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Light-matter interactions in conventional nanophotonic structures typically lack directional-
ity. For example, different from microwave antenna systems, most optical emitters (e.g., excited
atoms/molecules, and simple nano-antennas) exhibit quasi-isotropic dipolar radiation patterns with
low directivity. Furthermore, surface waves supported by conventional material substrates do not
usually have a preferential direction of propagation, and their wavefront tends to spread as it propa-
gates along the surface, unless the surface or the excitation are properly engineered and structured.
In this article, we theoretically demonstrate the possibility of realizing unidirectional and diffraction-
less surface-plasmon-polariton modes on a nonreciprocal platform, namely, a gyrotropic magnetized
plasma. Based on a rigorous Green function approach, we provide a comprehensive and systematic
analysis of all the available physical mechanisms that may bestow the system with directionality,
both in the sense of one-way excitation of surface waves, and in the sense of directive diffractionless
propagation along the surface. The considered mechanisms include (i) the effect of strong and weak
forms of nonreciprocity, (ii) the elliptic-like or hyperbolic-like topology of the modal dispersion sur-
faces, and (iii) the source polarization state, with the associated possibility of chiral surface-wave
excitation governed by angular-momentum matching. We find that three-dimensional gyrotropic
plasmonic platforms support a previously-unnoticed wave-propagation regime that exhibit several
of these physical mechanisms simultaneously, allowing us to theoretically demonstrate, for the first
time, unidirectional surface-plasmon-polariton modes that propagate as a single ultra-narrow diffrac-
tionless beam. We also assess the impact of dissipation and nonlocal effects. Our theoretical findings
may enable a new generation of plasmonic structures and devices with highly directional response.

I. INTRODUCTION

At the interface between certain metallic and dielec-
tric materials, light can couple to collective oscillations
of the free electrons of the metal, forming a guided wave
that is laterally confined to the interface, known as a
surface plasmon polariton (SPP) [1, 2]. Different from
conventional guided modes in optical fibers and waveg-
uides, SPP modes are supported by the interface itself,
due to a transverse resonance enabled by the opposite
optical properties of the interface materials. The pecu-
liar nature of such surface modes, arising from the cou-
pling of electronic and photonic oscillations, enables field
localization at scales much smaller than the free-space
wavelength, far beyond what typically achievable with
dielectric waveguides, as well as high field enhancement
near the interface.

Since SPP modes on homogeneous surfaces are slow
waves with phase velocity lower than the speed of light
in the dielectric environment, they cannot be excited di-
rectly by an incident propagating plane wave (they can,
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however, be excited indirectly, by facilitating transverse
momentum matching through additional dielectric lay-
ers or by suitably structuring the surface with a diffrac-
tion grating [2]). Conversely, localized emitters and scat-
terers at near-field distances from the metallic surface
can directly launch surface modes. Consider, for exam-
ple, a nano-emitter with linearly-polarized electric-dipole
response, located a short distance above a conventional
plasmonic material that is homogeneous, isotropic, and
reciprocal (namely, time-reversal symmetry is unbroken).
Assuming the linearly-polarized emitter is oriented or-
thogonal to the interface (inset of Fig. 1), it will ex-
cite SPPs that propagate omni-directionally along all in-
plane angles, as sketched in Fig. 1(a). This lack of di-
rectionality prevents the possibility of launching surface
waves along a predetermined direction, and of guiding
the SPP energy toward a desired target.

To overcome this issue, in recent years large research
efforts have been dedicated to artificial materials and
surfaces with extreme anisotropy, with particular atten-
tion devoted to so-called hyperbolic structures, which
are characterized by effective constitutive-tensor com-
ponents with opposite signs for orthogonal electric-field
polarizations [3–5]. In other words, a hyperbolic mate-
rial or surface may behave as a dielectric or a metal for
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FIG. 1. Different physical mechanisms that influence the directionality of the excitation and propagation of surface plasmon-
polaritons (SPPs). Panels (a)-(h) show qualitative sketches of the typical in-plane SPP pattern (surface-wave intensity in
different directions on an interface) that may be obtained with a specific combination of source polarization (linear or circular),
SPP modal dispersion (elliptic or hyperbolic) and medium properties (reciprocal or strongly nonreciprocal). The inset shows
the system configuration under study: a generic plasmonic material occupying the lower half space (z < 0) forms an interface
with a different medium in the upper half space (e.g., free space), where an electric-dipole source is located. The panels
corresponding to linear source polarization assume a z-oriented dipole, whereas for circularly-polarized emitters the plane of
circular polarization is indicated by dashed green lines (the dipole rotates in the plane containing the green line and the z-axis).
In this work, particularly attention is devoted to panels shaded in blue and red.

orthogonal directions of wave propagation. In this sce-
nario, the modes of the system may exhibit hyperbolic
dispersion, in contrast to the usual circular/elliptic topol-
ogy of the dispersion surfaces. By exploiting this prop-
erty in suitably designed structures, recent works have
indeed demonstrated the existence of hyperbolic SPP
modes, which propagate on an interface as narrow beams
along specific angles determined by the hyperbolic equi-
frequency contours (EFCs) of the dispersion surface [4–8].
However, due to the reciprocal nature of these platforms
and their mirror symmetries, such hyperbolic modes lack
a preferential left-right and up-down sense of direction,
which implies that a linearly-polarized dipole orthogo-
nal to the interface would excite four beams propagating
along the surface, as sketched in Fig. 1(c). Hence, if
point-to-point energy/information transfer is of interest,
a reciprocal hyperbolic platform of this type would not be
ideal, as surface waves are still guided toward unwanted
directions.

This issue is clearly rooted in the symmetries of the
system, namely, time-reversal symmetry (equivalent to
reciprocity for dissipationless systems) and mirror sym-
metries. Indeed, it is evident that, in a reciprocal sys-
tem, for every forward-propagating mode, there must
exist a backward-propagating mode with symmetrical
modal distribution and propagation/radiation proper-
ties. Therefore, a generic emitter or scatterer is allowed

to excite both the forward and the backward modes sup-
ported by the reciprocal structure (these modes may be
excited with different intensity depending on the specific
properties of the emitter/scatterer, but they are both al-
lowed to propagate). To intrinsically forbid the backward
mode – for an arbitrary emitter/scatterer – it is therefore
necessary to break Lorentz reciprocity for wave propaga-
tion, which can be done by biasing the system with a
physical quantity that is odd under time-reversal, for ex-
ample, a magnetic field or a linear/angular momentum.

The design of advanced nonreciprocal platforms is cur-
rently a very active area of research in applied electro-
magnetics and photonics, with several important prac-
tical implications [9]. However, as we discuss in the
following, breaking reciprocity is not in itself sufficient
for our purposes. Indeed, only strong forms of nonre-
ciprocity enable true unidirectionality, namely, the ab-
sence of a backward mode. As an example, the emerging
class of artificial materials known as “photonic topologi-
cal insulators” [10–13] (the photonic analog of quantum-
Hall insulators in condensed-matter physics [14]) repre-
sent a relevant subclass of strongly-nonreciprocal plat-
forms with unidirectional response. Within this context,
in this article we consider another important class of non-
reciprocal continuum media, i.e., magnetized gyrotropic
plasmas, which can be practically implemented using cer-
tain natural plasmonic materials, e.g., n-doped semicon-
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ductors at THz and infrared frequencies, such as n-type
InSb [15–17], under moderate static magnetic bias. As
demonstrated in this article, materials of this type may
exhibit both weak and strong forms of nonreciprocity,
including topological aspects, accompanied by elliptic or
hyperbolic modal dispersion. Thus, we can explore the
effect of several physical mechanisms on the propagation
of directional SPP modes, as depicted in Figs. 1(e)-(f),
based on a naturally-available material platform, with-
out the need to engineer complex photonic crystals or
metamaterials. We note that an example of asymmet-
ric nonreciprocal light emission under a magnetic bias
has been recently demonstrated experimentally in [18],
in which plasmonic effects were also used to enhance the
emission directionality (see [19, 20] for an overview of
different magneto-plasmonic devices).

Another drastically different strategy to select which
surface modes get excited on an interface is to suitably
design the polarization state of the emitter, such that it
matches the properties of the surface modes only in the
desired directions. Indeed, as further discussed in the
following sections, the lateral confinement of a surface
mode directly implies that the mode possesses a trans-
verse component of spin angular momentum, whose sign
only depends on the propagation direction, namely, on
the sign of the linear momentum [21–24]. Thanks to this
property, known as spin-momentum locking, a circularly-
polarized emitter would strongly excite only the SPP
modes propagating in directions for which their trans-
verse spin matches the spin of the excitation, leading to
more directive SPP patterns on the interface, as sketched
in Figs. 1(b,d,f,h). In other words, this behavior corre-
sponds to a form of chiral asymmetric excitation of sur-
face modes, which has been recently exploited to realize
spin-dependent unidirectional emission, scattering, and
absorption in reciprocal platforms with transverse light
confinement (plasmonic and dielectric waveguides, and
nano-optical fibers) [25–32].

This type of chiral response is different from spin-
dependent effects in (meta)materials systems with chiral
constitutive parameters (i.e., magneto-electric coupling)
[33]. Indeed, surface modes exhibiting spin-momentum
locking do not require chiral material properties, and can
be supported by conventional isotropic materials (e.g., a
simple plasmonic substrate). It is, in fact, the presence
of the circularly-polarized emitter that breaks the mirror
symmetry of the system and enables spin-dependent uni-
directional effects; conversely, a linearly-polarized emit-
ter would launch surface waves bi-directionally along the
surface. It is also clear that the phenomenon of chiral
surface-wave excitation is fundamentally distinct from
nonreciprocal surface-wave excitation effects, as the lat-
ter implies that the backward mode actually does not
exist, whereas the former only means that backward and
forward modes can be selectively excited due to their
opposite angular momentum. This distinction is partic-
ularly important for discontinuity problems, where only
in the latter case can no back-reflection occur. As seen

in the following, these two distinct mechanisms may also
be combined in suitable structures, offering additional
degrees of freedom to control and tailor the emitter-
SPP interaction.We also note that the combination of
spin-based directionality and hyperbolicity was recently
demonstrated in [34], while the interplay of nonreciproc-
ity and hyperbolicity was studied theoretically in [35],
but both works focused on waves propagating in the bulk
of a hyperbolic metamaterial, instead of the surface plas-
monic waves considered here.

In this paper, we investigate all the physical effects
introduced above based on an exact theoretical formula-
tion applied to the relevant case of a nonreciprocal plas-
monic substrate illuminated by a generic dipolar emitter.
We focus on a previously-unnoticed regime of wave prop-
agation supported by a three-dimensional magnetized
plasma, which enables the realization of unidirectional
and diffractionless surface plasmon-polaritons. Our in-
vestigations reveal an unprecedented degree of control
over the excitation and guiding of SPPs, not achievable
without considering all the degrees of freedom offered by
hyperbolic dispersion, chiral excitation effects, and non-
reciprocity.

II. OVERVIEW OF THEORY

In this section, we provide a brief overview of our the-
oretical approach to study the interaction between an
electromagnetic emitter with arbitrary polarization state
and a generic gyrotropic medium. No restrictive assump-
tions are made on the properties of this medium, which
can be dissipative (lossy) and dispersive. The equations
governing the electrodynamics of the system can be writ-
ten in compact form as

N · f− i∂g
∂t

= iJ, (1)

where the six-vector f = [E H]T contains the electric and
magnetic fields, g = [D B]T the electric displacement
and magnetic induction fields, and J = [je jm]T the elec-
tric and magnetic current densities. The vector fields f
and g are related by constitutive relations, which may be
expressed, in the frequency domain, in the form of a ma-
terial matrix M. Throughout the paper we assume and
suppress a time-harmonic dependence e−iωt for all the
fields. For a generic non-magnetic anisotropic medium,
we have

g = M · f, M =

(
ε (r, ω) 0

0 µ0I

)
. (2)

The matrix N in (1) is a linear operator containing the
spatial derivatives appearing in Maxwell’s equations,

N =

(
0 i∇× I3×3

−i∇× I3×3 0

)
. (3)

The frequency-domain dyadic Green function of the
system (spatial impulse response of the system) is given
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by the solution of Eq. (1) for an ideal electro-magnetic
point source,

(N− ωM) ·G = iI6×6δ(r− r0), (4)

where r is the observation point, r0 is the source point,
and

G =

(
GEE GEH

GHE GHH

)
(5)

is a 6× 6 dyadic (or second-rank tensor) with 3× 3 com-
ponents Gα,β , α, β = E,H.

We are interested in studying the problem of surface-
wave excitation by a localized emitter above a substrate
or stratified medium (as in the inset of Fig. 1). Assum-
ing an electric point dipole is located in an homogeneous
half-space, z > 0, above a generic planar structure, the
electromagnetic field in this region is the superposition of
the incident field radiated by the source (primary field),
and the field scattered by the substrate (secondary field).
The electric Green function associated with the primary
field is given by (−iωε0)Ginc

EE =
(
∇∇+ k2

0I
)

Φ0, where

Φ0 = eik0r
/

4πr. For a classical dipole with electric dipole
moment γ, the scattered electric Green function, Gs

EE is
related to the scattered electric field by Es = −iωGs

EE ·γ,
which can also be expressed in the form of a plane-wave
expansion corresponding to the following spatial Fourier
integral (Sommerfeld integral) [2]

Es =
∫∫

dkxdky
e−p0(z+z′)

(2π)22p0
eik‖·(r−r

′) C
(
ω,k‖

)
· γ
ε0
, (6)

where k‖ = kxx̂ + kyŷ is the in-plane wavenumber, p0 =√
k2
‖ − k

2
0, k0 = ω/c, and

C
(
ω,k‖

)
=(

I‖ + ẑ
ik‖

p0

)
·R
(
ω,k‖

)
·
(
ip0k‖ẑ + k2

0I‖ − k‖k‖
)

(7)

with I‖ = x̂x̂+ŷŷ. The matrix R
(
ω,k‖

)
in Eq. (7) is the

reflection matrix that links the tangential components of
the fields reflected by the substrate to the corresponding
incident fields (see Appendix A for additional details).

Considering a dipolar emitter, at an arbitrary posi-
tion and with arbitrary polarization state, Eq. (6) al-
lows calculating, exactly, the field distribution above a
generic non-magnetic anisotropic substrate. In particu-
lar, the poles of the integrand of (6) correspond to the
discrete spectrum of the eigenmodes supported by the
considered structure, for example the SPP modes on a
metallic-dielectric interface.

The theoretical formulation above is rigorous and ex-
act; however, to get more physical insight into this prob-
lem, a simpler approximate formulation may be devel-
oped by assuming that the main radiation channel of
the dipolar source is represented by the excitation of
a single guided surface mode. Under this assumption,
which is typically valid in the cases of interest, it can

be shown that the radiation intensity in a certain direc-
tion (power radiated by the dipole per unit of angle, i.e.,
U(ψ) = dPrad/dψ, with dψ the angular sector of obser-
vation) is given by (see [36] and Appendix B)

U(ψ) ≈ ω2

16π

1

|∇kω(k)|
1

C(k)
|γ∗ ·Ek(z0)|2, (8)

where the angle ψ is measured from +x-axis in the xy-
plane, Ek(z0) is the modal electric field, at the location
z0 of the source, C(k) is the curvature of the equifre-
quency contour ω(k) = ω∗ of the modal dispersion func-
tion, at a given frequency ω∗ (e.g., for a circular contour
with radius |k|, we have C(k) = 1/|k|). Eq. (8) gives
the approximate in-plane radiation pattern of the dipole,
corresponding to the in-plane SPP patterns sketched in
Fig. 1. This equation reveals that the SPP pattern can
be controlled in two ways: (i) By engineering the disper-
sion function of the relevant surface mode, namely, by
controlling (a) the angular dependence of the group ve-
locity, |∇kω(k)|, and/or (b) the local curvature C(k) of
the equifrequency contour. As mentioned in the Intro-
duction, this can be done by playing with the anisotropy
and nonreciprocity of the wave-guiding structure (for ex-
ample, a hyperbolic dispersion curve exhibits flat asymp-
totic regions with C(k) ≈ 0 that lead to very directive
radiation patterns). (ii) By tailoring the polarization of
the dipolar source, which controls the coupling factor
|γ∗ · Ek(z0)|2. If a structure is isotropic (and therefore
reciprocal), only this latter option is available to control
the SPP pattern.

In the following, we use these theoretical formulations
to investigate how generic dipolar emitters interact with a
nonreciprocal plasmonic substrate. Most importantly, we
thoroughly study how (i) the topology of the modal dis-
persion surface, and (ii) the emitter’s polarization state
provide the necessary degrees of freedom to control the
excitation and guidance of unidirectional and diffraction-
less SPPs.

III. GYROTROPIC MAGNETIZED PLASMA AS
A MODEL NONRECIPROCAL SYSTEM

The electromagnetic system under consideration is
composed of a homogeneous nonreciprocal material half-
space occupying the region z < 0 covered by an isotropic
material in the region z > 0, where an emitter is located,
as in the inset of Fig. 1.

As a relevant example of a homogeneous nonreciprocal
substrate, we consider a gyrotropic material with non-
symmetric permittivity tensor ε = ε0(εtIt+ εaŷŷ+ iεg ŷ×
I), where It = I − ŷŷ, which can be realized as a mag-
netized plasma with bias magnetic field along the y-axis.
Interestingly, it has been recently shown that, under cer-
tain conditions, continuum gyrotropic materials of this
type, with no intrinsic periodicity but with broken time-
reversal symmetry, can be understood as examples of
topological photonic materials [37–44]. In the present
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work, however, we do not focus on the topological prop-
erties (Chern invariants, etc.) of magnetized plasmas;
instead, we consider this material platform as a model
system for studying both strong and weak forms of non-
reciprocity, and elliptic or hyperbolic model dispersion.

We assume that the elements of the permittivity tensor
of the gyrotropic medium follow the classical dispersion
model of a lossy magnetized free-electron gas [45]

εt = 1−
ω2
p (1 + iΓ/ω)

(ω + iΓ)
2 − ω2

c

, εa = 1−
ω2
p

ω (ω + iΓ)

εg =
1

ω

ωcω
2
p

ω2
c − (ω + iΓ)

2 , (9)

where ωp is the plasma frequency, Γ the collision rate
associated with damping, ωc = −q|B0|/m the cyclotron
frequency, q = −e the electron charge, m the effective
electron mass, and B0 the static magnetic bias. The cy-
clotron frequency is either positive or negative depending
on whether B0 is oriented along the +y or −y direction,
respectively. As an example, certain n-doped semicon-
ductors, such as n-type InSb, have a plasma-like response
consistent with (9) when subject to a static magnetic bias
[15–17]. However, we would like to stress that our dis-
cussion and considerations in the following sections may
qualitatively apply to other nonreciprocal platforms.

A homogeneous three-dimensional magnetized plasma
supports several bulk modes of different character (see
also Appendix C). The band diagram of these bulk
modes is shown in Fig. 2 for different directions of propa-
gation defined by the angle ψ with respect to the +x-axis.
For ψ = 0o (propagation normal to the bias) there are
three bands, as shown in Fig. 2(a). The first and third
bands correspond to transverse-magnetic (TM) modes
(Hx = 0), whereas the second band corresponds to a
transverse-electric (TE) mode (Ex = 0). The other pan-
els of Fig. 2 show how the bulk bands evolve as the an-
gle ψ is varied. The longitudinal field component of the
modes gradually vanish until the modes become TEM for
ψ = 90o (propagation along the bias). For angles ψ > 0o,
a fourth band appears at low frequencies.

If we ignore the TE-like modes, we note that the TM-
like bands exhibit a common bandgap as the angle is var-
ied, near the plasma frequency ω/ωp = 1, as indicated by
the white horizontal strip in Fig. 2. The higher and lower
frequency limits of this bandgap are given, respectively,
by

ωH =
1

2

(√
4ω2

p + ω2
c + |ωc|

)
, (10)

and

ωL =
√
ω2
c + ω2

p. (11)

As mentioned in the Introduction, when a plasma-like
isotropic and reciprocal medium is interfaced with a di-
electric medium, TM surface waves are allowed to propa-
gate on the interface, associated with surface-plasmon-
polariton modes. Also in the case of a nonreciprocal

FIG. 2. Band diagram (density plots) for the bulk modes of a
magnetized plasmonic material with bias along the y-axis, for
different propagation directions defined by the angle ψ with
respect to the +x-axis (see Fig. 1): (a) ψ = 0o, (b) ψ = 30o,
(c) ψ = 60o, and (d) ψ = 90o. The cyclotron frequency
is set to ωc/ωp = 0.22, where ωp is the plasma frequency.
kp is the free-space wavenumber at ωp. The white horizontal
strip indicates the bandgap between TM-like modes. For each
panel, the inset provides a zoom around the band gap.

magnetized plasma interfaced with a different medium
(interface parallel to the bias axis), TM SPP waves may
emerge on the interface, but the dispersion of these modes
may be drastically different with respect to the recip-
rocal case. In the following, we thoroughly study the
propagation properties of such SPP modes excited by
linearly- and circularly-polarized dipole sources near the
surface of a magnetized plasma. We consider different
frequency ranges where SPPs can propagate: (i) below
the TM bulk-mode bandgap, (ii) within the bandgap, and
(iii) above the bandgap. We find that SPP modes ex-
hibit qualitatively different properties in these frequency
ranges and, only under specific conditions, unidirectional
and diffractionless surface modes can be obtained.

We would also like to note that a more accurate model
of a plasmonic material should include the effect of non-
locality (spatial dispersion) for the metal permittivity
[46, 47]. However, we show in Supplemental Material
[17] that the results and conclusions of our paper would
be essentially unchanged if considering a nonlocal Drude
model instead of a local one, as nonlocal effects become
important only for very large wavenumbers, which are
strongly affected by realistic levels of dissipation. The im-
pact of nonlocality on wave propagation is also strongly
dependent on the specific material and configuration un-
der consideration (for example, nonlocal effects would be
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negligible for gas plasmas [17]).
In addition, we note that the impact of material dissi-

pation and the constraints imposed by passivity should
always be considered carefully when studying terminated
unidirectional channels (e.g., a cavity fed by a one-way
input channel) to avoid incorrect predictions and ther-
modynamic paradoxes [48, 49].

IV. LINEARLY-POLARIZED EMITTER

We first consider the case of an electric-dipole emitter
oscillating linearly in the direction normal to the plas-
monic substrate, γ = γz ẑ. In this case, the dipole it-
self does not break the continuous rotational symmetry
around the z-axis; hence, if the system was not biased
(i.e., reciprocal), the dipole radiation, and the resulting
SPP pattern, would necessary be symmetrical in the xy-
plane [Figs. 1(a),(c)]. The presence of the bias along the
y-axis clearly breaks this symmetry, determining an in-
crease in the directivity of the dipole emission and SPP
pattern [Figs. 1(e),(g)]. The resulting SPP spatial pro-
file, however, largely depends on the allowed angles of
propagation of the surface modes, which is determined by
the shape of the SPP dispersion function in momentum-
space, at a given excitation frequency, as discussed below.

A. Frequency within and above the bulk-mode
bandgap: Asymmetric elliptic-like dispersion

When the frequency ω of the emitter is within the
TM bulk-mode bandgap or at higher frequencies (ω >
ωL > ωp), a magnetized plasma layer may support SPP
modes on its surface. However, since the surface waves
in this configuration are fast waves, with phase velocity
larger than the speed of light in vacuum, they tend to
lose energy in the form of leaky-wave radiation; there-
fore, in order to suppress radiation leakage and realize
bound surface-wave propagation, we consider an opaque
isotropic material above the interface, as sketched in Fig.
3. As an example, we consider an interface between
a magnetized plasma with ωc/ωp = −0.22 (biased in
the −y direction) and an isotropic metallic cover with
εm = −2 [50]. The left-column panels of Fig. 3 show
the evolution of the momentum-space equifrequency con-
tours (EFCs) of the dispersion function for the supported
SPP mode at different frequencies (red dashed lines).
Further details on the dispersion equation of these SPP
modes are provided in Appendix D.

As seen in Fig. 3, the EFC are always more or less
asymmetric with respect to the in-plane wavevector kx,
corresponding to the direction orthogonal to the bias,
which is a clear indication of nonreciprocal surface-wave
propagation. In a low-loss anisotropic medium/surface,
the direction of energy flow is determined by the group
velocity, which, different from the isotropic case, does
not necessarily coincide with the direction of phase flow

determined by the wavevector k‖ = (kx, ky). Since
the group velocity is defined as the gradient of the dis-
persion function, vg = ∇k‖ω(k‖), the direction of the
group-velocity vector and, therefore, of the SPP energy
flow is necessarily orthogonal to the equifrequency con-
tour ω(k‖) = ω∗, at a given frequency ω∗. This direc-
tion is indicated in Fig. 3 by the red arrows, whereas
the colors of the density plots indicate which portion of
the equifrequency contour contributes more strongly to
surface-wave propagation for the considered excitation
[the colors correspond to the magnitude of the integrand
in Eq. (6)]. The corresponding in-plane SPP patterns
around the dipolar source are shown on the right of each
EFC panel in Fig. 3.

When the frequency of the emitter is within the bulk-
mode bandgap, ωL < ω < ωH , a unidirectional SPP is
supported by the material interface, with main direction
of propagation toward the positive x-axis, whereas zero
energy propagates in the opposite direction, as shown in
Figs. 3(a,b) [similar to the sketch in Fig. 1(e)]. For
all frequencies within the bandgap, the EFC is quali-
tatively similar, yielding unidirectional SPP propagation
along the +x-axis with moderate directivity. Figs. 3(c,d)
show the case of emitter frequency near the upper-edge
of the bandgap ω ≈ ωH (slightly above it): the EFC
of the forward-propagating mode becomes more curved,
which determines a broadening of the SPP pattern, and
a backward-propagating mode emerges, producing non-
zero energy propagation toward the negative x-axis (the
zero of the SPP profile in this direction transforms into
a minimum). As the frequency is further increased, the
forward- and backward-mode EFCs tend to become more
and more similar and merge into a quasi-symmetric el-
lipse, as shown in Fig. 3(e). As a result, the in-plane SPP
pattern in Fig. 3(f) is only slightly asymmetric. Finally,
for frequencies much higher than the bandgap (ω � ωH)
the EFS becomes a circle (not shown here) corresponding
to isotropic reciprocal SPP propagation.

These results indicate that the surface of the magne-
tized plasma supports a strong form of nonreciprocity
within the bulk-mode bandgap, in the sense that not
only is surface-wave propagation asymmetric along the
x-axis, but the surface modes are also inherently unidirec-
tional, with a zero of the SPP pattern in the−x direction.
As mentioned above, the unidirectionality of these SPP
modes existing within the bandgap has been recently con-
nected to certain non-trivial topological properties of the
biased plasma, which make the SPPs inherently robust
to continuous perturbations of the surface, as extensively
discussed in [37–43]. Conversely, weak nonreciprocity is
obtained at frequencies above the bandgap, with an SPP
pattern that is asymmetric, but not unidirectional. In
all the cases studied in this section, however, the “direc-
tivity” of the SPP beam launched on the surface is low
(namely, the width of the main lobe of the SPP pattern is
large), which is due to the elliptic-like shape of the EFCs
in momentum space. As discussed in the next section,
much higher directivity can be achieved at frequencies
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FIG. 3. Surface modes on an interface between a magnetized
plasmonic material and an opaque (metallic) isotropic mate-
rial, as sketched in the inset on top. Left column: Equifre-
quency contours in kxky-space (red dashed lines) for the dis-
persion function of the TM SPP modes supported by the
structure in the inset. The magnetized plasma has cyclotron
frequency ωc/ωp = −0.22, and the isotropic material has per-
mittivity εm = −2. Three different frequencies ω/ωp have
been considered, within (a) and above (c,e) the bulk-mode
bandgap. The colors of the density plots correspond to the
magnitude of the integrand in Eq. (6) (brighter colors mean
higher intensity), indicating which portion of the equifre-
quency contour contributes more strongly to SPP excitation
for the chosen source: a dipolar emitter linearly-polarized
along the z-axis and located a distance d = 0.5c/ωp above the
surface. The red arrows indicate the main directions of energy
flow (i.e., SPP group velocity). Right column: SPP patterns
in the xy-plane, corresponding to each equifrequency contour
on the left, for the same linearly-polarized dipolar emitter.
The SPP patterns represent the amplitude of the field |Es

z|,
calculated exactly with Eq. (6), at a fixed radial distance
1.2λ0 from the source (where λ0 is the free-space wavelength
for each panel). In each panel, the fields are normalized to
their maximum value.

below the bulk-mode bandgap, where the EFCs of the
surface modes are drastically different.

FIG. 4. Surface modes on an interface between a magnetized
plasmonic material and a transparent isotropic material (free
space), as sketched in the inset on top. The figure is similar to
Fig. 3, but for two frequencies below the bulk-mode bandgap:
(a,b) ω/ωp = 0.47, and (c,d) ω/ωp = 0.75. The magnetized
plasma has cyclotron frequency ωc/ωp = 0.9. The linearly-
polarized dipolar emitter is located a distance d = 0.05c/ωp

above the surface. Left column: Equifrequency contours for
the SPP modes (red dashed lines), overlapped to density plots
indicating which portion of the equifrequency contour con-
tributes more strongly to SPP excitation (brighter colors) for
the chosen source, as in Fig. 3. Right columns: Correspond-
ing SPP patterns on the xy-plane.

B. Frequency below the bulk-mode bandgap:
Unidirectional semi-hyperbolic dispersion

When we operate below the bulk-mode bandgap, i.e.,
ω < ωL, surface modes can still be supported on the in-
terface between the magnetized plasma and an isotropic
medium. In this case, we consider again an interface par-
allel to the xy-plane, but the isotropic medium above the
plasma is taken to be free space, as sketched in Fig. 3. In
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this case the SPP modes are slow waves, with phase ve-
locity lower than the vacuum speed of light; hence, they
do not radiate even though the structure is open.

The EFCs at two different frequencies below the
bandgap are shown in Fig. 4, left panels. We note
that the EFC is drastically different compared to the
cases studied in the previous section: the EFC is a single
hyperbolic-like contour, strongly asymmetric along the
x-axis. As in Fig. 3, the colors of the density plots indi-
cate how strongly different portions of the equifrequency
contour contribute to SPP propagation for the consid-
ered excitation. It is therefore evident that the dominant
contribution comes from large values of in-plane wave-
vector k‖, which corresponds to the asymptotic region of
the hyperbolic-like EFC (the intensity of this contribu-
tion tails off at much larger values of k‖, as discussed in
[17]). Thus, most of the energy coupled into the SPPs
propagates in the same direction determined by the nor-
mal to these asymptotes, as indicated by the red arrows
in Fig. 4. This behavior produces extremely directive
surface-wave beams, which propagate – essentially with-
out diffraction – only toward the positive x-axis, as seen
in the SPP patterns in Fig. 4, right panels. The angle of
propagation of these unidirectional ultra-narrow diffrac-
tionless beams can be controlled by varying the excita-
tion frequency, with a wider angle between the beams at
lower frequencies [Fig. 4(a)].

Interestingly, it can be shown that (see, e.g., [51–53],
for a magnetized plasma interfaced with vacuum, there
exists a specific frequency range where these unidirec-
tional semi-hyperbolic SPPs are supported, with upper
and lower bounds, ω+ and ω−, defined by

ω± =
1

2

(
±ωc +

√
2ω2

p + ω2
c

)
. (12)

Furthermore, the dispersion relation of the asymptotic
regions of the hyperbolic SPPs (the dominant contribu-
tion to the emitter-surface interaction) can be approxi-

mated as 2ω(k‖) = ωccos(ψ) +
√

2ω2
p + ω2

c (1 + sin2(ψ)),

with ψ representing the angle between the in-plane SPP
wavevector k‖ and the +x-axis. The frequencies con-
sidered for the two examples of unidirectional semi-
hyperbolic SPPs in Fig. 4 indeed lie within the range
[ω−, ω+], and their large-wavenumber behavior is con-
sistent with this approximate dispersion relation.

We would like to stress that the propagation proper-
ties obtained here are drastically different compared to
conventional reciprocal hyperbolic surfaces [4–8]. In the
nonreciprocal scenario considered here, we obtained two
unidirectional ultra-narrow beams propagating along the
surface, instead of the usual four symmetric beams in
the reciprocal case [as sketched in Figs. 1(c),(g)]. Even
more interesting would be the ability to excite a single
ultra-narrow beam; however, this would require breaking
the symmetry of the system under parity transforma-
tion (mirroring) with respect to the x-axis. To achieve
this without breaking the transverse invariance of the

surface and without introducing chiral material proper-
ties (magneto-electric coupling and, more generally, bian-
isotropy [33]), the only available option is to play with
the emitter polarization, consistent with Eq. (8), as dis-
cussed below.

V. CIRCULARLY-POLARIZED EMITTER:
CHIRAL SURFACE-WAVE EXCITATION

In this section, we investigate the possibility of realiz-
ing unidirectional SPP excitation by suitably engineering
the polarization state of the dipolar source, such that also
the mirror symmetry of the entire system (source and
material structure) is broken, in addition to the broken
time-reversal symmetry due to the applied static bias.
In particular, by considering emitters that are circularly-
polarized on specific planes, we obtain a form of chiral
SPP excitation that is fundamentally distinct from non-
reciprocal forms of excitation; hence, it provides an ad-
ditional degree of freedom in designing the emitter/SPP
interaction.

FIG. 5. SPP patterns in the xy-plane on the surface of a
non-magnetized plasma, excited by a dipolar emitter with
(a) linear polarization γ = ẑ, and (b,c) circular polarization,
γ = x̂ + iẑ, and γ = x̂ − iẑ, respectively. The SPP patterns
represent the amplitude of the field |Es

z|, calculated exactly
with Eq. (6), at a fixed radial distance λ0 from the source
(where λ0 is the free-space wavelength). Intensities are nor-
malized to the linear case in (a). The emitter is located a
distance d = λ0/20 above the interface and oscillates at fre-
quency ω/ωp = 0.55.

To better understand the physical mechanism of this
chiral emitter-SPP interaction, consider a simpler case
in which the magnetic bias has been turned off, and a
dipolar emitter interacts with the plasma-vacuum inter-
face at a frequency ω/ωp = 0.55. In this scenario, the
non-magnetized plasma is simply a reciprocal isotropic
material with εt = εa = −2.3, εg = 0 [given by Eq. (9)],
which supports reciprocal SPPs when interfaced with a
dielectric medium (in this case, vacuum). Let us consider
first a dipolar source with linear polarization normal to
the interface. In this case there is no preference in the
coupling with forward or backward modes; hence, as seen
in Fig. 5(a) [similar to Fig. 1(a)], the SPPs are launched
isotropically, propagating along the interface (real in-
plane wavevector) and decaying exponentially normal to
the interface (imaginary out-of-plane wavevector), as ex-
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pected. Interestingly, the fact that the wavevector has
real and imaginary components along orthogonal direc-
tions, as in any evanescent wave, directly implies that the
electric field has a longitudinal component in addition
to the transverse component (which can be understood
from the transversality condition, E ·k = 0, applied to an
evanescent wave in free space). In addition, the longitu-
dinal and transverse field components have a quadrature
phase relation (i.e., ±π/2 phase difference) with the sign
depending on whether the wave is propagating forward
or backward in a given direction. The resulting longi-
tudinal rotation of the elliptically-polarized electric field
vector, as the wave propagates, indicates that the sur-
face wave carries transverse spin angular momentum, as
recently recognized in [22–24]. This transverse spin can
be written as [23],

S =
Re(k)× Im(k)

(Re(k))2
, (13)

which depends only on the direction of propagation of
the evanescent wave, and not on the polarization state.
As sketched in Fig. 6(a), a +x-propagating SPP and
a −x-propagating SPP have equal and opposite trans-
verse spins. Thus, the spin angular momentum of the
incident field (i.e., the emitter radiation) can be used to
excite, selectively, only the surface waves with transverse
spin that matches the spin of the incident field (angular-
momentum matching), thereby selecting the direction
of the launched surface waves according to Eq. (13).
This behavior is general, not limited to plasmonic inter-
faces, as any guided surface mode with evanescent tails
possesses transverse spin and exhibits spin-momentum-
locked propagation [22–24].

To further understand this behavior from a different
viewpoint, consider the source coupling term in Eq. (8),
which, for a surface mode in the quasi-static limit, can be

approximated as |γ∗ ·Ek(0)|2 ≈
∣∣∣γ∗ · (ik̂‖ − ẑ

)∣∣∣2 [51–53],

consistent with the aforementioned fact that the electric
field is elliptically polarized (k̂‖ indicates the direction
of the in-plane wavevector). If we consider a circularly-
polarized emitter, γ ∝ κ̂+ iẑ, where κ̂ indicates a direc-
tion in the xy-plane, then |γ∗ ·Ek(0)|2 ≈ 1 + cos(ψ− φ),

with k̂‖ · κ̂ = cos(ψ−φ), where ψ is the angle formed by
the in-plane modal wavevector and +x-axis, and φ indi-
cates the polarization plane of the circularly-polarized
source (dashed green line in Fig. 1) with respect to
the +x-axis. Thus, because of spin-momentum lock-
ing, the best coupling is always for a mode with in-plane

wavevector k̂‖ parallel to the in-plane electric-dipole mo-
ment, i.e., parallel to κ̂. Conversely, the worst coupling

(zero/minimum of the SPP pattern) is when k̂‖ and κ̂
are anti-parallel.

A linearly polarized emitter can be interpreted as the
combination of a right-handed circularly polarized (RCP)
and a left-handed circularly polarized (LCP) emitter,
with equal and opposite values of spin angular momen-
tum (and equal and opposite κ̂). According to the discus-

sion above, each sense of rotation gets coupled to either
the forward- or backward-propagating mode depending
on its spin direction. To further confirm this effect, the
SPP patterns produced by circularly-polarized emitters
are calculated separately and plotted in Figs. 5(b),(c)
[similar to the sketch in Fig. 1(b)]. It is clear that, de-
pending on the spin of the incident light, either the for-
ward or backward mode is preferentially excited. How-
ever, from this example it is also evident that reciprocal
chiral coupling is not sufficient to realize unidirectional
ultra-narrow SPP beams: the SPP pattern exhibits a
shallow minimum instead of a zero in the backward di-
rection [compare with Fig. 3(a)], and the main SPP beam
is broad. This can be overcome by combining chiral ex-
citation and nonreciprocal effects, as discussed in the fol-
lowing.

FIG. 6. Schematic of the relevant quantities involved in SPP
excitation/propagation: group velocity vg (red arrows; direc-
tion of SPP energy flow), linear momentum k (blue arrows;
direction of SPP phase flow if real, and of evanescent decay
if imaginary), transverse spin angular momentum S (green
arrows; normal to the plane of rotation of the electric field)
for a plasmonic surface mode. (a). Two cases have been
considered: (a) non-magnetized reciprocal plasma (isotropic
bidirectional surface waves), and (b) magnetized nonrecipro-
cal plasma (semi-hyperbolic unidirectional surface waves, i.e.,
below-the-gap surface modes), interfaced with vacuum. The
vectors in panel (b) refer to the dominant large-k asymptotic
region of the hyperbolic equifrequency contour in Fig. 4.

A. Frequency within the bulk-mode bandgap:
Unidirectional elliptic-like surface waves

We now study the effect of the emitter polarization on
the excitation of SPPs on a magnetized plasma, when the
excitation frequency lies within the bulk-mode bandgap.



10

The parameters of the system are the same as in Fig.
3(b), and the excitation frequency is ω/ωp = 1.05. Fig.
7 shows the in-plane SPP pattern for different emit-
ter polarization states: linear polarization, γ = ẑ (blue
line), and circular polarizations of opposite handedness,
γ = x̂ + iẑ (black line) and γ = −x̂ + iẑ (red line). For
a linearly-polarized dipolar emitter normal to the sur-
face, the SPP profile is the same as in Fig. 3(b): a uni-
directional beam with broad angular response, exhibit-
ing a zero in the backward direction, as discussed above.
Instead, for a circularly-polarized dipolar emitter with
γ = x̂+ iẑ in the xz-plane, the incident field would cou-
ple more efficiently with a backward-propagating mode
due to angular-momentum matching; however, backward
propagation is forbidden in this nonreciprocal medium;
therefore, the overall energy coupled into the SPP modes
is smaller than in the linear case (a weak forward-
propagating mode is still excited). Conversely, for a
circularly-polarized dipolar emitter with γ = −x̂+ iẑ in
the xz-plane, the incident field couples more efficiently
with a forward-propagating mode, which is the allowed
direction of propagation on this nonreciprocal surface. In
this case, due to angular-momentum matching between
dipolar emitter and forward-propagating SPP, combined
with the intrinsic directional preference of the nonre-
ciprocal system, we obtain a much stronger SPP mode
launched toward the +x-axis, as clearly seen in Fig. 7
(red line) [similar to Fig. 1(f)]. The polarization of the
emitter indeed provides an additional degree of freedom
to control the excitation of surface modes on a nonrecip-
rocal platform.

FIG. 7. Elliptic-like SPP patterns in the xy-plane on the
surface of a magnetized plasma, excited by a dipolar emitter,
with linear or circular polarization: γ = ẑ (blue line), γ =
+x̂ + iẑ (black line), and γ = −x̂ + iẑ (red line). All other
parameters are the same as in Fig. 3(b).

B. Frequency below the bulk-mode bandgap:
Unidirectional ultra-narrow hyperbolic surface waves

As discussed in Section IV.B, for an interface between
magnetized plasma and air, when the excitation fre-

quency is within the range [ω−, ω+], the SPP equifre-
quency contour has a unidirectional semi-hyperbolic
shape, which implies that the interface supports two uni-
directional ultra-narrow SPP beams, propagating at a
frequency-dependent angle with respect to the +x-axis.
Figure 6(b) depicts the dominant SPP group-velocity
vector vg, together with bundles of vectors for linear
momentum k, and transverse spin angular momentum
S of the dominant waves. The vector S is orthogonal
to k, which in turn is mostly orthogonal to vg for a
semi-hyperbolic EFC as in Fig. 4. Hence, the trans-
verse spin of one of the two excited SPP beams is mostly
parallel to the group velocity, namely, to the direction
of energy flow, whereas the second SPP beam has trans-
verse spin mostly anti-parallel to the group velocity, as
indicated in Fig. 6(b). In this unusual scenario, the
effect of emitter polarization is shown in Fig. 8. Pan-
els (a) and (b) compare the SPP pattern produced by
circularly-polarized dipolar emitter of opposite handed-
ness, with γ = −x̂ + iẑ and γ = x̂ + iẑ, respectively.
In this case, the incident field generated by the emitter
with γ = −x̂+ iẑ, whose spin has positive y-component,
couples strongly with the two unidirectional SPP beams,
whose transverse spins also have positive y-component
[see Fig. 6(b)]. Conversely, the incident field from the
emitter with polarization state γ = x̂ + iẑ couples more
weakly to the unidirectional SPP beams, as seen in Fig.
8(b). Yet, except for a difference in intensity, these SPP
patterns look similar to the ones in Fig. 4 for a linearly-
polarized dipole.

Finally, we consider again a dipolar emitter with
circular-polarization state, but we now tilt the plane of
circular polarization with respect to the y-axis. In this
way, we are able to completely mismatch (misalign) the
spin angular momentum of the incident light with respect
to the transverse spin of only one of the two beams. As a
result, the beam with completely mismatched spin does
not get excited by this emitter, while the other beam
is launched efficiently. This is possible thanks to the
fact that the transverse spins of the two beams are ori-
ented in sufficiently different directions, as sketched in
Fig. 6(b). As seen in the SPP patterns in Figs. 8(c)
and (d), by playing with the plane of polarization of the
dipolar source, defined by the angle φ, we can deliber-
ately select only one of the beams, while the other one is
almost completely suppressed [similar to Fig. 1(h)]. By
leveraging nonreciprocal effects, hyperbolic dispersion,
and angular-momentum matching (chiral coupling), this
strategy enables truly unidirectional excitation of sur-
face plasmons, forming a single ultra-narrow beam that
propagates – without diffraction – on the surface of the
structure [54]. Furthermore, the angle of this unidirec-
tional diffractionless beam can be controlled by varying
the intensity of the bias or the frequency of the excita-
tion. Particularly striking is the comparison of the delta-
function-like SPP patterns in Figs. 8(c) and (d), with the
isotropic or quasi-isotropic SPP patterns obtained with
conventional reciprocal plasmonic structures (Fig. 5).
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FIG. 8. Semi-hyperbolic SPP patterns in the xy-plane on the
surface of a magnetized plasmonic material, excited by a dipo-
lar emitter at frequency ω = 0.7ωp, with different circular-
polarization states: (a) γ = −x̂ + iẑ, (b) γ = x̂ + iẑ, (c)
γ = cos(φ)x̂+sin(φ)ŷ+iẑ, and (d) γ = cos(φ)x̂−sin(φ)ŷ+iẑ.
The SPP patterns represent the amplitude of the field |Es

z|,
calculated exactly with Eq. (6), at a fixed radial distance
0.7λ0 from the source (where λ0 is the free-space wavelength).
The emitter is located in vacuum, at a distance d = 0.05c/ωp

above the magnetized plasma. The plasma cyclotron fre-
quency is ωc/ωp = 0.9. The angle considered in panels (c)
and (d) is φ = 60o, for this specific example. The inten-
sities of the SPP patterns are all normalized by the same
value. Panels (e) and (f) show the electric-field intensity dis-
tributions of the launched semi-hyperbolic SPP beams, cor-
responding to the cases in panels (a) and (d), respectively,
obtained via full-wave simulations performed with CST Mi-
crowave Studio [55]. We considered the same parameters as in
our exact Green-function calculations, except for the inclusion
of moderate dissipation in the plasmonic material, defined by
a collision frequency Γ/ωp = 0.003. An animation of the sim-
ulated time-harmonic electric field, for the case in panel (f),
is included as Supplemental Material [17].

To further verify these results, we have performed full-
wave numerical simulations using a commercial software
[55]. For the cases of vertical linearly-polarized dipole
and tilted RCP dipole considered in Figs. 8(a) and (d),
we show in Fig. 8(e) and (f) the simulated field-intensity
distribution, near the source, above a slab of magne-
tized plasma (biased in the +y direction, and slightly
lossy). These results clearly confirm that only one, uni-
directional, ultra-narrow, SPP beam is launched on the
surface, propagating with little diffraction at an angle
dictated by the semi-hyperbolic EFC at the excitation
frequency, in striking contrast with the behavior of SPPs
on any conventional plasmonic platforms. No energy
flows toward the negative x-axis due to the inherent uni-
directionality of this nonreciprocal platform (see also [17]
for the impact of nonlocality on this unidirectional re-
sponse). In [17], we have also included an animation of
the electric-field distribution, corresponding to Fig. 8(f),
which reveals the peculiar rotation of the electric-field
vector that produce a component of spin angular mo-
mentum along the main direction of energy flow (different
from the direction of phase flow), which is responsible for
enabling this form of chiral coupling between circularly-
polarized emitters and semi-hyperbolic surface waves on
a nonreciprocal plasmonic platform.

VI. CONCLUSION

In summary, in this article we have provided a com-
prehensive theoretical study of surface-plasmon-polariton
modes on a nonreciprocal plasmonic platform, namely,
a gyrotropic magnetized plasma. Using a rigorous ap-
proach based on the exact three-dimensional Green func-
tion of the system, we have systematically studied all the
available strategies to control the excitation and prop-
agation of unidirectional SPP modes, including (i) the
impact of strong and weak forms of nonreciprocity; (ii)
the elliptic-like or hyperbolic-like nature of the modal
dispersion surfaces, which strongly influences the direc-
tivity of the launched SPP wavefront; (iii) the impact of
the polarization state of the dipolar source, which may be
used to realize a form of chiral excitation of surface waves
governed by angular-momentum matching. Most impor-
tantly, we have discovered a previously-unnoticed wave-
propagation regime supported by homogeneous nonre-
ciprocal plasmas, characterized by two unidirectional
semi-hyperbolic propagation channels with distinct spin-
polarized propagation properties. This finding allowed
us to theoretically demonstrate – for the first time to
the best of the authors’ knowledge – unidirectional and
diffractionless surface plasmon-polaritons, which propa-
gate as ultra-narrow beams on the two-dimensional sur-
face of a nonreciprocal plasmonic structure.

While our results directly apply to magnetized plasmas
and plasmonic materials, the generality of concepts like
nonreciprocity, hyperbolic dispersion, transverse spin,
and chiral coupling, suggests that the physical insight
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and general predictions offered by this paper may also
qualitatively apply to surface waves supported by other
classes of nonreciprocal (meta)materials. We believe that
our theoretical findings may open up drastically new op-
portunities for controlling the excitation and guiding of
surface waves, with great practical potential for several
applications that benefit from directional wave propa-
gation, including for on-chip point-to-point optical com-
munication and energy transfer, sub-diffraction imaging,
and enhanced quantum light-matter interactions.
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Appendix A: Reflection matrices and scattered electric field

As discussed in Section II of the main text, the calculation of the scattered electric field Green function Gs
EE requires

determining a reflection matrix that relates the tangential fields reflected by the considered structure to the incident
fields. For a gyrotropic material half-space interfaced with an isotropic material, as considered in the main text, by
imposing the continuity of the tangential fields at the interface, we can write the reflection matrix in terms of the
admittance matrices (further details are provided in [41, 51]):

R
(
ω,k‖

)
= (Y0 + Yg)

−1 · (Y0 −Yg) , (A1)

where

Y0 = 1
ik0p0

(
−p2

0 + k2
x kxky

kxky −p2
0 + k2

y

)
, (A2)

with p2
0 = k2

x + k2
y − k2

0, and

Yg =

(
∆1k

2
t,1

k0

∆2k
2
t,2

k0
∆1kxky+iγz,1(θ1−1)ky

k0

∆2kxky+iγz,2(θ2−1)ky
k0

)
·

(
kx + iγz,1∆1 kx + iγz,2∆2

θ1ky θ2ky

)−1

, (A3)

with

∆i =
iεgk

2
0

k20εt−(k2y+k2t,i)
, θi =

−k2t,i
k20εa−k2t,i

, (A4)

and

γ2
z,i = k2

x − 1
2εt

[(
εt (εt + εa)− ε2

g

)
k2

0 − (εa + εt) k
2
y

]
± 1

2εt

√[(
εt (εt + εa)− ε2

g

)
k2

0 − (εa + εt) k2
y

]2 − 4εt
[(
ε2
t − ε2

g

)
εak4

0 − 2εtεak2
yk

2
0 + εak4

y

]
. (A5)

The admittance matrices Yg and Y0 connect the tangential electric field to the tangential magnetic field for the
gyrotropic and isotropic half-spaces, respectively.

We then consider a generic, elliptically polarized, dipolar emitter with electric dipole moment of the form γ =
±cos(φ) x̂ + sin(φ)ŷ + iαẑ, where the angle φ is measured with respect to the +x-axis, indicating the deviation of
the polarization plane from the xz-plane. For the component of the scattered electric field normal to the material
interface, Esz, the integrand in Eq. (6) then becomes

C
(
ω,k‖

)
· γ|z = ±cos(φ)J31(k2

0 − k2
x) + J32(−kykx)

+ sin(φ)
[
J31(−kxky) + J32(k2

0 − k2
y)
]

+ iα [J31(ip0kx) + J32(ip0ky)] , (A6)

where J31 = i(kxR11 + kyR21)/p0, J32 = i(kxR12 + kyR22)/p0 and Rij , i, j = 1, 2 are the elements of the reflection
matrix in Eq. (A1). For α = 1, Eq. (A6) gives the scattered field by a circularly-polarized emitter with polarization
plane rotated by an angle φ from the xz-plane. For a linearly-polarized emitter along the z-axis, the above equation
reduces to C

(
ω,k‖

)
· γ|z = [J31(ip0kx) + J32(ip0ky)].
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Appendix B: Dipole radiation near a wave-guiding structure – Role of the equifrequency-contour curvature

The normal n̂ to the equifrequency contour of the relevant mode determines the direction of the group velocity, and
hence of the power flow. Consider two closely-spaced points k0 and k1 on the equifrequency contour separated by a
small arc with length dl. Let n̂0 and n̂1 be the corresponding normal vectors, directed along the angular directions
ψ0 and ψ1 with respect to the +x-axis in the xy-plane. Thus, the power carried by modes with wavevector in the
arc with length dl is launched towards a sector with an angular amplitude determined by dψ = ψ1 − ψ0. From [36],
considering for simplicity a single mode, the radiation intensity can be written as

U(ψ0) ≈ ω2

16π

1

|∇kω(k)|
|γ∗ ·Ek(z0)|2 dl

|dψ|
. (B1)

Using now dψ = ψ1 − ψ0 ' sin(ψ1 − ψ0) ' ẑ · (n̂0 × n̂1), and n̂1 = n̂0 + dn̂
dl dl, we obtain |dψ|dl =

∣∣ẑ · (n̂0 × dn̂
dl

)∣∣. From

the Frenet-Serret formulas (for a curve in the xy-plane, i.e., with no torsion) we know that dn̂
dl = ±C t̂, where C is

the curvature of the equifrequency contour, and t̂ is the vector tangent to the contour (the sign ± depends on the

orientation of the curve). From this, we get |dψ|dl =
∣∣ẑ · (n̂0 × C t̂

)∣∣ = |C|. Using this result in (B1), we obtain Eq. (8).

Appendix C: Bulk modes of a three-dimensional nonreciprocal plasmonic medium

We derive here the exact dispersion equation for the bulk modes of a gyrotropic plasma biased along the y-axis (see
also,e.g., [41]). A plane wave in this medium satisfies Maxwell’s equation, with∇×E = iωµ0H and∇×H = −iωε0ε·E,
where ε is the plasma permittivity tensor. The homogeneous wave equation for the electric field in a generic anisotropic
material can be written in momentum domain (∇ → ik) as

k(k ·E)− k2E + k2
0ε ·E = 0, (C1)

where k0 = ω/c is the free-space wavenumber. We then write the electric field in the form E = α1(k× ŷ)+α2kt+α3ŷ,
where kt = kxx̂+kz ẑ is the transverse wavenumber with respect to the bias direction. By substituting this expression
in Eq. (C1), we find that non-trivial (i.e., non-zero) solutions of the homogeneous wave equation should satisfy the
dispersion equation:

k4
0

[
εa(ε2t − ε2g)

]
− k2

0

[
(−ε2g + εt(εt + εa))k2

t + 2εtεak2
y

]
+
(
k2
t + k2

y

) (
εtk

2
t + εak2

y

)
= 0, (C2)

which implicitly defines the dispersion function, ω(k), of the bulk modes supported by the magnetized plasma.
Furthermore, if we consider bulk-mode propagation along an arbitrary direction, defined by the angle ψ with respect
to +x-axis, i.e., ky = k sin(ψ), kt = k cos(ψ), the dispersion equation can be re-written as

k4
0

[
εa(ε2t − ε2g)

]
− k2

0

[
(−ε2g + εt(εt + εa))cos(ψ)2 + 2εtεasin(ψ)2

]
k2 + k4

(
εtcos(ψ)2 + εasin(ψ)2

)
= 0. (C3)

The bulk-mode band diagrams for different angles ψ are shown in Fig. 2 of the main text.

Appendix D: Dispersion equation of the SPP modes

Consider a magnetized-plasma half-space interfaced with an isotropic-medium half-space at z = 0. Due to the
translational symmetries of the system, the modal fields in the region z ≷ 0 vary as eikxx and eikyy along the
interface. In the gyrotropic region, the fields can be written as a superposition of two plane waves, modal solutions
in the bulk of the gyrotropic medium, with wavevector components ki = kt,i + kyŷ, with kt,i = kxx̂+ kz,iẑ (i = 1, 2).
Surface modes decay exponentially away from the interface, so we set kz,i = −iγz,i such that Re (γz,i) > 0. For this
plane-wave superposition, the electric field can be written in the form

E = (∆1k1 × ŷ + kt,1 + θ1kyŷ)A1e
γz,1z + (∆2k2 × ŷ + kt,2 + θ2kyŷ)A2e

γz,2z, (D1)

where the variation along x and y is omitted, and Ai (i = 1, 2) are expansion coefficients. The corresponding magnetic
field can be found using H = k×E/ωµ0. Similarly, we can write a generic field in the isotropic region as follows

E = − [B1k0 × ẑ + B2k0 × (k0 × ẑ)] e−p0zωµ0H

= −
[
B1k0 × (k0 ××ẑ)− B2

ω2

c2 εd(k0 ××ẑ)
]
e−p0z, (D2)



14

where k0 = kxx̂ + ky ŷ + ip0ẑ, p0 =
√

k2
x + k2

y − εdω2/c2, and Bi (i = 1, 2) are expansion coefficients. By imposing

electromagnetic boundary conditions (matching the tangential fields) at the interface, we get the following system of
equations (see also,e.g., [41])

kx + iγz,1∆1 kx + iγz,2∆ ky
kxip0c
ω

θ1ky θ2ky −kx
kyip0c
ω

Φ1 Φ2 kxip0
−εdkyω

c

−∆1k2
t,1 −∆2k2

t,2 kyip0
εdkxω
c

 ·
 A1

A2

B1

B2
ω
c

 = 04×1, (D3)

where Φi = ∆ikxky + iγz,i(θi − 1)ky, (i = 1, 2). By setting the determinant equal to zero, one finds the dispersion
equation of the SPP modes supported by a planar homogeneous interface between a gyrotropic magnetized plasma
and an isotropic medium.
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