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We investigate atomic collapse in pseudospin-1 Dirac material systems whose energy band struc-
ture constitutes a pair of Dirac cones and a flat band through the conic intersecting point. We
obtain analytic solutions of the Dirac-Weyl equation for the three-component spinor in the pres-
ence of a Coulomb impurity, and derive a general criterion for the occurrence of atomic collapse
in terms of the normalized strength of Coulomb interaction and the angular momentum quantum
number. In particular, for the lowest angular momentum state, the solution coincides with that for
pseudospin-1/2 systems, but with a reduction in the density of resonance peaks. For higher angular
momentum states, the underlying pseudospin-1 wavefunctions exhibit a singularity at the point of
zero kinetic energy. Divergence of the local density of states associated with the flat band leads to
an inverse square type of singularities in the conductivity. These results provide insights into the
physics of the two-body problem for relativistic quantum pseudospin-1 quasiparticle systems.

I. INTRODUCTION

Consider a relativistic quantum system in the presence
of a Coulomb impurity, e.g., a nucleus. When the poten-
tial field is sufficiently strong, a particle and an antiparti-
cle pair (e.g., an electron and a positron) will be created.
The antiparticle becomes free, but the particle will col-
lapse at the nucleus in the sense that the two will form a
resonant, quasi-bound state of a finite lifetime. Semiclas-
sically, the particle trajectory will spiral inward toward
the nucleus1–3, similar to the phenomenon of Landau fall
in nonrelativistic quantum mechanics4. After the col-
lapse, the particle trajectory will spiral out, couple to the
antiparticle, and move away from the nucleus5,6. From
the energy point of view, the originally discrete energy
levels are turned into resonant states with finite lifetimes.

A necessary condition for atomic collapse to occur is
that the relativistic quantum effects are strong enough
to lead to a reconstruction of the Dirac vacuum. This
can happen for a super-heavy nucleus1,2. Theoretically,
the collapse phenomenon can be understood by examin-
ing the solution of the Dirac equation for a hydrogen-like
atom with a Coulomb potential of the form −Z/r, where
Z is the atomic number or the nuclear charge. An ex-
act solution of the energy levels indicates that the energy
becomes complex for Z > 1/α0, where α0 ≡ e2/(~c) ≈
1/137 is the fine structure constant. The physical pic-
ture for atomic collapse is that, as the nuclear charge
Z increases, the eigenenergies of the discrete states en-
ter the negative energy continuum one after another,
transforming these states into resonances with complex
eigenenergies, where the lifetime of a resonant state is
proportional to the inverse of the imaginary part of the
eigenenergy. Mathematically, the 1/r singularity asso-
ciated with the Coulomb potential makes the Dirac op-
erator non-Hermitian so that the Dirac equation breaks

down in the vicinity of the singularity. One may use
a regularized form of the potential to make the Dirac
equation valid, but even after the singularity has been
removed, the eigenenergies would still become complex
for sufficiently large values of Z. Analyses carried out
many decades ago1,2 placed the following requirement for
atomic collapse to occur: Z > 170, which is not possible
for any known elements.

For any natural element, the fine structure constant α0

is two orders of magnitude smaller than unity, making the
required nuclear charge unrealistically large for generat-
ing atomic collapse. The discoveries of two-dimensional
(2D) Dirac materials in which the quasiparticles are gov-
erned by relativistic quantum mechanics, especially the
experimental separation of graphene7–13, made it possi-
ble to realize the phenomenon of atomic collapse in ex-
periments. Specifically, the Fermi velocity in graphene
is two orders of magnitude smaller than the speed of
light: vF ∼ 106m/s, so the effective fine structure con-
stant for graphene is on the order of unity. The crit-
ical value of the nuclear charge for atomic collapse in
a graphene “environment” then becomes Zc ≈ 1. This
means that graphene would significantly enhance the rel-
ativistic quantum effects of any ordinary atom placed
within, rendering possible experimental observation of
atomic collapse14,15. Previous theoretical work investi-
gated various physical behaviors associated with the dis-
crete and continuum energy states of an atomic impu-
rity placed in graphene before and after atomic collapse,
which include screening16,17, density of states14,15,18,19,
scattering phase15,20, and generalization taking into ac-
count electron-electron interaction21. The first experi-
mental observation22,23 of atomic collapse in graphene
was achieved in 2012/2013. A tunable artificial atom
in graphene was subsequently experimentally realized24.
Recently, it has been shown that atomic collapse states
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can be induced by an STM-tip25, and a scale anomaly
together with a universal quantum phase transition has
been observed26.

The past few years have witnessed a growing inter-
est in relativistic quantum, pseudospin-1 quasiparticles
that can arise in T3 or dice lattices27–57. The T3 lat-
tice structures were first discussed58 in 1986, which can
be constructed by altering the honeycomb lattice struc-
ture (e.g., of graphene) to include an additional atom at
the center of each hexagon, leading to an energy band
structure that constitutes a pair of Dirac cones and a
flat band with a conical intersection of triple degeneracy.
As a result, three independent spinor components are
required to describe the system, making the quasiparti-
cles effectively pseudospin-1. Theoretically, pseudospin-
1 quasiparticles are described by the generalized Dirac-
Weyl equation27,28,47. In recent studies, the scattering of
pseudospin-1 quasiparticles from a circular step poten-
tial48,55 and their magnetic properties59 have been in-
vestigated. There has also been work on the transport
properties (e.g., conductivity) of pseudospin-1 quasipar-
ticles in the presence of atomic impurities35,43,56 as well
as on plasmons and screening in the pseudospin-1 dice
lattice60. While an electronic T3 lattice has not been
realized in experiments yet, theoretical and computa-
tional studies revealed that pseudospin-1 quasiparticles
can arise in photonic lattices31,61–63 and this has been
verified in a recent experiment64.

The interest in and the gradual development of the
physics of pseudospin-1 quasiparticles has motivated us
to ask the fundamental question of whether atomic col-
lapse can occur in such systems. In this paper, we ad-
dress this question by analytically solving the Dirac-Weyl
equation underlying the pseudospin-1 relativistic quan-
tum system in the presence of a Coulomb potential field.
Our approach is to focus on the continuum limit where
the solutions of the Dirac-Weyl equation can be obtained
through a decoupling method. Analyzing the solutions
yields a simple but general criterion for the occurrence
of atomic collapse in terms of the normalized strength of
Coulomb interaction and the angular momentum quan-
tum number. Remarkably, we find that, for the lowest an-
gular momentum state, the solution coincides with that
for pseudospin-1/2 systems, confirming unequivocally the
possibility of atomic collapse in pseudospin-1 systems.
For higher angular momentum states, the pseudospin-1
wavefunctions exhibit a singularity at the zero kinetic en-
ergy point. The divergence of the local density of states
associated with the flat band leads to an inverse square
type of singularities in the conductivity. These findings
provide basic insights into the physics of the two-body,
relativistic quantum pseudospin-1 systems. The problem
of atomic collapse not only is fundamental to relativis-
tic quantum mechanics, but also has implications to the
development of devices based on 2D Dirac materials in
view of the inevitable and ubiquitous presence of atomic
impurities.

(a) (b)

FIG. 1. (Color online) Pseudospin-1 lattice and energy band
structure. (a) A pseudospin-1 lattice where the three sublat-
tices of non-equivalent atoms are distinguished by color (red,
blue and green, respectively). A Coulomb impurity is shown
as the red cross. (b) Energy band structure in the presence of
the impurity scattering atom. At each point, the energy band
constitutes a pair of Dirac cones and a flat band through the
conic intersecting point. Because of the Coulomb potential,
locally the height of the three-band structure depends on the
position. The black and blue dashed lines indicate the en-
ergy Ei of the incident particle and the kinetic energy E−V ,
respectively.

II. SOLUTION OF DIRAC-WEYL EQUATION
FOR PSEUDOSPIN-1 PARTICLES IN A

COULOMB POTENTIAL FIELD

The two-dimensional lattice structure and the under-
lying energy band structure of a pseudospin-1 system in
the presence of a Coulomb impurity are shown in Fig. 1.
In the unit ~ = 1, the Hamiltonian is given by

H = vFS · p−
Ze2

κr
, (1)

where vF is the Fermi velocity, p = (px, py) is the mo-
mentum or wave vector, and S = (Sx, Sy) are two 3× 3
matrices which, together with another 3 × 3 matrix Sz,
constitute the “generalized” Pauli matrices that form a
complete representation of spin one. The three matrices
are given by

Sx =
1√
2

0 1 0
1 0 1
0 1 0

 , Sy =
1√
2

0 −i 0
i 0 −i
0 i 0

 , (2)

Sz =

1 0 0
0 0 0
0 0 −1

 ,

which satisfy the angular momentum commutation re-
lations [Sl, Sm] = iεlmnSn with three eigenvalues: s =
±1, 0, where εlmn is the Levi-Civita symbol. It is con-
venient to introduce two normalized parameters: g =
Ze2/κvF and ε = E/vF , to characterize the strength of
the Coulomb field and the energy scale, respectively. It
is also convenient to set the radial variable in polar coor-
dinates (ρ, θ) as ρ ≡ εr. Depending on the sign of Z, the
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value of g can be either positive or negative14–21. In the
tight binding approximation, the Fermi velocity is given
by vF = 3at/

√
2, where a is the lattice constant and t

is the nearest-neighbor hopping energy of the hexagonal
lattice27.

We aim to solve the eigenvalue problem

Hψ = Eψ (3)

with the three-component spinor ψ = (ψ1, ψ2, ψ3)T . Be-
cause of the circular symmetry of the Coulomb potential
field, the angular momentum l is a good quantum num-
ber, making it useful to write the spinor in terms of the
angular-momentum eigenstate eilθ as

ψ =
1

2
√

2π

ψAe−iθ√
2iψB
−ψCeiθ

 eilθ, (4)

where l = 0,±1, · · · . In the angular-momentum repre-
sentation, Eq. (3) becomes ρ+ g −r∂r − l 0

r∂r − l + 1 2(ρ+ g) −r∂r − l − 1
0 r∂r − l ρ+ g

ψAψB
ψC

 = 0, (5)

which can be solved by using a decoupling method (Ap-
pendix A). The result for component ψB is

ψB = (ρ/g)−1/2+s exp(iρ)φB , (6)

where

s =

√
1

4
− (g2 − l2) (7)

and φB is given by

φB = A ·HeunC(α, β, γ, δ, η,−ρ/g), (8)

with A being the normalization constant that can be ob-
tained through the asymptotic behavior of φB , and He-
unC denotes the confluent Heun function which, in some
special cases, can be related to the hypergeometric func-
tion65–67. The five parameters are

α = −2ig,

β = 2s,

γ = −2,

δ = −2g2,

η = 2g2 + 3/2.

(9)

The other two components, ψA and ψC , can be expressed
in terms of ψB : 

ψA =
rψ′B + lψB
ρ+ g

,

ψC =
−rψ′B + lψB

ρ+ g
,

(10)

which can be calculated by using the derivative property
of the confluent Heun function68.

III. ATOMIC COLLAPSE STATES IN
PSEUDOSPIN-1 SYSTEMS

To gain insights into the possible occurrence of atomic
collapse in pseudospin-1 systems, we examine some spe-
cial cases. One such case is the lowest angular momentum
state l = 0. In Appendix B, we show that this state is
identical to the lowest angular momentum state in the
corresponding pseudospin-1/2 system. For l 6= 0, the so-
lutions of the +l and −l states are identical except for
a normalization constant. Another special cases is the
spatial location defined by ρ + g = 0. At this point,
the determinant of Eq. (5) is zero - which is character-
istic of the solution associated with the flat band. This
is a special feature of pseudospin-1 systems, which does
not arise in the corresponding pseudospin-1/2 systems.
The physical meaning of this solution is that it corre-
sponds to the point at which the kinetic energy is zero:
E − V (r) = 0. We will show later that, at the zero ki-
netic energy point, the wavefunction exhibits a singular-
ity of the form [E−V (r)]−1. At this point, the solutions
associated with the conic bands and the flat band are
degenerate.

In general, the asymptotic (far field) behavior of ψB is
governed by the Whittaker equation. Our analysis (Ap-
pendix B) reveals that ψB contains the phase shift log |ρ|
and is given by

ψB ∼
√

2

πr
cos
[
|ρ|+ g̃ log(2|ρ|) + δl

]
, (11)

where g̃ = Sign(ε)g and δl is the scattering phase asso-

ciated with the angular momentum l. The
√

1/r decay
factor stipulates that there are no bound states for mass-
less particles in the pseudospin-1 system in the presence
of a Coulomb impurity, similar to the situation in the
corresponding pseudospin-1/2 systems14–21. Physically,
this means that the minimum energy occurs at infinity.

Can atomic collapse occur in pseudospin-1 systems?
As previously demonstrated for pseudospin-1/2 sys-
tems14,18, an atomic collapse state arises when the quan-
tity s in Eq. (7) becomes imaginary. In particular,
since the wavefunction near the impurity behaves as
r−1/2+s = r−1/2 exp (s log r), an imaginary s will lead
to an infinite number of nodes in the wavefunction for
r → 0. Atomic collapse can then be expected to occur
in pseudospin-1 systems. A difference between the two
types of systems lies in the number of the collapse states.
Figure 2 shows, for both types of systems, the possible
collapse states in the parameter plane (l, |g|). For ex-
ample, for |g| = 1, the only state of atomic collapse for
the pseudospin-1 system is l = 0, whereas there are two
collapse states for the pseudospin-1/2 system, which oc-
cur at l = ±1/2. For certain boundary condition, the
two atomic collapse states can be degenerate14,15. An
analysis of the issue of broken degeneracy between the
±l states in pseudospin-1/2 and pseudospin-1 systems is
given in Appendix C.
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FIG. 2. (Color online) Possible atomic collapse states for
pseudospin-1 and pseudospin-1/2 systems. As the strength
|g| of the Coulomb impurity is increased, more and more
collapse states are possible, each associated with a distinct
angular momentum number. For pseudospin-1 systems, the
second spinor component can be conveniently used to find
the collapse states. For pseudospin-1/2 systems, the condi-
tion under which atomic collapse occurs is that the quan-
tity s =

√
l2 − g2 becomes imaginary, where l is the angular

momentum quantum number associated with the first spinor
component plus 1/2. Atomic collapse states can arise but
only for |g| > 1/2. For example, for 1/2 < |g| ≤ 1, the
shaded region indicates that there is only one collapse state
for a pseudospin-1 system, which occurs at l = 0, but for a
pseudospin-1/2 system, two such states exist: l = ±1/2.

For a strong impurity, s becomes an imaginary num-
ber for some state l. We thus have an additional set of
linearly independent solutions:

φB =C1HeunC(α, β, γ, δ, η,−ρ/g)

+ C2(−ρ)−βHeunC(α,−β, γ, δ, η,−ρ/g).
(12)

where C1 and C2 are two parameters that can be de-
termined by the boundary and normalization conditions.
Other parameters in Eq. (12) are the same as those in
Eq. (9). Numerically, the confluent Heun function can
be evaluated through its integral representation65.

A. Collapse free regime: weak impurity (|g| < 1/2)

In general, the behaviors of the wavefunctions in the
collapse-free and collapse prone regimes can be quite dif-
ferent, as in graphene systems14,15. For pseudospin-1
systems, the separation between the two regimes is at
|g| = 1/2, as shown in Fig. 2. Especially, for |g| < 1/2,
no collapse state is possible, where s takes on real values
for all the states. In this case, the solution is given by
Eq. (6), which involves only one set of confluent Heun
functions.

For a pseudospin-1 system in free space, the spinor so-
lution has nonzero values only for the first and third com-
ponents (ψA and ψC) - the second component ψB is zero
due to the flat band. When an impurity is introduced into
the system, the three components will be mixed. The flat
band can lead to a singularity in the spinor components.

For a Coulomb impurity, ψA and ψC both will possess a
singularity, and ψB will become nonzero but without any
singularity. Figure 3 shows the three spinor components
for both positive and negative values of ρ. As shown in
Figs. 3(a) and 3(c) for ψA and ψC , respectively, a singu-
larity arises at ρ+g = 0. This can be seen by noting from
Eq. (5) that, at the zero kinetic energy point determined
by ρ + g = 0, the corresponding matrix has zero deter-
minant, leading to a singularity69. Analytically, we are
able to show that the singularity leads to a (E−V (r))−1

type of asymptotic behavior in the region where the ki-
netic energy is about zero, as detailed in Appendix B.
Such a singularity occurs in pseudospin-1 systems with
three spinor components. In contrast, a pseudospin-1/2
system does not have this type of singularity, as the deter-
minant of the corresponding 2× 2 matrix has a non-zero
value. Note also that, for l = 0, the spinor solutions of
pseudospin-1 and pseudospin-1/2 systems are identical.
Thus, for pseudospin-1 systems, this type of singularity
arises for l 6= 0 only.

Figures 3(d-f) show the far field behaviors of the three
spinor components, which all exhibit a 1/

√
r type of

decay, as predicted by the far field approximation in
Eq. (11). There thus exists no bound state, as for
pseudospin-1/2 systems. In fact, because of the mass-
less nature of the quasiparticles, no bound state can form
with any finite potential confinement. The distinct fea-
ture in pseudospin-1 systems is the emergence of some
singular behavior at a finite distance.

To further characterize the wavefunction behaviors of
pseudospin-1 systems in the presence of an impurity, we
examine the local density of states (LDOS) defined as

N(ε, r) =
1

8π

∑
l

(
|ψA|2 + 2|ψB |2 + |ψC |2

)
, (13)

where the factor of two in front of |ψB |2 comes from the

factor of
√

2 associated with the second spinor component
in Eq. (4). In the low energy regime, the expression in
Eq. (13) is truncated for a finite value of the angular
momentum l. As shown in Fig. 4, the LDOS diverges at
ρ+ g = 0, as the square term in the LDOS gives

lim
E→V (r)

σ(r) ∼ (E − E0)−2, (14)

where σ(r) is the conductivity that depends on r and E0

with the latter defined as

E0

t
≡ − 3√

2

a

r
g. (15)

For a positive value of g (an impurity with a positive
charge), the singularity occurs in the negative energy do-
main. In an experiment, a positively charged impurity
can be generated by introducing an ion (e.g., Co+ or
Ca+) into the system, and the DOS can be measured
through the conductivity22,23. Especially, under a neg-
ative bias one can use an STM tip at some distance to
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FIG. 3. (Color online) Scattering wavefunction in the collapse-free regime. For g = 1/5, (a) spinor component ψA, where the
vertical dashed line denotes r = 0. As indicated by Eq. (6), in this regime the Coulomb impurity will generate a singularity.
(b,c) Spinor components ψB and ψC , respectively. The singularity at ρ = −g is a result of the flat band. In the presence of an
impurity, the solutions associated with the flat band and with the Dirac cones are mixed. In terms of the angular momentum,
the singularity occurs for l 6= 0. (d-f) The absolute values of ψA, ψB and ψC , respectively for |ρ| � 1, where each color dashed
line indicates the wavefunction component for negative values of ρ. The dashed black envelope line is indicative of the decay
behavior

√
2/(πr) given by Eq. (11).
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0

0.1

0.2

0.3

0.4

FIG. 4. (Color online) Local density of states (LDOS) of
pseudospin-1 systems in the collapse-free regime. Shown are
patterns of LDOS at the location r = a, for different values
of g. The dashed lines indicate the free space DOS where
N(E, r) = |E|/(2π) and N(0) =∞.

assess the zero kinetic energy point with divergent con-
ductivity. For a pure pseudospin-1 lattice, the flat band
does not have any contribution to conductivity. However,
under the non-equilibrium condition56 or when an impu-
rity is present, the flat band can contribute significantly
to conductivity. Here, our analysis of the infinite lattice
shows that a Coulomb impurity can shift the energy and
lead to a (E −E0)−2 type of divergence in conductivity.

B. Collapse-prone regime: strong impurity
(|g| > 1/2)

A pseudospin-1 system is prone to atomic collapse in
the strong impurity regime characterized by |g| > 1/2.
For a collapse state, the value of s in Eq. (12) is imag-
inary, corresponding to l2 < g2 − 1/4. In this case, the
second spinor component φB contains an additional lin-
early independent solution. (Note that, the additional
solution does not arise for a non-collapse state because
of the real values of s.)

In quantum electrodynamics, atomic collapse stipu-
lates that a bound state be replaced by a state with
particle-hole generation3. However, for massless quasi-
particles in 2D Dirac materials, there is no bound state
and an atomic collapse is manifested through the strong
impurity-induced infinite oscillations of the wavefunction
for r → 0, which is related to the phenomenon of Lan-
dau fall14,18,70. To detect the infinite number of oscilla-
tions, we truncate the solution by introducing an interior
boundary condition. Following Refs. [71], [18], and [14],
we truncate the spinor wave function at an infinitesimal
distance to generate a forbidden region into which the
particle cannot enter. The truncation can typically be
viewed as introducing an infinite mass potential near the
impurity by setting zero the current across the boundary.
This is effectively a screening effect that makes the real
potential deviate from the Coulomb potential but only
for r → 0.

We set up the boundary conditions, as follows. In polar
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coordinates, the current components in a pseudospin-1
system48 are

jr = vgψ
†S · êrψ =

√
2Re

[
ψ∗2(ψ1e

iθ + ψ3e
−iθ)

]
,

jθ = vgψ
†S · êθψ = −

√
2Im

[
ψ∗2(ψ1e

iθ − ψ3e
−iθ)

]
.

(16)

Imposing the constraint ja0 = 0 and utilizing the spinor
wavefunction expression in Eq. (4), we get

2ψB(a0) = ψA(a0)− ψC(a0). (17)

For l = 0, we have ψA = −ψC and Eq. (17) gives
ψA(a0) = ψB(a0), which has the same form as the bound-
ary condition in a pseudospin-1/2 system. However, for
l 6= 0, the equivalent relation does not hold. Using
Eq. (17) and the normalization condition for r → ∞,
we can obtain the coefficients C1 and C2 in Eq. (12). For
the modes that do not exhibit any collapse behavior, the
solutions have the same form as those in the collapse-free
regime.

In the collapse-prone regime, the LDOS contains two
types of contribution:

N(E, r) =
∑

l2<g2−1/4

nl(E, r) +
∑

l2>g2−1/4

nl(E, r), (18)

where nl denotes the contribution of the collapse state
that has two linearly independent solutions. Figure 5(a)
shows the LDOS for g = 1. From Eq. (7), we see that, for
this impurity strength, the l = 0 state can collapse. Fig-
ure 5(a) reveals a singularity in the LDOS in the regime
of negative impurity strength, which is a consequence of
the flat band, as in the collapse-free regime discussed in
Sec. III A. Another singularity occurs for E → 0−. The
rapid oscillations in this energy range are characteristic
of an atomic collapse state, as can be better seen on a log-
arithmic scale in Fig. 5(b). There is then atomic collapse
for the l = 0 state in the pseudospin-1 system. Compar-
ing with the collapse state in pseudospin-1/2 systems,
the density for oscillation peaks in pseudospin-1 systems
is reduced, as caused by a decrease in the number of col-
lapse states. The oscillatory behavior in the LDOS also
occurs in the positive energy range, as shown in Fig. 5(c),
where the correction δN = Ng=1 −Ng=0 to the LDOS is
displayed. We note that similar oscillation patterns have
been observed in pseudospin-1/2 systems14,18,72.

C. Divergence in conductivity associated with
Coulomb impurity

A unique phenomenon in pseudospin-1 systems, which
does not arise in pseudospin-1/2 systems, is flat-band in-
duced divergence of conductivity. A previous study based
on the random phase approximation method60 showed
that the flat band leads to a single point of divergence.
There was also a discussion about conductivity diver-
gence induced by impurities35. We wish to point out
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FIG. 5. (Color online) Local density of states (LDOS) of a
pseudospin-1 system in the collapse-prone regime. For g = 1
and truncation at a0 = 0.5a (a) LDOS for different values of
r where the rapid oscillations near E → 0− are indicative of
atomic collapse, (b1) LDOS for the zero angular momentum
(l = 0) mode on a logarithmic energy scale and (b2) LDOS
for the l = ±1/2 modes for the corresponding pseudospin-
1/2 system. (c) Oscillatory behavior in the LDOS difference
δN = Ng=1 −Ng=0 - a signature of atomic collapse.

that the analytical solution of the Dirac-Weyl equation
gives directly the point of divergence in conductivity. As
shown in Fig. 6, as the kinetic energy E − V (r) tends
to zero, the conductivity diverges. In fact, in this energy
regime, the conductivity scales with the energy difference
as (E − E0)−2.

For screening at a constant position, the resonant
width is proportional to the impurity strength. Since
the system is invariant with respect to εr, screening near
the impurity implies broadening of the energy region, as
shown in Fig. 5(a). If screening is done at infinity, the
peak width and position will be the same as those in the
free space.

We examine the spatial distribution of the wave func-
tion associated with divergent conductivity. For a given
value of the incident energy, we can get the zero kinetic
energy point from Eq. (15). In the centrally symmetric
coordinate system, we can calculate the current compo-
nents in the radial and angular directions, jr and jθ, re-
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FIG. 6. (Color online) Flat-band induced divergence of con-
ductivity in pseudospin-1 systems. (a) Shown is the be-
havior of LDOS near E0 for g = 1/5 and r = a, where
E0 = 3t/(5

√
2) ≈ 0.42t [Eq. (15)]. There is a singularity in

the spinor wavefunction determined by ρ+ g = 0 [or, equiva-
lently, E − V (r) = 0]. In this case, the LDOS and hence the
conductivity exhibits a (E −E0)−2 type of divergence as the
energy approaches E0. (b) The same quantity for g = 1

spectively (Appendix B). A phenomenon of interest is
that the current is discontinuous in the angular direc-
tion for a non-collapse state, as shown in Fig. 7. In fact,
for a pseudospin-1 system, the current components are
jr = 0 and jθ ∝ 1/(r − r0) for the l 6= 0 states in the
non-collapse regime. This discontinuous behavior does
not arise in pseudospin-1/2 systems where the angular
current component is continuous. The reason is that the
currents associated with a particle and a hole on the two
sides of the boundary have different directions. However,
for plane wave scattering, all angular momentum chan-
nels are mixed. As a result, in the collapse free region,
the time reversal symmetry l → −l stipulates a zero net
current.

IV. DISCUSSION

The intriguing relativistic quantum phenomenon of
atomic collapse cannot occur for ordinary systems be-
cause of the unrealistically high value of the atomic num-
ber required, i.e., it should be larger than the inverse of
the fine structure constant. However, in solid state ma-
terials that host relativistic quantum quasiparticles, due
to the two-order-of-magnitude reduction in the “speed of
light” (e.g., in graphene, the Fermi velocity is typically
100 times smaller than the speed of light in vacuum),
the effective fine-structure constant is on the order of
unity. As a result, in principle, an impurity of any num-
ber of protons can induce atomic collapse. Previously,
the possibility of realizing atomic collapse in graphene
was theoretically articulated14–21 and experimentally in-

FIG. 7. (Color online) Comparison between pseudospin-1/2
and pseudospin-1 systems. The parameters are E = −t (con-
stant bias) and g = 1/5. (a) Conductivity for a pseudospin-
1/2 system, where space is in units of the atomic lattice spac-
ing a. The values of the conductivity are color coded on a
logarithmic scale with 1/(2π) being the free space conductiv-
ity. (b) Conductivity for a pseudospin-1 system, where the
legends are the same as in (a). (c) Current in the pseudospin-
1/2 system associated with the l = 1/2 state, where jr = 0
and jθ is continuous when passing through the zero kinetic
energy region (dashed line). (d) Current in the pseudospin-1
system associated with the l = 1 state, where jθ changes sign
when passing through the zero kinetic energy region at which
the value of the current diverges.

vestigated22–24,26. Beyond graphene, other types of rela-
tivistic quantum solid state materials that have attracted
a growing interest in recent years are those which host
pseudospin-1 quasiparticles, whose energy band structure
consists of a pair of Dirac cones and a flat band27–57. A
natural question is whether atomic collapse can occur in
pseudospin-1 material systems.

We have addressed this question by using the setting of
a Coulomb impurity embedded in a pseudospin-1 lattice
and obtained analytic expressions of the spinor wavefunc-
tions. Our main result is that, for normalized Coulomb
impurity strength g and a state with the angular mo-
mentum quantum number l, the general condition under
which atomic collapse can occur is

l2 < g2 − 1/4. (19)

Thus, the critical impurity strength above which atomic
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collapse can occur is |g| = 1/2, which is identical to that
in graphene. Furthermore, we have shown that, for the
lowest angular momentum state l = 0, the wavefunction
solution associated with atomic collapse has the same
form as that in a pseudospin-1/2 system, but with a re-
duced number of states. Distinct solutions from those
in graphene arise only for nonzero angular momentum
states (l 6= 0).

In general, the relativistic quantum motion of a higher
spin particle can be treated as a few-body problem of par-
ticles with a lower spin value. For example, a pseudospin-
1 particle is equivalent to two pseudospin-1/2 particles,
where the wavefunction of the former can be written as
the direct product of the wavefunctions of the latter.
In the central mass coordinate, the Hamiltonian of the
two pseudospin-1/2 particles is equivalent to that of a
pseudospin-1 particle69,73. In fact, the two-body system
is one of the solvable problems in relativistic quantum
mechanics74, whose solution provides great insights into
many-body behaviors in graphene21,75. Following this
idea, we have obtained the result demonstrating that a
pseudospin-1 system in the presence of a Coulomb po-
tential is completely equivalent to a two-body system of
pseudospin-1/2, because two such particles will naturally
generate a Coulomb interaction. (In Appendix D, we
show that, by constructing a direct product of the wave-
functions, a relativistic quantum two body system and a
pseudospin-1 system subject to a Coulomb impurity have
similar solution forms.)

A possible way to gain insights into the collapse state
in a pseudospin-1 lattice is then to study the exci-
ton in graphene where conductivity divergence is ex-
pected. Indeed, we have found the divergent behavior
in pseudospin-1 systems.

In high energy physics, the bound states of a mas-
sive spin-1 particle subject to a magnetic field were stud-
ied and the differences from those of a spin-1/2 particles
were noticed76–78. Theoretically, relativistic spin-1 parti-
cles can also be described by the Duffin-Kemmer-Petiau
(DKP) equation79. In the presence of a Coulomb im-
purity, the DKP equation is reduced to the Heun equa-
tion80. We also note that, in the standard model, a spin-1
field can express gluons, photons, W and Z bosons. They
are real particles but their Lagrangian involves four com-
ponents to satisfy the Lorentz invariance. Besides, real
spin-1 particles cannot form bound state. On the other
hand, the DKP equation similar to the Dirac equation
but with 10 components. To our knowledge, both the
standard and the DKP models have no relationship with
pseudospin-1 systems that have three spinor components.

At the present time, lattice systems hosting

pseudospin-1 particles have not been experimentally re-
alized. If such a lattice is synthesized in the near fu-
ture, it would be possible to observe the phenomenon
of atomic collapse, as suggested by our work. In par-
ticular, the Coulomb impurity has been experimentally
implemented in graphene systems22–24,26, and it is not
unreasonable to expect that the technique can be car-
ried over to pseudospin-1 systems. For a positive ion in
a pseudospin-1 lattice under a negative bias, the STM
technique can be used to detect atomic collapse through
conductivity divergence that occurs at the point of zero
kinetic energy.

Extensions of the present work are possible. For ex-
ample, an experimentally relevant issue is STM-tip in-
duced collapse. Particularly, instead of using charged
dimers, a sharp STM tip can also induce atomic collapse,
which is more accessible to experiments and more tun-
able. Another issue is the finite size effects. With the
exact solutions of the wave functions, it should be pos-
sible to study finite size effects analytically by applying
the correct boundary conditions (e.g., zig-zag or infinite
mass)81. This enables a study of the individual states,
potentially leading to more detailed information about
the atomic collapse states. A magnetic field could give
the same information, although it may not be feasible to
obtain exact analytical solutions of the Dirac equation in
the simultaneous presence of a Coulomb potential and a
magnetic field.
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Appendix A: Analytical solution of ψB

From Eq. (1), we obtain the eigenstate problem:

vF√
2

(
−iS · ∇ −

√
2g

r

)
ψ = Eψ. (A1)

The eigenstate equation can be reduced to the following
matrix equation:

1√
2

√2(ε+ g/r) L̂− 0

L̂+

√
2(ε+ g/r) L̂−

0 L̂+

√
2(ε+ g/r)

 ×
 ψAe

i(l−1)θ
√

2iψBe
ilθ

−ψCei(l+1)θ

 = 0, (A2)
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where

L̂± = −ie±iθ
(
∂r ± i

∂θ
r

)
. (A3)

Inserting L̂± to separate the angular part, we get Eq. (5),
where the first and the third spinor components, ψA and
ψC , respectively, are given by

ψA =
rψ′B + lψB
εr + g

,

ψC =
−rψ′B + lψB

εr + g
.

(A4)

Introducing R = εr/g, we have

ψ′′B +
R+ 2

R(R+ 1)
ψ′B +

(
g2 +

2g2

R
+
g2 − l2

R2

)
ψB = 0.

(A5)

This equation has two second-order singularities at R = 0
and ∞, respectively. Following the method in Ref. [14],
we can eliminate the second-order singularities. First
consider the singularity at R→ 0. Using

lim
R→0

ψB ∼ Rx (A6)

and omitting the term that contains R, we get the equa-
tion for x = −1/2 + s. Similarly, for the singularity at
R→∞, we have ψB ∼ eigR. We thus consider

ψB = R−1/2+seigRφB . (A7)

Inserting this into Eq. (A5) and making the change
R = −R, we get the following second-order differential
equation:

φ′′B +

(
2s+ 1

R
− 1

R− 1
− 2ig

)
φ′B +

(
−R(2g2 + 2igs) + (s− ig)(2ig − 1) + 1/2

R(R− 1)

)
φB = 0. (A8)

From Refs. [65] and [82], we have that the standard form
of the confluent Heun equation is

d2y

dz2
+

(
α+

β

z
+
γ + 1

z − 1

)
dy

dz
+

(
ν

z − 1
+
µ

z

)
y = 0, (A9)

where

µ =
1

2
[α− β − γ − 2η + β(α− γ)] ,

ν =
1

2
[α+ β + γ + 2δ + 2η + γ(α+ β)] .

(A10)

Comparing Eq. (A8) with Eq. (A9), we can get each
parameter for the confluent Heun equation. For non-
integer values of β, another linearly independent solution
is z−βHeunC(α,−β, γ, δ, η, z).

Appendix B: Special cases

1. Zero angular momentum state

For l = 0, Eq. (5) is reduced to
ψC + ψA = 0,

rψ′B − ψB − (εr + g)ψA = 0,

rψ′A + (εr + g)ψB = 0.

(B1)

where the second and third equations can be regarded
as describing a pseudospin-1/2 particle under a Coulomb
potential:(

−ε− g/r L̂−
L̂+ −ε− g/r

)(
ψA
ψBe

iθ

)
= 0. (B2)

2. The case of ρ+ g = 0

The relationship between ψA and ψC implies a singu-
larity at εr + g = 0:

ψA =
rψ′B + lψB
εr + g

,

ψC =
−rψ′B + lψB

εr + g
.

(B3)

An alternative way is to examine the l 6= 0 state by sep-
arating ψA and ψC . Specifically, introducing{

ψA − ψC = F,

ψA + ψC = G,
(B4)

and eliminating ψB , we getR∂R + 1 −l + g2(R+1)2

l

R+1
R − 1

l [1 + (R+ 1)∂R]

(F
G

)
= 0. (B5)

It is possible to separate G. Especially, from the second
equation in Eq. (A8), we get
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G′′ +

[
1

R+ 1
+

2

R

]
G′ +

{
R+ 2

R(R+ 1)2
− l2

R2
+ g2

(
1 +

1

R

)2
}
G = 0. (B6)

Note that the singular behavior is different from that
in Eq. (A5) because R + 1 now becomes a second-order
singularity. Using the ansatz

lim
R→−1

G ∼ (1 +R)x, (B7)

we get x = ±1. However, x = 1 is forbidden since the
second derivative of the wavefunction at this point is zero,
suggesting that the singularity of G occurs at 1/(R+ 1).
From Eq. (B5), we have that a similar singularity arises
in F , but not in ψB .

3. Conductivity and current near ρ+ g = 0

Equation (B5) indicates the existence of a singularity
in ψA and ψC for l 6= 0, which occurs at ρ+ g = 0. With
ρ = εr and ε = E/vF , we get that the singularity occurs
for

E0

t
≡ − 3√

2

a

r
g, (B8)

which depends on both the incidence energy E0 and the
measurement point r0.

The DOS is defined in Eq. (13). For a fixed measure-
ment point r0, as the energy is changed, ψA and ψC ex-
hibit a singularity near E → E0 for l 6= 0, which domi-
nates the sum. We thus obtain the behavior of conduc-
tivity divergence:

lim
E→V (r)

σ ∼ (E − E0)−2. (B9)

For a fixed energy value, as the measurement position is
varied, a singularity will rise in a similar fashion. The
current components are defined as

jr = vgψ
†S · êrψ =

√
2Re

[
ψ∗2(ψ1e

iθ + ψ3e
−iθ)

]
,

jθ = vgψ
†S · êθψ = −

√
2Im

[
ψ∗2(ψ1e

iθ − ψ3e
−iθ)

]
.

(B10)

Inserting Eq. (4) into the current expressions, we obtain
jr = 0 and jθ ∼ G for real ψB (which occurs only in the
non-collapse region). Also, from Eq. (B5), we obtain the
singularity in G with G ∼ (r − r0)−1, indicating a sign
change for jθ near the zero kinetic energy point.

4. The case of |ρ| → ∞

To get the asymptotic behavior, we use the transform

w =
R√
R+ 1

ψB . (B11)

Making the change of variable from R to ρ in Eq. (A5),
we get

w′′ +

(
1 +

g

ρ
+
g2 − l2

ρ2
+

1
4 (ρ+ 2g)2 − g2

ρ2(ρ+ g)2

)
w = 0.

(B12)
Because |ρ| � g, we can approximate Eq. (B12) as

w′′ +

(
1 +

2g̃

|ρ|
+
g2 − l2 + 1/4

ρ2

)
w = 0, (B13)

where g̃ = sεg. Equation (B13) is the Whittaker equa-
tion82, which contains a logarithmic phase shift

ψB ∼
√

2

πr
cos
[
|ρ|+ g̃ log(2|ρ|) + δl

]
, (B14)

where δl is the scattering phase associated with the an-
gular momentum quantum number l.

Appendix C: Is there degeneracy between the ±l
states in pseudospin-1/2 and pseudospin-1 systems?

The relationship between the l and −l states after col-
lapse depends not only on the angular momentum, but
also on the boundary condition. In Refs. [14] and [15],
the boundary condition is ψ2(r0) = 0. This choice leads
to the degeneracy of the l = ±1/2 states in the collapse
region.

In our work, we use the zero current boundary condi-
tion, as in Refs. [18] and [70]. By setting

ψ2(r0)/ψ1(r0) = −i exp(iθ),

we get a “impenetrable region” around the impurity.
This boundary condition was justified by lattice calcula-
tion in Ref. [18]. In Ref. [18] and Fig. 19(d) in Ref. [21],
it is shown that the density of state is not degenerate
under the boundary condition.

We first analyze the degeneracy for pseudospin-1/2 sys-
tems with a Coulomb impurity. In such a system, we
have

vF (σ · p− g/r)Ψ(r) = EΨ(r), (C1)

where g = Ze2/κvF and ε = E/VF , as for a pseudospin-1
system. With the two-component spinor wavefunction

Ψl(r) =
1√
r

(
ei[l−(1/2)]φψAl (r)

ei[l+(1/2)]φψBl (r)

)
, (C2)

the Dirac equation becomes(
ε+ g/r −(∂r + l/r)

(∂ − l/r) ε+ g/r

)(
ψAl
ψBl

)
= 0. (C3)
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Under the transform l→ −l, we get

ψA−l = ψBl

ψB−l = −ψAl .
(C4)

We see that the transform only changes the sign of one
component, leading to no difference in the LDOS. For
a collapse state, the impenetrable boundary condition
implies another equation:

ψAl (r0) = ψBl (r0). (C5)

Comparing this equation with Eq. (C4), we see that the
transform l → −l can no longer maintain the boundary
condition. As a result, the degeneracy is broken.

We now turn to the problem of degeneracy in
pseudospin-1 systems, where the relation between the
Fermi velocity and the hopping energy is vF = 3at/2.
Before collapse, the solution of the wavefunction is given
by Eqs. (6-10). Under the transform l→ −l, we have

ψA−l = −ψCl
ψB−l = ψBl

ψC−l = −ψAl .
(C6)

As a result, the LDOS is identical for the l and −l states.
After collapse, the boundary condition near the impurity
is given by

2ψBl (a0) = ψAl (a0)− ψCl (a0), (C7)

which no longer holds under the transform l→ −l. There
is then no degeneracy between the l and −l states.

Appendix D: Relativistic quantum two-body
problem

Following Refs. [69] and [73], we label the wave func-
tion for two pseudospin-1/2 particles in graphene with
i, j = (A,B). We have

Ψij(r1, r2) = Ψi(r1)⊗Ψj(r2)

= (ΨAA,ΨAB ,ΨBA,ΨBB)T .
(D1)

Introducing the center-of-mass frame: R = (r1 + r2)/2
and r = r1− r2 with center-of-mass momentum ~K = 0,
we obtain

ΨAA(r1, r2)
ΨAB(r1, r2)
ΨBA(r1, r2)
ΨBB(r1, r2)

 =



ei(l−1)θφ1(r)

− i
2e
ilθφ2(r)

i
2e
ilθφ2(r)

ei(l+1)θφ3(r)


, (D2)

where φ1, φ2, φ3 satisfy the equation
v(r)−E
~vF ∂r + l

r 0

−2
(
∂r − l−1

r

) v(r)−E
~vF 2

(
∂r + l+1

r

)
0 −∂r + l

r
v(r)−E
~vF


φ1(r)
φ2(r)
φ3(r)

 = 0.

(D3)
Introducing the Coulomb potential V (r) = Ze2/κr and
imposing the normalized units g0 = 2Ze2/κvF and
ε0 = 2E/vF , we see that (φ1, φ2, φ3) correspond to
(ψA, 2ψB , ψC).
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