behavior
to the creation of a particle-hole excitation at this point
in the path. A more detailed description is given in the
Appendix.

B. The BCPM functional

We now carry out the same path analysis with the
BCPM functional [23] which has been used in a previous
fission study [24]. The single-particle potential in BCPM
is purely local, giving a more realistic single-particle en-
ergy spectrum than the D1S. Despite the differences be-
tween the D1S and the BCPM, the fission paths along
the valley bottom are very similar (Fig. 8). In particu-
lar, the sequence ofK-partitions is identical starting from
the ground state at Q2 = 14 b to Q2 = 150 b. However,
closer to the scission point the paths are far from iden-
tical. Fig. 9 shows Glider’s Nneck vs. Q2 calculated as
in Fig. 3, but using the BCPM functional. One sees
that the region of ambiguity is larger and that there is a
sudden jump from Nneck = 1.8 to 0.2 that is not present
in the D1S trajectory. Numerical data about the paths
for all the partitions treated in the last section are tabu-
lated in the bottom rows of Table V. The Nj for BCPM
are all different from the D1S values. Nevertheless the
overlap distances through the scission point are within
0.4 units of each other, with the exception of partition
A. Unlike the experience with D1S, the BCPM permits
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FIG. 9: Glider neck size with the BCPM energy functional
and constrained by the quadrupole field Q2. As in Fig. 6,
iterations from the left and right are shown as black circles
and red diamonds, respectively.
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FIG. 10: Overlap distance ζ from Nneck = 3.0 to 0.7 for
the four configurations Glider,A,B, and C calculated with the
BCPM energy functional.

one to construct a path through the scission point with
only two shape constraints. Fig. 10 shows ζ as function
of Nneck as in Fig. 7. The curves look quite similar to
the better-behaved D1S curves.

C. Excitation energies

As a final task to explore the sensitivities to input as-
sumptions we repeat the calculation of excitation energy
production and sharing during the scission. The results
for all configurations and both energy functionals are
shown in Table VI. The pre-scission and post-scission

configurations are chosen at neck sizes Nneck = 3.0 and
0.7, respectively. The first thing to note is that the ef-
fective temperature is higher for the D1S functional than
for the BCPM. This is not unexpected. Roughly speak-
ing, the temperature associated with a given excitation
energy depends quadratically on the effective mass in the
energy functional. The BCPM has an effective mass of
m∗bcpm = 1 while the D1S has an effective mass of about
m∗D1S = 0.67. The average temperatures in the above
Tables are 0.825 MeV and 0.728 MeV for BCPM and the
square of their ratio is 0.7, rather close to m∗D1S/m

∗
BCPM.

Model K-partition T f−
H fdH E∗d

D1S Glider 0.9 0.41 0.57 10.6
A 0.86 0.31 0.35 18.9
B 0.89 0.50 0.47 9.7
C 0.85 0.50 0.39 8.6

BCPM Glider 0.75 0.52 0.53 10.2
A 0.695 0.29 0.39 11.9
B 0.762 0.50 0.55 8.9
C 0.705 0.54 0.50 4.9

TABLE VI: Fraction of excitation energy in the heavy frag-
ment and total final state excitation energy for the diabatic
evolution Details of the path constraints are given in Table
V. The parameter T and excitation energies E∗ are in units
of MeV.

The excitation energies shown in the table and how
they are shared between the fragments gives some idea
of how much the scission-point dynamics affects these im-
portant quantities. Concerning the total excitation en-
ergy, the final diabatic excitation energy can be larger
or smaller than the initial 10 MeV. Excluding partition
A under D1S, the average change is -8%, largely driven
by the 50% decrease in partition C under BCPM. The
corresponding standard deviation of the energies is ±2
MeV. The other question is how the excitation energy
get shared between the two fragments. For the 7 nor-
mal cases in Tables VI, the average fraction to the heavy
fragment fH and its standard deviation is 0.48 ± 0.07.
The experimental fH depends strongly on the mass split-
ting, and it can be reproduced in at least one version of
the scission-point statistical model [18]. There they find
fH ≈ 0.36 at E∗ = 10 MeV; in our Table VI 3 out of the
8 partitions have energy fractions close to that value.

IV. CONCLUSION AND OUTLOOK

At the beginning of this study, we hoped that the con-
straint on K-partitions would be powerful enough to per-
mit construction of paths through the scission point using
a single shape constraint. This condition is met in two of
the configurations, namely the ones that have no jumps
in Table V. But typically two constraints are needed and
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even that is inadequate for partition A under the D1S
energy functional.

This makes it much harder to build a basis of configu-
rations that could be treated with standard many-body
techniques. Still, it is reasonable to assume the scission
paths with short lengths (as measured by the overlap
distance) will dominate in the decays. The more lengthy
paths might be ignored in making first estimates of decay
rates. It is intriguing to note that in the time-dependent
approach to fission dynamics it has been found that there
can be an important bottleneck at the scission point [25].
There it was found that the nucleus evolved smoothly
to the scission point but remained there for a variable
amount of time ranging up to τscission ≈ 1.4 × 104 fm/c.
This implies that the pre-scission configurations might
have widths as small as Γ ≈ ~/τscission ≈ 10 keV. Decay
widths of the order 10 keV and higher would be consis-
tent with the measured autocorrelation function for the
n+235U fission cross section, which does not show any
systematic correlation on lower energy scales that could
be attributed to the scission decay width [26].

As a next step in the present program, we would like to
estimate Hamiltonian matrix elements between configu-
rations along the scission path. In this respect, it will be
quite helpful to be guided by the ζ distances when set-
ting up the GCM space of intermediate configurations.
It should then be possible to calculate decay widths of
configurations near the scission point following the GCM
methodology outlined in Ref. [27]. This could be carried
out with the present computer codes, but it would be de-
sirable to include collective momentum variables among
the generator coordinates. Once one has the tools in
place to calculate decay widths, it is a simple extension
to the calculation of branching ratios by decay widths of
different final states. For example, it would permit a fully
microscopic theory of the distribution of kinetic energy
in the final state (TKE).

In this study we have also used the diabatic paths to
estimate the transport and changes in excitation energy
across the scission point5. This is very relevant to the
scission-point statistical model describing the distribu-
tions in mass yields and excitation energies of fission
fragments. In that model, it is assumed that the scission
itself has no dynamics role. This is belied by partition A
which undergoes a 2-quasiparticle excitation on its scis-
sion path. However, this may be an anomalous case and
it seems that ZQP paths are much more likely. For those
paths, the average decrease is not much compared to all
of the other uncertainties, and the variance is also small
compared to other sources of fluctuation in the excitation
energy. The conclusion is that ignoring diabatic dynam-
ics remains an acceptable approximation in justifying the
scission-point statistical model. However, no firm conclu-

5 See Ref. [28] for another microscopic treatment of excitation
energy transport.

sions can be drawn until a more representative sample of
partitions can be examined.
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V. APPENDIX

The possibility of creating particle-hole excitations
along the fission path, and especially near scission, is
of considerable interest in fission theory [29]. The ex-
citation of intrinsic states in the latter stages of fission
has a direct bearing on the excitation energy imparted
to the fragments at scission, and the energy available for
neutron emission. In this appendix, we discuss in more
detail how we track the orbitals along the fission path by
their overlaps, finding a particle-hole excitations on the
diabatic path.

In a HF formulation of the problem, the orbitals are de-
fined by the matrix W q diagonalizing the single-particle
mean-field Hamiltonian Hq. Here q are the constraints
imposed in the minimization of the energy functional.
The overlaps of orbitals α, α′ at different q is simply the
dot product of the two vectors

〈αq|α′q′〉 =
∑
i

W q∗
i,αW

q′

i,α′ . (10)

As noted in section II, the calculations in this paper are
carried out within the HFB framework, with the HF wave
functions produced by constraining the pairing conden-
sate to be small. In that case, the columns of the W
matrix map into rows of the U matrix if the orbital is
unoccupied and into rows of the V matrix if the orbital
is occupied. Both cases are covered by the formula

〈αq|α′q′〉 =
∑
k

[
Uq∗αkU

q′

α′k + V q∗αkV
q′

α′k

]
(11)

when the occupation numbers are the same. If the occu-
pation number changes, the nonzero amplitudes reside in
the U matrix for one of the orbitals and in the V matrix
for the other. Then the overlap may be computed as

〈αq|α′q′〉 =
∑
k

[
Uq∗αkV

q′

α′k − V
q∗
αkU

q′

α′k

]
. (12)
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FIG. 11: Single-particle energies, relative to the Fermi energy,
plotted as a function of neck size for the two lowest K = 5/2
proton orbitals for the configuration A at Q2 = 149b. Energy
units are MeV.

In practice, the larger in absolute value of Eqs. (11)
and (12) is adopted as the optimal overlap. For each
value of the K quantum number, the optimal overlaps
|〈αq|α′q′〉| are calculated for all possible orbitals α, α′.
The overlaps are then sorted from highest to lowest in
absolute value. Proceeding down the list of sorted over-
laps, the orbitals for the largest overlap are considered
matched and taken out of consideration. The next largest
overlap which does not involve those orbitals already
taken out of consideration gives the next matched pair
of levels. This process is repeated until all orbitals have
been matched.

We now examine in detail the case where we found a
possible particle-hole excitation, namely configuration A
at Q2 = 149 b in table V, calculated with the D1S in-
teraction. The neck size was constrained from Nneck = 3
down to 0.75 in steps of ∆Nneck = 0.25. After calculat-
ing orbital overlaps according to the above procedure, the
first two proton orbitals in the K = 5/2 block were found
to change occupations when going from Nneck = 2.25 to
2. The tracked single-particle energies for those two or-
bitals are plotted as a function of neck size in Fig. 11.
One orbital switches from occupied to unoccupied as the
neck shrinks, while the other switches from unoccupied to
occupied. This swap in occupation probabilities can be
interpreted as a particle-hole excitation between the two
configurations. Interestingly, both orbitals reside largely
in the same fragment, but one has orbital angular mo-
mentum M nearly parallel to the spin angular momen-
tum, K = M + 1/2 while the spin in the other is mostly
antiparallel. The spatial densities of the orbitals in the
HF representation are given by

ρα (z) =
∑
i,k

δKi,Kk
δMi,Mk

W ∗i,αWk,α (13)
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FIG. 12: Single-particle densities for the two K = 5/2 proton
orbitals closest to the Fermi energy for the configuration A at
Q2 = 149 b Dashed red lines: Nneck = 2.00; solid black lines:
Nneck = 2.25.

×
∫
dxdy φ∗i (x, y, z)φk (x, y, z)

where φk(~r) are the basis orbitals. In the HFB repre-
sentation we replace W ∗i,αWk,α in the above equation by
U∗α,iUα,k+V ∗α,iVα,k, similar to our treatment of Eq. (11).

The densities of the two K = 5/2 proton orbitals are
shown in Fig. 12. The upper panel shows the densities
in the orbital just below the Fermi level at Nneck = 2.10
(dashed red line) and Nneck = 2.09 (solid black line).
The lower panel shows the corresponding densities of the
orbital just above the Fermi level. It may be seen that
the orbitals have very different spatial character: one has
a single lobe centered near the middle of the fragment,
while the other is extended over a much larger range of
z and has three lobes.

The tracking results described above has an implicit
dependence on the step size along the scission path. The
diabatic evolution is (somewhat imprecisely) defined as
the tracking with large step sizes as in Fig. 11. For
small step sizes, one would expect an adiabatic evolution.
That is, the orbitals will keep their position as ordered by
their single-particle energies. The level crossings become
avoided crossings, suppressing particle-hole excitations,
except if prevented by symmetries. Indeed, we found this
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to be the case here. The particle-hole transition takes
place near Nneck = 2.1. We examine the orbital matched
between two configurations around that point and sepa-
rated by some ∆Nneck. For ∆Nneck . 0.07, the overlaps
in Eq. (11) are favored leading to a smooth transition
across the critical neck size without p-h excitation. For
∆Nneck & 0.07, however, the overlaps in Eq. (12) are
favored, resulting in a swap of occupation probabilities
and a corresponding p-h excitation. Although the calcu-
lations in this paper are entirely static, the dependence
on ∆Nneck mimics the range of dynamic evolution at scis-
sion, where smaller ∆Nneck values can be identified with

a slow process, and larger ∆Nneck values with a faster
one.

However, there is one aspect of the Landau-Zener
avoided-crossing picture in this example that remains
a puzzle. Namely, the energies of the orbitals should
smoothly pass by each other as a function of the shape
parameter, except for a small region of the avoiding cross-
ing. In fact, we find that the energies remain nearly con-
stant along the scission path. Somehow, the wave func-
tions are exchanged without the energies coming close
together. Clearly, this aspect of the dynamics needs fur-
ther study.
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