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We investigate if a sharp topological transition in a metal with a large Fermi surface may be
detected in transport measurements. In particular, we address if a skew scattering and a side
jump on elastic disorder in the bulk of such a metal masks signatures of the topological transition.
We conclude that certain transport coefficients exhibit discontinuous changes across the transition.
These discontinuities are not smeared or dwarfed by the bulk metallic transport in a broad range of
parameters.

PACS numbers:

I. INTRODUCTION

Discovery of topological insulators and semimetals1–5

emphasized a fundamental fact that states of matter may
be distinguished by topological indexes. The existence of
topological indexes relies on symmetries of the system,
rather than a specific Hamiltonian5–10. States with dif-
ferent indexes are separated by topological phase tran-
sitions, which are often associated with sharp quantized
changes of transport coefficients (Hall conductance in the
integer quantum Hall effect11 being the oldest example).
Topological transitions are often associated with gapped
phases, such as insulators or superconductors. Recent
studies of Weyl semimetals12–18 have extended this no-
tion to gapless states, if the chemical potential is tuned to
a nodal Weyl (or Dirac) point19,20. For example in Weyl
semimetals with mirror symmetry the Hall conductance
exhibits a discontinuous quantized change21,22.

In the present work we investigate if sharp topological
transitions may be detected in genuine metals with large
Fermi surfaces and a finite density of bulk delocalized
states. One may reason that the edge states, if coex-
ist with the bulk extended states, provide a negligible
contribution to transport coefficients in the thermody-
namic limit. Moreover, if elastic scattering is present
it mixes between the edge and the bulk, further de-
grading any topological signatures. Here we show that
these arguments are too simplistic. We conclude that
sharp, but non-quantized, discontinuities in transport co-
efficients persist into the genuine metallic state. Their
magnitude is finite and may be comparable with (or even
larger than) bulk contributions in the thermodynamic
limit. These properties has to be protected by a certain
symmetry. We thus refer to them as symmetry protected
topological (SPT) metals. If disorder does not break the
corresponding symmetry, the transport anomalies are ro-
bust to its presence.

To illustrate these points we consider a specific model
of SPT metal with the particle-hole symmetry, intro-
duced in Ref. [23]. The model is based on 2D p + ip
superconductor, which is deformed by an applied flux or
a super current. As the super current (hereafter denoted
as Q) is increased the band structure undergoes two tran-
sitions as shown in Fig. 1(a-d). First at Q = QL, there
is a Lifshitz transition from a topological superconductor

FIG. 1. (a)-(d) Band structure of the model from Ref. [23]
at various choices of parameter Q (see Sec. II for details of
the model). The corresponding phases are: (a) topological
insulator/superconductor (TI); (b) topological metal (TM);
(c) topological phase transition; (d) normal metal (M). (e)
Fermi surfaces, corresponding to cases (b-d) above. Blue lines
in panels (a-d) represent multiple sub-bands of transversal
quantization in quasi-1D geometry.

to the topological metal state. The latter is characterized
by two metallic bands with the Fermi surfaces shown in
Fig. 1(e). Notice also the two edge states, propagating in
the same direction, coexisting with the metallic bands,
Fig. 1(b). At Q = QT > QL, there is the topological
transition between the topological and the ordinary metal
states. In the clean model the anomalous thermal Hall
conductance exhibits a non-quantized discontinuity23 at
Q = QT .
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FIG. 2. Schematic system setup. The edge states are in a local
equilibrium with the heat reservoirs at temperatures T1 and
T2. The temperature gradient is established in the bulk of the
system, leading to the quasiparticles drift. The anisotropic
(skew) scattering on impurities (blue dots) leads to a heat
current in x-direction, indicated by the arrows around the
blue dot. Notice that in the topological metal state both
edges propagate in the same direction, cf. Fig. 1(b).

In the present paper we investigate thermal transport
in this model in the presence of a bulk elastic disor-
der, which preserves the particle-hole symmetry. The
schematic setup is indicated in Fig. 2. It assumes an
applied thermal gradient, ∇yT = (T2 − T1)/Ly in the
y-direction. We then evaluate linear response thermal
current both in y and x-directions, which determine lon-
gitudinal, κyy, and Hall, κxy, thermal conductances. The
latter is, in general, non-zero, because the time-reversal
invariance is broken in two ways: (i) the choice of chiral-
ity of p + ip order parameter and (ii) the applied super
current Q. As illustrated in Fig. 2, κxy acquire contribu-
tions from both edge states and bulk elastic scattering.

The main focus of this paper is whether the disconti-
nuity in κxy, found in the clean model23, Fig. 3, is ob-
servable in the presence of the bulk disorder. We found
that this is indeed the case. The skew scattering mech-
anism results in a continuous contribution to κxy, while
the side jump mechanism enhances the discontinuity of
the intrinsic contribution. Moreover, in the wide range of
parameters the continuous skew scattering contribution
is comparable to the discontinuity size. The discontinu-
ity is not smeared by the disorder in the thermodynamic
limit. (The discontinuity in κxy should be understood in
a scaling limit when T1 and T2 go to zero, while a finite
temperature leads to a shop by continuous drop in κxy.)

The structure of the paper is as follows: Section II in-
troduces the model of SPT metal and discusses the intrin-
sic contribution to the thermal Hall conductance. Section
III establishes the appropriate kinetic Boltzmann equa-
tion for impurity scattering of quasiparticles occupying
particle-like and hole-like conduction bands. SectionIV
presents our results and discussion of the topological sig-
natures in the transport coefficients. The rest of the pa-
per provides the necessary details to support the main
results: Appendix A-C is devoted to a systematic eval-

uation of the impurity scattering rates; Appendix D-E
is devoted to the side jump displacement and side jump
velocities as well as its correction to the thermal Hall
conductance.

II. MODEL OF SPT METAL

We consider a model of SPT metal23, based on 2-D
p+ ip superconductor deformed by an applied supercur-
rent. It is described by the Bogoliubov-de Gennes (BdG)
Hamiltonian:

HBdG(p) =

(
ξpx+Q/2,py ∆(p)

∆∗(p) −ξpx−Q/2,py

)
, (1)

where

ξpx,py =
p2
x + p2

y

2m
− µ, (2)

is electron dispersion close to the bottom of a band and
µ is the chemical potential. The dispersion relation is de-
formed by the applied flux (or the supercurrent) assumed
to be in the x-direction and denoted as Q. Notice that
it enters the BdG Hamiltonian as a canonical substitu-
tion px → px + Q

2 σz, where σz is the Pauli matrix in the
particle-hole space.

The off-diagonal part of Eq. (1) is the p-wave supercon-
ducting gap function. In the continuous limit, adopted
here, it is given by

∆(p) = −2∆(py + ipx), (3)

where ∆ is p-wave paring amplitude (notice that ∆ has
a dimensionality of velocity). Throughout the paper we
assume that the superconductivity is proximity induced
and thus do not try to establish a value of ∆ through a
self-consistency relation. We also do not discuss a possi-
ble suppression of ∆ by disorder.

It is instructive to rewrite the Hamiltonian (1) in the
matrix notations:

HBdG(p) = d0(p) + d(p) · σ;

d0(p) = Qpx/2m;

dx(p) = −2∆py dy(p) = −2∆px;

dz(p) = p2/2m+Q2/8m− µ,

(4)

where σ is a vector of the Pauli matrices in the particle-
hole space. This Hamiltonian has two quasiparticle
bands with the energies, Fig. 1:

ε(s)p = d0(p) + s|d(p)|; (s = ±), (5)

where |d(p)| =
√
d2
x(p) + d2

y(p) + d2
z(p). Hereafter s(s′)

is the label for the quasiparticle bands and takes the val-
ues of ±. The corresponding quasiparticle wavefunctions
(Nambu spinors) are independent on d0(p) and may be
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FIG. 3. The intrinsic contribution to the thermal Hall con-
ductivity in units of κQ = (πk2B/12~)T as a function of the
suppercurrent Q (measured in units of 4m∆). The calculation
is done for vF /∆ = 4.9.

expressed through d(p) as

ψ(+)
p = Np

(
|d(p)|+ dz(p)
dx(p)− idy(p)

)
ψ(−)
p = Np

(
−dx(p)− idy(p)
|d(p)|+ dz(p)

) (6)

where Np =
[
2|d(p)|(|d(p)|+dz(p))

]−1/2
is a normaliza-

tion factor.
The two critical points, see Fig. 1, may be determined

from the dispersion relation (5). The two Fermi surfaces
form at the Lifshitz transition QL = 4m∆, when zero

energy solution ε
(s)
p = 0 first appear. The topological

phase transition takes place at QT = 2kF = 2
√

2mµ,
when the two bands touch at p = 0, because |d(0)| = 0.

The Hamiltonian of Eq. (1) possesses the particle-hole
symmetry, which is expressed as

P−1HBdG(p)P = −HBdG(−p), (7)

where the particle-hole symmetry operator is defined as
P = σxK, where K is complex conjugation operator.

We study thermal Hall conductance of the system de-
scribed by the Hamiltonian (1) in the geometry indi-
cated in Fig. 2. The thermal gradient ∇yT is applied
in the y direction, while the supercurrent Q flows in the
x-direction. In the linear response the heat current is
given by jheat

x = κxy∇yT , where κxy is the thermal Hall
conductance. It has two contributions: the intrinsic one
due to the edge states and the impurity one due to the
skew-scattering.

According to the Kubo-Str̆eda formula24, the intrinsic
(anomalous) thermal Hall conductance (in unit of κQ =
πk2

B

12~ T ) is given by the integrated Berry curvature:

κint
xy = κQ

∑
s=±

∫
BZ

d2p

(2π)2
n0(ε(s)p ) Ω(s)

z (p), (8)

where the momentum integration runs over the Brillouin
zone (BZ) of a proper lattice model23. In the supercon-
ducting phase Q < QL the intrinsic conductance is quan-
tized κint

xy = κQ, Fig. 3. In the topological metal phase,
QL < Q < QT , the quantization is broken by the fact
that the Fermi surfaces need to be exempt from the BZ
summation (at small temperature). At the topological
phase transition Q ≥ QT the intrinsic Hall conductivity
discontinuously jumps to zero. The discontinuity in the
Hall conductance is a consequence of (and is protected
by) the particle-hole symmetry, Eq. (7). These state-
ments have a natural geometric interpretation in terms of
the flux of the Berry monopole, as explained in Ref. [23].

We turn now to the contribution to the thermal Hall
conductance due to the scattering of bulk quasiparticles
on an elastic disorder.

III. KINETIC EQUATION TREATMENT OF
ELASTIC SCATTERING

III.1. Review on Anomalous Hall Effect

Our treatment of the thermal Hall conductance of
SPT metals shares some resemblance to the discussion
of the anomalous Hall effect (AHE) in ferromagnetic
metals25,26. It was pioneered by Karplus and Luttinger27

who showed that a specific structure of Bloch wave
functions gives rise to an anomalous Hall conductivity,
which is known as the intrinsic contribution. Soon af-
ter, Smit28,29 pointed out that impurities should play an
important role in AHE through anisotropic scattering,
which was called a skew scattering. Subsequently sys-
tematic diagrammatic calculations30–34 were developed
to include both intrinsic and impurity scattering con-
tribution to the AHE. It was shown that certain dia-
grams, e.g. ‘Mercedes star’ diagram30–33 or ‘X’ and ‘Ψ’
diagrams33,34, containing higher order terms in Born se-
ries must be included to see the effect of skew scattering.
At the meantime, it was noticed that the ladder diagrams
contributions are on the order of O(1) independent of im-
purity strength25. This contribution was named as side
jump, indicating that the shift of center of wave packets
at impurity scattering events25,35.

Alternatively, one can take a kinetic approach based
on semiclassical Boltzmann transport equation30,36,37,
which is equivalent to diagrammatic resummation and
typically is more intuitive. In such kinetic approach, the
nature of the Bloch waves is taken into account by the
so-called anomalous velocity in the semiclassical equation
of motion for a Bloch electron38:

ṙ = ∇pεp + ṗ×Ω(p)

ṗ = −∇rU(r)
(9)

Here, the Bloch electron is subject to an external force
F = −∇rU(r) and vG

p = ∇pεp is the usual group veloc-

ity, while vA
p = ṗ ×Ω(p) = F ×Ω(p) is the anomalous

velocity. Here Ω(p) = ∇p × A(p) is the Berry curva-
ture, given by momentum space curl of Berry connection,
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A(p) = 〈u(p)|i∇p|u(p)〉. Here, |u(p)〉 is the periodic
part of the Bloch wavefunction.

Impurity scattering may be described by the semiclas-
sical Boltzmann equation with a proper collision integral.
It’s important that all orders in Born series for impu-
rity scattering are taken into account by the Lippmann-
Schwinger equation30,36,39. In the linear response one
can solve the Boltzmann equation to find a stationary
distribution function: np = n0(εp) + δnp, where n0(εp)
is the equilibrium distribution function and δnp ∝ F is
the deviation from equilibrium due to the external force.
Finally the current is given by:

j′ =

∫
dp(vG

p + vA
p )[n0(εp) + δnp] = jint + jskew, (10)

where in the linear response jint =
∫
dp vA

pn
0(εp) and

jskew =
∫
dp vG

p δnp. Notice that since the anomalous
velocity is already proportional to the external force, the
intrinsic contribution relies only on the equilibrium dis-
tribution n0.

In addition, for a Bloch electron, the side jump effects
will give additional contributions to the current35:

jSide Jump = jsj + jadist. (11)

This is a result of the center of a wave packet experi-
encing a displacement upon impurity scattering events.
Such a displacement, called the side jump displacement,
δrsj, depends on the scattering incoming and outgoing
states. Here, we briefly reproduce the side jump treat-
ment, following Ref. [35].

One effect of the side jump is that the quasiparticle
velocity acquires an additional component. Qualitatively,
at each scattering events, the center of a wave packets is
shifted by the side jump displacement δrsj. Impurity
scattering occurs at a rate of the inverse mean free time
τ−1. As a result, the quasiparticles acquire the side jump
velocity vsj

p ∼ δrsjτ−1, leading to a contribution to the
current of the form:

jsj =

∫
dp vsj

p δnp. (12)

The second contribution, jadist, originates from the
fact that the side jump displacement requires an extra
work performed by the external force. As a result, the
quasiparticle energy changes by δε ∼ F · rsj, leading to
an ‘anomalous’ correction, ga

p, to a stationary distribu-
tion function (see below). This contributes to the current
as:

jadist =

∫
dp vG

p ga
p, (13)

while the total current acquires the form:

j = jint + jskew + jsj + jadist. (14)

This scheme refers to the electric current, rather than
to the thermal one. To access the latter the Wiedemann-
Franz law may be employed for noninteracting system as

shown by Qin, Niu and Shi40 based on the Luttinger’s
theory of the thermal transport41. Here we employ a ki-
netic theory of p+ ip superconductors recently developed
by Li, Andreev and Spivak39. These authors were inter-
ested in a transport of thermally excited quasiparticles
in the gapped regime. We adopt their approach to the
low-temperature transport in the deformed p+ ip model
with the two Fermi surfaces.

III.2. Kinetic Equation

Here we develop a semiclassical Boltzmann equation
approach for the quasiparticles with the energies and
wavefunctions given by Eqs. (5) and (6) correspondingly.
The applicability of this approach is limited to a weak dis-
order, where the longitudinal conductance is much larger
than the conductance quantum. At low temperature this
is only possible at Q > QL. In this regime the two Fermi
surfaces are present and a weak disorder induces elastic
scattering between states close to the Fermi surfaces as
shown in Fig. 4.

Within each band, labeled as s = ±, the quasiparticle

states are assigned a distribution function, n
(s)
p . As in

Fig. 4, the elastic scattering induces intra as well as inter
band transitions, which enter the Boltzmann equation
through the collision integrals (see eg. Ref. [42]). The
coupled Boltzmann equations for the two bands take the
form:

∂n
(s)
p

∂t
+ v(s)

p ·
∂n

(s)
p

∂r
+ ṗ · ∂n

(s)
p

∂p
= I(s)

p [n(±)] (15)

where v
(s)
p = ∂ε

(s)
p /∂p is quasiparticle velocity. Notice

that the anomalous velocity due to Berry curvature38

is not included here since it gives rise to the intrinsic
contribution of Hall conductivity and does not mix with
impurity contribution in the limit of linear response.

As indicated in Fig. 4, the collision integrals involve
several scattering processes between quasiparticle states:

scattering within each band with scattering rates W
(++)
pp′

and W
(−−)
pp′ ; scattering between two bands with scatter-

ing rates W
(+−)
pp′ and W

(−+)
pp′ . Thus the elastic collision

integrals take the form:

I(s)
p =

∑
s′=±

∫
dΓ′δ(ε

(s′)
p′ − ε(s)p )

× [W
(ss′)
pp′ n

(s′)
p′ (r′)−W (s′s)

p′p n(s)
p (r)],

(16)

where the integral is defined as dΓ′ = d2p′/(2π~)2. Here,
in the collision integral, the two distribution functions are
evaluated at a slightly different location. The difference
in position is given by the side jump displacement:

r′ − r = δr
sj,(s′s)
p′p . (17)

We now assume that a small temperature gradient is
applied in y-direction and look for the deviations of the
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FIG. 4. Particle (orange) and hole (blue) Fermi surfaces close
to the topological phase transition; various scattering pro-

cesses with scattering rates W
(ss′)
pp′ are indicated by arrows;

dashed circle of radius 4m∆ separates two distinct contribu-
tions to

∑
k Ĝ0. Inset: the same Fermi surfaces parameterized

by the angle ϕ.

distribution functions from their equilibrium form:

n(s)
p = n0(ε(s)p ) + δn(s)

p + ga,(s)
p , (18)

where n0(ε
(s)
p ) is the equilibrium Fermi distribution. The

deviations from equilibrium Fermi distribution can be

separated into two part: (i) δn
(s)
p is the solution of the

Boltzmann equation with elastic collision by neglecting

the side jump effect; (ii) g
a,(s)
p is called the ‘anomalous

distribution function’, compensating the effect of the po-
sition change (side jump) over the impurity scattering
events. These two parts can be solved independently,
due to the linearity of the collision integral, Eq. (16) (and
the Boltzmann equation, Eq. (15)). Since we restricted
ourselves to the linear response, we only seek for the de-

viations δn
(s)
p and g

a,(s)
p proportional to the temperature

gradient.

III.3. Skew Scattering

Neglecting for now the side jump effect, the collision
integral, Eq. (16), reads:

Iskew,(s)
p =

∑
s′=±

∫
dΓ′δ(ε

(s′)
p′ − ε(s)p )

× [W
(ss′)
pp′ δn

(s′)
p′ −W (s′s)

p′p δn(s)
p ],

(19)

The effect of skew scattering manifested itself in the
asymmetry of the scattering rate. Namely, in the absence

of the time-reversal symmetry the matrix elements are
not symmetric:

W
(ss′)
pp′ 6= W

(s′s)
p′p (20)

Or more explicitly (as will be derived in Appendix A-C),
the scattering rates have the following form39:

W
(ss′)
pp′ = W

0,(ss′)
pp′ +W

1,(ss′)
pp′ cos(θp′ − θp − 2δQ), (21)

where the azimuthal angle θp (θp′) defines the direction
of the momentum p (p′). And δQ is a small deflection
angle, which depends on the metallic density of states ν
and the impurity potential V0 (see Eq. (A16) in Appendix
A):

tan δQ ≈ πνV0. (22)

Its presence is crucial for the asymmetrical property

Eq. (20), given that the prefactors W
0/1,(ss′)
pp′ are sym-

metric.
Therefore the collision integral does not conform to the

detailed balance. As a result, it can’t be written in the
form Wpp′np′(1−np)−Wp′pnp(1−np′). Nevertheless the
form (19), linear in the distribution functions, is the cor-
rect one and it is this form that follows from the Keldysh
formalism42,4344. The collision integral still vanishes at

equilibrium, n
(s)
p = n0(ε

(s)
p ), where n0(ε) is the Fermi

function. This is enforced by the unitarity condition45:

∑
s′

∫
dΓ′W

(ss′)
pp′ =

∑
s′

∫
dΓ′W

(s′s)
p′p . (23)

As a result, only the deviation δn
(s)
p from equilibrium

distribution frunction is present in Eq. (19).
The collision integral, Eq. (19), is set equal to the ki-

netic terms on the left hand side of Boltzmann equa-
tion, Eq. (15). With a small temperature gradient in
y-direction, the linear response approximation reads:

−ε
(s)
p

T
v(s)
y,p∇yT

∂n0

∂ε
= Iskew,(s)

p [δn(±)]. (24)

If the scattering rates are known, this equation may be

solved for the linear deviations δn
(s)
p . The thermal con-

ductivity is found then from calculating the heat current:

jheat,skew =
∑
s=±

∫
dΓ v(s)

p ε(s)p δn(s)
p ,

jheat,skew
x = κskew

xy ∇yT, jheat,skew
y = κskew

yy ∇yT,
(25)

where κskew
xy and κskew

yy are the thermal Hall and longitu-
dinal thermal conductivity respectively.

III.4. Side Jump

The side jump refers to the shift of the center of a
Bloch wavepacket upon an impurity scattering event35:
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δr
sj,(s′s)
p′p , where a quasiparticle is scattered from state

(s,p) to (s′,p′). This leads to the two effects: (i) the
quasiparticles acquire an additional velocity and as a re-
sult, there is an additional current denoted as jsj; (ii)
the distribution function acquires an anomalous part

g
a,(s)
j and the corresponding correction to the current

is denoted as jadist. While treating the side jump, we
disregard the small skewness of the scattering rates,
i.e. we assume here δQ = 0. In other words we con-
sider the scattering rates to be detailed balance related:

W
S,(ss′)
pp′ = W

S,(s′s)
p′p = W

(ss′)
pp′ |δQ=0. The error we commit

by this approximation is of the higher order in m∆/kF
and δQ.

The jump velocity is given by:

vsj,(s)
p =

∑
s′

∫
dΓ′W

S,(s′s)
p′p δr

sj,(s′s)
p′p δ(ε

(s′)
p′ − ε(s)p ), (26)

while the corresponding contribution to the transversal
current is given by:

jsj
x = κsj

xy ∇yT =
∑
s

∫
dΓ vsj,(s)

x,p ε(s)p δn(s)
p . (27)

The anomalous distribution g
a,(s)
p originates from the col-

lision integral, Eq. (16). Notice that the latter is nonlocal
in space. It can be transformed into a local form by ex-
panding the distribution function in terms of the side
jump displacement:

n
(s′)
p′ (r′) = n

(s′)
p′ (r) + δr

sj,(s′s)
p′p ·

∂n
(s′)
p′ (r)

∂r
(28)

The anomalous distribution g
a,(s)
p serves to compensating

the nonlocality, by fulfilling the condition:

0 =
∑
s′=±

∫
dΓ′δ(ε

(s′)
p′ − ε(s)p )W

S,(s′s)
p′p

× [g
a,(s′)
p′ + δr

sj,(s′s)
p′p ·

∂n
(s′)
p′ (r)

∂r
− ga,(s)

p ].

(29)

This can be further simplified employing the linear re-
sponse relation:

∂n
(s′)
p′ (r)

∂r
=
∂T

∂r

∂n0(ε
(s′)
p′ )

∂T
. (30)

Equation (29) can be thus cast into the form:

ε
(s)
p

T
vsj,(s)
y,p ∇yT

∂n0

∂ε
= Iadist,(s)

p [ga,(±)], (31)

where the collision integral is given below with a sym-
metric scattering rate:

Iadist,(s)
p [ga,(±)] =∑
s′=±

∫
dΓ′W

S,(s′s)
p′p [g

a,(s′)
p′ − ga,(s)

p ]δ(ε
(s′)
p′ − ε(s)p ).

(32)

Solving this equation for the ‘anomalous distribution’

g
a,(s)
p , one obtains the second contribution to the

transversal current:

jadist
x = κadist

xy ∇yT =
∑
s

∫
dΓ v(s)

x,p ε
(s)
p ga,(s)

p . (33)

An important observation is that the side jump contri-
bution to the thermal Hall conductance is independent of
mean free time τ . This can be seen by noticing that the
side jump current jSide Jump

x ∝ vsjτ , while the side jump
velocity is proportional to the scattering rate: vsj ∝ τ−1.
Moreover, as we show below, the side jump contribution
to the thermal Hall conductance is of the same order as
the intrinsic part.

IV. RESULTS AND DISCUSSION

With the general framework formulated above we
solved the Boltzmann equation in the linear response
approximation and evaluated the corresponding thermal
conductivites. Details of these calculations are delegated
to the Appendices. Here we present the results.

Figure 5 summaries our results for the skew scatter-
ing contribution to the diagonal and off-diagonal thermal
conductivity. They are measured in units of (twice) the
thermal conductivity of the normal metal (∆ = 0):

2κ =
π2

3
νDk2

BT = 2gκQ, (34)

Here D = v2
F τ/2 is the diffusion constant (with vF =

kF /m =
√

2µ/m and τ = (2πρiνV
2
0 )−1 being the nor-

mal metal Fermi velocity and relaxation time respec-
tively), g = hνD is dimensionless 2D normal state con-
ductance and κQ = πk2

BT/(12~) is thermal conductance
quanta. The topological phase transition takes place at
QT = 2mvF . We present the results for Q > QL = 4m∆
only, since in the opposite limit the system is a thermal
insulator and the quasiparticle contribution is exponen-
tially small.

One notices that the diagonal conductivity κskew
yy is es-

sentially independent on the asymmetry factor δQ and
approaches the normal metal value above the topological
transition. The off-diagonal κskew

xy exhibits approximately
linear dependence on δQ, which in turn is linear in the
weak disorder amplitude, V0, Eq. (22). This is due to the
fact that the off-diagonal part, originating from the skew
scattering, is proportional to the antisymmetric part of
the rate matrix, Eq. (A19). The off-diagonal conductiv-
ity exhibits maximum at the topological phase transition
Q = QT and slowly approaches zero deep into the non-
topological metallic phase, Q > QT . Notice that: (i)
κskew
xy is a continuous function of Q through the topolog-

ical transition and (ii) its magnitude is much less than
that of the diagonal κskew

yy . The latter observation follows
from the fact that

κskew
xy ≈ 2κ

δW antisym

W S
∼ g∆2

v2
F

κQ sin 2δQ, (35)
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FIG. 5. (a) Longitudinal thermal conductivity κskew
yy ; (b)

Thermal Hall conductivity κskew
xy around topological phase

transition QT . Different colors correspond to different im-
purity strengths. Calculations are done with the same pa-
rameters as in Fig.3. Curves cross zero due to cancellation of
two time reversal symmetry breaking mechanisms: the p+ ip
superconductivity and the applied supercurrent Q.

where W S is the symmetric part of the scattering rates
and we employ Eq.(A18). In the limit ∆/vF � 1, as-
sumed hereafter, it follows that κxy � κyy.

The latter fact is important for the possibility to de-
tect the topological transition within the metallic phase.
Indeed, the kinetic theory developed here is valid in the
weak scattering limit, when normal-state dimensionless
conductance is large g = hνD � 1. Consequently
the diagonal thermal conductivity κskew

yy ∝ gκQ � κQ.
However the off-diagonal one appears to be of the order
κskew
xy ∝ g(∆/vF )2κQ. This value may be comparable to

(or even smaller than) the thermal conductance quantum
κQ, even in a good metal, g � 1. The skew scattering
contribution to the diagonal conductivity, κyy, on the
other hand, is much larger than all other terms. We thus
do not discuss other contributions to the diagonal con-
ductivity.

Figure 6 shows the side jump contributions to the off-
diagonal thermal conductivity κxy. It exhibits a disconti-

FIG. 6. The side jump contribution to the off-diagonal con-
ductance κxy. Here vF /∆ = 4.9. (The apparent discrepancy
with Eq. (36) is understood as the consequence of higher or-
der terms in ∆/vF , see Eq. (D11) in Appendix D and the
detailed derivation in Appendix E.)

nuity at the topological phase transition. The magnitude
of the discontinuity is given by (see Appendix D-E):

∆κsj
xy ≈

32

π

∆

vF
κQ; ∆κadist

xy ≈ 16

π

∆

vF
κQ. (36)

Those are of the same sign and order of magnitude as
the discontinuity in the intrinsic part ∆κint

xy = 2∆
vF
κQ.

In addition, they should be added together. Therefore,
the total discontinuity at the topological phase transition
Q = QT is:

∆κxy =

(
2 +

16

π
+

32

π

)
∆

vF
κQ. (37)

The discontinuity is non-quantized and depends on band-
structure parameters, such as ∆/vF in our model. On
the other hand, it does not depend on impurities concen-
tration and strength, as long as the sample dimensions
exceed elastic mean free path. In the opposite limit of a
ballistic sample, the discontinuity is smaller and is given
solely by the intrinsic contribution. Comparing the dis-
continuity with the smooth skew scattering part (35), we
observe that the two may be comparable in a wide range
of the relevant dimensionless parameters, such as the ra-
tio ∆/vF , the normal state conductance g and asymme-
try factor δQ.

Figure 7 summarises the total off-diagonal conductiv-
ity, along with its three constitutive components: the
skew-scattering contribution, Eq. (35), the intrinsic con-
tribution Eq. (8) and side jump, Eq. (36). The total
κxy exhibits discontinuous jump at the topological phase
transition in the limit of small temperature. This dis-
continuity takes place in the presence of the metallic bulk
states and bulk disorder, as long as the particle-hole sym-
metry, Eq. (7), is preserved. Therefore the topological
transition exhibits the sharp signature in transport mea-
surements not only in gapped phases, but also in gapless
systems with finite density of states at the Fermi level.
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FIG. 7. The total thermal Hall conductivity κxy versus super-
current strength Q (black); the skew scattering contribution
(blue); the Berry phase intrinsic contribution (red); the side
jump contribution (brown). The parameters are g = 100,
vF /∆ = 4.9 and δQ = 0.2.

Unlike the gapped case, the corresponding jump is non-
quantized.

One may be concerned if impurity scattering between
the bulk and the edge states may change these con-
clusions. Such processes are not accounted for in the
developed kinetic approach. Indeed, the intrinsic part
knows only about the equilibrium distribution function,
Eq. (8), not affected by the impurity scattering. For-
mally this is due to the fact that the anomalous velocity
vA
p = ṗ×Ω(p) is already proportional to ṗ ∝ ∇yT and

thus to the linear response accuracy one should take the
unperturbed distribution function. Physically, it reflects
the fact that the edges are in local equilibrium with the
adjacent bulk heat reservoir. Since the edge states are ex-
ponentially confined to the sample’s boundaries, Fig. 2,
they can’t be affected by the perturbation ∇yT , which
is spread across the bulk. As a result, the impurity scat-
tering between an edge and an adjacent bulk is exactly
the same as in equilibrium: it does not affect the occu-
pation of the edge state and does not change the corre-
sponding thermal current. This reasoning breaks down
very close to the topological transition, where the edge
states spread into the bulk and thus acquire sensitivity
to the perturbation ∇yT . This happens in earnest only

for |Q−QT | . L
−1/ν
y , where ν is the localization length

critical exponent. This leads to a finite size smearing of
the discontinuity, which is not present in the thermody-
namic limit Ly → ∞. The discontinuity is smeared at a
finite temperature, much like the integer quantum Hall
transitions.
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Appendix A: Scattering rates

We turn now to the microscopic evaluation of the scat-

tering rates W
(ss′)
pp′ . The off-diagonal response, κxy, is

a consequence of the asymmetry in the scattering rate,
Eq. (20), which appears in the absence of the time-
reversal symmetry and is known as the skew scattering
mechanism. In our model the time reversal symmetry
is already broken by p + ip superconductivity, Eq. (3),
and the supercurrent Q further introduces anisotropy to
the system. As a result, the detailed balance is violated,
which leads to anomalous transport in SPT metal.

We restrict ourselves with the weak point-like impuri-
ties with impurity density ρi. Therefore the scattering
rates are given by:

W
(ss′)
pp′ = 2πρi|T (ss′)

pp′ |2 (A1)

where T
(ss′)
pp′ is the scattering amplitudes of an individual

impurity between quasiparticle states.
Scattering process should contain all orders in Born

series and the Lippmann-Schwinger equation is used to
find scattering T -matrix T̂ , which determines scattering
amplitudes36,39,43. Consider a generic Hamiltonian:

Ĥ = Ĥ0 + V̂ , (A2)

where Ĥ0 is the Hamiltonian free of impurities and V̂
is the impurity potential. The scattering T -matrix is
formally defined by the Lippmann-Schwinger equation46:

T̂ = V̂ + V̂ Ĝ0(iω) T̂ , (A3)

where Ĝ0(iω) = (iω−Ĥ0)−1 is the bare Green’s function.

The scattering amplitudes T
(ss′)
pp′ between quasiparticle

states could be determined from T -matrix:

T
(ss′)
pp′ = 〈p, s|T̂ |p′, s′〉, (A4)

where |p, s = ±〉 is the quasiparticle eigenstate.
Following Li, Andreev and Spivak39 we first solve

Eq. (A3) in the original particle-hole basis and then
transform to the quasiparticle basis as:

T
(ss′)
pp′ =

∑
a,b=p,h

〈p, s|p, a〉〈p, a|T̂ |p′, b〉〈p′, b|p′, s′〉. (A5)

A remark about notations is due: the labels a(b) = p, h
are labeling particle-hole states, while s(s′) = ± are la-
beling the quasiparticle bands. Thus, the summation

indices a, b is over particle-hole states and ψ
(s=±)
p,a =

〈p, a|p, s = ±〉 are the elements of the quasiparticle wave-
functions, given by Eq. (6). In the particle-hole basis
equation (A3) takes the form39:

T
(ab)
pp′ = V

(ab)
pp′ +

∑
k

∑
c,d=p,h

V
(ac)
pk G

(cd)
0 (iω,k)T

(db)
kp′ , (A6)
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where V
(ab)
pp′ = 〈p, a|V̂ |p′, b〉 and G

(ab)
0 (iω,k) =

〈k, a|Ĝ0(iω)|k, b〉. In this same basis the Hamiltonian

Ĥ0 takes the form of the BdG Hamiltonian (4) and the

point-like impurity potential V̂ is independent of mo-

menta V
(ab)
pp′ = V0σ

ab
z . Therefore, the scattering matrix

T
(ab)
pp′ is independent of momenta and is only a function

of the frequency iω. Hence Eq.(A6) can be rewritten in
a compact way as a matrix equation in the particle-hole
space39:

T̂ (iω) = V0σz + V0σz
∑
k

Ĝ0(iω,k)T̂ (iω), (A7)

where the Green function is defined as Ĝ0(iω,k) =
(iω−HBdG(k))−1. The formal solution for the scattering

matrix T̂ (iω) is:

T̂ (iω) = [1− V0σz
∑
k

Ĝ0(iω,k)]−1 V0σz. (A8)

Close to the topological phase transition, |Q−QT | �
8m∆, the summation of the Green function over mo-
menta

∑
k Ĝ0(iω,k) may be separated into two parts:∑

|k|<4m∆ and
∑
|k|>4m∆, as indicated in Fig. 4. The

Hamiltonian, Eq.(4), has very different asymptotic be-
havior in these two regimes. Since we considered small
temperatures, only the quasiparticle states near the zero
energy are important. Therefore, the quantity of inter-
est here is actually

∑
k Ĝ0(iω → 0,k). For small mo-

menta, |k| < 4m∆, the Hamiltonian in Eq.(4) is approx-
imately a tilted massive Dirac Hamiltonian with the mass
of MQ = 1

2
kF
m (Q−QT ):

HBdG(k) ≈ Qkx/2m−2∆kyσx+2∆kxσy+MQσz. (A9)

with corrections on the order of O(k2/m) and O((Q −
QT )2/m). Hence, summation of the Green function over
momenta is:∑
|k|<4m∆

Ĝ0(iω → 0,k)

=
∑

|k|<4m∆

Qkx/2m− 2∆kyσx + 2∆kxσy +MQσz

(Qkx/2m)2 − 4∆2k2 −M2
Q

.

(A10)

It’s clear that the terms with numerator linear in mo-
menta kx and ky vanish upon summation. Hence the
result is proportional to the mass term MQσz. Perform-
ing the integration, as detailed in Appendix B, one finds:

∑
|k|<4m∆

Ĝ0(iω → 0,k) = − mσz
4πkF

(Q−QT ). (A11)

For large momenta |k| > 4m∆, one can neglect the off-
diagonal terms in the Hamiltonian (3), leaving two copies
of the normal metal decoupled from each other.

Therefore, summation of the Green results in the 2D
density of states of a metal:∑

|k|>4m∆

G0(iω → 0,k) ≈ iπνσ0, (A12)

where ν is a density of states at the chemical potential.
Taken together Eqs. (A11) and (A12) yield:∑

k

Ĝ0(iω → 0,k) ≈ − mσz
4πkF

(Q−QT ) + iπν. (A13)

The scattering matrix T̂ (iω → 0) can be obtained from
Eq. (A8)39:

T̂ (iω → 0) =

(
f(Q)eiδQ 0

0 −f(Q)e−iδQ

)
, (A14)

where

f(Q)eiδQ =
V0

1 + mV0

4πkF
(Q−QT )− iπνV0

. (A15)

It’s clear that the scattering matrix T̂ is a smooth func-
tion of the supercurrent Q around the topological phase
transition at Q = QT . As explained below, the phase
δQ is responsible for the skew scattering. Close to the
topological phase transition one finds from Eq. (A15):

tan δQ ≈ πνV0, (A16)

approximately a constant proportional to the impurity
potential V0.

To find scattering amplitudes between the quasiparti-
cle states one needs to transform the particle-hole matrix
(A14) to the quasiparticle basis according to Eq. (A5):

T
(ss′)
pp′ =

(
ψ(s)
p

)†
T̂ (iω → 0)ψ

(s′)
p′ , (A17)

where the quasiparticle spinors are given by Eq. (6). The

scattering rates are defined as W
(ss′)
pp′ = 2πρi|T (ss′)

pp′ |2,
where ρi is impurity density. A straightforward calcula-
tion outlined in Appendix C leads to the following struc-
ture of the rate matrix:

W
(ss′)
pp′ = W

0,(ss′)
pp′ +W

1,(ss′)
pp′ cos(θp′ − θp − 2δQ), (A18)

where W
0,(ss′)
pp′ and W

1,(ss′)
pp′ are symmetric with respect

to the momenta p ↔ p′ interchange and θp and θp′

are the azimuthal angles of the corresponding momenta
(i.e. exp(iθp) = (px + ipy)/|p|). As can be seen from
Eq. (C5), the dependence of the rates on the azimuthal
angles comes solely from p+ip superconductivity present
in the Hamiltonian (1). This in turn leads to an antisym-
metric part of the rate matrix

δWantisym = W 1 sin 2δQ sin(θp′ − θp), (A19)

which is responsible for the off-diagonal thermal conduc-
tivity.
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Once the scattering rates W
(ss′)
pp′ are found (see Ap-

pendix C), the linearized Boltzmann equation (24) may

be solved numerically for the deviation δn
(s)
p of the dis-

tribution function from its equilibrium value. It is con-
venient to parametrize such deviations in terms of angles
labeling position along the two, (±), Fermi surfaces, see
inset in Fig. 4,

δn(s)
p =

Ncutoff∑
n=1

[a(s)
n cos(nϕ) + b(s)n sin(nϕ)], (A20)

where Ncutoff is a suitably chosen cutoff (typically a few
dozens). The absence of the n = 0 term reflects the elas-
tic nature of the scattering, which ensures quasiparticle
number conservation at any energy. We solve for the har-

monic amplitudes a
(s)
n and b

(s)
n and then evaluate linear

response current according to Eq. (25).
One can do the same for solving for the ‘anomalous

distribution’ g
a,(s)
p , once the side jump velocity is found

in the Appendix D-E.

Appendix B: Calculations leading to Eq.(A11)

In this section, we show details for deriving Eq.(A11):

∑
|k|<4m∆

Ĝ0(iω → 0,k) = − mσz
4πkF

(Q−QT ). (B1)

The first step is to replace summation by integration:

∑
|k|<4m∆

→
∫
|k|<4m∆

d2k

(2π)2
(B2)

Notice the Green’s function takes the following form
at small momenta:

G(iω → 0,k) =
Qkx/2m− 2∆kyσx + 2∆kxσy +MQσz

(Qkx/2m)2 − 4∆2k2 −M2
Q

.

(B3)

The terms in the numerator here linear in momenta van-
ishes upon integration. Thus, the quantity to calculate
is:

∫
|k|<4m∆

d2k

(2π)2
G(iω → 0,k) =

∫
|k|<4m∆

d2k

(2π)2

MQσz

(Qkx/2m)2 − 4∆2k2 −M2
Q

. (B4)

The angular integration results in:∫ 2π

0

dθ
MQσz

(Qk/2m)2 cos2 θ − 4∆2k2 −M2
Q

= − 2πMQσz√
M2
Q + 4∆2k2

√
M2
Q + 4∆2k2 − Q2

4m2 k2
θ(M2

Q + 4∆2k2 − Q2

4m2
k2) (B5)

where θ(. . . ) is the step function. Its presence puts an additional constraint on the integration over the magnitude of
momentum k. To simplify further calculations we focus on the vicinity of the topological phase transition |Q−QT | �
8m∆ and thus Q2/4m2 ≈ v2

F , while ∆� vF . The above integral thus simplifies down to:

−
∫

k<4m∆

kdk

(2π)2

2πMQσzθ(M
2
Q − v2

F k
2)√

M2
Q

√
M2
Q − v2

F k
2
≈ −MQσz

2πv2
F

. (B6)

Noticing that the ‘mass’ MQ = 1
2
kF
m (Q−QT ), where vF = kF /m, one arrives at Eq.(A11).

Appendix C: Scattering Rates

Here we derive explicit expressions for the scattering rates W
(ss′)
pp′ in terms of d(p) functions in the BdG Hamiltonian

Eq. (4). As discussed in the main text one needs to transform the scattering T -matrix T̂ (iω → 0), Eq. (A14), in the

particle-hole basis to the quasiparticle basis with the help of the wavefunctions ψ
(s)
p through Eq.(A1):

W
(ss′)
pp′ = 2πρi|T (ss′)

pp′ |2 (C1)
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where according to Eq.(A17):

T
(ss′)
pp′ = (ψ(s)

p )†T̂ (iω → 0)ψ
(s′)
p′ , (C2)

where the spinors may be written in terms of d(p) and the azimuthal angle θp as:

ψ(+)
p = Np

(
|d(p)|+ dz(p)

2i∆peiθp

)
;

ψ(−)
p = Np

(
2i∆pe−iθp

|d(p)|+ dz(p)

)
.

(C3)

This particular form of wavefunctions is a direct result of p-wave superconductivity and leads to a nontrivial angular

dependence of W
(ss′)
pp′ . The scattering matrix in particle-hole space is:

T̂ (iω → 0) =

(
f(Q)eiδQ 0

0 −f(Q)e−iδQ

)
. (C4)

This way one finds for the scattering amplitudes between the quasiparticle states:

T
(++)
pp′ = NpNp′

(
|d(p)|+ dz(p), −2i∆pe−iθp

)(f(Q)eiδQ 0
0 −f(Q)e−iδQ

)(
|d(p′)|+ dz(p

′)
2i∆peiθp′

)
= NpNp′ [(|d(p)|+ dz(p))(|d(p′)|+ dz(p

′))f(Q)eiδQ − 4∆2pp′f(Q)ei(θp′−θp−δQ)]

= NpNp′f(Q)eiδQ [(|d(p)|+ dz(p))(|d(p′)|+ dz(p
′))− 4∆2pp′ei(θp′−θp−2δQ)];

T
(−−)
pp′ = −NpNp′f(Q)e−iδQ [(|d(p)|+ dz(p))(|d(p′)|+ dz(p

′))− 4∆2pp′e−i(θp′−θp−2δQ)];

T
(+−)
pp′ = iNpNp′f(Q)ei(δQ−θp′ )[2∆p′(|d(p)|+ dz(p)) + 2∆p(|d(p′)|+ dz(p

′))ei(θp′−θp−2δQ)];

T
(−+)
pp′ = −iNpNp′f(Q)ei(δQ+θp)[2∆p(|d(p′)|+ dz(p

′)) + 2∆p′(|d(p)|+ dz(p))ei(θp′−θp−2δQ)].

(C5)

The scattering rates are then found with the help of Eq.(A1):

W
(++)
pp′ = 2πρi|T (++)

pp′ |2

= 2πρif
2(Q)N 2

pN 2
p′

× {[(|d(p)|+ dz(p))(|d(p′)|+ dz(p
′))− 4∆2pp′ cos(θp′ − θp − 2δQ)]2

+ [4∆2pp′ sin(θp′ − θp − 2δQ)]2}
= 2πρif

2(Q)N 2
pN 2

p′

× {(|d(p)|+ dz(p))2(|d(p′)|+ dz(p
′))2 + 16∆4p2p′ 2

− 8∆2pp′(|d(p)|+ dz(p))(|d(p′)|+ dz(p
′)) cos(θp′ − θp − 2δQ)};

W
(−−)
pp′ = 2πρif

2(Q)N 2
pN 2

p′

× {(|d(p)|+ dz(p))2(|d(p′)|+ dz(p
′))2 + 16∆4p2p′ 2

− 8∆2pp′(|d(p)|+ dz(p))(|d(p′)|+ dz(p
′)) cos(θp′ − θp − 2δQ)};

W
(+−)
pp′ = 2πρif

2(Q)N 2
pN 2

p′ ;

× {4∆2p2(|d(p′)|+ dz(p
′))2 + 4∆2p′2(|d(p)|+ dz(p))2

+ 8∆2pp′(|d(p)|+ dz(p))(|d(p′)|+ dz(p
′)) cos(θp′ − θp − 2δQ)};

W
(−+)
pp′ = 2πρif

2(Q)N 2
pN 2

p′

× {4∆2p2(|d(p′)|+ dz(p
′))2 + 4∆2p′2(|d(p)|+ dz(p))2

+ 8∆2pp′(|d(p)|+ dz(p))(|d(p′)|+ dz(p
′)) cos(θp′ − θp − 2δQ)}.

(C6)

Although cumbersome, these expressions allow to estimate the magnitude of thermal Hall conductivity, κxy/2κ,

resulting in Eq.(35). Indeed, the typical symmetric and antisymmetric parts of W
(ss′)
pp′ have the form:

W 0 = 2πρif
2(Q)N 2

pN 2
p′ × {(|d(p)|+ dz(p))2(|d(p′)|+ dz(p

′))2 + 16∆4p2p′ 2};
W 1 = 2πρif

2(Q)N 2
pN 2

p′ × 8∆2pp′(|d(p)|+ dz(p))(|d(p′)|+ dz(p
′)).

(C7)
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Assuming ∆� vF and Q ≈ QT , one finds:

κxy
2κ
≈ ∆2pp′

(p2/m)(p′2/m)
sin 2δQ ≈

∆2

v2
F

sin 2δQ. (C8)

Appendix D: Side Jump Displacement and Velocity

1. Side Jump Displacement and Velocity

In this section, we turn to the microscopic calculation

of the side jump displacement δr
sj,(s′s)
p′p and the side jump

velocity v
sj,(s)
p . The actual calculation is rather tedious.

Instead of providing all the details, we simply sketch the
derivation process. Then we present the most relevant
terms in the side jump velocity and estimate the disconti-
nuity in the off-diagonal conductance around topological
phase transition.

We employed the gauge invariant definition of the side
jump displacement derived in Ref. [35]:

δr
sj,(s′s)
p′p =

(
ψ

(s′)
p′

)†
i∂p′ψ

(s′)
p′ −

(
ψ(s)
p

)†
i∂pψ

(s)
p

−Dp,p′

[
arg
(
T

(s′s)
p′p

)] (D1)

where the differential operator is defined as Dp,p′ =
∂p + ∂p′ . The terms in the first line is also known as

the Berry connection, A(s)
p =

(
ψ

(s)
p

)†
i∂pψ

(s)
p . Given the

quasiparticle wavefunctions Eq. (6), it’s straightforward
to show:

A(s)
p = s N 2

p [dx(p)∂pdy(p)− dy(p)∂pdx(p)] (D2)

As before, s = ± is the quasiparticle band index.
The second line involves the scattering amplitude

T
(s′s)
p′p , which is derived in the previous Appendix C.

Here, we make further simplifications. First, as argued
in Sec. III, we took δQ = 0 when the side jump is un-
der consideration. This is the same as neglecting the
interplay between the skew scattering and the side jump
effect. Second, we focus ourselves to the regime very
close to the topological phase transition, Q ≈ QT . With
those two simplifications, the scattering amplitudes take
a simple form following Eq. (A17):

T
(s′s)
p′p = V0

(
ψ

(s′)
p′

)†
σzψ

(s)
p (D3)

The impurity potential V0 does not depend on the mo-
menta. As a result:

arg
(
T

(s′s)
p′p

)
= arg

[(
ψ

(s′)
p′

)†
σzψ

(s)
p

]
(D4)

Or equivalently:

arg
(
T

(s′s)
p′p

)
= arg

[(
ψ̃

(s′)
p′

)†
σzψ̃

(s)
p

]
(D5)

where ψ̃
(s)
p = ψ

(s)
p /Np is the unnormalized wavefunction.

The unnormalized wavefunction ψ̃
(s)
p simplifies the de-

tailed calculations a little bit. Taking the derivative on
the argument of a complex valued function (in this case

T
(s′s)
p′p or

(
ψ̃

(s′)
p′

)†
σzψ̃

(s)
p ) gives:

Dp,p′

[
arg
(
T

(s′s)
p′p

)]
=

=
[(
ψ̃

(s)
p

)†
σzψ̃

(s′)
p′ Dp,p′

[(
ψ̃

(s′)
p′

)†
σzψ̃

(s)
p

]]
∣∣∣∣(ψ̃(s′)

p′

)†
σzψ̃

(s)
p

∣∣∣∣2
(D6)

In the numerator, =[· · · ] means taking the imaginary part
of the quantity in the square bracket.

Above we derived the working expressions for the side
jump displacement. However, it’s more important to de-
fine the side jump velocity:

vsj,(s)
p =

∑
s′

∫
Γ′ W

S,(s′s)
p′p δr

sj,(s′s)
p′p δ(ε

(s′)
p′ − ε(s)p ) (D7)

Close to the topological phase transition Q ≈ QT , the
scattering rates is given by:

W
S,(s′s)
p′p = 2πρi|V0|2 N 2

pN 2
p′ |
(
ψ̃

(s′)
p′

)†
σzψ̃

(s)
p |2 (D8)

Following this procedure, one would end up with a
rather cumbersome expression. Fortunately, if one focus
on the vicinity of topological phase transition, the side
jump velocity is governed by part of the full expression:

vsj,(s)
x,p = s

2

π
(1− π

2

∆

vF
)
MQ

|MQ|
vF py
|d(p)|

∆

kF l
(D9a)

vsj,(s)
y,p = −∆kF

1− 8∆2p2N 2
p

|d(p)|
∆

kF l
(D9b)

Fig. 8 is a comparison of the side jump velocity ob-
tained from the full definition, Eq. (D7), and the reduced
expression, Eq. (D9).

Before explaining the features of Eq. (D9), we should
remind our readers that the terms in Eq. (D9) are not the
only nonvanishing terms for the side jump velocity. How-
ever, those are the only terms that change sign over the
topological phase transition. Therefore, they should give
rise to a discontinuity in the off-diagonal conductance,
κxy. From now on, we simply focus on Eq. (D9).

In Eq. (D9), both expressions change sign over the
topological phase transition. In Eq. (D9a), the side jump
velocity in x-direction is explicitly proportional to a fac-
tor of MQ/|MQ|, where MQ = 1

2
kF
m (Q−QT ) is the Dirac

mass in Eq. (A9).
Meanwhile, for the side jump velocity in y-direction

Eq. (D9b), the factor of 1 − 8∆2p2N 2
p changes sign.
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FIG. 8. The side jump velocity for states on the Fermi
surfaces, parameterized by the angle ϕ as in the inset of
Fig.4. The solid line is plotted from the reduced expression,
Eq. (D9), while the dotted line is obtained from the full defi-
nition, Eq. (D7). The unit here is chosen to be v∗ = ∆/(kF l).
Both plots are plotted right before topological phase tran-
sition Q < QT . For (b), the red and blue curves should be
identical. For visualization, they were being shifted by a small
number.

The normalization factor is Np =
[
2|d(p)|(|d(p)| +

dz(p))
]−1/2

. For small momentum p < Λ = 4m∆, the
quasiparticles are described by Eq. (A9). The side jump
velocity takes the following form:

vsj,(s)
y,p = − ∆kF

|d(p)|
∆

kF l
×


MQ

|MQ| p <
|MQ|
2∆

MQ

2∆p
|MQ|
2∆ < p < Λ

(D10)

As a result, the side jump velocity in both x- and
y-directions is at least proportional to the sign of MQ.
Thus, they should change sign over the topological phase
transition. This directly leads to the discontinuity in the
thermal Hall conductance, κxy.

The second observation is that both expressions are
proportional to the inverse of the mean free path l = vF τ .
τ−1 = 2πρiν|V0|2 is the mean free time. As discussed,
the direct result of this feature is that the side jump con-
tribution to κxy is independent of the impurity strength,
if we confine ourselves to the diffusive regime.

2. Estimation of the Discontinuity in κxy

With the side jump velocity in Eq. (D9), we were able
to estimate the discontinuity in the thermal Hall conduc-
tance with relaxation time approximation. The correct
sign and order of magnitude could be found. Technical
details are provided in the Appendix E.

Start with the discontinuity in κsj
xy:

∆κsj
xy ≈

32

π

∆

vF

(
1− (2 +

π

2
)

∆

vF

)
κQ (D11)

With relaxation time approximation, Eq. (24) reduces to:

−ε
(s)
p

T
v(s)
y,p∇yT

∂n0

∂ε
= −δn

(s)
p

τ
(D12)

It’s straightforward that the distribution function is:

δn(s)
p =

ε
(s)
p

T
v(s)
y,pτ∇yT

∂n0

∂ε
(D13)

The first part of the side jump current could be defined
from Eq. (27):

jsj
x =

∑
s

∫
dΓ vsj,(s)

x,p ε(s)p

ε
(s)
p

T
v(s)
y,pτ∇yT

∂n0

∂ε
(D14)

Notice the presence of mean free time τ in the above
equation. It will cancel the τ−1 dependence in the side
jump velocity. Thus, the side jump contribution should
be independent of mean free time τ (or mean free path l).
By performing the integration explicitly as in Appendix
E, one finds:

jsj
x =

4

3

∆

vF

(
1− 2∆

vF

)(
1− π∆

2vF

)
MQ

|MQ|
T∇yT (D15)

The discontinuity in κsj
xy can be read off directly to the

second order in ∆/vF :

∆κsj
xy ≈

8

3

∆

vF

(
1− (2 +

π

2
)

∆

vF

)
T

=
32

π

∆

vF

(
1− (2 +

π

2
)

∆

vF

)
κQ

(D16)

In the second line, κQ = π
12T was factored out.

Similarly, the anomalous distribution function can be
estimated with the relaxation time approximation:

ga,(s)
p = −ε

(s)
p

T
vsj,(s)
y,p τ∇yT

∂n0

∂ε
(D17)

The associated current is given by Eq. (33):

jadist
x =

∑
s

∫
dΓ v(s)

x,p ε
(s)
p ga,(s)

p (D18)

Following the similar procedure, the discontinuity in
κadist
xy was estimated to be:

∆κadist
xy ≈ 16

π

∆

vF
κQ (D19)
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Appendix E: Integration over side jump velocity

In this appendix, we provide the details for evalua-
tion of the integrals of side jump contribution to the off-
diagonal thermal conductance.

Start with ∆κsj
xy:

∆κsj
xy ≈

32

π

∆

vF

(
1− (2 +

π

2
)

∆

vF

)
κQ (E1)

With relaxation time approximation, Eq. (24) reduces to:

−ε
(s)
p

T
v(s)
y,p∇yT

∂n0

∂ε
= −δn

(s)
p

τ
(E2)

It’s straightforward that the distribution function is:

δn(s)
p =

ε
(s)
p

T
v(s)
y,pτ∇yT

∂n0

∂ε
(E3)

The first part of the side jump current could be defined
from Eq. (27):

jsj
x =

∑
s

∫
dΓ vsj,(s)

x,p ε(s)p

ε
(s)
p

T
v(s)
y,pτ∇yT

∂n0

∂ε
(E4)

The trick to perform the integration is to change the
integration measure:

dΓ =
dpxdpy
(2π)2

→ dpxdε

(2π)2
2|dpy
dε
| (E5)

Notice that both the side jump velocity and the group

velocity (v
(s)
y,p ∝ s×py) are proportional to py. Therefore

the integrand in the current expression is even in py. One
could just focus on the upper plane with py > 0. Focus-
ing on the upper half plane would introduce a factor of
2 in the last expression in Eq. (E5). Then the current
expression reduces to

jsj
x = 2

∑
s

∫
dpxdε

(2π)2
vsj,(s)
x,p ε(s)p

ε
(s)
p

T
τ∇yT

∂n0

∂ε
(E6)

Further simplification can be made if one think about re-
ally low temperature. Namely, only a tiny energy window
around Fermi surfaces is under consideration:

jsj
x = 2

∑
s

∫
dpx

(2π)2
vsj,(s)
x,p τ

∫
dε
ε2

T
∇yT

∂n0

∂ε
(E7)

The second integral gives a factor of:

∫
dε
ε2

T
∇yT

∂n0

∂ε
= −2π2

3
T∇yT (E8)

The first integral should be understood as an integration
on the Fermi surfaces. Namely, the momenta are im-

plicitly constrained by ε
(s)
p = 0. The integral could be

evaluated analytically:

∫
dpx

(2π)2
vsj,(s)
x,p τ =

2

(2π)2

∆

vF

(
1− 2∆

vF

)(
1− π∆

2vF

)
MQ

|MQ|
(E9)

Details of this integral is as follows:∫
dpx

(2π)2
vsj,(s)
x,p τ =

∫
dpx

(2π)2

2

π

(
1− π∆

2vF

)
MQ

|MQ|
vF py
|d(p)|

∆τ

kF l
(E10)

First, notice that the momenta are constrained by ε
(s)
p = 0, or more explicitly:

vF px +

√
p4

4m2
+ 4∆2p2 = 0 (E11)

As a result, we could change the integration variable to:

dpx =
1

2vF

p3/m2 + 8∆2p√
p4

4m2 + 4∆2p2

dp (E12)

Meanwhile, py could also be expressed in terms of p:

py =

√
(1− 4∆2

v2
F

)p2 − p4

4m2v2
F

(E13)
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Notice that |d(p)| =
√

p4

4m2 + 4∆2p2. With all those quantities, the integral transforms to:

∫
dpx

(2π)2
vsj,(s)
x,p τ =

2

π

(
1− π∆

2vF

)
MQ

|MQ|
∆

2vF kF

∫
dp

(2π)2

p3/m2 + 8∆2p
p4

4m2 + 4∆2p2

√
(1− 4∆2

v2
F

)p2 − p4

4m2v2
F

=
2

π

(
1− π∆

2vF

)
MQ

|MQ|
∆

vF

∫
dx

(2π)2

4x2 + 8∆2/v2
F

x2 + 4∆2/v2
F

√
(1− 4∆2

v2
F

)− x2

(E14)

In the last line, x = p/(2mvF ). The integration in the last line could be evaluated analytically:

∫
dx

(2π)2

4x2 + 8∆2/v2
F

x2 + 4∆2/v2
F

√
(1− 4∆2

v2
F

)− x2 =
π

(2π)2
(1− 2∆

vF
) (E15)

Therefore, putting everything together, we obtained:

jsj
x = −4

3

∆

vF

(
1− 2∆

vF

)(
1− π∆

2vF

)
MQ

|MQ|
T∇yT (E16)

where the summation over the band index
∑
s[· · · ] gives an additional factor of 2. The discontinuity in κxy can be

read off directly to the second order in ∆/vF :

∆κsj
xy ≈

8

3

∆

vF

(
1− (2 +

π

2
)

∆

vF

)
T

=
32

π

∆

vF

(
1− (2 +

π

2
)

∆

vF

)
κQ

(E17)

In the second line, κQ = π
12T was factored out.

Similarly, the anomalous distribution function can be estimated from Eq. (31) with the relaxation time approxima-
tion:

ga,(s)
p = −ε

(s)
p

T
vsj,(s)
y,p τ∇yT

∂n0

∂ε
(E18)

The associated current is given by Eq. (33):

jadist
x =

∑
s

∫
dΓ v(s)

x,p ε
(s)
p ga,(s)

p (E19)

Following the similar procedure, we arrived at the expression:

jadist
x = −2

∑
s

∫
py>0

dpy
(2π)2

vsj,(s)
y,p τ

∫
dε
ε2

T
∇yT

∂n0

∂ε
(E20)

As before, ∫
dε
ε2

T
∇yT

∂n0

∂ε
= −2π2

3
T∇yT (E21)

The other integral can be calculates as follows: ∫
py>0

dpy
(2π)2

vsj,(s)
y,p τ (E22)

Keep in mind that the momenta are constrained by the condition ε
(s)
p = 0. We focus on small momentum regime,

where the side jump velocity takes a large value:∫
p<Λ

dpy
(2π)2

vsj,(s)
y,p τ (E23)



16

where Λ = 4m∆ is the cutoff when the quasiparticles ceased to behave like a Dirac particle. The above integration
could be evaluated in two steps. First:∫

p<
|MQ|
2∆

dpy
(2π)2

vsj,(s)
y,p τ = −

∫
p<

|MQ|
2∆

dpy
(2π)2

∆kF
|d(p)|

∆τ

kF l

MQ

|MQ|
(E24)

Notice that the ‘exact’ expression for |d(p)| =
√

4∆2p2 +M2
Q. For small momentum p <

|MQ|
2∆ , we could simplify

|d(p)| ≈ |MQ|. At the same time, py <
|MQ|
2∆ has approximately the same limitation. With this simplification, the

integration is straightforward: ∫
py<

|MQ|
2∆

dpy
(2π)2

vsj,(s)
y,p τ = − 1

(2π)2

∆

2vF

MQ

|MQ|
(E25)

Second, we evaluate: ∫
|MQ|
2∆ <p<Λ

dpy
(2π)2

vsj,(s)
y,p τ = −

∫
|MQ|
2∆ <p<Λ

dpy
(2π)2

∆kF
|d(p|)

∆τ

kF l

MQ

2∆p
(E26)

For momentum in the region
|MQ|
2∆ < p < Λ, one direct simplification is that |d(p)| = 2∆p. Namely, MQ is neglected.

With this simplification, the constraint ε
(s)
p = 0 reads:

vF px + s2∆p = 0→ py =

√
1− 4∆2

v2
F

p ≈ p (E27)

The integration reduces to∫
|MQ|
2∆ <p<Λ

dpy
(2π)2

vsj,(s)
y,p τ = −

∫
|MQ|
2∆ <p<Λ

dp

(2π)2

MQ

4vF p2
= − 1

(2π)2

MQ

4vF

(
− 1

Λ
+

2∆

|MQ|

)
≈ − 1

(2π)2

MQ

|MQ|
∆

2vF
(E28)

Putting together the two-step integration, we get:∫
p<Λ

dpy
(2π)2

vsj,(s)
y,p τ = − 1

(2π)2

MQ

|MQ|
∆

vF
(E29)

With the results for the integrations, one finds the current to be:

jadist
x = −2

3

∆

vF

MQ

|MQ|
T∇yT (E30)

The discontinuity in κxy was estimated to be:

∆κadist
xy ≈ 4

3

∆

vF
T =

16

π

∆

vF
κQ (E31)
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