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Abstract

In this paper we present a method for efficiently including the effects of off-diagonal local rest

frame momentum anisotropies in leading-order anisotropic hydrodynamics. The method relies

on diagonalization of the space-like block of the anisotropy tensor and allows one to reduce the

necessary moments of the distribution function in the off-diagonal case to a linear combination

of diagonal-anisotropy integrals. Once reduced to diagonal-anisotropy integrals, the results can

be computed efficiently using techniques described previously in the literature. We present a

general framework for how to accomplish this and provide examples for off-diagonal anisotropy

moments entering into the energy-momentum tensor and viscous update equations which emerge

when performing anisotropic pressure matching.

PACS numbers: 12.38.Mh, 24.10.Nz, 25.75.Ld, 47.75.+f

Keywords: Quark-gluon plasma, Relativistic heavy-ion collisions, Anisotropic hydrodynamics, Equation of

state, Boltzmann equation, Off-diagonal anisotropy
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I. INTRODUCTION

Ultra-relativistic heavy ion collision (URHIC) experiments, e.g. RHIC at BNL and LHC

at CERN, aim to study the dynamics and properties of matter at extremely high-energy

density. In these experiments, matter is heated to temperatures exceeding the QCD pseudo-

critical temperature, Tpc ' 155 MeV, using ultra-relativistic collisions among heavy nuclei,

protons, deuterons, etc. The strongly interacting droplet of matter produced during high-

energy and high-multiplicity URHICs is called the quark-gluon plasma (QGP). In high-

multiplicity events, the QGP demonstrates strong collective behavior during evolution from

hydrodynamization (τ ∼ 1 fm/c) to hadronic freeze out (τ ∼ 10 fm/c). During this time

period it has been found that relativistic fluid dynamics formalisms can effectively describe

the evolution of the system and one finds that information about initial state geometry

of the target (average eccentricity and fluctuations) is reflected in final state observables,

e.g. the azimuthal dependence of hadron production. In other words, one can track the

correlations between the eccentricity of the initial state’s geometry and the flow harmonics

observed in the final state hadron spectra using dissipative hydrodynamics. The success of

relativistic dissipative hydrodynamics [1–4] has inspired theoreticians to make the underlying

formalisms more complete and robust with respect to large deviations from isotropic thermal

equilibrium using standard fixed-order viscous hydrodynamics (vHydro) treatments [5–32]

and resummed anisotropic hydrodynamics (aHydro) treatments [4, 33–54].

The introduction of the aHydro formalism was driven by the fact that, due to the strong

early-stage longitudinal expansion of the QGP, one finds large momentum-space anisotropy

in the local rest frame (LRF) of the QGP which persists for many fm/c. The magnitude

of the momentum-space anisotropy has cast some doubt on the quantitative accuracy of

standard vHydro which assumes that one can linearize around isotropic equilibrium. aHydro

is a non-equilibrium hydrodynamics model which takes into account the strong momentum-

space anisotropy of the QGP at leading order and in doing so resums an infinite number of

terms in inverse Reynolds number [55]. In contrast to standard vHydro, aHydro is based on

Taylor expansion about an anisotropic distribution function instead of an isotropic one. This

allows one to capture the dominant anisotropic contributions to the distribution function in

the leading order term, thereby guaranteeing positivity of the one-particle distribution at

all space-time points at leading-order. aHydro and vHydro have been tested against exact
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solutions of the Boltzmann equation for systems subject to Bjorken [55–60] and Gubser

flows [61–64]. In all cases, it was found that aHydro provided the best approximation to the

exact solutions for both hydrodynamic and non-hydrodynamic moments of the distribution

function [60].

This provided motivation to compare the aHydro framework with experimental results.

Despite the success of these early comparisons, in all phenomenological applications of aHy-

dro to date, leading-order aHydro codes have been implemented using an anisotropy tensor

which possesses only diagonal (elliptical) anisotropies (see Ref. [4] for a recent review). This

was done mainly because of the difficulty of efficiently evaluating the necessary moment in-

tegrals in the presence of off-diagonal anisotropies ξij with i 6= j. However, to be complete,

one must also include the possibility of off-diagonal leading-order anisotropies. Near equi-

librium, this is equivalent to including off-diagonal components in the LRF shear viscous

tensor πij.

In this paper, we present a technique that can be used to efficiently include non-vanishing

ξij. This is done by a change of variables in the generic moment integrals which diagonalizes

the anisotropy tensor. Once cast into diagonal form, a previously developed technique for

the efficient application of diagonal moment integrals can be used to compute the neces-

sary off-diagonal moment integrals (see Appendix B of Ref. [53]). We present the general

method of diagonalization and provide some concrete examples for the application to aHydro

frameworks which use the so-called anisotropic-pressure- or Tinti-matching [43, 48].

CONVENTIONS AND NOTATION

The Minkowski metric tensor is taken to be “mostly minus”, i.e. gµν = diag(+,−,−,−).

The vector uµ is the flow velocity which satisfies normalization condition uµu
µ = 1. The

transverse projection operator ∆µν ≡ gµν−uµuν is used to project four-vectors and/or

tensors into the space orthogonal to uµ. Parentheses and square brackets on indices de-

note symmetrization and anti-symmetrization, respectively, i.e. A(µν) ≡ 1
2

(Aµν+Aνµ) and

A[µν] ≡ 1
2

(Aµν−Aνµ). Angle brackets on indices indicate projection with a four-index trans-

verse projector, A〈µν〉 ≡ ∆µν
αβA

αβ, where ∆µν
αβ ≡ ∆

(µ
α ∆

ν)
β −∆µν∆αβ/3 projects out the traceless

and uµ-transverse components of a rank-two tensor. The Lorentz-invariant momentum-space

integration measure is indicated as dP = Ñd3p/E, with Ñ = Ndof/(2π)3 where Ndof is the
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number of degrees of freedom.

In order to write the equations of motion in a manifestly Lorentz-covariant manner it

is useful to introduce the LRF basis vectors, as uµLRF = (1,0) and Xµ
i,LRF = (0, δµi ) with

i ∈ {1, 2, 3}. By applying a sequence of Lorentz transformations, one can construct the lab

frame basis vectors, i.e. uµ and Xµ
i with i ∈ {1, 2, 3}, where the dynamical equations are

solved and particle spectra are computed [35, 37]. It is also useful to define the transverse

projection operator in terms of the space-like basis vectors, i.e. ∆µν = −
∑

iX
µ
i X

ν
i . Finally,

note that the Latin indices sum over space-like indices (components of three-vectors) and

Greek indices sum over components of four-vectors.

II. LEADING-ORDER ANISOTROPIC HYDRODYNAMICS

In leading-order aHydro, the one-particle distribution function is parametrized by an

anisotropy tensor which results in the deformation of the argument of an isotropic distribu-

tion function into an anisotropic one [37, 41]

f ga (x, p) = fiso

(
1

λ

√
pµΞµνpν

)
, (1)

where λ has dimensions of energy and can be identified with temperature only in the isotropic

equilibrium limit. The superscript ‘g’ above denotes that this form of distribution function

is general, i.e. is not limited to any specific frame. In practice, fiso can be a Bose-Einstein,

Fermi-Dirac, or Maxwell-Boltzmann distribution depending on particle statistics and/or

energy. In the non-conformal (massive) case, the rank-2 tensor Ξµν specifying the shape of

the distribution in momentum space is defined as [37, 41]

Ξµν = uµuν + ξµν − Φ∆µν , (2)

where ξµν denotes a symmetric traceless anisotropy tensor, i.e. ξx + ξy + ξz = 0 in the LRF.

The quantities λ, uµ, and ξµν are spacetime fields which satisfy the following identities

uµuµ = 1 , (3)

ξµµ = 0 , (4)

uµξ
µν = 0 . (5)
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The third condition above, indicating orthogonality of ξµν to uµ which implies that, in the

LRF, ξµν obeys the following conditions

ξ00 = ξ0i = ξi0 = 0 . (6)

Working in the LRF, this allows us to focus on the non-trivial space-like components of ξµν

as , which is a 3×3 matrix. The argument of distribution function subject to the mass-shell

condition can be simplified as

p · Ξ· p = p · κ · p +m2 , (7)

which gives

fa(x, p) = fiso

(
1

λ

√
p · κ · p +m2

)
, (8)

where

κ ≡ I(1 + Φ) + ξ , (9)

with I being a 3× 3 identity matrix.

If ξ is diagonal, i.e.

ξ = diag(ξx, ξy, ξz) , (10)

which implies the ellipsoidal distribution, the κ matrix is automatically diagonal, i.e.

κ = diag(1/α2
x, 1/α

2
y, 1/α

2
z) with αi = (1 + ξi + Φ)−1/2 [41]. For a non-ellipsoidal distri-

bution function, generalizing ξ to include off-diagonal components, one has

κ =


1/α2

x ξxy ξxz

ξxy 1/α2
y ξyz

ξxz ξyz 1/α2
z

 . (11)

Note that, in a general frame one has ξµν = κijX
µ
i X

ν
j where the summation over i and j is

implied.

III. DIAGONALIZATION

Calculating the bulk variables in aHydro requires computing momentum-space moments

of the distribution function. However, the distribution function in Eq. (8) is a complicated
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function of momentum and there is no way to perform the integrals analytically except in

some special cases. In this section, we introduce an algebraic method to diagonalize the κ

matrix so that we can reduce the computation of moment-integrals including off-diagonal

anisotropies to a linear combination of diagonal momentum-space moment integrals.

For any N ×N real and symmetric matrix κ there exists a unitary matrix A such that

κ = AκDA
† , (12)

where A is constructed such that its columns are the eigenvectors of κ. The combination

p · κ · p can be written as

p · κ · p = pTκp =
[
pTA

][
A†κA

][
A†p

]
= p̃T κD p̃ = p̃ · κD · p̃ , (13)

with p̃ ≡ A†p.1 By definition we have

p = Ap̃ ⇒ pi =
∑
j

Aij p̃j . (14)

For example

pi =
∑
j

Aij p̃j =
∑
j

v
(j)
i p̃j, (15)

where the vector v(i) = (v
(i)
x , v

(i)
y , v

(i)
z ) is the ith eigenvector of κ. Therefore, we have two

frames, i.e. the original frame and the rotated frame, where the components of the mo-

mentum vector are pi and p̃i, respectively. The κ matrix in the original frame is defined in

Eq. (11) and, in the rotated frame, is defined as κD ≡ diag(1/α̃2
i ). These two frames are con-

nected by rotations through a set of Euler angles. Note that the Jacobian for transforming

between two frames is unity.

It is obvious that the length of p is invariant under this coordinate transformation.

Accordingly, as expected, E is the same in both coordinate systems

E =
√

p2 +m2 =
√

p̃2 +m2 = Ẽ . (16)

Using Eq. (15), one can simplify the general anisotropic distribution function to the

anisotropic distribution function (8) with diagonal anisotropy tensor (11) in the rotated

frame

fa(x, p) = fiso

(
1

λ

√
p · κ · p +m2

)
= fiso

(
1

λ

√
p̃ · κD · p̃ +m2

)
≡ fDa (x, p̃) . (17)

1 Note that herein the vector p is real and A is orthogonal.
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IV. THE ENERGY-MOMENTUM TENSOR

We begin by demonstrating how this method can be used to efficiently evaluate the

components of the energy-momentum tensor including off-diagonal anisotropies. In the

general case, we have six independent anisotropy parameters (αx, αy, αz, ξxy, ξxz, and ξyz),

one momentum-scale parameter (λ), and the three independent components of the fluid

four-velocity (ui), resulting in ten space-time fields for which we must obtain equations of

motion. In the LRF, the non-vanishing components of the energy-momentum tensor are

T 00 = E =

∫
dP E2 fa(x, p) , (18)

T ij =

∫
dP pipj fa(x, p) . (19)

Using the techniques introduced in the previous section, one finds

E =

∫
dP E2 fa(x, p)

= Ñ

∫
d3p̃

√
p̃2 +m2 fDa (x, p̃) = α̃λ4Q3(α̃

2
x, α̃

2
y, α̃

2
z, m̂) , (20)

and

T ij =

∫
dP pipj fa(x, p)

= Ñ

∫
d3p̃√

p̃2 +m2
fDa (x, p̃)

3∑
k,l=1

v
(k)
i v

(l)
j p̃

kp̃l = α̃λ4
3∑

k=1

v
(k)
i v

(k)
j α̃2

kQ
k
3(α̃2

x, α̃
2
y, α̃

2
z, m̂) .(21)

The Q-functions appearing above only depend on the diagonal anisotropies α̃ and are defined

in Appendix A. The scaled mass variable is defined as m̂ ≡ m/λ and we have introduced

a compact notation as α̃ ≡ α̃xα̃yα̃z. Based on the symmetry of T ij under exchanging the

indices, out of 9 possible values there are only 6 unique terms that must be calculated. Note

that for the diagonal terms (pressures) one obtains

Pi = T ii = α̃λ4
3∑

k=1

[
v
(k)
i

]2
α̃2
kQ

k
3(α̃2

x, α̃
2
y, α̃

2
z, m̂) . (22)

In all cases above, we have reduced the problem to computing Q-functions with only diagonal

anisotropies. The diagonal anisotropy tensor integrals can be well-approximated by Taylor

expanding to high-order around an isotropic point, e.g. α̃iso = (α0, α0, α0). At each order

in this expansion the required integrals can be performed analytically. In order to cover the
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space using truncated Taylor expansions, one can utilize multiple expansion points which are

then pieced together to accurately span the range of diagonal anisotropies which are gener-

ated in typical simulations. Using modern computerized algebra systems one can extend the

Taylor expansion expressions described above to high order. In practice, phenomenological

codes have used 12th order truncations in δ̃ = α̃− α̃iso (see Appendix B of Ref. [53]).

V. DYNAMICAL EQUATIONS - ANISOTROPIC PRESSURE MATCHING

To further demonstrate the utility of this method, we now consider equations for the

viscous tensor obtained by anisotropic pressure matching [43]. In relaxation-time approxi-

mation (RTA) the dynamical equations for the shear and bulk viscous corrections based on

anisotropic matching are

∂µT
µν = 0 , (23)

Duπ
〈µν〉 +

1

τeq
πµν = −

(
σρσ +

1

3
θ∆ρσ

)∫
dP

p〈µpν〉pρpσ f ga
(p · u)2

− 2π<µα σν>α

+2P σµν − 5

3
θ πµν + 2 π<µα ων>α, (24)

DuP +
1

τeq
(P − Peq) =

1

3

(
σρσ +

1

3
θ∆ρσ

)∫
dP

(p ·∆ · p)pρpσ f ga
(p · u)2

+
2

3
πµνσ

µν − 5

3
P θ . (25)

The above equations are independent of the reference frame with f ga being the general distri-

bution function defined in Eq. (1). Below we will expand these reference-frame independent

equations and obtain from the integrals involving the generaal anisotropy tensor. In order

to evaluate the resulting integral most efficiently, we will then evaluate them in the local

rest frame. The tensor πµν is the shear tensor, which is traceless and orthogonal to flow

velocity uµ. In the relations above one has P = Peq +Π with Peq being the LRF equilibrium

pressure which can be obtained by evaluating any component of Eq. (22) with κ equal to an

identity matrix and λ set to the local effective temperature T . The other symbols appearing

in Eqs. (24) and (25) above are defined as

Du = uµ∂µ ,

Di = Xµ
i ∂µ ,

θ = ∇µu
µ ,

∇µ = ∆µν∂ν ,

ωµν = (∇µuν −∇νuµ)/2 ,

σµν = ∆µν
αβ∂

αuβ .

(26)

The equations (25) represent a set of ten dynamical equations for the ten independent macro-

scopic variables of the system. Microscopically, one has three components of flow velocity
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ui, six independent anisotropy parameters, and the temperature-like scale λ, resulting in

ten dynamical microscopic variables. Correspondingly, when coding up these equations,

one can choose between using macroscopic or microscopic variables. In addition, if using

the macroscopic variables, one can evolve the ten independent components of (symmetric)

energy-momentum tensor T µν or one can use the standard decomposition [43, 65]

T µν = T µνeq + πµν + Π∆µν , (27)

which has as dynamical variables E , three components of flow velocity ui, five independent

components of shear tensor πµν , and the bulk viscous correction Π, again added up to ten.

In practice, it is preferable to evolve the macroscopic (thermodynamics) variables, since

modern flux-conserving algorithms are better suited to these equations than the microscopic

ones. However, this procedure is non-trivial because, although the above equations evolve

macroscopic variables, they explicitly contain microscopic ones as well, e.g. the distribution

function f ga appearing in Eq. (8). Therefore, in order to close the system of equations

one must update the microscopic variables in parallel to the macroscopic ones during the

evolution. Roughly speaking, the procedure is as follows: The equation ∂µT
µν = 0 provides

the evolution of E and ui. The other equations evolve the components of the shear tensor.

Using these, one can construct the full T µν using (27). Once the lab frame T µν is evolved

forward one time step, the updated microscopic variables can be obtained by boosting to

the LRF and solving a set of seven coupled matching equations which match T 00
LRF, and six

components of upper diagonal space-like block of T µνLRF to their microscopic definitions as a

function of αi, ξij, and λ, i.e. Eqs. (20) and (21).

In order to further develop the necessary formalism, one must expand and simplify the

dynamical equations (25) for the case of a non-ellipsoidal anisotropic distribution function.

Note that we will expand the equations in the lab frame, where the dynamical equations are

solved. However, whenever a scalar quantity is obtained, we have the freedom to choose a

covariant Lorentz frame, e.g. local reference frame, where the calculation is simpler.

There are two terms in Eqs. (24) and (25) needing detailed expansion. The first one is(
σρσ +

1

3
θ∆ρσ

)
pρpσ = pρpσ∇ρuσ = pσ(p ·D)uσ , (28)

where D is defined in (26). We also have

p〈µpν〉 = pαpβ∆µ
α∆ν

β +
1

3
∆µνp2 = pipjXµ

i X
ν
j +

1

3
∆µνp2 , (29)
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where the Einstein summation convention for repeated spatial indices is applied. The very

last step is performed in order to make the dependence of components of momentum 3-vector

explicit, which is useful in evaluating the integrals necessary.

The other term is

p ·∆ · p = −p2 . (30)

Using the above relations, one can expand the following integrals

−
(
σρσ +

1

3
θ∆ρσ

)∫
dP

E2
pρpσp〈µpν〉fa

= −
∫
dP

E2
fa p

ipjXµ
i X

ν
j p

σ(p ·D)uσ −
∆µν

3

∫
dP

E2
fa p2pσ(p ·D)uσ

=

∫
dP

E2
fa p

ipjXµ
i X

ν
j p

l(p ·D)ul +
∆µν

3

∫
dP

E2
fa p2pl(p ·D)ul

=

[
F ijklXµ

i X
ν
j +

∆µν

3
F iikl

]
Dkul , (31)

where the four-index function introduced above is defined as

F ijkl ≡
∫
dP

E2
pipjpkplfa(x, p) . (32)

Note that for Eq. (31) to be non-vanishing one must have an even number of spatial momenta

with matching indices, appearing in F ijkl. To see this, consider the integral above containing

an odd number of spatial momenta. Using the map (15) it will contain an odd number of

p̃i even in the rotated frame and the rest of the integrand will be an even function of the

momenta. Therefore, the integral will vanish by symmetry in this case. This suggests that

in the third line of the equation (31) defined above, pσuσ → −piui.

Similarly, the non-trivial term appearing in the bulk viscous equation of motion (25) is

1

3

(
σρσ +

1

3
θ∆ρσ

)∫
dP

E2
fa p

ρpσ(p ·∆ · p) = −1

3

∫
dP

E2
fa p2pβ(p ·D)uβ

=
1

3

∫
dP

E2
fa p2pl(p ·D)ul

=
1

3
F iikl ∂kul . (33)

To complete the simplification of the non-trivial terms in (31) and (33), we now consider

the F function. Using similar techniques as used for the T ij, one obtains

F ijkl = Ñ

∫
d3p

E3
pipjpkpl fa(x,p) = Ñ

∫
d3p̃

E3
fDa (x, p̃)Pmn

[
v
(m)
i v

(m)
j v

(n)
l v

(n)
k

]
p̃2m p̃

2
n ,

= α̃λ4Pmn
[
v
(m)
i v

(m)
j v

(n)
l v

(n)
k

]
α̃2
mα̃

2
nQ

mn
3 (α̃2

x, α̃
2
y, α̃

2
z, m̂) . (34)
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The operator Pmn introduced above is the permutation operator which sums over all possible

permutations of m and n in the operand (including repeated ones). Based on the symmetry

of F ijkl under exchanging the indices, out of 81 possible values there are only 15 unique

terms that must be calculated. The function Qmn introduced above is defined in Appendix

A.

VI. DISCUSSION AND SUMMARY

As we demonstrated in the previous two sections, one can reduce the problem of evalu-

ating complicated off-diagonal anisotropy moment integrals to a sum of diagonal anisotropy

integrals. In practice, one can use Eqs. (23), (24), and (25) to evolve the energy-momentum

tensor, shear viscous tensor, and the bulk viscous correction, respectively. Given an initial

condition specified in terms of all anisotropies and the momentum scale, λ, one can construct

the full energy-momentum tensor at the initial time. One can then evolve the coupled partial

differential equations (23), (24), and (25) forward in time by one infinitesimal step making

use of the methods explained in the previous section to evaluate the non-trivial integrals

involving f ga in Eqs. (24) and (25).

Once the update is complete, one can solve a set of seven non-linear equations to extract

the updated LRF anisotropies and scale parameter. These can then be used to compute

the non-trivial integrals involving fa in the next time step. Repeating this procedure, one

can evolve all dynamical fields using Eqs. (23), (24), and (25). Critical to accomplishing

this is the efficient evaluation of the integrals involving f ga in Eqs. (24) and (25) and the

subsequent extraction of the local anisotropy tensor from the full energy-momentum tensor.

The diagonalization method described in the previous two sections solves this problem by

removing the bottleneck of evaluating complicated three dimensional integrals on demand.

VII. CONCLUSIONS

In this paper we presented a method for efficiently including the effects of off-diagonal

local rest frame momentum anisotropies in leading-order anisotropic hydrodynamics. The

method relies on diagonalization of the space-like block of the anisotropy tensor and allows

one to reduce the necessary moments of the distribution function in the off-diagonal case to
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a linear combination of diagonal-anisotropy integrals. Once reduced to diagonal-anisotropy

integrals, the results can be computed efficiently using techniques described previously in the

literature [53]. We presented a general framework for how to accomplish this and provided

examples for off-diagonal anisotropy moments entering into the energy-momentum tensor

and viscous update equations which emerge when performing anisotropic pressure matching

[43]. With this method in hand one can implement a leading-order anisotropic hydrodynam-

ics code that takes into account off-diagonal anisotropies non-perturbatively. Additionally,

since the equations are formulated at the level of the energy-momentum tensor and shear

viscous tensor, this more easily allows for the use of advanced numerical techniques for

solving the necessary partial differential equations (see e.g. [66]).
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Appendix A: Q-functions

The Q-functions used in expanding the equations are defined as follows

Q3(α
2
x, α

2
y, α

2
z, m̂) = Ñ

∫
d3p

√∑
k

α2
k p

2
k + m̂2 fiso

(√
p2 + m̂2

)
, (A1)

Qi
3(α

2
x, α

2
y, α

2
z, m̂) = Ñ

∫
d3p

p2i√∑
k α

2
k p

2
k + m̂2

fiso

(√
p2 + m̂2

)
, (A2)

Qij
3 (α2

x, α
2
y, α

2
z, m̂) = Ñ

∫
d3p

p2i p
2
j(∑

k α
2
k p

2
k + m̂2

)3/2 fiso (√p2 + m̂2
)
. (A3)

We note that the functions above functions are related, e.g.

Qi
3 = 2

∂Q3

∂α2
i

, (A4)

Qij
3 = −2

∂Qi
3

∂α2
j

= −4
∂2Q3

∂α2
i ∂α

2
j

. (A5)
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This fact allows us to reduce the number of underlying Q-functions that have to be computed

to the “master function” Q3.
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