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We formulate microscopic optical potentials for nucleon-nucleus scattering from chiral two- and
three-nucleon forces. The real and imaginary central terms of the optical potentials are obtained from
the nucleon self energy in infinite nuclear matter at a given density and isospin asymmetry, calculated
self-consistently to second order in many-body perturbation theory. The real spin-orbit term is
extracted from the same chiral potential using an improved density matrix expansion. The density-
dependent optical potential is then folded with the nuclear density distributions of 40,42,44,48Ca from
which we study proton-nucleus elastic scattering and total reaction cross sections using the reaction
code TALYS. We compare the results of the microscopic calculations to those of phenomenological
models and experimental data up to projectile energies of E = 180 MeV. While overall satisfactory
agreement with the available experimental data is obtained, we find that the elastic scattering and
total reaction cross sections can be significantly improved with a weaker imaginary optical potential,
particularly for larger projectile energies.

I. INTRODUCTION

Nucleon-nucleus optical potentials are a valuable tool
for predicting a wide range of scattering and reaction
processes by replacing the complicated many-body dy-
namics of nucleons interacting through two- and three-
body forces with an average complex, energy-dependent
single-particle potential. Global phenomenological opti-
cal potentials [1, 2] have been constructed by fitting to
experimental data spanning a large range of projectile
energies across many nuclei. Although phenomenolog-
ical optical potentials are very successful at describing
scattering processes involving nuclei near stability, mi-
croscopic optical potentials are not tuned to experimen-
tal data and therefore may have greater predictive power
for reactions involving exotic isotopes.

Semi-microscopic global optical potentials [3, 4] de-
rived in the 1970’s from high-precision one-boson-
exchange nucleon-nucleon interactions are still widely
used today [5–9]. Whereas the density and isospin-
asymmetry dependence is computed microscopically, the
overall strengths of the real and imaginary volume
terms are often adjusted with energy-dependent empiri-
cal strength factors. The effects of three-body forces were
generally neglected in these early works, and within the
original nuclear matter approach no spin-orbit optical po-
tential could be derived. More recently, three-body forces
have been implemented [10–12] in calculations of the
real and imaginary central terms, while phenomenologi-
cal spin-orbit optical potentials have been added [7, 8, 13]
in order to better describe analyzing powers and differ-
ential cross sections at large scattering angles. An alter-
native approach [14–21] to constructing microscopic op-
tical potentials is based on multiple scattering theory in-
volving the nucleon-nucleon T -matrix. Such an approach
naturally generates a spin-orbit contribution, but the im-
plementation of medium effects [22, 23] and three-body
forces remains challenging, which in practice often limits
the theory to large scattering energies E & 200 MeV.
Other current approaches to deriving predictive opti-

cal potentials include the self-consistent Green’s function
method [24] and the dispersive optical model [25].

Recently there has been much interest in the develop-
ment of microscopic optical potentials [10, 12, 21, 26–30]
based on chiral effective field theory (EFT) [31–33]. The
main motivation is to implement more realistic micro-
physics involving multi-pion exchange contributions to
the nuclear force, three-body interactions, and theoret-
ical uncertainty estimates. Chiral optical potentials are
well suited to describe low-energy scattering processes
but are expected to break down for energies approach-
ing the relevant momentum-space cutoff employed. In
practice, the presence of the cutoff constrains nucleon
projectile energies to lie below E . 200 MeV.

In the present study, we aim to lay the groundwork
for a revised nuclear matter description of the global
nucleon-nucleus optical potential based on chiral EFT.
Ultimately the goal will be to develop a theory for
nucleon-nucleus scattering across a large range of iso-
topes, including those off stability, at energies up to 200
MeV. As a starting point we consider differential elas-
tic and total reaction cross sections for proton-nucleus
scattering along a chain of calcium isotopes, 40,42,44,48Ca,
at energies ranging from 2-160 MeV where experimental
data are available. We also compare to the global phe-
nomenological optical potential of Koning and Delaroche
[2] and investigate to what extent modern phenomeno-
logical parametrizations of the optical potential are con-
sistent with microscopic analyses. Our calculations are
performed within the TALYS [34] reaction code for which
we have developed an implementation of our microscopic
optical potential.

We take as a starting point for the calculation a partic-
ular high-precision 2N + 3N chiral nuclear potential with
momentum-space cutoff Λ = 450 MeV. The low-energy
constants of the potential are fitted to nucleon-nucleon
scattering phase shifts, deuteron properties, and in the
case of three-body contact terms also the triton binding
energy and lifetime. The nucleon-nucleon interaction is
taken at next-to-next-to-next-to-leading order (N3LO),
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while only the N2LO three-nucleon force is included. The
inconsistent treatment of two- and three-body forces at
the level of the chiral expansion is undesirable, but work
toward fully consistent two- and many-body forces is in
progress [35–37]. We note that the chiral nuclear po-
tential employed in the present work exhibits good nu-
clear matter properties (saturation energy and density
[38], thermodynamics [39, 40], and Fermi liquid param-
eters [41]) when calculated at least to second order in
many-body perturbation theory. In the future we plan
to perform calculations of the nucleon-nucleus optical po-
tential from a wider range of high-precision chiral nuclear
forces in order to better assess theoretical uncertainties.

In quantum many-body theory, the optical potential
for scattering states is identified with the energy- and
momentum-dependent single-particle self energy [42].
We first compute the nucleon self energy in homoge-
neous nuclear matter at arbitrary density and compo-
sition (proton fraction) from chiral two- and three-body
forces to second order in many-body perturbation the-
ory. We next compute nuclear density distributions for
selected calcium isotopes (40Ca, 42Ca, 44Ca, 48Ca) from
mean field theory employing recently derived [43] Skyrme
effective interactions constrained by chiral effective field
theory. In the local density approximation (LDA) the
nucleon-nucleus optical potential is computed [44] by
folding the nucleon self-energy in homogeneous matter
with the derived density distributions. Since the LDA is
known [44] to underestimate the surface diffuseness of the
optical potential in finite nuclei, we employ the improved
local density approximation (ILDA) described in Refs.
[7, 44] to account for the non-zero range of the nuclear
force.

The method outlined thus far is versatile since it can be
used to produce optical potentials for a very wide range
of nuclei. However, the LDA nuclear matter approach
cannot capture the physics of collective surface modes,
shell effects [45], and surface-peaked spin-orbit optical
potentials. The latter are particularly important for spin
observables and elastic scattering cross sections at large
angles. In the present work we therefore construct a spin-
orbit optical potential from the improved density ma-
trix expansion [46–48], which improves the description of
the spin-dependent part of the energy density functional
compared to the standard density matrix expansion of
Negele and Vautherin [49]. We then benchmark our ap-
proach to experimental data for proton elastic scattering
and total reaction cross sections on the calcium isotopes
40Ca, 42Ca, 44Ca, 48Ca.

The paper is organized as follows. In Section II we de-
scribe details of the microscopic calculation of the optical
potential in nuclear matter from chiral EFT. We then cal-
culate nuclear density distributions from mean field the-
ory and employ the ILDA to construct nucleon-nucleus
optical potentials for calcium isotopes. The microscopic
optical potentials are parametrized in the form of the
Koning-Delaroche (KD) [2] phenomenological optical po-
tential in order to implement them into the reaction code

(a) (b) (c)

FIG. 1. Diagrammatic representations of the first and second
order contributions to the self energy. The solid lines repre-
sent nucleon propagators and the wavy lines represent the in
medium two-nucleon interaction.

TALYS. In Section III we compute proton-nucleus elastic
differential scattering cross sections up to projectile en-
ergy E = 160 MeV and total reaction cross sections up to
E = 180 MeV. These results are compared to empirical
data and predictions from the KD phenomenological op-
tical potential. We end with a summary and conclusions.

II. OPTICAL POTENTIAL FROM CHIRAL
EFFECTIVE FIELD THEORY

A. Real and imaginary central terms

In recent work [10, 12] the nucleon self energy in homo-
geneous nuclear matter has been computed employing a
set of nuclear potentials derived from chiral effective field
theory. The first- and second-order perturbative contri-
butions to the nucleon self energy are shown graphically
in Fig. 1 and given quantitatively by

Σ
(1)
2N (q; kf ) =

∑
1

〈~q ~h1ss1tt1|V̄ eff
2N |~q ~h1ss1tt1〉n1, (1)

Σ
(2a)
2N (q, ω; kf ) (2)

=
1

2

∑
123

|〈~p1~p3s1s3t1t3|V̄ eff
2N |~q~h2ss2tt2〉|2

ω + ε2 − ε1 − ε3 + iη
n̄1n2n̄3,

Σ
(2b)
2N (q, ω; kf ) (3)

=
1

2

∑
123

|〈~h1
~h3s1s3t1t3|V̄ eff

2N |~q~p2ss2tt2〉|2

ω + ε2 − ε1 − ε3 − iη
n1n̄2n3,

where ni is the occupation probability θ(kf − ki) for

a filled state with momentum ~ki below the Fermi sur-
face, the occupation probability for particle states is
n̄i = θ(ki−kf ), the summation is over intermediate-state

momenta for particles ~pi and holes ~hi, their spins si, and
isospins ti. The nuclear potential V̄ eff

2N represents the anti-
symmetrized two-body interaction consisting of the bare
nucleon-nucleon (NN) potential VNN together with an ef-
fective, medium-dependent NN interaction V med

NN derived
from the N2LO chiral three-nucleon force by averaging
one particle over the filled Fermi sea of noninteracting
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nucleons [50–52]. In the first-order Hartree-Fock con-
tribution, Eq. (1), the effective interaction is given by
V̄ eff

2N = VNN + 1
2V

med
NN , while for the higher-order con-

tributions, Eqs. (2) and (3), the effective interaction is
given by V̄ eff

2N = VNN + V med
NN . The Hartree-Fock contri-

bution is nonlocal, energy-independent, and purely real,
while the second-order contributions are in general nonlo-
cal, energy-dependent, and complex. The single-particle
energies in the denominators of Eqs. (2) and (3) are com-
puted self-consistently according to

ε(q) =
q2

2M
+ ReΣ(q, ε(q)), (4)

where M is the free-space nucleon mass.
In the present work the self energy is computed for

arbitrary isospin-asymmetry, δnp = (ρn − ρp)/(ρn + ρp),
which is essential for an accurate description of nuclei for
which N 6= Z. The resulting optical potentials for nu-
cleons propagating in homogeneous matter characterized
by its proton and neutron Fermi momenta kpf and knf are
given by

Up(E; kpf , k
n
f ) = Vp(E; kpf , k

n
f ) + iWp(E; kpf , k

n
f ),

Un(E; kpf , k
n
f ) = Vn(E; kpf , k

n
f ) + iWn(E; kpf , k

n
f ) (5)

with

Vi(E; kpf , k
n
f ) = ReΣi(q, E(q); kpf , k

n
f ), (6)

Wi(E; kpf , k
n
f ) =

Mk∗
i

M
ImΣi(q, E(q); kpf , k

n
f ), (7)

where the subscript i denotes a propagating proton or
neutron. In relating the physical imaginary part of the
optical potential to the imaginary part of the nucleon
self-energy we have multiplied [53, 54] by the effective
k-mass Mk∗

i defined by

Mk∗
i

M
=

(
1 +

M

k

∂

∂k
Vi(k,E(k)

)−1

, (8)

in order to account for the non-locality of the optical
potential.

B. Spin-orbit optical potential

The effective one-body spin-orbit interaction vanishes
in homogeneous nuclear matter and therefore cannot be
computed within the framework described above. In-
stead we employ an improved density matrix expan-
sion [47, 48, 55] to construct the one-body spin-orbit in-
teraction from chiral two- and three-body forces. The
improved density matrix expansion takes advantage of
phase space averaging to derive a more accurate spin-
dependent energy density functional compared to the
standard density matrix expansion of Negele-Vautherin
[49].
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FIG. 2. The nucleon density distributions for 40,42,44,48Ca cal-
culated in mean field theory from the Skyrme Skχ450 effective
interaction constrained by chiral effective field theory.

From the definition of the density matrix

ρ(~r1σ1τ1;~r2σ2τ2) =
∑
α

Ψ∗α(~r2σ2τ2)Ψα(~r1σ1τ1), (9)

where Ψα are energy eigenfunctions associated with oc-
cupied orbitals of the non-relativistic many-body system,
the energy density functional for N = Z even-even nuclei
in the Hartree-Fock approximation can be expanded up
to second order in spatial gradients as

E [ρ, τ, ~J ] = ρ Ē(ρ) +

[
τ − 3

5
ρk2
f

][
1

2MN
+ Fτ (ρ)

]
(10)

+(~∇ρ)2 F∇(ρ) + ~∇ρ · ~J FSO(ρ) + ~J 2 FJ(ρ) ,

where ρ(~r ) = 2k3
f (~r )/3π2 =

∑
α Ψ†α(~r )Ψα(~r ) de-

fines the local density with kf (~r ) the local Fermi mo-

mentum, τ(~r ) =
∑
α
~∇Ψ†α(~r ) · ~∇Ψα(~r ) is the ki-

netic energy density, and ~J(~r ) = i
∑
α
~Ψ†α(~r )~σ ×

~∇Ψα(~r ) is the spin-orbit density. These terms are
multiplied by the density-dependent strength func-
tions Ē(ρ), Fτ (ρ), F∇(ρ), FSO(ρ), FJ(ρ), of which we are
presently only interested in the spin-orbit term FSO(ρ).
In effect, the spin-orbit optical potential is therefore cal-
culated for N = Z nuclei to first order in many-body
perturbation theory. In the future, higher-order pertur-
bative contributions [56] to the microscopic nuclear en-
ergy density functional may be investigated. We note
that we do not include the isovector part [57] of the spin-
orbit interaction for N 6= Z nuclei in this study since it
is known to be small compared to the isoscalar part [48].

C. Improved local density approximation

We employ the improved local density approximation
(ILDA) to construct the nucleon-nucleus optical potential
for finite nuclei. The density dependent optical potential
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FIG. 3. Left (right): The real, imaginary, and spin-orbit terms of the microscopic optical potential for proton-40Ca scattering
at E = 2.35 MeV before (after) applying the improved local density approximation. In the left panel the dots represent raw
results from chiral EFT, while the solid black lines represent fits to the Koning-Delaroche (KD) form. We also compare to the
global KD phenomenological optical potential, shown as the dashed green line, at the same energy.

(both central and spin-orbit parts) is folded with the ra-
dial density distribution of a target nucleus. The nuclear
density distributions are calculated within mean field the-
ory from the Skχ450 Skyrme interaction [43], which fits
both finite nuclei properties as well as theoretical cal-
culations of the asymmetric nuclear matter equation of
state from the N3LO Λ = 450 MeV chiral potential used
in the calculation of the self energy. In Fig. 2 we show
the resulting nucleon density distributions for each of the
calcium isotopes 40Ca, 42Ca, 44Ca, 48Ca.

In the standard local density approximation, the
strength of the nucleon-nucleus optical potential at a
given radial distance r is evaluated as

V (E; r) + iW (E; r) = V (E; kpf (r), knf (r)) (11)

+iW (E; kpf (r), knf (r)),

where kpf (r) and knf (r) are the local proton and neu-
tron Fermi momenta. This approximation is strictly
valid only for zero-range nuclear forces, and when ap-
plied to nucleon-nucleus optical potentials it is known
to underestimate the surface diffuseness [44, 58]. Conse-
quently, such an approach is inadequate for an accurate
description of nuclear elastic scattering and reaction pro-
cesses. The improved local density approximation applies

a Gaussian smearing

V (E; r)ILDA =
1

(t
√
π)3

∫
V (E; r′)e

−|~r−~r′|2

t2 d3r′ (12)

characterized by an adjustable length scale t associated
with the non-zero range of the nuclear force. In the lim-

iting case of t → 0, a factor of δ(|~r − ~r′|) replaces the
Gaussian, giving VILDA(E; r) → V (E; r). In Ref. [7]
it is found that for the central part of the interaction
tC = 1.2 fm gives the best fit to experimental reaction
cross sections for 10 MeV < E < 200 MeV and targets
ranging from 40Ca to 208Pb. In the present work we
vary the range parameter 1.15 fm < tC < 1.25 fm. This
variation is used to estimate the theoretical uncertainty
associated with our choice of the length scale tC . For
the spin-orbit part of the optical potential, we estimate
the range parameter tSO from the root mean square ra-
dius of the Argonne v18 spin-orbit nucleon-nucleon poten-
tial [59]. We found tSO = 1.07 fm and took two values,
tSO = 1.0, 1.1 fm to estimate the uncertainty.

In Figs. 3 and 4 we show the comparison between the
central and spin-orbit optical potentials in the LDA (left
panels) and ILDA (right panels) for the proton-40Ca op-
tical potential at projectile energies E = 2.35 MeV and
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FIG. 4. Same as Fig. 3, except that the projectile energy is E = 35 MeV.

E = 35 MeV respectively. In the left panels, the dots in-
dicate the results from chiral effective field theory, and for
comparison we show as the green dashed lines the phe-
nomenological optical potentials from Koning and De-
laroche [2]. In particular, the real central part of the
microscopic optical potential has a much smaller surface
diffuseness compared to phenomenology. When the im-
proved local density approximation is employed in the
right panels (solid blue bands), the comparison to phe-
nomenology is much improved. In addition, the overall
strength of the real central part of the optical potential is
in very good agreement with the Koning-Delaroche phe-
nomenological optical potential. Varying the ILDA range
parameter tC between 1.15 fm and 1.25 fm yields only a
small change in the overall shape of the real central part,
which suggests that the theoretical predictions for scat-
tering cross sections computed in the next section will
not be especially sensitive to the precise choice of tC .

In the middle panels of Figs. 3 and 4 we plot the imagi-
nary part of the microscopic optical potential for proton-
40Ca scattering at E = 2.35 MeV and E = 35 MeV.
This is again compared to the phenomenological opti-
cal potential of Koning and Delaroche, which is written
as the sum of a volume imaginary part WV and a sur-
face imaginary part WD. In the microscopic description
of the imaginary part, there is no distinction between
these two components. We observe that in contrast to the

real central part of the optical potential, the microscopic
imaginary part exhibits large qualitative differences com-
pared to phenomenology. The most striking difference
is a much smaller surface peak, which only appears at
low projectile energies in the microscopic calculation but
persists to much higher energies (E ' 100 MeV) in the
phenomenological optical potential. For instance, at the
scattering energy E = 35 MeV, the surface peak has es-
sentially vanished in the microscopic calculation, and
the remaining “volume” imaginary part is large com-
pared to phenomenology. In fact, this is a common fea-
ture [4, 6, 60, 61] in microscopic optical potentials com-
puted in the nuclear matter approach. Modern semi-
microscopic optical potentials therefore include empirical
energy-dependent strength factors multiplying the real
and imaginary central parts [7, 9].

In the bottom panels of Figs. 3 and 4 we show the real
spin-orbit part of the microscopic optical potential com-
pared to the Koning-Delaroche phenomenological optical
potential for proton-40Ca scattering at E = 2.35 MeV
and E = 35 MeV. The radial shape of the microscopic
spin-orbit optical potential is found to be very similar
to that of the Koning-Delaroche optical potential, how-
ever, the strength of the microscopic potential is larger.
Indeed, the density matrix expansion carried out at the
Hartree-Fock level is known [48, 62] to produce a stronger
spin-orbit interaction, by about 20-50%, than is required
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TABLE I. Shape parameters for the proton-40Ca microscopic
optical potential at the three energies E = 2.35, 35, 100 MeV.
Also shown are the corresponding shape parameters for the
Koning-Delaroche (KD) optical potential that are indepen-
dent of energy.

E = 2.35 MeV VV WV VSO

r (fm) 1.213 1.344 1.015

a (fm) 0.723 0.583 0.706

E = 35 MeV VV WV VSO

r (fm) 1.183 1.204 1.015

a (fm) 0.730 0.751 0.706

E = 100 MeV VV WV VSO

r (fm) 1.173 0.846 1.015

a (fm) 0.713 0.702 0.706

KD VV WV VSO

r (fm) 1.185 1.185 0.996

a (fm) 0.672 0.672 0.590

from traditional mean field theory studies of finite nuclei.
Higher-order perturbative contributions are expected to
remedy this feature. In particular, multi-pion-exchange
processes have been shown [63] to reduce the strength of
the one-body spin-orbit interaction in finite nuclei. This
provides additional motivation for including G-matrix
correlations in the density matrix expansion as outlined
in [56]. As in the case of the central components of the
optical potential, we find relatively small differences be-
tween spin-orbit potentials produced with two choices of
the ILDA length scale tSO = 1.0, 1.1 fm.

D. Parameterization of the chiral optical potential

In order to facilitate the implementation of our micro-
scopic optical potential into standard nuclear reaction
codes, such as TALYS, we fit our optical potential to the
phenomenological form of Koning and Delaroche. Even-
tually our aim is to construct a global microscopic optical
potential and make it available in a convenient form for
nuclear reaction practitioners. This exercise may also
help to reveal any deficiencies in the assumed form of
phenomenological optical potentials. We recall that in
the phenomenological description, the optical potential
takes the form

U(r, E) = VV (r, E) + iWV (r, E) + iWD(r, E) (13)

+VSO(r, E)~̀ · ~s+ iWSO(r, E)~̀ · ~s+ VC(r),

consisting of a real volume term, an imaginary volume
and surface term, a real and imaginary spin-orbit term,
and finally the central Coulomb interaction. In Eq. (13),
~̀ and ~s are the single-particle orbital angular momen-
tum and spin angular momentum operators, respectively.
Since the phenomenological imaginary spin-orbit term is
very small and cannot be extracted within the present

microscopic approach, we neglect it in the rest of the
discussion. The energy and radial dependence of the dif-
ferent terms in the phenomenological optical potential
are assumed to factorize according to

VV (r, E) = VV (E)f(r; rV , aV ), (14)

WV (r, E) =WV (E)f(r; rW , aW ), (15)

WD(r, E) = −4aDWD(E)
d

dr
f(r; rD, aD), (16)

VSO(r, E) = VSO(E)
1

m2
π

1

r

d

dr
f(r; rSO, aSO), (17)

where

f(r; ri, ai) =
1

1 + e(r−A1/3ri)/ai
(18)

is of the Woods-Saxon form with A the mass number
and {ri,ai} the energy-independent geometry parame-
ters that encode the size and diffuseness of a given target
nucleus respectively. In phenomenological optical poten-
tials, these shape parameters vary weakly with the target
nucleus. The energy-dependent strength functions in the
KD parametrization have the form

VV (E) = v1(1− v2Ẽ + v3Ẽ
2 − v4Ẽ

3), (19)

WV (E) = w1
Ẽ2

Ẽ2 + w2
2

, (20)

WD(E) = d1
Ẽ2 e−d2Ẽ

Ẽ2 + d2
3

, (21)

VSO(E) = vSO1e
−vSO2Ẽ , (22)

where Ẽ = E−EF is the projectile energy relative to the
Fermi energy EF .

In the left panels of Figs. 3 and 4 we show as the solid
black lines the best fit functions of the form Eqs. (14)-
(22) to the microscopic calculations. We see that overall
the phenomenological form can reproduce well the radial
dependence of the microscopic optical potential. In the
present study we have isolated the optical potential at
low energy, where there is a defined surface imaginary
peak, and fitted to the phenomenological form separately.
At larger energies E > 50 MeV, we have also fitted to
the phenomenological form separately. To show that no
crucial features of the chiral potential are lost in this
parameterization, we also display in Figs. 3 and 4 the
accompanying coefficient of determination defined by

R2 = 1−
∑
i(yi − f(ri))

2∑
i(yi − ȳ)2

, (23)
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TABLE II. Volume integrals for the real central VC , imagi-
nary central WC , and real spin-orbit VSO parts of the proton-
40Ca optical potential. Results are shown for the microscopic
chiral optical potential and for the phenomenological Koning-
Delaroche (KD) optical potential.

E = 2.35 MeV Chiral (MeV fm3) KD (MeV fm3)

VC 524 480

WC 64 80

VSO 19 13

E = 35 MeV Chiral (MeV fm3) KD (MeV fm3)

VC 413 374

WC 120 113

VSO 17 11

E = 100 MeV Chiral (MeV fm3) KD (MeV fm3)

VC 236 220

WC 163 109

VSO 13 9

where yi represents the value of the potential from chiral
EFT at location ri, f(ri) is the value of the fitted func-
tion, and ȳ is the mean of the chiral optical potential
values. In the right panels of Figs. 3 and 4, the ILDA
results are obtained from the parametrized form of the
corresponding parts of the optical potentials.

For the global KD phenomenological optical potentials
we note that the real and imaginary volume terms have
identical Woods-Saxon shape functions. From the mi-
croscopic perspective there is little justification for this
assumption. In fact, we find that the shape parameters
of the real and imaginary central optical potentials have
to be fitted separately in order to achieve a good fit to
the microscopic results. In Table I we show the values of
all shape parameters for the three energy windows over
which we fit to the phenomenological form together with
those of the phenomenological Koning-Delaroche opti-
cal potential, whose shape parameters are independent
of energy. For these results we have chosen the values
tC = 1.15 fm and tSO = 1.0 fm in the ILDA. We see that
there is not a very large energy dependence in the shape
parameters of the real volume part of the microscopic op-
tical potential, but there is a significant difference among
the real volume, imaginary volume, and real spin-orbit
parts.

Finally, we note that the microscopic real spin-orbit
optical potential calculated from the density matrix ex-
pansion has no energy dependence. The phenomenolog-
ical energy dependence used in TALYS (vSO2 = 0.004)
is constant across all nuclei, and in fact since vSO2 is
small, the real spin-orbit term does not strongly depend
on the energy. We have therefore incorporated this phe-
nomenological energy dependence into our parametriza-
tion of the spin-orbit optical potential. As mentioned
above, the imaginary spin-orbit part of the optical po-
tential is neglected since its magnitude for the relevant

●
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●
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● Experiment
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150

250
350
450
80 100 120 140 160

150

250
350
450

θ(deg)

dσ

dΩ
(
mb

sr
)

40Ca E=2.35 MeV

FIG. 5. Differential elastic scattering cross sections for
proton-40Ca at projectile energy E = 2.35 MeV. The mi-
croscopic cross section is given by the blue band. The KD
phenomenological cross section is given by the green dashed
curve, and experimental data are represented by red circles.

energy range is ∼ 0.1 MeV and has been shown to have
a negligible effect on elastic scattering cross sections at
relatively low energies [64].

E. Volume integrals of the real and imaginary
parts of the optical potential

We end this section by comparing the volume inte-
grals of the various components of the microscopic opti-
cal potential to those from phenomenology. It has been
demonstrated [3] that physical scattering observables can
remain unchanged even if the various parameters of an
optical potential are allowed to vary, provided that the
volume integrals, defined by

J

A
=

1

A

∫
U(r)d3r, (24)

remain roughly constant. In Table II we show the vol-
ume integrals for each term of the microscopic and phe-
nomenological optical potentials for the proton-40Ca sys-
tem at the three energies E = 2.35, 35, 100 MeV. We see
that the microscopic real volume and spin-orbit terms are
both slightly larger than their phenomenological coun-
terparts for all three energies considered. The central
imaginary term features a volume part that grows with
energy and a surface peak that diminishes with energy.
The imaginary term of the chiral optical potential over-
estimates the volume component and underestimates the
surface component. For E = 35 MeV these compet-
ing effects nearly cancel out and the chiral volume in-
tegral is close to the phenomenological volume integral.
At E = 2.35 MeV, the volume integral for the chiral
imaginary term is smaller than the KD model since its
surface peak is at a smaller r value. For higher energies,
the microscopic imaginary term becomes larger than the
phenomenological imaginary term.
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III. RESULTS

As a first test of the microscopic optical poten-
tials constructed in the present work, we consider pro-
ton scattering on calcium isotopes. Both the differen-
tial elastic scattering cross sections and total reaction
cross sections are calculated for selected calcium iso-
topes at energies for which there are available experi-
mental data. In particular, we compute differential elas-
tic scattering cross sections for 40,42,44,48Ca targets at
E = 25, 35, 45 MeV projectile energies. For 40Ca, differ-
ential elastic scattering cross sections are also calculated
at E = 2.35, 55, 65, 80, 135, 160 MeV. Experimental data
are taken from Refs. [65–69]. The total reaction cross sec-
tions for proton scattering on 40,42,44,48Ca are calculated
and compared to experimental data [70–73]. Energies
exceeding 200 MeV are not considered, since the chiral
expansion is expected to breakdown around that energy
scale.

The TALYS reaction code is used to calculate the cross
sections in the different reaction channels. In all cases we
employ the microscopic optical potential parametrized to
the KD form implemented in the ILDA. In the present
work, the only theoretical uncertainties considered are
those for the ILDA length scales tC and tSO. In the
future, we will consider a wider class of chiral nuclear
potentials in order to more accurately assess the com-
plete theoretical uncertainty. We also benchmark against
results from the KD global phenomenological optical po-
tential [2].

A. Microscopic optical potential at low energy

Low-energy nuclear reactions are important for a wide
range of astrophysical applications. One of the primary
motivations for the construction of new global micro-
scopic optical potentials is to reduce the uncertainty in
calculated radiative neutron capture reaction rates on ex-
otic, neutron-rich isotopes. These reactions play an im-
portant role in r-process nucleosynthesis [74, 75], espe-
cially in cold r-process environments such as neutron star
mergers where freeze-out is achieved rapidly and neu-
tron capture plays an enhanced role. Neutron-capture
rates are included in most modern r-process reaction net-
work codes, and the neutron-nucleus optical potential
(together with level densities and γ transition strength
functions) is one of the key ingredients for the theoreti-
cal calculations. Most relevant is the imaginary part of
the optical potential at low energies [9].

In Fig. 5 we show the differential elastic scattering
cross sections for proton projectiles on a 40Ca target
at E = 2.35 MeV. The red circles indicate experimen-
tal data [65–69], the green dashed curve is the result of
the global phenomenological optical potential from Kon-
ing and Delaroche, while the blue band is the prediction

from the microscopic optical potential constructed in the
present work. Interestingly, there is very little difference
between the phenomenological optical potential predic-
tions and those from chiral effective field theory. Both
calculations agree well with experimental data at scat-
tering angles up to θ ' 120◦, but overpredict the cross
section at large angles.

B. Microscopic optical potential at medium energy

In Fig. 6 we plot the differential elastic scattering
cross sections for protons on 40,42,44,48Ca targets at
E = 24, 35, 45 MeV. For scattering angles in the range
0◦ < θ < 80◦, the microscopic optical potential yields
cross sections that are consistent with experiment and
often more accurate than predictions based on the phe-
nomenological KD optical potential. However, at larger
scattering angles the microscopic calculations of the cross
sections exhibit a weaker interference pattern, which per-
sists as the energy increases. Overall, the microscopic
elastic scattering cross sections are larger than experi-
ment at high scattering angles.

From Fig. 4, we suspect that the underlying cause of
these discrepancies may be due to the imaginary part of
the microscopic optical potential. At these intermediate
projectile energies, the imaginary volume integral is close
to phenomenology according to Table II. However, the
microscopic surface imaginary peak is too small, as can
be seen in Fig. 4, which leads to larger elastic scattering
cross sections. In contrast the imaginary volume part,
probed at higher projectile energies, is much larger than
phenomenology.

In order to investigate this conjecture, we substitute
the phenomenological imaginary term into the micro-
scopic optical potential. This replacement is meant to
be a simple way of showing the possible improvements in
the chiral optical potential and should not be interpreted
as a substitute for proper microscopic modeling. In Fig.
7 we show the differential elastic scattering cross sections
for protons on 40,42,44,48Ca targets at E = 24, 35, 45 MeV
with this phenomenological replacement. Indeed we find
that the calculated cross sections are much improved at
large angles across all isotopes. The enhanced surface
imaginary part leads to stronger interferences and an
overall decrease in the elastic scattering cross section.
Hence, there is a strong motivation for future work aimed
at improving the microscopic description of the imagi-
nary part of the optical potential.

C. Microscopic optical potential at high energy

To test the chiral optical potential at higher energies,
we calculate proton-40Ca differential elastic scattering
cross sections at E = 55, 65, 80, 135, 160 MeV. In Fig. 8
we plot the results from the chiral optical potential and
the KD phenomenological optical potential together with
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FIG. 6. Differential elastic scattering cross sections for proton projectiles on calcium targets at the energies E = 25, 35, 45 MeV.
The microscopic cross sections are shown as the blue band. The KD phenomenological cross sections are given by the green
dashed curves and experimental data are represented by red circles.
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FIG. 7. Differential elastic scattering cross sections for proton projectiles on calcium targets at the energies E = 25, 35, 45 MeV.
In comparison to Fig. 6, the black bands show the cross sections that result from replacing the microscopic imaginary part in
the chiral optical potential by the Koning-Delaroche phenomenological imaginary part.

experimental data from Refs. [65–69]. The cross sections
from the chiral optical potential stay close to phenomeno-
logical and experimental results for E = 55, 65 MeV but
begin to deviate strongly for E > 80 MeV. The micro-
scopic imaginary term becomes much more absorptive
for E > 80 MeV, as the large volume contribution from
the chiral optical potential becomes more relevant. The
effect of this can be seen especially in the lower three
plots of Fig. 8, where the cross sections exhibit large in-

terference oscillations. Since there are more open inelas-
tic channels at higher energy, a stronger imaginary part
in general corresponds to a lower elastic scattering cross
section.

In order to assess the quality of the microscopic imag-
inary part of the optical potential, we again substitute
the KD phenomenological imaginary part into the chi-
ral optical potential. The results for proton-40Ca elastic
scattering cross sections at E = 55, 65, 80, 135, 160 MeV
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FIG. 8. Differential elastic scattering cross sections for
proton projectiles on a 40Ca target at the energies E =
55, 65, 80, 135, 160 MeV. Full microscopic cross sections are
shown as the blue bands, microscopic real optical potential
plus phenomenological imaginary optical potential are shown
by the black bands, the KD phenomenological cross sections
are given by the green dashed curves, and experimental data
are represented by red circles.

are shown in Fig. 8. Again, we find that the replacement
of the large microscopic imaginary optical potential by
the KD phenomenological imaginary part leads to signif-
icant improvements in the elastic scattering cross sections
across all energies. For E = 135 and 160 MeV, the purely
phenomenological cross sections are still more accurate,
but the microscopic optical potential with phenomeno-
logical imaginary part gives a quality description of the
data.
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Experimental data are shown as red circles.
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D. Total reaction cross section

In Figs. 9 and 10 we plot the total reaction cross sec-
tions for proton scattering on 40,42,44,48Ca from our mi-
croscopic optical potential and the KD phenomenological
optical potential. The chiral EFT results are shown as
the blue band, while the KD predictions are shown as
dashed green lines. Experimental data [70–73] are shown
with red circles. We see that for all energies the purely
microscopic optical potential predicts a total reaction
cross section that is too large, while the phenomenolog-
ical potential gives an overall good description for most
isotopes and energies. However, for proton-48Ca, the KD
phenomenological potential also gives a larger total reac-
tion cross section compared to experiment. This suggests
that there might be room for improvement in the phe-
nomenological description of the global isovector optical
potential probed in this neutron-rich nucleus.

We also show in Figs. 9 and 10 the results for the to-
tal reaction cross sections (black solid bands) when the
microscopic imaginary part is replaced by the KD phe-
nomenological imaginary potential. For intermediate en-
ergies (20 MeV < E < 50 MeV), there is not a substan-
tial improvement in the comparison to experimental data.
However, beyond energies of E = 50 MeV that are shown
in Fig. 9, the replacement of the phenomenological imag-
inary part again leads to a significant improvement in
the description of the total reaction cross section. Nev-
ertheless, the modified microscopic optical potential still
overestimates the total reaction cross section for all en-
ergies due to the real volume and real spin-orbit terms
having slightly larger depths than their phenomenologi-
cal counterparts.

IV. CONCLUSIONS

We have calculated a microscopic optical potential
from chiral two- and three-body forces for proton scatter-
ing on calcium isotopes. We started from a self-consistent
second-order calculation of the proton and neutron self
energies in isospin-asymmetric nuclear matter from which
we derived the central real and imaginary parts of the
optical potential in finite nuclei within the framework

of the improved local density approximation. The real
spin-orbit potential was constructed from the improved
density matrix expansion using the same chiral two- and
three-body forces.

We found that chiral nucleon-nucleus optical poten-
tials describe low-energy (E . 5 MeV) scattering pro-
cesses rather well, due in part to a well-defined sur-
face peak in the imaginary part of the optical potential.
At all energies, the real central term is consistent with
phenomenological modeling, while the microscopic spin-
orbit strength is larger by ∼ 20%. At moderate energies
(E & 35 MeV), the imaginary part of the chiral optical
potential develops a large volume term without a signif-
icant surface peak. This leads to discrepancies between
our theoretical calculations and experimental data, espe-
cially at large scattering angles. At the highest energies
(E ' 100−160 MeV) considered in the present work, the
large imaginary term leads to over suppression of the elas-
tic scattering cross section. We have shown that substi-
tuting the microscopic imaginary part with the KD phe-
nomenological optical potential leads to excellent agree-
ment with elastic scattering and total reaction cross sec-
tions for nearly all isotopes and projectile energies inves-
tigated. In the future we plan to compute higher-order
perturbative contributions that may improve the descrip-
tion of the imaginary part of the optical potential and the
overall spin-orbit strength. We will also explore a wider
range [76] of chiral nuclear potentials in order to provide
a more comprehensive estimate of the theoretical uncer-
tainties.
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