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Employing a quantal diffusion description based on the stochastic mean-field (SMF) approach, we analyze
the mass distribution of the primary fragments in the collisions of 136Xe+ 208Pb system at the bombarding
energy Ec.m. = 526 MeV. This quantal approach provides a good description of the primary fragment distribution
without any adjustable parameter, including the effects of shell structure.

I. INTRODUCTION

It has been recognized that multi-nucleon transfer in heavy-
ion collisions provide a suitable mechanism for synthesizing
new neutron rich nuclei [1–3]. In particular, multi-nucleon
transfer in heavy-ion collisions involving heavy projectile-
target combinations could be utilized for the production of
new neutron rich heavy nuclei [4–6]. For this purpose, experi-
mental investigations have been carried out for heavy-ion col-
lisions with heavy projectile-target combinations at near bar-
rier energies [7–9]. Collisions of heavy systems at near barrier
energies predominantly lead to dissipative deep-inelastic re-
actions and quasi-fission reactions. In dissipative collisions
large part of the bombarding energy is converted into in-
ternal excitations, and the multi-nucleon transfer occurs be-
tween the projectile and target nuclei. Recently, the multi-
nucleon transfer mechanism has been investigated for the re-
action 136Xe+208Pb at bombarding energies Ec.m. = 423, 526,
and 617 MeV, and di-nuclear mass distributions of the pri-
mary fragments have been measured [7]. This system has
two unique properties: (i) the neutron shells in the projec-
tile xenon, N = 82, and the target lead, N = 126, are closed,
and (ii) the Qgg−value distributions for nucleon transfers that
drive the system toward symmetry and also toward asymmetry
have negative values. As a result, the identity of the projectile
and target are strongly maintained but data exhibits a broad
mass distribution around the projectile and the target masses.

The multi-dimensional phenomenological Langevin type
dynamical approach [4,5,10,11] is quite successful in re-
producing many aspects of the data, but the approach is
semi-classical and involves a set of adjustable parameters.
The mean-field approach of the time-dependent Hartree-Fock
(TDHF) theory provides a microscopic approach for describ-
ing heavy-ion reaction mechanism at low bombarding ener-
gies [12–14]. Since several years, the TDHF approach has
been used for describing the quasi-fission reactions [15–20].
While the mean-field theory provides a good description for
the average values of the collective motion it is not able to
accurately describe dynamics of fluctuations for this motion.
The fragment mass distributions provide a good example for
the shortcoming of the mean-field description. The TDHF
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calculations give nearly zero drift for the mass asymmetry,
while the dominant aspect of the data is a broad mass dis-
tributions around the projectile and target masses resulting
from multi-nucleon diffusion mechanism. The description of
such large fluctuations requires an approach beyond the mean-
field theory. The time-dependent random phase approxima-
tion (TDRPA) approach of Balian and Vénéroni [21–25] pro-
vides a possible approach for calculating dispersion of frag-
ment mass distributions. However, this approach has severe
technical difficulties in applications to the collisions of asym-
metric systems [26]. Here, we employ the stochastic mean-
field (SMF) approach [27,28] to calculate the mass distribu-
tion of the primary fragments in 136Xe + 208Pb system. In
Sec. II, we present a brief description of the quantal nucleon
diffusion mechanism based on the SMF approach. In Sec. III,
we present an analysis of the potential energy surface in the
vicinity of the 136Xe+ 208Pb system. The result of calcula-
tions for the mass distribution in 136Xe+ 208Pb collisions is
reported in Sec. IV, and conclusions are given in Sec. V.

II. QUANTAL NUCLEON DIFFUSION MECHANISM

In the SMF approach the collision dynamics is described in
terms of an ensemble of mean-field events. The single-particle
density matrix of each event, ρλ (~r,~p, t), is determined by the
self-consistent mean-field of the corresponding event. Here
λ indicates the event label. The ensemble is considered to
be generated by incorporating the quantal and thermal fluctu-
ations at the initial state. The elements of the initial density
matrix are specified by uncorrelated random Gaussian distri-
butions with the average values specified by the mean occu-
pation numbers and the second moments are determined by
Eq. (3) given below. In terms of the ensemble of mean-field
events, it is possible to calculate not only the mean values, but
the entire probability distributions of one-body observables.
When a di-nuclear structure is maintained during the colli-
sion, such as deep inelastic and quasi-fission reactions, we do
not need to generate such an ensemble of mean-field events.
In this case it is possible to describe the collision dynamics,
in a much simpler manner, in terms of a few relevant macro-
scopic variables, such as mass and charge asymmetry, the rel-
ative linear momentum and the orbital angular momentum. In
di-nuclear geometry, it is possible to define these macroscopic
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variables in terms of the TDHF solutions with the help of win-
dow dynamics. The SMF approach gives rise to Langevin
type transport description including quantal shell effects for
the macroscopic variables [29,30]. It is possible to calculate
transport coefficients associate with the macroscopic variables
in terms of the ordinary TDHF solutions. For the details of
the SMF approach and the applications we refer the reader to
the previous publications [31–33]. Here, we consider nucleon
exchange in collisions between heavy nuclei at near barrier
energies in which the di-nuclear structure is maintained. We
take the neutron Nλ

1 and proton Zλ
1 numbers of the projectile-

like fragments as the macroscopic variables. In each event λ ,
the neutron and proton numbers are determined by integrat-
ing the nucleon density over the projectile side of the window
between the colliding nuclei,(

Nλ
1 (t)

Zλ
1 (t)

)
=
∫

d3r Θ
[
x′(t)

]( ρλ
n (~r, t)

ρλ
p (~r, t)

)
(1)

where x′(t) = [y− y0(0)]sinθ(t) + [x− x0(t)]cosθ(t). The
(x,y)−plane represents the reaction plane, with x−axis being
the beam direction in the center of mass frame (COM) of the
colliding ions. The window plane is perpendicular to the inter-
nuclear axis and its orientation is specified by the condition
x′(t) = 0. In this expression, x0(t) and y0(t) denote the coor-
dinates of the window center relative to the origin of the COM
frame, θ(t) is the smaller angle between the orientation of the
inter-nuclear axis and the beam direction. For each impact
parameter b or the initial orbital angular momentum, as de-
scribed in Appendix A of Ref. [32], by employing the TDHF
description, it is possible to determine time evolution of the
rotation angle θ(t) of the inter-nuclear axis. The coordinates
x0(t) and y0(t) of the center point of the window are located at
the center of the minimum density slice on the neck between
the colliding ions. As an example, Fig. 1 shows the collision
geometry in the 136Xe + 208Pb system at Ec.m. = 526 MeV
with the initial orbital angular momentum ` = 100 h̄ at times
t = 300 fm/c , t = 600 fm/c and t = 900 fm/c. The window
plane and inter-nuclear axis of the di-nuclear complex are in-
dicated by thick and dash lines in frame (b) of this figure. In
the following, all quantities are calculated for a given initial
orbital angular momentum `, but for the purpose of clarity of
expressions, we do not attach the angular momentum label to
the quantities. The quantity in Eq. (1)

ρ
λ
α (~r, t) = ∑

i j∈α

Φ
∗α
j (~r, t;λ )ρλ

jiΦ
α
i (~r, t;λ ) , (2)

denotes the neutron and proton number densities in the event
λ of the ensemble of single-particle density matrices. Here
and in the rest of the article, we use the notation α = n, p for
the proton and neutron labels. According to the main postulate
of the SMF approach, the elements of the initial density matrix
have uncorrelated Gaussian distributions with the zero mean
values ρ̄λ

ji = δ jin j and the second moments determined by,

δρλ
jiδρλ

i′ j′ =
1
2

δii′δ j j′ [ni(1−n j)+n j(1−ni)] , (3)

where n j are the average occupation numbers of the single-
particle wave functions of the initial state. At zero initial

temperature, the occupation numbers are zero or one, at fi-
nite initial temperatures the occupation numbers are given by
the Fermi-Dirac functions. Here and below, the bar over the
quantity indicates the average over the generated ensemble.

FIG. 1. (color online) The density profile and the collision geometry
of the 136Xe+ 208Pb collisions at Ec.m. = 526 MeV with the initial
orbital angular momentum ` = 100 h̄ at times (a) t = 300 fm/c, (b)
t = 600 fm/c, and (c) t = 900 fm/c.

Below, we briefly discuss the derivation of the Langevin
equation for neutron and proton numbers of the projectile-
like fragments, and for details we refer to Refs. [31,32]. The
rate of change of the neutron and the proton numbers for the
projectile-like fragment are given by,

d
dt

(
Nλ

1 (t)
Zλ

1 (t)

)
=
∫

d3r Θ(x′)
∂

∂ t

(
ρλ

n (~r, t)
ρλ

p (~r, t)

)
. (4)

In this expression, we neglected the terms determined by the
rate of change of the position and rotation of the window
plane, since tangential and linear velocities of the window
are much smaller than the Fermi velocity of nucleons. Us-
ing the continuity equation, we obtain a Langevin description
for stochastic evolution the neutron and proton numbers of the
projectile-like fragments

d
dt

(
Nλ

1 (t)
Zλ

1 (t)

)
=
∫

d3r g(x′)
(

ê ·~jλ
n (~r, t)

ê ·~jλ
p (~r, t)

)
=

(
vλ

n (t)
vλ

p (t)

)
, (5)
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where ê denotes the unit vector along the inter-nuclear axis
with components êx = cosθ and êy = sinθ . The quantity
g(x) =

(
1/κ
√

2π
)

exp
(
−x2/2κ2

)
represents a Gaussian with

a dispersion κ , which behaves almost like delta function for
sufficiently small κ . In the numerical calculations dispersion
of the Gaussian is taken to be on the order of the lattice size
κ = 1.0 fm. The right side of Eq. (5) defines the fluctuating
drift coefficients vλ

α(t) for the neutrons and the protons in the
event λ . In the SMF approach the fluctuating current density
vector in the event λ is given by,

~jλ
α(~r, t) =

h̄
m ∑

i j∈α

Im
(

Φ
∗α
j (~r, t;λ )~∇Φ

α
i (~r, t;λ )ρλ

ji

)
. (6)

A. TDHF calculations for mean dynamical path

Equations for the mean values of proton Z1(t) = Z̄λ
1 (t) and

neutron N1(t) = N̄λ
1 (t) numbers of the projectile-like frag-

ments are obtained by taking the ensemble averaging of the
Langevin Eq. (5). For small amplitude fluctuations, and us-
ing the fact that average values of density matrix elements are
given by the average occupation numbers as ρ̄λ

ji = δ jin j, we
obtain the usual mean-field results given by the TDHF equa-
tions,

d
dt

(
N1(t)
Z1(t)

)
=
∫

d3r g(x′)
(

ê ·~jn(~r, t)
ê ·~jp(~r, t)

)
=

(
vn(t)
vp(t)

)
.

(7)

Here, the mean values of the densities and the currents densi-
ties of neutron and protons are given by,

ρα(~r, t) = ∑
h∈α

Φ
∗α
h (~r, t)Φα

h (~r, t) (8)

and

~jα(~r, t) =
h̄
m ∑

h∈α

Im
(

Φ
∗α
h (~r, t)~∇Φ

α
h (~r, t)

)
, (9)

where the summation h runs over the occupied states originat-
ing both from the projectile and the target nuclei. The drift
coefficients vp(t) and vn(t) denote the net proton and neutron
currents across the window.

We carry out TDHF calculations for 136Xe + 208Pb at
Ec.m. = 526 MeV for a set initial orbital angular momenta in
the range `= (100−300) h̄. This range of the orbital angular
momenta correspond to the data collection range in the labora-
tory frame [7]. Table I shows the result of TDHF calculations
for the primary values of mass and charge of the projectile-
like and target-like fragments, the final orbital angular mo-
menta, the total kinetic energy, the center of mass and lab-
oratory scattering angles, and the total excitation energy for
a set initial orbital angular momenta. These calculations and
calculations presented in the rest of the paper are performed
using the TDHF program developed by Umar et al. [34]. A
large part of the initial kinetic energy is dissipated during the
collisions. The calculations give very small amount of mass

TABLE I. Result of TDHF calculations for 136Xe+ 208Pb at Ec.m. =
526 MeV for primary values of mass and charge of the projectile-
like (A f

1 , Z f
1 ) and target-like fragments (A f

2 , Z f
2 ), final orbital angular

momentum ` f , total kinetic energy (T KE), center of mass θc.m., lab-
oratory scattering angles (θ lab

1 ,θ lab
2 ), and total excitation energy E∗

for a set initial orbital angular momentum `i.

`i (h̄) A f
1 Z f

1 A f
2 Z f

2 ` f (h̄) TKE θc.m. E∗ θ lab
1 θ lab

2
(MeV) (MeV)

100 135 53.6 209 82.4 83.1 346 125 185 74.8 24.2
120 135 53.9 209 82.1 101 349 116 181 67.8 28.5
140 137 54.4 207 81.6 119 350 116 179 61.6 32.5
160 138 55.2 206 80.8 131 353 97.9 176 55.8 36.5
180 139 55.5 205 80.5 146 355 90.5 172 55.7 36.6
200 137 54.9 207 81.1 166 348 81.3 179 47.5 41.6
220 137 54.8 207 81.2 177 350 80.8 176 45.6 43.0
240 138 55.6 206 80.4 192 367 79.5 160 45.2 44.6
260 137 55.1 207 80.9 213 397 79.1 128 46.1 45.8
280 136 54.8 208 81.2 238 429 78.4 103 46.6 47.3
300 137 54.6 207 81.4 277 472 77.9 53.7 47.3 49.2

drift, on the order of one mass unit of neutron and proton drifts
at all impact parameters, which is consistent with data. As a
result of the neutron shell closures in both projectile and tar-
get with N0 = 82 and N0 = 126, and the due to Qgg− values,
the 136Xe+ 208Pb di-nuclear system occupies a local potential
minimum state in the (N-Z) plane. The system has a unique
aspect of strongly preserving its initial di-nuclear structure on
the average, but data exhibits remarkably broad mass distribu-
tion of the primary fragments.

B. Quantal Langevin equation for neutron and proton
diffusion

Equation (5) provides a Langevin description for the
stochastic evolution the neutron and the proton numbers of the
projectile-like fragments. For relatively small fluctuations, we
linearize the Langevin equation around the mean evolution.
The drift coefficients vλ

α(t) fluctuate from event to event due to
stochastic elements of the initial density matrix δρλ

ji and due
to the different sets of the wave functions in different events.
We can represent the fluctuations due to state dependence of
the drift coefficients in terms of the fluctuating neutron and
proton numbers as vα(Nλ

1 ,Z
λ
1 ). As a result, we can express

the linearized Langevin equation as,

d
dt

(
δZ1(t)
δN1(t)

)
=

(
∂vp
∂Z1

(
Zλ

1 −Z1
)
+

∂vp
∂N1

(
Nλ

1 −N1
)

∂vn
∂Z1

(
Zλ

1 −Z1
)
+ ∂vn

∂N1

(
Nλ

1 −N1
) )

+

(
δvλ

p (t)
δvλ

n (t)

)
, (10)

where the derivatives of drift coefficients are evaluated at the
mean values N1 and Z1. The linear limit provides a good ap-
proximation for small amplitude fluctuations and it becomes
even better if the fluctuations are nearly harmonic around the
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mean values. The stochastic part δvλ
α(t) of drift coefficients

are given by,

δvλ
α(t) =

h̄
m ∑

i j∈α

∫
d3rg(x′)

× Im
(

Φ
∗α
j (~r, t)

_
e ·~∇Φ

α
i (~r, t)δρ

λ
ji

)
. (11)

The variances and the co-variance of neutron and proton

distribution are defined as σ2
NN(t) =

(
Nλ

1 −N1
)2

, σ2
ZZ(t) =(

Zλ
1 −Z1

)2
, and σ2

NZ(t) =
(
Nλ

1 −N1
)(

Zλ
1 −Z1

)
. Multiply-

ing both side of Langevin Eqs. (10) by Nλ
1 −N1 and Zλ

1 −Z1,
and taking the ensemble average, we find evolution of the co-
variances are specified by the following set of coupled differ-
ential equations [35,36],

∂

∂ t
σ

2
NN = 2

∂vn

∂N1
σ

2
NN +2

∂vn

∂Z1
σ

2
NZ +2DNN (12)

∂

∂ t
σ

2
ZZ = 2

∂vp

∂Z1
σ

2
ZZ +2

∂vp

∂N1
σ

2
NZ +2DZZ (13)

∂

∂ t
σ

2
NZ =

∂vp

∂N1
σ

2
NN +

∂vn

∂Z1
σ

2
ZZ +σ

2
NZ

(
∂vp

∂Z1
+

∂vn

∂N1

)
. (14)

In these expressions DNN and DZZ denote the neutron and
proton quantal diffusion coefficients which are discussed be-
low. It is well known that the Langevin equation (10) is
equivalent to the Fokker-Planck equation for the correlated
distribution function P(N,Z) of the neutron and proton num-
bers of projectile-like or target-like fragments [37]. Here, we
consider the mass number distribution of the projectile-like
and target-like primary fragments. Analytic solution of the
Langevin equation for the projectile-like fragments is given
by a Gaussian function P(A, t)

P(A) =
1√

2πσAA
exp

[
−1

2

(
A−A1

σAA

)2
]
, (15)

where A1 = N1 + Z1 is the mean value of the mass number
of the projectile-like fragments and the variance is given by
σ2

AA = σ2
NN +σ2

ZZ +2σ2
NZ . Distribution function of the target-

like fragments is given by a similar expression. We should
note that the single Gaussian solution for Fokker-Planck equa-
tion and hence the Langevin equation is valid when the deriva-
tives of drift coefficients are continuous as approached from
left and right of the mean neutron and proton numbers. If
the derivative of drift coefficients are discontinuous, which
is the case in the 136Xe+ 208Pb system, the mass dispersion
in the asymmetric direction σ

<
AA and the symmetric direction

σ
>
AA have different values, therefore we cannot represent the

solution of the Langevin Eq. (10) by a single Gaussian distri-
bution. In this case, as it is discussed in Sec. III, it is possible
to represent the solutions of the Langevin equation as a suit-
able combination of Gaussian distributions toward asymmetry
P<(A) and toward symmetry P>(A).

C. Neutron and proton diffusion coefficients

The quantal expression of the diffusion coefficients for
neutron and proton transfers are determined by the auto-
correlation functions of the stochastic part of the drift coef-
ficients as [31–33],∫ t

0
dt ′δvλ

α(t)δvλ
α(t ′) = Dαα(t) . (16)

We refer the reader to Refs. [31,32] in which a detail eval-
uation of the autocorrelation functions are presented. Here,
for completeness of the presentation, we give the results. The
quantal expressions of the proton and neutron diffusion coef-
ficients take the form,

Dαα(t) =
∫ t

0
dτ

∫
d3rg̃(x′)

(
GT (τ)JT

⊥,α(~r, t− τ/2)

+GP(τ)JP
⊥,α(~r, t− τ/2)

)
−
∫ t

0
dτRe

(
∑

h′∈P,h∈T
Aα

h′h(t)A
∗α
h′h(t− τ)

+ ∑
h′∈T,h∈P

Aα

h′h(t)A
∗α
h′h(t− τ)

)
, (17)

where JT
⊥,α(~r, t−τ/2) represents the sum of the magnitude of

current densities perpendicular to the window due to the hole
wave functions originating from target,

JT
⊥,α(~r, t− τ/2) =

h̄
m ∑

h∈T
|ImΦ

∗α
h (~r, t− τ/2)

×
(

ê ·~∇Φ
α
h (~r, t− τ/2)

)
| , (18)

and JP
⊥,α(~r, t− τ/2) is given by a similar expression in terms

of the hole wave functions originating from the projectile. We
observe that there is a close analogy between the quantal ex-
pression and the classical diffusion coefficient for the random
walk problem [29,30]. The first line in the quantal expres-
sion gives the sum of the nucleon currents across the window
from the target-like fragment to the projectile-like fragment
and from the projectile-like fragment to the target-like frag-
ment, which is integrated over the memory. This is analogous
to the random walk problem, in which the diffusion coeffi-
cient is given by the sum of the rate for the forward and back-
ward steps. The second line in the quantal diffusion expres-
sion stands for the Pauli blocking effects in nucleon transfer
mechanism, which does not have a classical counterpart. The
quantities in the Pauli blocking factors are determined by

Aα

h′h(t) =
h̄

2m

∫
d3rg(x′)

(
Φ
∗α
h′ (~r, t)ê ·~∇Φ

α
h (~r, t)

−Φ
α
h (~r, t)ê ·~∇Φ

∗α
h′ (~r, t)

)
. (19)

The memory kernel GT (τ) in Eq. (19) is given by

GT (τ) =
1√
4π

1
τT

exp[−(τ/2τT )
2] , (20)
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with the memory time determined by the average flow veloc-
ity uT of the target nucleons across the window according
to τT = κ/|uT (t)|, and GP(τ) is given by a similar expres-
sion. In a previous work, we estimated the memory time to
be about τT = τP ≈ 25 fm/c, which is much shorter than the
contact time of about 600 fm/c [32]. As a result the mem-
ory effect is not important for the nucleon diffusion mecha-
nism. We note that the quantal diffusion coefficients are en-
tirely determined in terms of the occupied single-particle wave
functions obtained from the TDHF solutions. According to
the non-equilibrium fluctuation-dissipation theorem, the fluc-
tuation properties of the relevant macroscopic variables must
be related to the mean properties. Consequently, evaluations
of diffusion coefficients in terms of mean-field properties is
not surprising. As examples, Fig. 2 shows neutron (a) and
proton (b) diffusion coefficients for the 136Xe+ 208Pb system
at Ec.m. = 526 MeV for the initial orbital angular momenta
`= 100 h̄, `= 160 h̄, and `= 200 h̄, as function of time.

0

0.05
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0.15
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0.25

0.3
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136Xe + 208Pb

0
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m
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FIG. 2. (color online) The neutron (a) and proton (b) diffusion co-
efficients as a function of time for the 136Xe+ 208Pb collisions at
Ec.m. = 526 MeV with the initial orbital angular momenta `= 100 h̄,
`= 160 h̄, and `= 200 h̄.

III. POTENTIAL ENERGY SURFACE IN N-Z PLANE

For solutions of the co-variances from Eqs. (12-14), in ad-
dition to the diffusion coefficients DNN and DZZ , we need
to know the rate of change of the drift coefficients. In the
136Xe+ 208Pb system both projectile and target have neutron

close shells with N = 82 and N = 126, respectively. Further-
more, this di-nuclear system is placed at the bottom of a local
minimum in the potential energy surface. This is evident from
the negative Qgg−value distribution of the di-nuclear systems
in vicinity of 136Xe+ 208Pb . As seen from Fig. 1 of Ref. [7],
Qgg-values take increasingly negative values for drifts toward
asymmetry, and smaller negative values for drifts toward sym-
metry. As a result, the system does not exhibit any visible drift
between the mass numbers of projectile and target nuclei, but
the potential energy surface in (N,Z) plane has a strong in-
fluence on the nucleon diffusion mechanism. We consider
the projectile-like fragments and indicate the position of local
equilibrium by the neutron and proton numbers of the projec-
tile, N0 = 82 and Z0 = 54 on the (N,Z) plane in Fig. 3. The
Einstein relation provides a very useful relation between the
potential energy surface and drift coefficients, as we discuss
below. In order to employ this relation we need extract infor-
mation from the TDHF calculations about the potential energy
surface in the neighborhood of the minimum position, where
136Xe is located. The potential energy is most conveniently
expressed in terms of distances from the equilibrium position
along the iso-scalar and iso-vector drift paths. The charge
asymmetry of the projectile 136Xe is (78−52)/136 = 0.206.
The set of nuclei which have the approximately the same
charge asymmetry values are represented by thick dash-line
following thick solid line (blue line in color) in Fig. 3. We re-
fer to this line as the iso-scalar drift path. The angle between
iso-scalar path and neutron axis is about φ = 30◦, which in-
dicates the iso-scalar line is extending nearly alone the beta
stability valley in vicinity of the projectile-like fragments and
similarly in the vicinity of target-like fragments. In Fig. 3,
thick dash-line following thick solid line (red line in color),
which is perpendicular to the iso-scalar path, is referred as the
iso-vector drift path. We represent the potential energy sur-
face in (N,Z)−plane in terms of two parabolic forms in the
iso-scalar and in the iso-vector directions centered at the local
equilibrium position of projectile 136Xe as,

U(N1,Z1) =
1
2

b(ncosφ − zsinφ)2

+
1
2

a(nsinφ + zcosφ)2 . (21)

Here n = N0−N1 and z = Z1−Z0, and (N1,Z1) indicate neu-
tron and proton number of a projectile-like fragment in vicin-
ity of (N0,Z0). As seen from Fig. 1 in Ref. [7], Qgg−values for
nucleon exchanges has a asymmetric distribution, become in-
creasingly negative toward asymmetry, and take smaller nega-
tive values toward symmetry. As a result, the parabolic shape
of the potential energy, particularly in the iso-scalar direction,
can not have a symmetric form. Only for the purpose of clar-
ity we represent the potential parabolas in the symmetric form
in Eq. (21). However, in particular in the iso-scalar direction,
the parabolic form of the potential energy must have an asym-
metric shape. It must have a larger curvature in the asym-
metry direction than the curvature in the symmetry direction.
The situation is analogous to the elastic potential energy of an
asymmetric spring.

In order to determine the curvature parameters, we employ
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FIG. 3. (color online) Iso-scalar (thick solid and dash blue line) and
iso-vector drift (thick solid and dash red line) paths in the (N,Z)-
plane. The locations of 136Xe, 138Ce, 130Te and 142Ba are indicated
by black dots.

the Einstein’s relation, which provides a relation between the
diffusion and drift coefficients in the transport mechanism of
the relevant collective variables and it is often used in the phe-
nomenological approaches [29,30,35,36]. According to the
Einstein’s relation, the connection between the neutron vn(t)
and proton vp(t) drift coefficients and the corresponding dif-
fusion coefficients are given by,

vn(t) =−
DNN

T
∂U
∂N1

= DNN (βRv(t)cosφ +αRs(t)sinφ) (22)

and

vp(t) =−
DZZ

T
∂U
∂Z1

= DZZ (βRv(t)sinφ −αRs(t)cosφ) . (23)

Here, the temperature is absorbed into the curvature parame-
ters β = b/T , α = a/T , and the quantities Rv(t) = ncosφ −
zsinφ , Rs(t) = nsinφ + zcosφ represent the distances of an
arbitrary fragment (N1,Z1) located in the vicinity of the pro-
jectile from the iso-vector and the iso-scalar lines, respec-
tively. Because of the analytical form, we can readily calculate
the derivatives of the drift coefficients to give,

∂vn(t)/∂N1 =−DNN
(
β cos2

φ +α sin2
φ
)
, (24)

∂vn(t)/∂Z1 =+DNN (α−β )cosφ sinφ , (25)

∂vp(t)/∂Z1 =−DZZ
(
β sin2

φ +α cos2
φ
)
, (26)

∂vp(t)/∂N1 =+DZZ (α−β )cosφ sinφ . (27)

In principle, it is possible to determine the curvature param-
eters and hence the derivatives of the drift coefficients from

the mean-drift path calculated in the TDHF approach. How-
ever, this does not work in the collision of the 136Xe+ 208Pb
system. The mean values of neutron and proton numbers of
projectile-like fragments (N1 ≈ N0,Z1 ≈ Z0) are nearly equal
to their initial values, and similarly for the projectile-like frag-
ments. Therefore, Eqs. (22,23) do not allow to determine the
curvature parameters from drift information of the system.

A. Curvature parameters for the potential energy parabola

For determining the curvature parameters, we choose two
nearby systems 130Te + 214Po and 138Ce + 206Pt. The total
mass numbers of both systems equal to the total mass number
of 136Xe + 208Pb. The neutron number and proton number
of 130Te are smaller than 136Xe by four units and two units,
respectively. It has a charge asymmetry of 0.200, which is
nearly the same as for the 136Xe, and as a result it is located
very near to the iso-scalar line as indicated in Fig. 3. On the
other hand, in 138Ce the neutron number is smaller by two
units and proton number is larger by four units than136Xe, and
it is located on the iso-vector line as indicated in Fig. 3. We
carry out the SMF calculations for the 130Te+ 214Po and the
138Ce+ 206Pt at the same Ec.m. = 526 MeV and for the initial
orbital angular momentum `= 100 h̄.
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FIG. 4. (color online) The neutron and proton diffusion coefficients
as a function of time for the 130Te+ 214Po (a) and for the 138Ce+
206Pt (b) collisions at the Ec.m. = 526 MeV with the initial orbital
angular momentum `= 100 h̄.
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FIG. 5. (color online) The neutron (a) and proton (b) drift paths of the
projectile-like fragments as a function of time for the 130Te+ 214Po
collisions with the Ec.m. = 526 MeV at the initial orbital angular mo-
mentum `= 100 h̄.

Figure 4 shows the neutron and proton diffusion coeffi-
cients for the 130Te+ 214Po system (a) and the 138Ce+ 206Pt
system (b) at Ec.m. = 526 MeV and orbital angular momentum
` = 100 h̄. In these collisions the contact starts at 200 fm/c,
fragments separate at around 800 fm/c. In the TDHF descrip-
tion, the potential energy surface involves the full effect of
the shell structure and therefore has a complex shape. Fig-
ure 5 shows the result of the TDHF calculations of the mean
values of the neutron and proton numbers of the projectile-
like fragments as a function of time for 130Te+ 214Po. The
system initially drifts toward asymmetry along the iso-scalar
line until about 400 fm/c. As the system heats up the shell
effects disappear, the system reverses direction, drifts along
the symmetry towards the local minimum and before reaching
the minimum location of 136Xe, it breaks up. By eliminating
α from Eq. (22) and Eq. (23), we can derive an expression
for β in terms of drift and diffusion coefficients. We use the
drift information of 130Te + 214Po to determine the average
value of the iso-scalar curvature parameter toward asymme-
try direction β< in the time interval from t1 = 480 fm/c to
t2 = 540 fm/c. This interval is indicated by thick blue line on
the iso-scalar drift path in Fig. 3, and it approximately cor-
responds to the average taken over maximum overlap of the
colliding nuclei during the iso-scalar drift. In this manner, we
estimate the average value of the curvature parameter in the

asymmetric side of the of 136Xe along the iso-scalar path as,

β< =
1
∆t

∫ t2

t1
dτ

1
Rv(τ)

(
vn(τ)

DNN(τ)
cosφ +

vp(τ)

DZZ(τ)
sinφ

)
= 0.127 . (28)

Here, ∆t = t2 − t1 and distance Rv is evaluated with
N1(t),Z1(t) on the iso-scalar path. The drift coefficients are
determined from rate of change of the neutron and proton
numbers vn = ∂N1/∂ t and vp = ∂Z1/∂ t in Fig. 5.

79
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81

82

83

138Ce + 206Pt

ℓ = 100 h̄

(a)

52

54

56

58

0 200 400 600 800 1000

138Ce + 206Pt

ℓ = 100 h̄

(b)

N1

Z1

time (fm/c)

FIG. 6. (color online) The neutron (a) and proton (b) drift paths of
the projectile-like fragments as a function of time in the 138Ce+206Pt
collisions with the Ec.m. = 526 MeV at the initial orbital angular mo-
mentum `= 100 h̄.

Figure 6 shows the result of the TDHF calculations of
the mean values of the neutron and proton numbers of the
projectile-like fragments as a function of time in collision of
138Ce+ 206Pt. In this system time evolution is more complex,
but we can recognize a rapid drift during the time interval (200
– 400) fm/c along the iso-vector path toward the iso-scalar line
and curving toward the asymmetry direction. As the system
heats up the shell effects disappear, the system reverses di-
rection, drifts along the symmetry toward the local minimum
and almost reaches the minimum location of 136Xe before it
breaks-up at around 800 fm/c. By eliminating β from Eq. (22)
and Eq. (23), we can derive an expression for α in terms of
drift and diffusion coefficients. We use the drift information
of the system 138Ce+ 206Pt to determine the average value of
the iso-vector curvature parameter in the time interval from
t1 = 210 fm/c to t2 = 310 fm/c. This time interval approx-
imately correspond to the average taken over the maximum
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overlap during the drift along the iso-vector path. The pro-
jection of this interval on the iso-vector line is indicated by a
thick red line in Fig. (3). We evaluate the average value of the
curvature α over this interval as,

α =
1
∆t

∫ t2

t1
dτ

1
Rs(τ)

(
vn(τ)

DNN(τ)
sinφ −

vp(τ)

DZZ(τ)
cosφ

)
= 0.143 . (29)

Here, ∆t = t2 − t1 and distance Rs is evaluated with N1(t),
Z1(t) on the iso-vector path. The drift coefficients are deter-
mined from rate of change of the neutron and proton numbers
in Fig. 6.

Since 138Ce+ 206Pt system rapidly drifts toward the charge
symmetry of the iso-scalar path, the asymmetry of the cur-
vature parameter in the iso-vector direction does not have an
important effect on the diffusion mechanism. Therefore, we
neglect the asymmetry effect in the potential energy in the iso-
vector direction. For determining the iso-scalar curvature pa-
rameter toward the symmetry direction β>, we consider the
associate system 142Ba + 202Hg. The charge asymmetry of
nuclei 139Te and 142Ba have nearly the same value and are lo-
cated on the iso-scalar path equal distance away from 136Xe
as indicated in Fig. 3. Similarly, charge asymmetry of nuclei
214Po and 202Hg have nearly the same value and are located
close to the iso-scalar path equal distance away from 208Pb.
In order to save computing time, rather than carrying out the
SMF calculations for 142Ba+ 202Hg system, we estimate the
iso-scalar curvature parameter toward the symmetry direction
β>, with the help of the Qgg−value distribution along the iso-
scalar path. The Qgg−value of 130Te+ 214Po system relative
to 136Xe + 208Pb is Qgg = −16.2 MeV. The associate sys-
tem 142Ba+ 202Hg has a Qgg = −2.99 MeV value relative to
136Xe+ 208Pb. We estimate the potential energy and there-
fore curvature parameter along symmetry direction with the
ratio of the Qgg− values to give β> = β<(2.99/16.2) = 0.023.
For a heavy di-nuclear system the rotational kinetic energy
depends on the mass asymmetry variable in a smooth man-
ner [36]. As a result, the effect of the rotational energy on
the curvature parameters is very small, and hence in the or-
bital angular momentum range ` = (100−300) h̄ of the di-
nuclear system 136Xe+ 208Pb, the average value of the cur-
vature parameters of the parabolic forms have approximately
same magnitudes during the maximum overlap of the collid-
ing nuclei. Furthermore, the curvature parameters should be
proportional to the window area of the colliding nuclei for
each orbital angular momentum. In order to take into ac-
count this window effect, we multiply the average values of
the curvature parameters with a form factor β `

<(t) = β< F̀ (t),
β `
>(t) = β> F̀ (t) and α`(t) = αF̀ (t). We take this form fac-

tor to be the ratio of neutron diffusion coefficients of the
136Xe+ 208Pb for each orbital angular momentum,

F̀ (t) = D`(t)/D`(tm) . (30)

The ratio of the neutron diffusion coefficients provide a mea-
sure for the ratio of the window area at time t to the maximum
window area at time tm.

IV. FRAGMENT MASS DISTRIBUTION IN 136Xe+ 208Pb

TABLE II. Asymptotic values of the variances, the co-variances
of neutrons and protons, the mass dispersions in symmetric σ

>
AA

and in asymmetric σ
<
AA directions, and the dispersion σ̄AA of the

middle Gauss functions for a set of initial orbital angular momen-
tum in the interval ` = (100− 300) h̄ in 136Xe+ 208Pb collisions at
Ec.m. = 526 MeV.

`i (h̄) σ
2<
NN σ

2<
ZZ σ

2<
NZ σ

<
AA σ

2>
NN σ

2>
ZZ σ

2>
NZ σ

>
AA σAA

100 28.4 24.8 1.32 7.47 63.2 30.9 19.6 11.6 9.57
120 28.7 21.1 1.40 7.26 62.8 30.5 19.2 11.5 9.43
140 29.2 21.2 1.47 7.30 62.5 30.1 18.7 11.4 9.41
160 29.4 21.3 1.46 7.32 61.5 29.8 17.9 11.3 9.35
180 29.6 21.5 1.36 7.33 59.7 29.2 16.6 11.1 9.24
200 30.4 21.8 1.29 7.40 57.7 28.4 14.8 10.8 9.12
220 30.2 21.2 1.23 7.33 53.3 26.3 12.2 10.2 8.79
240 28.7 19.3 1.10 7.08 45.9 22.6 8.61 9.26 8.19
260 26.4 16.1 0.79 6.64 36.5 17.7 4.74 7.98 7.37
280 21.5 11.5 0.42 5.81 25.5 11.9 1.68 6.38 6.08
300 12.9 5.81 0.15 4.35 13.8 5.77 0.30 4.49 4.39

We determine the co-variances of the neutron σ2
NN(t) and

the proton σ2
ZZ(t) variances and the mixed co-variance σ2

NZ(t)
by solving the differential equations in Eqs. (12-14). Because
of different curvature parameters in symmetric and asymmet-
ric directions of the iso-scalar path, the variances and the
co-variances have different values in symmetric and asym-
metric directions. As an example, Fig. 7 shows the vari-
ances and the co-variance as a function of time for the ini-
tial orbital angular momentum ` = 100 h̄. We find the dis-
persion of the mass number distributions using the expres-
sion σ2

AA(t) = σ2
NN(t)+σ2

ZZ(t)+2σ2
NZ(t). Table II shows the

asymptotic values of the variances, the co-variances and the
mass dispersions in symmetric σ

>
AA and in asymmetric σ

<
AA di-

rections for a set of initial orbital angular momentum in the
interval `= (100−300) h̄

The mass number distributions in the asymmetry direction
and the symmetry direction are determined by the Gauss func-
tions

P<
` (A−A`) =

1√
2π

1
σ
<
AA(`)

= exp

[
−1

2

(
A−A`

σ
<
AA(`)

)2
]
,

(31)

and

P>
` (A−A`) =

1√
2π

1
σ
>
AA(`)

= exp

[
−1

2

(
A−A`

σ
>
AA(`)

)2
]
,

(32)

where, A` denotes the mean mass number of the projectile-
like or the target-like fragments. Because of the asymmet-
ric dispersions, these distribution functions do not match at
the mean value of the mass number. In order to provide
an approximate analytical description for the solution of the
Langevin Eq. (10) we smoothly combine the left and right
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FIG. 7. (color online) The neutron, proton, and mixed variances as
a function of time in the 136Xe+ 208Pb collisions with the Ec.m. =
526 MeV at the initial orbital angular momentum `= 100 h̄, towards
asymmetry (a) and towards symmetry (b).

Gauss functions. We determine the right and left intersec-
tion points A0

`(R), A0
`(L) by matching the Gauss functions

P<
` (A0

` −A`) = P>
` (A`−A0

`) = P̄̀ , and smoothly join the left
and right Gauss functions between the intersection points by
a middle Gauss function,

P̄̀ (A−A`) = P̄̀ exp

[
−1

2

(
A−A`

σ̄AA(`)

)2

+
1
2

(
∆A`

σ̄AA(`)

)2
]
,

(33)

where ∆A` = A`−A0
`(L) = A0

`(R)−A`. The dispersions of
the middle Gauss functions are determined by requiring the
entire distribution is normalized to one for each orbital angular
momentum. This requirement is given by the integral relation,∫

∆A`

0

1
2

dA
[
P<
` (A)+P>

` (A)
]
=
∫

∆A`

0
dAP̄̀ (A) . (34)

Dispersions σ̄AA(`) of the middle Gauss functions determined
from this requirement are listed in the last column of Table II.
The dispersion of the middle Gauss functions are approxi-
mately equal to the average values of the left and right disper-
sions, σ̄AA(`) ≈

(
σ
<
AA(`)+σ

>
AA(`)

)
/2. As a result, the mid-

dle Gauss functions describe nearly the average values of the
left and the right Gauss functions in the intersection intervals,
which have about ∆A` ≈ 8−10 nucleons range from the mean
values.
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FIG. 8. (color online) Line shows mass number distribution of the
primary fragments in collisions of 136Xe+ 208Pb system at Ec.m. =
526 MeV. Data is taken from [7].

We calculate the cross-section for production of a fragment
with the mass number A using the standard expression,

σ(A) =
π h̄2

2µEc.m.

`max

∑
`min

(2`+1)P̀ (A) , (35)

where P̀ (A) = P1,`(A)+P2,`(A) is the probability distribution
of the total fragments and the summation runs over from the
`min = 100h̄ to `max = 300h̄. As shown in Table I, the total
excitation energy of TDHF calculations at maximum `max =
300 value is E∗ = 53.7 MeV, which is nearly the same for the
T KE = 40.0 MeV cut-off in the experimental fragment mass
distribution in Fig. 8. Here, P1,`(A) and P2,`(A) denote the
probability distribution functions of the projectile-like and the
target-like fragments for the initial orbital angular momentum
`. The distribution functions of the projectile-like fragments
and the target-like fragments are determined according to,

P1,`(A) =

 P<
` (A−A1`) A≤ A1`−∆A`

P̄̀ (A−A1`) A1`−∆A` ≤ A≤ A1`+∆A`

P>
` (A−A1`) A≥ A1`+∆A`

,

(36)

and

P2,`(A) =

 P<
` (A−A2`) A≤ A2`−∆A`

P̄̀ (A−A2`) A2`−∆A` ≤ A≤ A2`+∆A`

P>
` (A−A2`) A≥ A2`+∆A`

.

(37)

In these expressions A1` and A2` indicate the mean mass val-
ues of the projectile-like and the target-like primary frag-
ments, respectively. We consider these distributions as aver-
ages over 20 angular momentum unit intervals and carry out
the summation as follows,

σ(A) =
π h̄2

2µEc.m.

n=10

∑
n=0

10× (2`n +1)P̀ n(A) . (38)



10

Here, `n = 100+ 20× n denotes the average orbital angular
momentum quantum number in the 20 unit intervals. Since
the total probability P̀ n(A) is normalized to two, the factor 10
appear rather than 20 in front of (2`n + 1). Fig. 8 presents
a comparison of the calculated cross-section for the primary
fragment production indicated by solid line in collision of the
136Xe+ 208Pb system at Ec.m. = 526 MeV and experimental
cross-sections of Kozulin et al. [7] are indicated by circles.
As seen from the first line of Table I, this range orbital angu-
lar momenta correspond to a limited laboratory angular range
25◦−70◦ for the detection of the binary fragments in coinci-
dence. Production probabilities of the primary projectile-like
and target-like fragments have mirror symmetry with differ-
ent mean values. This feature of the probability distribution
approximately takes into account for the fact that these frag-
ments are detected in coincidence. Heavy primary target-like
fragments may undergo sequential fission. In data presented
in Fig. 6 of Ref. [7] these events are not included. The rate
of these is estimated to be about 33%, which provides of
a small fraction of the cross-section in the heavy target-like
fragments side. On the other hand, all primary binary frag-
ments production, in the orbital angular momentum range of
`= (100−300)h̄, is included in the calculations. We also add
that a fraction of heavy target-like fragments, observed in the
experimental angular range, which undergo sequential fission
may originate from the orbital angular momentum smaller
than `= 100h̄, which is not included in the calculations

V. CONCLUSIONS

We carry out an investigation of mass distributions of the
primary fragments produced in the collisions of the 136Xe+
208Pb system at Ec.m. = 526 MeV. We calculate the mass dis-
tribution employing a quantal nucleon diffusion mechanism
based on the SMF approach. The diffusion coefficients of neu-
trons and protons, which describes the fluctuation aspects of

the mass distribution, are determined entirely in terms of the
occupied single particle states of the TDHF equations and they
do not involve any adjustable parameters other than the stan-
dard parameters of the effective Skyrme interaction. The eval-
uation of the transport coefficients in terms of the mean-field
properties is consistent with the fundamental idea of the non-
equilibrium fluctuation-dissipation theorem. The potential en-
ergy surface in the (N,Z)- plane has an important effect on the
diffusion mechanism. As a result of the neutron shell closure
of projectile and target with N = 82 and N = 126, respec-
tively, and due the Qgg−value distributions, the 136Xe+ 208Pb
system is located at a local potential energy minimum posi-
tion in the (N,Z)− plane. We parameterize the potential en-
ergy in the vicinity of this local minimum in terms of two
parabolic forms along the iso-scalar and iso-vector directions.
We determine the curvature parameters of the parabolic forms
by carrying out the SMF calculations for two nearby systems
130Te+ 214Po and 138Ce+ 206Pt, and utilizing the Qgg−value
information of the systems 130Te+ 214Po and 142Ba+ 202Hg,
which are located symmetrically on the (N,Z)− plane along
the iso-scalar direction. As seen in Fig. 8, the quantal diffu-
sion calculations based on the SMF approach provides a very
good description of the mass distribution of the primary frag-
ments of data reported by the Kozulin et al. [7] without any
adjustable parameters.
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