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The equation of state (EOS) of infinite nuclear matter with a small proton/neutron fraction is
a crucial input to determine the properties of neutron stars and compare model predictions to as-
tronomical observations. The so-called “symmetry energy” is the part of the EOS accounting for
the difference in the number of neutrons and protons. Numerous experiments have been devised
to assess the symmetry energy and constrain its functional dependence with the nucleon density.
Further constraints follow from a stellar modeling using the EOS to reproduce astronomical obser-
vations such as neutron star masses and radii. The recent detection of gravitational waves emitted
from neutron star mergers and the nucleosynthesis ensuing from these events caused a surge of
interest for such studies. Several types of nuclear reactions have been proposed to study the sym-
metry energy part of the EOS. Some of them consist in determining the neutron skin in nuclei and
exploit its correlation with the slope parameter of the symmetry energy. In this article we explore
a particular set of reactions using high energy (Elab ∼ 1 GeV/nucleon) neutron-rich projectiles.
We explore measurements of all reaction fragments (a) in the same isotopic chain, i.e., only by
removal of neutrons, (b) in all charge-changing channels, and (c) total interaction cross sections.
Using Hartree-Fock-Bogoliubov (HBF) predictions for neutron and proton densities with Skyrme
interactions, we explore the sensitivity of these cross sections with the neutron skin in nuclei.

INTRODUCTION

Neutron and proton distributions within a nucleus are
expected to have slightly different radii. Evidences for
this were accumulated from electron scattering off nuclei
which yields information on their charge distribution [1]
and from hadronic probes, e.g. proton, pion or antipro-
ton scattering [2], which are sensitive to the total nucleon
distribution. The nucleus tends to builds up a small neu-
tron skin as its number of neutrons N increases. This
neutron skin in a nucleus is often quantified in terms of
the difference between its neutron and proton distribu-
tion rms radius, i.e.,

∆rnp =
〈
r2
n

〉1/2 − 〈r2
p

〉1/2
. (1)

Theoretical values for this quantity are deduced from mi-
croscopic models for the nucleus such as Hartree-Fock-
Bogoliubov theories using Skyrme or Gogny interactions
[3]. The neutron skin size predictions range from zero for
light stable nuclei, with N ≈ Z, up to about 0.3 fm for
heavy nuclei with large neutron excess [4–10]. But, us-
ing all experimental techniques presently available, it has
not yet been possible to determine the neutron skin ac-
curately enough in order to discern the best microscopic
theories for proton and neutron distributions [11].

The neutron excess in a nucleus leads to a correspond-
ing neutron pressure larger than that for the proton com-
ponent. Such nucleon pressure is closely related to the
energy per nucleon, ε = E/A, which is a function of the
nuclear density and its nucleon asymmetry. For a given
set of neutron N , proton Z, and mass A = N + Z num-

bers, the energy per nucleon around N = Z is given by

εA(ρ, δ) = εA(ρ, 0) + SA(ρ)δ2 + · · · , (2)

where δ = (N − Z)/A is the asymmetry coefficient
and SA is known as the symmetry energy. In neutron
stars, an “infinite“’ nuclear matter environment, with
A ≈ 1057 → ∞, one usually drops the index A for the
physical quantities above and the asymmetry coefficient
is described in terms of the neutron, proton and total
densities, δ = (ρn − ρp)/ρ. The density dependence of S
around the nuclear matter saturation density ρ0 ' 0.16
fm−3 is obtained from a Taylor expansion,

S(ρ) = J +
 L

3

ρ− ρ0

ρ0
+ · · · , (3)

where J = S(ρ0) is the bulk symmetry energy and L =
3ρ0dS(ρ)/dρ|ρ0 determines its slope. At the saturation
density, ρ0 = 0.16 fm−3, the binding energy per nucleon
is ε(ρ0, 0) ' −16 MeV. There is a strong experimental
evidence that the value of J ≈ 30 MeV is compatible
with theoretical predictions.

The pressure in homogeneous nuclear matter, deter-
mining the equation of state (EOS), is given by p(ρ, δ) =
ρ2dε(ρ, δ)/dρ. From Eqs. (2) and (3), the EOS is there-
fore strongly dependent on the symmetry energy, S. In
fact, for pure neutron matter, δ = 1, and for ρ close to ρ0

one has p = Lρ0/3, emphasizing the importance of the
slope parameter L. The quantity L is poorly determined
experimentally with its value varying within 0 and 150
MeV, theoretically [8, 9]. For finite nuclei, the competi-
tion between the two terms in Equation (3) influences the
thickness of the surface region where the neutron contri-
bution is dominant for N > Z. Therefore, we expect that
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studies of neutron skin in nuclei will reveal the details of
the EOS needed to perform calculations for the structure
of neutron stars, with δ = 1. The EOS of nuclear mat-
ter is also needed to describe the explosion mechanism of
core-collapse supernovae [12–18]

There has been several nuclear physics experiments
and astronomical observations aimed at studying the
EOS of nuclear matter and the role of the symmetry en-
ergy. As a subset of these, the measurement of neutron
skins in nuclei has also attracted large experimental in-
terest [11, 19–21]. The width of the neutron skin can
also be studied with different experimental techniques,
although an accurate measurement is still lacking. Elec-
tromagnetic probes of the nucleus can infer their radial
charge distribution rather well, but the determination of
its matter distribution is still difficult. Recently, experi-
mental efforts were proposed to deduce the neutron skin
from accurate measurements of fragmentation reactions
using inverse kinematic collisions and light targets such
as carbon and proton targets [11]. Inverse kinematics
with radioactive beams allows one to use nuclear pro-
jectiles with varying neutron number along an isotopic
chain. This technique is crucial, because many of the
nuclei along the chain are short-lived requiring their use
as projectiles. For example, one can measure charge-
changing cross sections σ∆Z , i.e., the total cross sections
for the production of fragments with one or multiple pro-
tons removed from the projectile. Another possibility
is to measure neutron-changing cross sections, σ∆N , ac-
counting for all fragments with at least one neutron re-
moved [11].

At high projectile energies, it is often considered a good
assumption that the fragmentation reaction occurs in two
steps. In the first step primary fragments are produced
by scrapping nucleons off the projectile, and a second step
occurs when the energy deposited in the fragments leads
them to undergo a nuclear decay with the emission of γ,
α-particle, nucleon evaporation, etc. This is a pure theo-
retical assumption since there is no accurate experimen-
tal procedure to separate the two steps. Moreover, the
second step is also theoretically difficult to calculate ac-
curately. It is frequently modeled using statistic models,
such as the Hauser-Feshbach theory [22, 23]. This the-
ory needs several input parameters such as level-densities
and barrier transmission probabilities which are still be-
ing under intense scrutiny.

The first step in the reaction, as mentioned above, is
easier to model with help of methods like the Glauber
model for nuclear collisions [23–26]. The Glauber model
is not free of uncertainties either, but it contains a much
smaller number of assumptions and has been used to de-
scribe with success an enormous number of experiments
on high energy hadronic reactions. That is exactly why
a measurement of σ∆N or σ∆Z is advantageous: One
avoids the need for a theoretical description of all pos-
sible nucleon evaporation decays in the reaction second

step. Another possibility is to measure the total inter-
action cross section σI = σ∆N + σ∆Z

defined here as
the cross section for the removal of at least one nucleon,
irrespective if they are protons or neutrons.

The purpose of this work is to study the sensitivity
of σI , σ∆N , and σ∆Z on the neutron skin of nuclei and
consequently on the most uncertain part of the symme-
try energy, namely its slope parameter defined in Eq.
(3). In the next sections we will present a summary of
the assumptions we employ to obtain nucleon removal
cross sections and the contributions from several differ-
ent mechanisms. After that we present our numerical
results followed by our conclusions

THEORETICAL MODELING OF NEUTRON-
AND CHARGE-CHANGING REACTIONS

The Glauber model has been widely adopted in cal-
culations of numerous processes in high energy nuclear
collisions [23–26]. Here we will employ it to calculate the
cross section to produce a primary fragment with charge
and neutron number (ZF , NF ) in the collision of a projec-
tile nucleus with charge and neutron number (ZP , NP )
with a nuclear target. The cross sections are deduced
from [11, 25, 26]

σ(ZF , NF ) =

(
ZP
ZF

)(
NP
NF

)∫
d2b [1− Pp(b)]ZP−ZF

× PZF
p (b) [1− Pn(b)]

NP−NF PNF
n (b), (4)

where b is the impact parameter in the collision. The
binomial coefficients take into account all possible ways
that ZF protons can be removed from the ZP initial pro-
tons of the projectile. A similar counting is made for the
neutrons. Pp (Pn) are the probabilities for the survival of
a single proton (neutron) of the projectile and the factors
containing (1−P ) account for the removal probability of
the other protons (neutrons). Pp and Pn are given by
[25, 26]

Pp(b) =

∫
dzd2sρPp (s, z) exp

[
−σppZT

∫
d2sρTp (b− s, z)

− σpnNT

∫
d2sρTn (b− s, z)

]
, (5)

where the charge and neutron number of the target is de-
noted by (ZT , NT ), and ρp (ρn) is the proton (neutron)
density of projectile and target, normalized to unity. σnp
and σpp are the neutron-proton and proton-proton (with-
out Coulomb) total cross sections. At high energies, it is
assumed that medium effects are small and the nucleon-
nucleon cross sections are taken from a fit of experimental
data of free nucleon scattering at energies in the range
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Elab = 500 to 5000 MeV [27]. Similarly, for Pn we use

Pn(b) =

∫
dzd2sρPn (s, z) exp

[
−σppNT

∫
d2sρTn (b− s, z)

− σpnZT

∫
d2sρTp (b− s, z)

]
. (6)

As proposed in Ref. [11], the neutron skin, and its
evolution with increasing number of neutrons of the pro-
jectiles, can be extracted by the application of the the-
ory described above. The idea is to study measurements
of σ∆N , the cross section to produce all isotopes of the
projectile by removing at least one of its neutrons. It is
obtained by setting ZF = ZP in Eq. (4) and adding from
NF = 1 up to NP . Compact equations can be obtained
by using sums over the binomial coefficients [25], e.g.,

σ∆N =

∫
d2b [Pp(b)]

ZP

[
1− [1− Pn(b)]

NP

]
. (7)

Experimentally, one intends to exploit an isotopic chain,
e.g., tin isotopes, and compare the measurements with
calculations employing neutron and proton density dis-
tributions based on well established microscopic theories
[11]. To date, and for most of the heavy nuclear isotopes,
such theories are often based on mean field methods, e.g.,
Hartree-Fock or relativistic mean-field theories [3].

Similarly to neutron-changing, one could measure
charge-changing, σ∆Z , or total interaction cross sections,
σI , to assess information on the neutron skin of the pro-
jectiles. The charge-changing cross sections, σ∆Z , need
to include the measurement of all elements produced
out of the projectile, plus all their corresponding iso-
topes. The cross sections are much larger because of
the many more possibilities involved, as deduced from
Eq. (4). The interaction cross section is obtained by
summing all possibilities that at least one nucleon is re-
moved, σI =

∑
ZF ,NF

σ(ZF , NF ).
In the literature, the optical limit of the Glauber theory

is often used. In this limit one assumes that P (b) � 1
so that one can replace 1 − P (b) ≈ exp[−P (b)] [25, 28].
Sometimes Pn and Pp are also assumed to the the same.
Evidently, all these approximations are not appropriate
to study the effects of the neutron skin. We will therefore
use expression (4) in our analysis. And, since σ∆Z =
σI − σ∆N , conclusions for σ∆Z can be easily drawn from
the knowledge of the first two cross sections. Similar
studies to access information on the neutron skin in nuclei
using the Glauber theory for high energy scattering have
been published in, e.g., Refs. [29–32].

It is worthwhile to mention that the fragmentation
process described above neglects the possibility that the
projectile remains the same nucleus after a primary in-
teraction with the target, but is excited to a collective
giant resonance. Giant resonances lie above the nucleon
emission threshold. Due to the Coulomb barrier the nu-
cleus will generally emit neutrons, and often just one

neutron. Their excitation will thus contribute to the
neutron-changing cross section, σ∆N , and to the interac-
tion cross section, σI . The excitation of giant resonances
will be minimized if one uses light targets such as carbon
or proton. Experimentally, one can also try to disen-
tangle this process from the nucleon stripping process
described above by comparing the energy dependence of
the cross sections and/or using different targets.

To estimate the cross sections for excitation of giant
resonances (GR) we work within the first-order pertur-
bation theory. We also assume that Coulomb and nuclear
interference is small so that we can separate the Coulomb
and nuclear excitation cross sections. As we will show
later this is not so relevant as the Coulomb cross sections
are much smaller than the multi-nucleon stripping cross
sections defined via Eq. (4). It will also be smaller than
the nuclear induced excitation of GRs for light targets.
The cross sections for Coulomb excitation are largest for
electric dipole (E1) excitations and in particular for the
isovector giant dipole resonance (GDR). It leads over-
whelmingly to neutron decay and can be calculated as
[33, 34]

σ−nC =

∫
dE

E
nE1(E)σGDRγ (E), (8)

where the equivalent photon number is given by

nE1(E) =
2Z2

Tα

π

(
ωc

γv2

)2 ∫
db b

×
[
K2

1 (x) +
1

γ2
K2

0 (x)

]
Λ(b), (9)

with v being the projectile velocity, γ = (1− v2/c2)−1/2

is the Lorentz contraction factor, α is the fine-structure
constant and Kn is the modified Bessel function of nth-
kind, as a function of x = ωb/γv, where the excitation en-
ergy is E = h̄ω. The photo-nuclear cross sections σGDRγ

are calculated by assuming a Lorentzian shape

σGDRγ (E) = σ0
E2Γ2

(E2 − E2
GDR)2 + E2Γ2

, (10)

where EGDR = 31.2A
−1/3
P + 20.6A

−1/6
P reproduces the

mass dependence of the centroid of the experimentally
measured GDR. It is a mixture of the excitation en-
ergy mass dependence predicted by Goldhaber-Teller and
Steinwedel-Jensen macroscopic models [35, 36]. The pa-
rameter σ0 is chosen to reproduce the Thomas-Reiche-
Kuhn (TRK) sum rule∫

dEσGDRγ (E) = 60
NPZP
AP

MeV.mb, (11)

which is obtained from a nearly model independent ac-
count of the full nuclear response to a dipole operator
[37].
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The width Γ of the GDR is a more complicated issue.
It is strongly dependent on the shell structure of the nu-
clei. The experimental systematics yield values for the
width ranging from 4− 5 MeV for closed shell nuclei up
to 8 MeV for nuclei situated between closed shells. Since
most nuclei considered in this article are not amenable
to experimental investigations using photo nuclear reac-
tions, a possibility is to adopt a microscopic theoretical
model such as the random phase approximation (RPA)
[38]. Instead, we will use here a simple phenomenolog-
ical parameterization of the GDR width in the form,
ΓGDR = 2.51 × 10−2E1.91

GDR MeV, with EGDR in units
of MeV [39].

The profile function Λ in Eq. (9) is given by

Λ(b) = exp

[
−σNN (ENN )

∫
dz

∫
d3rρP (r)ρT (|R− r|)

]
,

(12)
where R = (b, z), with z being the coordinate along
the projectile velocity and b the coordinate perpendicu-
lar to it. ρi (i = P, T ) are the total nucleon densities
of the projectile and target, assumed to be spherical.
σNN is the isospin averaged nucleon-nucleon cross sec-
tion, parametrized as in Ref. [27].

The contribution of the nuclear interaction to the ex-
citation of giant resonances followed by neutron emission
can be obtained employing a first-order (eikonal-DWBA)
reduction of the coupled-channels treatment discussed in
Ref. [40]. At high energies only the nuclear excitations of
the IVGDR, L = 1, and of the isoscalar giant quadrupole
resonance (ISGQR), L = 2, are of relevance. The cross
sections are obtained by integrating the inelastic scatter-
ing amplitude using eikonal scattering waves [25]

fL(θ) =
ik

2πh̄v

∫
eiq·R+iχ(b)UL(R)d2bdz, (13)

where χ is the eikonal phase, k the projectile momentum
and q is the momentum transfer in the reaction. The
potential for the excitation of the L-type resonance is
often based on the deformed potential model [41],

UL(R) = − βL√
2L+ 1

YL0(R̂)
dUopt
dR

, (14)

where βL is the deformation parameter and Uopt is the
optical potential. The deformation parameters for the
IVGDR and the ISGQR are deduced from a full exhaus-
tion of the sum-rules for dipole and quadrupole operators.
They are [41]

β1 =

(
πh̄2

2mN

AP
NPZPEGDR

)1/2
3∆rnp
2R0

, (15)

and

β2 =

(
20πh̄2

3mN

1

APEGQR

)1/2

, (16)

where mN is the nucleon mass, ∆rnp is the neutron skin
and R0 the mean nuclear radius. The centroid of the
ISGQR is taken as EISGQR = 62/A

1/3
P MeV.

The differential cross section is given by dσL/dΩ =
|fL(θ)|2. Since in high-energy collisions q ' k sin θ, where
θ is the scattering angle, the solid scattering angle is given
by dΩ = d2q/k2 and the integration over angles can be
done trivially, yielding a delta-function. The total cross
section for multipolarity L becomes

σL =

∫
d2bΛ(b)|uL(b)|2, (17)

where Λ(b) = exp {2Im[χ(b)]} is the same profile function
as in Eq. (12) and

uL =
1

h̄v

∫
UL(R)dz (18)

is a dimensionless transition potential. We have also
performed calculations using the coupled-channels code
DWEIKO [40] assuming only two states (IVGDR and
ISGQR) located at their centroid energies and carrying
the full sum rule strengths. The results obtained are
nearly identical with those using the formulation pre-
sented above.

One of the main sources of uncertainty in the calcula-
tion of nuclear excitation stems from the optical poten-
tial. There are no optical potentials extracted from ex-
perimental systematics to describe nucleus-nucleus scat-
tering available for the isotopic chains and the high ener-
gies we consider here. Therefore, we resort to the “tρρ”
optical potential, as described in Ref. [40]. It is also
worthwhile noticing that the nuclear excitation of the
IVGDR is directly correlated with the neutron skin, as is
explicitly shown in Eq. (15). However, as we will show
later, the cross sections for the excitation of the ISGQR
are much larger and this correlation is not very useful
to explore in this context. It is also difficult from mea-
surements of the neutron removal reactions at relativistic
energies to identify which type of resonance contributed
to the cross section.

Another sort of reaction mechanism can contribute
to the charge-changing and neutron-changing reactions,
namely, charge-exchange reactions. At high projectile
energies, the isospin-dependent part of the NN interac-
tion induces a change by one or more units of charge in
the projectile accompanied by the opposite sign change
in the target. Microscopically, this can be viewed as the
exchange of a charged pion, or a charged rho. The cross
sections for this process are rather small, no more than
a few millibarns and will not be considered here [25].

PROTON AND NEUTRON DENSITIES AND
THE EOS OF NUCLEAR MATTER

Numerous theoretical methods exist to obtain nucleon
density distribution in nuclei. We will only consider
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Skyrme interaction models together with the Hartree-
Fock-Bogoliubov (HFB) theory. For a review, see, e.g.,
[3]. The Skyrme interactions are contact interactions
with several terms accounting for coordinate, spin and
isospin dependence. With them, rather simple numerical
procedures have been developed to calculate the bind-
ing energy of nuclei and several other nuclear properties.
As a byproduct, the energy density functional E[ρ] is
obtained. From this density dependence of the nuclear
energy one can try to infer many of the properties of
neutron stars [12].

We have considered a sufficiently large collection of
Skyrme interactions to test the dependence of the cross
sections on the neutron skin of nuclei. But in contrast to
many previous studies, there is no intent here to check if
one interaction does a better job than another. To each
of the interactions we added a mixed pairing interaction
of the form

v(r, r′) = v0

(
1− 1

2

ρ

ρ0

)
δ(r− r′), (19)

where ρ(r) = ρn(r) + ρp(r) is the isoscalar local density,
the pairing strength adopted is the same for neutrons and
protons, v0 = −131.6 MeV, and the saturation density is
fixed at ρ0 = 0.16 fm−3. Our calculations were performed
with the code HFBTO [42]. The zero range character
of the pairing force requires the introduction of a cutoff
energy in the quasiparticle space, and we have chosen
Ecut = 60 MeV.

We have used parameters for the Skyrme interactions
available on the CompOSE (Compstar) repository at
https://compose.obspm.fr/. We have included the fol-
lowing Skyrme interactions: SIII [44], SKA and SKB [45],
SKM* [46], SKP [47], UNE0 and UNE1 [43], SKMP [48],
SKI2, SKI3, SKI4 and SKI5 [49], SLY230A [50], SLY4,
SLY5, SLY6, and SLY7 [51], SKX [52], SKO [53], SK255
and SK272 [54], HFB9 [55] and SKXS20 [4]. The calcu-
lations for the ENE0 and UNE1 interactions were done
with the modified version of the code HFBTO code [43].

The large number of Skyrme interactions employed
here also leads to a large variation of nuclear matter prop-
erties. This is summarized for a few of these interactions
in Table I. The incompressibility of nuclear matter is
defined as

K0 = 9ρ2
0

∂2E/A

∂ρ2

∣∣∣∣
ρ0

, (20)

and J and L have been introduced in Eq. (3). It is clear
that the least constrained EOS property is the slope of
the symmetry energy, L. Because these interactions have
been fitted to reproduce several nuclear properties, it is
very hard to judge which one would be better suited to
study neutron star properties.

In Figure 1 we plot the neutron skin, ∆rnp calculated
with the 23 Skyrme interactions listed above. Notice

Table I: Nuclear matter properties at saturation density as-
sociated with different Skyrme interactions. All quantities in
MeV.

Skyrme K0 J L Skyrme K0 J L

SIII 355. 28.2 9.91 SLY5 230. 32.0 48.2

SKP 201. 30.0 19.7 SKXS20 202. 35.5 67.1

SKX 271. 31.1 33.2 SKO 223. 31.9 79.1

HFB9 231. 30.0 39.9 SKI5 255. 36.6 129.

50 60 70 80 90
N

0.1

0.0

0.1

0.2

0.3

0.4

∆
r n

p
 [

fm
]

Sn

Figure 1: (color online) The points represent neutrons skin,
∆rnp calculated for tin isotopes with the 23 Skyrme interac-
tions listed in the text. Each one of the lines correspond to
one of the interactions and are also guide to the eyes.

that the neutron skins obtained with different Skyrme
interactions tend to diverge from each other as the neu-
tron number increases. A similar trend is observed for Ni
and Pb isotopes. For the stable tin isotopes with mass
A = 116, 118, 120, the neutron skin varies in the range
0.1− 0.3 fm depending on the Skyrme model adopted.

Despite these different isotopic dependencies, a lin-
ear correlation between L and ∆rnp has been found for
208Pb using both relativistic and non-relativistic mean
field models [8, 56–58]. This correlation is therefore use-
ful to plan studies of neutron skins in nuclei and extract
the value of the slope parameter L. This is again ex-
plored in Figure 2, where the neutrons skin, ∆rnp, calcu-
lated with the Skyrme interactions listed above are dis-
played as function of the value of the slope parameter L
predicted by each one of them. The lines are guides to
the eyes. Each curve corresponds to a different value of
the neutron number. One notices that, except for a few
kinks, there is indeed a nearly linear relation between L
and ∆rnp even for different isotopes of lead. If the in-
teractions predicting L ∼ 45 MeV values are neglected,
a better linear correlation would become evident. How-
ever, we will not use this sort of argument to discriminate
against any of the interactions and we will keep all listed
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Figure 2: (color online) Neutrons skin, ∆rnp calculated with
the Skyrme interactions listed in the text displayed as func-
tion of the value of the slope parameter L predicted by each
one of them. The lines are guides to the eyes. Each curve
corresponds to a different lead isotope with neutron number
N .

interactions in our numerical calculations of the fragmen-
tation cross sections.

NUMERICAL RESULTS

Coulomb excitation followed by neutron emission

We now discuss what could be considered as “small”
corrections to the nucleon removal cross sections σ∆N

and σI . We start with the Coulomb excitation of giant
resonances followed by neutron emission. In Figure 3 we
show our results for the cross sections for the excitation
of the IVGDR in nickel, tin and lead projectiles incident
on carbon targets at 1 GeV/nucleon, as a function of the
asymmetry coefficient δ = (N − Z)/A of the projectile.
The Coulomb cross section has little dependence on the
neutron skin, except for the cutoff at small impact param-
eters through the function Λ(b) appearing in Eq. (12).
But the cross section depends strongly on the asymmetry
coefficient δ, mainly because of the photo nuclear cross
section isotopic dependence, a legacy of Eq. (11). Also
important is the mass dependence of the centroid energy
of the resonance because the virtual photon numbers nE1

vary strongly with the excitation energy.

As seen from Fig. 3 the cross sections increase almost
linearly with (N−Z)/A. For nickel and tin isotopes they
are very small and can be neglected compared to the neu-
tron changing and interaction cross sections, as we will
show later. However, for lead projectiles the cross sec-
tions are not so small if one uses carbon targets. Since
the Coulomb cross sections are nearly proportional to
the square of the charge of the target, for proton targets
the cross sections are smaller than for carbon targets

0.2 0.1 0.0 0.1 0.2 0.3
(N-Z)/A

0
5

10
15
20
25
30
35
40
45

σ
C
  
[m

b
]

Ni

Sn

Pb

Figure 3: (color online) Cross sections in millibarns for the
Coulomb excitation of the IVGDR in nickel, tin and lead pro-
jectiles incident on carbon targets at 1 GeV/nucleon, as a
function of the asymmetry coefficient δ = (N − Z)/A of the
projectile.

by about a factor 30 − 40 and are therefore negligible.
Hence, by comparing experimental results with carbon
and proton targets one can easily eliminate the Coulomb
cross sections contributions to the fragmentation cross
sections. More elaborate theories for Coulomb excitation
followed by neutron evaporation can also be employed
if one wants to use a light target such as carbon. The
comparison with experimental data has been shown to
be nearly perfect [34]. There exists a large variation of
the Coulomb cross sections with bombarding energy, as
shown in Ref. [33] which also helps disentangling their
contribution from the other processes.

Nuclear excitation followed by neutron emission

In Figure 4 we plot the cross sections for the nuclear
excitation of the ISGQR (GQR) and IVGDR (GDR) in
nickel, tin and lead projectiles incident on carbon tar-
gets at 1 GeV/nucleon, as a function of the asymmetry
coefficient δ = (N − Z)/A of the projectile. The upper
curves in each panel are for the excitation of ISGQR and
the lower ones for the excitation of IVGDR multiplied by
20 for visualization purposes. For example, with 208Pb
projectiles the cross sections are 43.27 mb and 1.11 mb,
for the ISGQR and the IVGDR, respectively.

One notices that the IVGDR cross sections are basi-
cally zero for N = Z, where one expects a negligible neu-
tron skin. Nickel exhibits a non-negligible proton skin
for light isotopes and as a consequence one sees a revers-
ing trend of the IVGDR excitation cross section around
δ = 0. However, the cross sections for the IVGDR exci-
tation are at least a factor 20 smaller than those for the
ISGQR and therefore negligible for the purposes of ex-
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tracting the neutron skin at these bombarding energies.
However, this method has been used at lower energies,
around and below 100 MeV/nucleon, by using differen-
tial cross sections which are able to discern markedly be-
tween the L = 1 and L = 2 angular distributions and the
energy dependence of the cross sections [59].

The ISGQR cross sections decrease along an isotopic
chain as the neutron numbers increase. This can be un-
derstood as due to the decrease of the deformation pa-
rameter β2 with the increase of the ISGQR centroid en-
ergy with mass number, as inferred from Eq. (16).

There are much larger uncertainties in the theoretical
treatment of nuclear excitation in high energy collisions
than the Coulomb excitation case described in the pre-
vious section. The Coulomb interaction is well known
while the optical potentials entering the deformed model
nuclear interaction of Eq. (14) are not. For the results
presented in Fig. 4 we have used the “t-ρρ” interaction
[40, 60]. If instead we use the M3Y interaction [61] with
an equal ratio of real to imaginary part, we get cross sec-
tions 50% smaller, whereas if we use the JLM interaction
[62] in the same way, the nuclear excitation cross sections
become 30%-40% larger. Therefore, at least a factor of
2 uncertainty in the calculations arise due to the nuclear
excitation. And there is not much one can do to im-
prove this scenario with the state of the art knowledge
of nuclear excitation in high energy collisions. In fact,
at relativistic energy collisions such as 1 GeV/nucleon,
one needs a four-potential to accommodate Lorentz co-
variance. For a discussion, see Ref. [63]. The deformed
potential model, as well as the Tassie model [64] often
used to describe direct nuclear reactions should be con-
sidered as rough approximations. The uncertainties aris-
ing from nuclear excitation are difficult to quantify unless
one would have a much better theoretical description of
nuclear excitation followed by neutron emission in high
energy collisions. Such a description lacks in the litera-
ture.

It is also worthwhile to mention that for proton tar-
gets the deformed potential model yields cross sections
that are not much different than the ones displayed in
Fig. 4. It is difficult to use different targets to change
appreciably the nuclear excitation of giant resonances,
although a noticeable change of the Coulomb excitation
might occur. Sweeping the bombarding energies from
100 MeV/nucleon to 1 GeV/nucleon does not help be-
cause the nuclear excitation cross sections remain nearly
unchanged. We thus expect that approximately 50 mb
to 100 mb of cross sections, mainly in the one-neutron
decay channel, is hard to control systematically without
any other information than the angle integrated cross
sections.

The Coulomb and nuclear excitation of giant reso-
nances followed by neutron emission proceeds through
the formation of a compound nucleus, which tend to
decay nearly isotropically. Therefore, despite the non-
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Figure 4: (color online) Cross sections for the nuclear exci-
tation of the ISGQR (GQR) and IVGDR (GDR) in nickel,
tin and lead projectiles incident on carbon targets at 1
GeV/nucleon, as a function of the asymmetry coefficient
(N − Z)/A of the projectile. The upper curves in each panel
are for the excitation of ISGQR and the lower ones for the
excitation of IVGDR multiplied by 20 for visualization pur-
poses.

negligible magnitude of the excitation cross sections, one
can separate fragments arising from excitation followed
by decay from those by direct nucleon removal by de-
vising an experiment setup with detection of fragments
moving close to the beam direction. As discussed in Ref.
[11], simulations have shown that the nuclear excitation
events can be reliably separated using the angular distri-
bution of fragments.

Neutron changing and interaction cross sections

In Figure 5 we show the neutron-changing cross sec-
tions in barns, according to Eq. (7), for nickel (upper
panel) and lead (lower panel) isotopes and the Skyrme in-
teractions adopted, as a function of the neutron number.
For nickel we observe a very small dependence on the neu-
tron number with the choice of the Skyrme interaction.
Since nickel is not much larger in size than the carbon
target, the nuclear size variation along the isotopic chain
with the Skyrme interaction are not large enough to yield
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Figure 5: (color online) Neutron-changing cross sections in
barns according to Eq. (7), for nickel (upper panel) and lead
(lower panel) isotopes and the 23 Skyrme interactions men-
tioned in the text, as a function of the neutron number. The
lines are guide to the eyes and each line represents the pre-
dictions of one of the Skyrme interactions along an isotopic
chain.

a sizable variation of the cross sections. For the heaviest
stable nickel isotope, 64Ni, the cross sections vary within
the range 337 − 350 mb, which is only a 4% sensitivity
to the choice of the interaction. For a heavy projectile
such as lead, the cross sections show a very interesting
dependence on the neutron number. First, for every sin-
gle Skyrme interaction the cross sections display a linear
dependence with the neutron number. This is a robust
property that can be employed for predictive purposes.
Second, for the heaviest stable lead isotope, 208Pb, the
cross sections vary within the range 537−576 mb, which
is nearly a 7% dispersion with the choice of the inter-
action. Therefore, it seems that neutron-changing cross
sections can constrain the several Skyrme models appre-
ciably. Moreover, the linear relation between σ∆N and
the neutron number is worthwhile to explore in experi-
mental analysis.

It is justifiable to plot the same data displayed in Fig-
ure 5 but as a function of the neutron skin in the dif-
ferent isotopes. This is shown in Figure 6. Now a row
of vertical points do not correspond to the same isotope,
but each curve along an isotopic chain corresponds to a
single Skyrme interaction. Since ∆rnp and the neutron
number are correlated (see Figure 1), there is no addi-
tional information compared to Figure 5. But one can
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Figure 6: (color online) Same cross sections as in Figure (5)
but as a function of the neutron skin ∆rnp in different iso-
topes and for different Skyrme interactions. The lines are
guide to the eyes and represent the predictions of one Skyrme
interaction for the neutron skin along an isotopic chain.

use this relation to infer the accuracy needed to extract
a given ∆rnp. For a neutron skin value of 0.15 fm in
Ni and Pb isotopes, the cross sections vary within the
range 0.32−0.42 b and 0.47−0.52 b, respectively. These
variations correspond to sensitivities of the neutron skin
with Skyrme interactions within 20% for nickel and 10%
for lead isotopes. Graphs of the sort of Figure 6 are only
useful if a large number of projectile isotopes are used
in an experimental campaign. As we mentioned above,
the graph is a combination of theoretical predictions in
Figures 1 and 5.

To emphasize the difference between the cross sections
displayed as function of the neutron number and those
displayed as function of the neutron skin, we show in
Fig. 7 the total interaction cross sections in barns for tin
isotopes incident on carbon targets at 1 GeV/nucleon.
Calculations are done according to Eq. (4), and for all
Skyrme interactions mentioned earlier. The upper panel
shows results as a function of the neutron number N ,
whereas the lower panel display the same data as a func-
tion of the neutron skin ∆rnp. It is noticeable that the
cross sections vary negligibly with the Skyrme interaction
for a given isotope. This happens because, for a given
isotope, all interactions yield nearly the same total mat-
ter density. On the other hand, similar values for neutron
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Figure 7: (color online) Total interaction cross sections
in barns for tin isotopes incident on carbon targets at 1
GeV/nucleon, according to Eq. (4), and several Skyrme in-
teractions. The upper panel shows results as a function of
the neutron number N , whereas the lower panel displays the
same data as a function of the neutron skin ∆rnp.

skins are obtained for different isotopes with two or more
distinct Skyrme interactions. This is evident in the lower
panel of Figure 7 where we see a much larger variation
of σI with ∆rnp. Therefore, a combination of measure-
ments of neutron-changing and interaction cross sections
can be employed to compare to theoretical microscopic
calculations of the nuclear densities. An experimental
setup aiming at a 5% accuracy in these cross sections
might be enough to constrain microscopic predictions for
the neutron skins.

The major conclusions drawn in this article will not
change for different projectile bombarding energies and
therefore we do not exploit calculations for different bom-
barding energies. This feature has been discussed in Ref.
[11]. A systematic study of neutron-changing cross sec-
tions as a function of the bombarding energy might help
in the experimental analysis due to the energy depen-
dence of the nucleon-nucleon (NN) cross section, a crucial
input in the calculations entering Eq. (4). The NN cross
section has a pronounced dip at 200 MeV and therefore a
mapping of the cross sections for several bombarding en-
ergies from 100 MeV/nucleon and up is worth to explore
experimentally.

As a final remark, we show in Fig. 8 the ratio be-
tween the neutron changing cross sections, σ∆N , at 1
GeV/nucleon for tin isotopes obtained with carbon and
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Figure 8: (color online) Upper panel: Ratio between the neu-
tron changing cross sections, σ∆N , at 1 GeV/nucleon for tin
isotopes obtained with carbon and and with proton targets, as
a function of the neutron skin, ∆rnp. The set of points along
a curve correspond to one of the Skyrme interactions used.
Lower panel: The same ratio, but for the total interaction
cross sections, σI .

and with proton targets (upper panel) as a function of the
neutron skin, ∆rnp. In the lower panel we show the same
ratio, but for the total interaction cross sections, σI . It is
clear from the figure that the cross sections obtained with
proton targets have a steeper increase with the neutron
skin than the cross sections obtained with carbon tar-
gets. This is more visible in the ratio of interaction cross
sections. Therefore, using carbon and proton targets will
allow for a better discrimination of the various Skyrme
interactions that could reproduce the experimental data.
The measurement of both neutron changing and total
interaction cross sections will also help in these studies.

CONCLUSIONS

In summary, in this work we have studied fragmenta-
tion reactions as a means to test several microscopic mod-
els and their predictions of the neutron-skin thickness
in nuclei far from stability. By studying total neutron-
changing cross sections one is free from uncertainties of
statistical models for compound nucleus decay. On the
other hand, Coulomb and nuclear excitation can also in-
fluence both total neutron-changing cross sections as well
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as total interaction cross sections.

We have shown that the nuclear excitation process fol-
lowed by neutron emission can add about 50 − 100 mb
to the neutron-changing cross sections. Only a dedicated
experimental setup covering angular distributions of the
fragments will be able to eliminate this cross section im-
purity. We have also shown that Coulomb excitation fol-
lowed by neutron emission is either negligible or strongly
energy dependent, and can be controlled by varying ex-
perimental conditions.

Different microscopic models will lead to large varia-
tions of the neutron skin within an isotopic chain, enough
for allowing a discrimination of the best theories to ex-
plain the experimental data. This work shows that frag-
mentation reactions with neutron-rich projectiles at high
energies can help us understand the role of the symmetry
energy in the equation of state of nuclear matter and its
extrapolation to neutron-rich matter needed to explain
the structure of neutron stars.
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