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We develop a unified numerical approach for modeling semiconductor-superconductor heterostruc-
tures. All the key physical ingredients of these systems — orbital effect of magnetic field, supercon-
ducting proximity effect and electrostatic environment — are taken into account on equal footing
in a realistic device geometry. As a model system, we consider indium arsenide (InAs) nanowires
with epitaxial aluminum (Al) shell, which is one of the most promising platforms for Majorana zero
modes. We demonstrate qualitative and quantitative agreement of the obtained results with the
existing experimental data. Finally, we characterize the topological superconducting phase emerging
in a finite magnetic field and calculate the corresponding topological phase diagram.

I. INTRODUCTION

The simulation of realistic quantum devices repre-
sents a challenging problem in computational physics,
due to the difficulty of reaching quantitative agreement
with experimental data on the basis of effective empir-
ical models. The complexity of the problem is partic-
ularly demanding in the case of hybrid superconductor-
semiconductor devices, which are promising platforms for
realizing Majorana zero modes1–16, since semiconductors
and superconductors (i.e. metals) are described by dis-
parate characteristic length scales, effective masses, and
electron densities. Furthermore, recent material science
improvements of the semiconductor-superconductor in-
terface15,17, due to the in-situ deposition of Al on InAs
nanowire facets, reached the strong tunneling regime be-
tween the two materials18–22. In this regime23, the wave
functions of superconducting and semiconducting states
are strongly hybridized due to the large coupling at the
materials’ interface. The physical parameters required
to describe the semiconducting material in simple effec-
tive models 8,9 – e.g., proximity-induced pairing, g-factor
and spin-orbit coupling strength – are strongly renor-
malized by such a hybridization24–28. Thus, in order to
understand physical properties of such a hybrid system,
one has to develop a comprehensive numerical approach
which takes into account different competing physical ef-
fects on equal footing. The development of appropriate
device simulations carrying out this task is crucial for
topological quantum computing proposals14,15 which rely
on good control of Majorana zero modes.

In this paper, we develop a unified numerical approach
for modeling of the semiconductor-superconductor het-
erostructures. Our approach appropriately takes into
account the proximity-induced superconductivity in the
strong tunneling limit, the orbital and Zeeman effect of
an applied magnetic field, and the spin-orbit coupling,

all within a self-consistent treatment of the electrostatic
environment in the Thomas-Fermi approximation and
in a realistic geometry. The simultaneous treatment of
these ingredients was not achieved in previous numerical
works to date23–25,28–33, which relied on effective phe-
nomenological models neglecting the treatment of elec-
trostatics and/or assuming the weak tunneling limit at
the semiconductor-superconductor interface. Several re-
cent works developed Schrödinger-Poisson calculations
for proximitized nanowires26,27,34–37, crucial for under-
standing electrostatics and gating effects, but they sim-
ilarly neglected some of the other key ingredients listed
above (most notably, the orbital effect of the magnetic
field). The present approach builds on the recently im-
proved treatment of electrostatic effects in the strong tun-
neling limit26,27, incorporating the orbital effect of the
magnetic field31,38 as well as the dependence of the spin-
orbit coupling on the external electric field. We demon-
strate that such a unified treatment is crucial for a better
understanding of the large body of existing experimental
data18–22,39–55.

Tunneling conductance experiments18–20,22,54 on
InAs/Al17 and InSb/Al49 hybrid nanowires show that
the high-quality epitaxial semiconductor-superconductor
interface translates into a proximity-induced gap com-
parable to that of bulk Al, with very small sub-gap
conductance at zero magnetic field. These findings
are evidence of the strong coupling between the two
materials23. At the same time, in a finite magnetic
field, the sub-gap density of states appears to be
strongly dependent on the gate voltage applied to
the semiconductor22,54 (see Fig. 1 for a representative
gate geometry). This dependence can be qualitatively
attributed to the effect of the gate voltage on the
electron density profile in the semiconductor. When the
gate voltage is such that electrons are attracted away
from the Al facets, the coupling to the superconductor
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is decreased and thus the low-energy states are more
sensitive to the magnetic field. In order to quantitatively
capture this behavior, and following previous experimen-
tal works22,45,54, it is convenient to define an “effective
g-factor”, g∗B = (2/µB) (∂E/∂B)|B=B∗56, which tracks
the sensitivity of sub-gap states on external magnetic
field. Here, B∗ is the magnetic field at which we follow
the evolution of the sub-gap states. This “effective
g-factor” can be close to that of Al (|gAl| ≈ 2) if the
wave function of the sub-gap states has large weight
in the superconductor, and vice versa close to that of,
say, InAs (|gInAs| ≈ 1557) if the wave function has large
weight in the semiconductor. Furthermore, g∗B can also
be enhanced by the orbital effect of the magnetic field38.
Understanding the renormalization of the g-factor is
very important for studies of the topological phase
diagram, since it determines the critical magnetic field
for the topological phase transition.

Another important effect which motivated this study
is the dependence of the spin-orbit coupling on the ex-
ternal electric field. In the present work we calcu-
late self-consistently the strength of the Rashba spin-
orbit coupling as a function of an external gate volt-
age. The magnitude of Rashba spin-orbit coupling is
difficult to extract in semiconductor-superconductor het-
erostructure. In semiconductor nanowires, its value is
typically inferred from the weak-anti-localization mea-
surements58,59. Here, instead, we use independent stan-
dard sources for the material parameters and calculate
the dependence of spin-orbit coupling on the external
electric field.

Overall, the approach developed in this work takes
into account the important effects for understanding
physical properties of the semiconductor-superconductor
heterostructures: electrostatic environment, proximity-
induced superconductivity, and orbital effect of an ap-
plied magnetic field. It combines a number of previous
approaches focusing on electrostatic effects26,27,34,35,54

and treats the superconductivity explicitly rather than
integrating out the corresponding degrees of free-
dom26–28,31,32,54,60. Treating these two effects simulta-
neously with orbital effect31,38 allows one to understand
the physical properties of semiconductor-superconductor
heterostructures in a wide range of parameters. Our re-
sults are important for interpreting the existing trans-
port measurements as well as designing more complicated
Majorana-based qubit experiments.

The paper is organized as follows: We first introduce
the setup, the methodology and the model in Sec. II.
Then we present the obtained results. In Sec. III we
start by exploring the induced gap in the semiconductor
in the absence of magnetic field (B = 0). In Sec. IV we
show results for finite magnetic field, namely the investi-
gation of g∗B and of the topological phase diagram. For
concreteness, throughout the paper we use parameters
for the InAs/Al heterostructure, although our approach
is identically applicable also to other materials such as
InSb/Al.

II. SETUP AND METHODOLOGY

The simulations are separated in two parts. In the
first part, the electrostatic potential is computed by solv-
ing the Poisson equation for the wire cross-section (see
Fig. 1). In the second part, the potential is plugged into
a realistic Bogoliubov-de Gennes Hamiltonian, whose
eigenvalues and eigenstates are calculated as a function
of the momentum along the wire as well as external pa-
rameters, like the applied magnetic field. We assume
that the electrostatic potential is independent of the ap-
plied magnetic field, and is thus calculated only at zero
magnetic field. While due to the interplay of Coulomb
interactions and Zeeman splitting the chemical potential
in principle has a response to the magnetic field, in our
case this effect will be suppressed due to the screening
by the superconductor and comparatively large electron
density in InAs34.

A. Electrostatics

The electrostatics of the system is determined by the
Poisson equation

∇ · (εr(r)∇φ(r)) =
ρtot[φ(r)]

ε0
, (1)

where the total charge density ρtot[φ(r)] is a functional of
the potential φ(r) and εr the relative dielectric constant.
We include four contributions to ρtot

ρtot = ρe + ρhh + ρlh + ρacc, (2)

where ρe, ρhh and ρlh are the mobile charges of the con-
duction, heavy hole and light hole bands of InAs. The
charge density ρacc corresponds to fixed charges at the
InAs surface (excluding the InAs-Al interface), e.g. due
to surface chemistry of InAs. In our simulation ρacc is
added to model the electron accumulation layer of the
InAs surface61,62 — the details of which are discussed
below.

For mobile charges we use the Thomas-Fermi approx-
imation for a 3D electron gas63

ρe(φ) = − e

3π2

(
2meφθ(φ)

~2

)3/2

, (3)

where θ stands for the Heaviside step function, corre-
sponding to the Fermi-Dirac distribution at zero temper-
ature. The analogous expression for the holes is

ρi(φ) =
e

3π2

(
2mi(−E0 − φ)θ(−E0 − φ)

~2

)3/2

, (4)

with E0 being the band gap of the semiconductor and
the index i corresponds to the heavy hole (hh) and light
hole (lh) band respectively. The effective mass parame-
ters and band gap of the semiconductor are taken from



3

InAs 100 nm

Al 7 nm

HfO2 10 nm

B

VG

x

y
z

InAs 100 nm

Al 10 nm

HfO2 10 nm

B

VG

0 25 50 75 100

distance from surface (nm)

−0.2

0.0

φ
(e

V
)

ρacc. = 2× 1019 e/cm3

ρacc. = 5× 1018 e/cm3

0 25 50 75 100

distance from interface (nm)

(a) (b)

(c) (d)

FIG. 1. (a) Electrostatic setup of the cross-section of a three-
facet nanowire device: InAs (orange), Al (brown), positive
charge ρacc (purple) and the dielectric HfO2 (gray), below
which the backgate is located. (b) Same as (a), but for a two-
facet device. (c) Conduction band profile in a 1D simulation
(with translation-invariance parallel to the interface) of InAs
terminated by a 1 nm layer of positive charge density on the
left side. (d) Conduction band profile of InAs terminated by
Al on the left side.

Ref. 57. The Thomas-Fermi approximation gives poten-
tials in very good agreement with a full Schrödinger-
Poisson treatment, as has recently been demonstrated
in similar simulations of InAs/Al heterostructures27.

In Figs. 1 (a) and (b) we show the hexagonal cross sec-
tions of two nanowire devices covered by three and two
facets of Al respectively, representing the devices exper-
imentally investigated in Ref.22. InAs is known to have
a strong surface accumulation layer at the pristine InAs
surface61,62. We model [0001] wurtzite InAs nanowires,
for which the precise parameters of the surface accumula-
tion layer are presently unknown. Therefore, we choose
the parameters compatible with existing measurements
of different surfaces. We model the accumulation layer
by depositing a 1 nm layer of positive charge density ρacc
on the InAs surface. We simulate results for two cases:
ρacc = 2× 1019 e cm−3 and ρacc = 5× 1018 e cm−3.

For ρacc = 2 × 1019 e cm−3, the average charge den-
sity is about 1018 e cm−3 in the semiconductor wire at
zero gate voltage, consistent with the reported electri-
cal characterizations of such wires64. In the absence of
other charges and gates, the conduction band of InAs is
pinned about 0.25 eV below the Fermi level at the sur-
face [see the 1D simulation in Fig. 1 (c)]. To investigate
the influence of the accumulation layer we simulate also
ρacc = 5 × 1018 e cm−3, for which the conduction band
of InAs is pinned about 0.1 eV below the Fermi level at
the surface consistent with different characterizations of
InAs nanowires62.

In the case of the InAs/Al interface, we assume a sim-
ilar conduction band offset to the Fermi level of 0.2 eV,
presumably resulting from the work function difference
between the two materials. The presence of band bend-
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FIG. 2. Electron (red) and hole (blue) charge densities
obtained from Eq. (3) and (4) for different backgate voltages.
(i) Three-facet device with ρacc = 2 × 1019 e/cm3, (ii) three-
facet device with ρacc = 5× 1018 e/cm3, (iii) two-facet device
with ρacc = 2 × 1019 e/cm3, and (iv) two-facet device with
ρacc = 5× 1018 e/cm3.

ing at the semiconductor-superconductor interface has
recently been identified to be a crucial ingredient for the
strong proximity effect26,27. This specific value of the
conduction band offset is motivated by recent angle re-
solved photo-emission spectroscopy (ARPES) measure-
ments of InAs with a thin layer of epitaxial Al65. In
the electrostatic simulation the Al layer is assumed to
be grounded. It enters the Poisson equation only in the
form of a Dirichlet boundary condition, which is set to
0.2 V due to the work function difference to InAs [see also
Fig. 1 (d)]. A backgate is located below the dielectric
layer, set to the backgate voltage VG. On the remaining
three boundaries of the system we assume Neumann con-
ditions. For the dielectric constant of InAs and HfO2 we
use the values 15.15 and 25 correspondingly66.

The resulting electron and hole densities are shown in
Fig. 2, calculated from the self-consistent electrostatic
potential and Eq. (3) and (4). We consider four different
electrostatic configurations (i)-(iv), corresponding to the
two different wire designs with three and two facets cov-
ered by Al and two different accumulation layers shown
in Fig. 1 (c).

Based on the density plots shown in Fig. 2 we distin-
guish three generic cases for the localization of the elec-
trons: For VG > 0 we find most electrons to be localized
close to the gate. For VG ≈ 0 we see the electron density
forming a ring of charge at the surface of the semicon-
ductor, resulting from the accumulation layer of InAs. At
more negative voltages the only electrons left are near the
InAs-Al interface.

Note that we find hole accumulation for VG < −1.5 V
in configuration (i, iii) [VG ≤ −1V in configuration (ii,
iv)] in Fig. 2. This is a consequence of the small distance
of the backgate to the wire and of the small band gap of
InAs. Due to the large effective mass of the hole states
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TABLE I. Material parameters for InAs and Al.

Parameter InAs Al

m 0.0229m0
57 m0

αz 0.03 eVnm68 0 eVnm

g -14.957 2.0

∆ 0 meV 0.34 meV69

EF 0 eV 10 eV

they are very effective at screening the gate once the
potential becomes large enough for them to be populated.
While the screening length of the electrons is on the order
of 10-20 nm, the screening length of the holes is about a
magnitude shorter on the scale of nm. Going to more
negative gate voltage has little effect on the system since
the gate is then screened by the holes.

B. Schrödinger solver

After the electrostatic potential is calculated for a
given geometry and backgate voltage we plug it into the
Schrödinger equation and solve it for the cross-section of
the device. The normal-state Hamiltonian for InAs/Al
heterostructure reads

H =

(
~2

2
kTm(r)−1k− EF(r)− eφ(r)

)
σ0+

1

2
(α(r) · (σ × k) + (σ × k) ·α(r)) +

Bg(r)
µB
2
σz,

(5)

with the momentum-operator kT = (−i∂x,−i∂y, kz), the
effective mass m(r), the Fermi level EF(r), the electro-
static potential φ(r) (possibly including a disorder po-
tential) and the g-factor g(r). Here σi are Pauli matri-
ces acting on spin degrees of freedom. We assume the
wire to be aligned parallel to the z-direction and the
Hamiltonian to be translation-invariant in z. The vec-
tor α(r)T = (αx(r), αy(r), αz(r)) contains the Rashba
parameters αx(r) and αy(r) resulting from the electric
field in the semiconductor, and the Dresselhaus param-
eter αz(r) resulting from the bulk inversion asymmetry
of wurtzite-InAs67. The material parameters for InAs
and Al are summarized in Tab. I. Note that when solv-
ing the Poisson equation we assume that Al is a perfect
metal (i.e. impose the corresponding boundary condi-
tions). Thus, φ is not solved for inside of Al and is set to
zero there.

We take into account superconductivity at the mean-
field level. The corresponding Bogoliubov-de-Gennes
(BdG) Hamiltonian in Nambu space70 reads

HBdG(r, kz) =

(
H(r, kz) −iσy∆(r)eiθ(r)

iσy∆(r)e−iθ(r) −H(r,−kz)∗

)
. (6)
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FIG. 3. Bare Rashba parameters obtained from Eq. (10) as
a function of gate voltage, corresponding to the four different
electrostatic configurations in Fig. 2 (i)-(iv)

Here the superconducting pairing ∆ is non-zero only in
the superconductor (the superconducting phase θ is also
only defined there).

The orbital effect is added to Eq. (6) via the minimal
substitution

ki → ki −
e

~
Ai, (7)

with A being the vector potential. The BdG Hamiltonian
Eq. (6) is gauge-invariant under transformations of the
form70

A→A +∇χ,

θ →θ − 2e

~
χ.

(8)

The supercurrent in the superconductor is given by

JS = −2enS

(
~
m
∇θ +

2e

m
A

)
, (9)

where nS is the superconducting density. Since in our
simulations we always deal with very thin superconduct-
ing films, we neglect any screening effect of the supercon-
ductor and assume a homogeneous magnetic field. The
vector potential A and phase θ are chosen such that
Eq. (9) leads to a physically correct distribution of JS ,
see App. A for details.

The Rashba couplings αx and αy are nonzero only in
the semiconductor region and result from the symmetry
breaking by the electrostatic potential71. We estimate
the Rashba couplings from the average electric field in
the semiconductor region from 8-band k.p-theory57

αi =
eP 2

3

[
1

E2
0

− 1

(E0 + ∆0)
2

]
Ēi, (10)

where the average electric field in direction i is obtained
by averaging Ei(r), calculated from the electrostatic po-
tential φ(r), over the whole semiconductor region. This



5

−6 −4 −2 0

VG (V)

0.0

0.2

0.4

0.6

0.8
∆

m
in
/∆

(a)(a) ρacc. =2e19 e/cm3

ρacc. =5e18 e/cm3

−6 −4 −2 0

VG (V)

(b)(b)

ρacc. =2e19 e/cm3

ρacc. =5e18 e/cm3
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facet devices with 7 nm Al shell for the different accumulation
layer strengths. (b) Same as (a), but for a two-facet device
with a 10 nm Al shell.

procedure neglects surface terms and the fact that wave
functions might be localized more in the steep parts of
the potential, therefore it gives a conservative, lower-
bound, estimate for the Rashba spin-orbit coupling. The
following parameters for bulk InAs are used in accord
with Ref. 57: P = 0.9197 eV nm, E0 = 0.418 eV and
∆0 = 0.380 eV. In Fig. 3 we give the bare Rashba pa-
rameters as a function of gate voltage for the different
devices.

The Hamiltonian Eq. 6 is discretized on a quadratic
mesh using the kwant package72. A lattice constant of
0.1 nm is used for the discretization to accommodate the
small Fermi wavelength of Al. The interior eigenvalues
close to the Fermi level of the sparse Hamiltonian are
calculated with the shift-invert method as implemented
in SciPy73, however, replacing the SuperLU algorithm
packaged with SciPy with the more efficient MUMPS li-
brary74,75. With this numerical approach we are able to
solve for interior eigenvalues of tight-binding Hamiltoni-
ans with several millions of basis states.

III. ZERO MAGNETIC FIELD

A hard induced superconducting gap in the semicon-
ductor is one of the prime achievements of epitaxial
InAs/Al hybrid nanowires18. In these devices typically
two to three facets of the hexagonal wire are covered by
a layer of Al. To achieve critical magnetic fields that are
large enough to form MZMs the superconducting layer
is kept very thin, between 5 to 10 nm in typical devices.
While the superconducting layer is very thin it also has
a very large density of states (DOS). Therefore, in a hy-
brid device the induced gap in the semiconductor is of-
ten found to be of the same order as the superconductor
gap17.

The combined results for the minimal induced gap are
shown in Fig. 4. All devices have large induced gap for
appropriate gate voltages. We now discuss the four dif-
ferent electrostatic configurations presented in Fig. 2 and
the effects of disorder in detail.
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FIG. 5. (a) Induced gap in the three-facet nanowire with
7 nm Al shell and ρacc = 2 × 1019 e/cm3, for different values
of the backgate voltage. The one-dimensional energy spec-
trum and integrated one-dimensional DOS in the InAs region
is shown. The color scale indicates the weight of the wave
functions in the InAs and Al regions. For the dispersion and
k integration the point spacing is dk = 2 × 10−4 nm−1. (b)
Same as (a), but for ρacc = 5× 1018 e/cm3.

A. Three-facet device

In Fig. 5 we show the energy spectrum and DOS
in the InAs region for different backgate voltages in
the three-facet wire. For all backgate voltages we find
semiconductor-like states that have a strong hybridiza-
tion with the superconductor. These states appear below
the Al gap, but have a strong hybridization with Al as
indicated by the color in Fig. 5. The DOS in the semicon-
ductor is obtained by integrating the band structure over
momentum, multiplying each eigenstate by its weight in
the semiconductor76. A temperature broadening of the
energy levels of 50 mK is assumed. The calculated DOS is
consistent with experiment18,49: For negative gate volt-
ages we typically find a hard gap, with the position of
the coherence peaks showing little dependence on gate
voltage. For positive gate voltages non-superconducting
states enter the gap.

At positive backgate voltages, we find accumulation of
electrons near the backgate, on the opposite side of Al.
These states live almost completely in the InAs region
and have negligible hybridization with the superconduc-
tor and thus no, or very small, induced gap. They con-
tribute to a subgap conductance for VG > 0.

Around VG ≈ 0 the electron density is distributed
along the surface of the semiconductor (see Fig. 2). In
this regime all states have non-zero hybridization with
the superconductor and a hard gap opens up.

For sufficiently negative backgate voltage VG < 0 the
only states left are in close proximity to the supercon-
ductor. These are characterized by strong hybridization
and induced gap on the order of the superconductor gap.
Note that a single state at k ≈ 0.25 nm−1 has signif-
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icantly smaller hybridization and induced gap than the
other states in Fig. 5 (a) and (b) for VG ≤ −1 V. Further-
more, note that our Schrödinger solver only includes the
electrons, hence no hole states show up in the DOS and
band structures of Fig. 5. According to Fig. 2 hole accu-
mulation would be expected for VG ≤ −2 V for Fig. 5 (a)
[VG ≤ −1 V for (b)].

B. Effect of disorder on the induced gap

Some previous attempts at simulating the supercon-
ducting proximity effect by treating the semiconductor
and superconductor on equal footing often found an in-
duced gap that is strongly dependent on geometric and
microscopic details and significantly smaller than the one
reported in experiments27,32. This is a consequence of
the constraint imposed by momentum conservation at a
smooth interface between semiconductor and supercon-
ductor. In such a case, tunneling between the two sub-
systems is suppressed due to energy and momentum con-
straints. Indeed, in this case tunneling rate, which is rele-
vant for the proximity effect23, is effectively proportional
to one-dimensional DOS and decreases with EF . Since
EF is large in metals such as Aluminum, at any given
parallel momentum the phase space which satisfies both
constraints is small. In other words, the level spacing
coming from one-dimensional sub-band quantization in
the superconductor is several orders of magnitude larger
than the superconducting gap for Al films with a thick-
ness of 10 nm. This results in a strong and non-monotonic
dependence of the induced gap on the thickness of the su-
perconductor27. This dependence on the thickness of the
superconductor is not observed in experiment and is an
artifact of a parallel-momentum-conserving approxima-
tion at the surface. In fact, experimentally the opposite
effect is observed, that the gap is enhanced for thinner
Al thicknesses77,78.

Ref.26 demonstrated that disorder in the supercon-
ductor enhances the induced gap dramatically and, pro-
vided it is sufficiently strong, removes the non-monotonic
dependence on the thickness of the superconducting
layer. Since a fully three dimensional simulation of a
semiconductor-superconductor heterostructure would be
extremely challenging, the disorder potential is chosen
independent of z, such that the momentum kz parallel
to the nanowire axis remains conserved. This disorder
breaks the momentum conservation in one direction par-
allel to the interface so that the semiconductor is now
hybridized by an effectively two dimensional supercon-
ductor. The level spacing resulting from two-dimensional
quantization in the superconducting film is smaller than
the superconducting gap in the hybrid device geometries
investigated here. In reality, three-dimensional disorder
in the superconductor breaks the momentum conserva-
tion also in the longitudinal direction, possibly enhancing
the hybridization and the induced gap even further. Our
two-dimensional disorder model is sufficient to qualita-
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FIG. 6. (a) Induced gap in the three-facet nanowire with 7
nm Al shell and ρacc = 2×1019 e/cm3 with disorder. The one-
dimensional energy spectrum and integrated one-dimensional
DOS in the InAs region is shown. The weight of the states
in the InAs and Al region is indicated by the color. For the
dispersion and k integration the point spacing is dk = 2 ×
10−4 nm−1. (b) Comparison of the minimal induced gap with
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tively describe the effect of disorder on the hybridization
of the semiconductor with the superconductor. However,
in the topological phase a three-dimensional model of dis-
order will also lead to a number of new qualitative fea-
tures such as impurity-induced subgap states79–81, which
is not captured by our model. We also do not consider
here disorder in the semiconductor. High-quality semi-
conductor nanowires have been shown to be very clean
with a mean free path of the order a micron15. Both of
these effects are outside the scope of this work.

Furthermore, we note that in our simulations
the momentum conservation at the semiconductor-
superconductor interface is already broken due to the
non-planar (i.e. hexagonal) shape of the Al shell. We
find that this has very similar effects as adding disorder
to the system, i.e. we find large induced gaps that de-
pend only weakly on the geometry and thickness of the
superconducting layer.

While the semiconductor and also the interface to the
superconductor is very clean82, the Al is naturally cov-
ered by an amorphous oxide layer. This oxide layer pro-
vides a motivation to investigate — additionally to the
non-planar interface — the effect of disorder on the sur-
face of the Al shell. Motivated by this physical model,
we restrict the disorder to a layer of 2 nm thickness from
the outside of the shell. We use random on-site chemi-
cal potential in the specified region to simulate disorder.
The disorder potential itself is sampled from a Gaus-
sian distribution with a variance of 1 eV. The disorder
strength and thickness are chosen such that an electron
experiences on average one scattering event while being
reflected at the Al-vacuum interface, corresponding to a
mean-free path of the order of the thickness of the super-
conductor.
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The weight of the states in the InAs and Al region is indicated
by the color. For the dispersion and k integration the point
spacing is dk = 2× 10−4 nm−1. The potentials correspond to
Fig. 2 (iii) (a) and (iv) (b).

In Fig. 6 we show that disorder is able to significantly
enhance the size of the induced gap. With disorder, all
states close to Al show very strong hybridization and
induced gap on the order of 80% of the Al gap at negative
gate voltages. On the other hand, the states contributing
to the subgap conductance at positive gate voltages are
not affected by the presence of disorder in Al, consistent
with them having no weight in the superconductor.

C. Two-facet device

In Fig. 7 we show the electronic states and DOS in
the two-facet device for different backgate voltages. In
general, we find very similar results to the three-facet
device.

We find that the backgate voltage at which the gap be-
comes hard is very different for the different accumulation
layers, with the threshold being VG < −1.5 V for ρacc =
2 × 1019 e/cm3 and VG ≤ 0 V for ρacc = 5 × 1018 e/cm3.
The reason for this becomes apparent when comparing
the density distributions of the two cases in Fig. 2. Due to
their accumulation layer hexagonal InAs nanowires have
a tendency to accumulate a higher density in their cor-
ners than below their facets62. In the two-facet device
there is a corner that is not adjacent to the Al-shell or
the backgate. The states living in this corner have no
weight in the superconductor analog to the gate states
and therefore result in a reduced gap compared to the
three-facet device. In the strong accumulation layer case
ρacc = 2 × 1019 e/cm3 large negative backgate voltage
VG < −1 V is required to open a superconducting gap
for these states.

For the weak accumulation layer case (ρacc = 5 ×

1018 e/cm3) one finds even enhanced induced gap com-
pared to the three-facet device at large negative gate volt-
age, although, comparable to the gap of the three-facet
device with disorder. The induced gap in the clean two-
facet device is comparable to the three-facet device with
disorder, see Fig. 4. This might be related to two effects:
First, the two-facet device has less symmetry than the
three-facet device, as it lacks the vertical mirror sym-
metry. Removing this symmetry allows a stronger hy-
bridization of semiconductor and superconductor states.
Another difference is the thickness of the superconduct-
ing layers for the two devices, which is investigated in
App. C. We find that a thicker superconductor also hy-
bridizes the semiconductor more strongly.

IV. FINITE MAGNETIC FIELD

Upon turning on a magnetic field parallel to the wire,
and for appropriate gate voltages, the system can transi-
tion into the topological phase supporting MZMs8,9. It is
desirable for the critical field of the topological transition
to be as small as possible, and in particular to be much
lower than the critical field of the superconducting (e.g.
Al) shell. In this section, we first investigate the bulk
DOS as a function of magnetic field and the behavior of
g∗B as a function of gate voltage, which is important to
determine the magnitude of the critical field of the topo-
logical transition. Then, we investigate the topological
phase diagram.

A. Density of states

Transport experiments in Majorana nanowires measur-
ing the differential conductance can be related to the lo-
cal DOS at the tunnel contact if the tunneling rate is
small83. In our simulations we calculate the DOS in the
middle of an infinite wire. Therefore, no MZMs are visi-
ble with the only sign of the topological phase transition
being the bulk gap closing. Furthermore, we expect that
the experimentally obtained differential conductance will
show bulk states with different relative intensity than in
bulk DOS simulations83.

In Fig. 8 we show the bulk DOS as a function of mag-
netic field and energy for six different backgate voltages.
Both cases, where the system undergoes a topological
phase transition and where it stays trivial in the range of
magnetic fields, are presented. In the topological cases
we indicate the topological gap in red. Due to the very
large size of the Hamiltonian matrix it is impossible to
directly evaluate the Pfaffian to determine the topologi-
cal phase1. Instead, we use the fact that the gap of the
Hamiltonian at k = 0 closes, always and only at topolog-
ical phase transitions. Considering further that the sys-
tem must be in the topologically trivial phase for B = 0,
one can determine the location of the topological phase
this way.
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the device enters the topological phase for a range of mag-
netic fields. In this case the size of the topological gap is
indicated in red.

Regardless of topological character, we define similar
to the experiment Ref.22 g∗B as the slope of the lowest-
energy states represented in the DOS. For the cases in
Fig. 8, in which the system undergoes a topological phase
transition, the gap closes linearly with B and g∗B is in-
dependent of B∗ at which it is extracted. In the non-
topological cases, however, the interplay of spin-orbit
coupling and finite chemical potential typically lead to
a nonlinear gap dependence with B84. In these cases we
choose the magnetic field B∗ such that g∗B is maximized.

We observe a clear trend in the dependence of g∗B on
the backgate voltage, see Fig. 9. In Fig. 9 (a) we show
results for g∗B without the orbital effect of magnetic field.
Since g∗B is directly affected by the renormalization of
the g-factor, it is an indicator of the coupling strength of
semiconductor to superconductor. In general, we find a
non-monotonic behavior, resulting from the different cou-
pling strengths of the different subbands, although show-
ing already a trend in g∗B , with large values of g∗B > 5
only at positive or small negative backgate voltages. The
trend becomes even more pronounced in Fig. 9 (b) where
the orbital effect of magnetic field is included. This is
a result of the orbital effect being very sensitive to the
extent of the wavefunction, which is tuned by the back-
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FIG. 9. Dependence of g∗B on the backgate voltage in the
three-facet device with 7 nm Al shell and ρacc = 2×1019 e/cm3

for (a) without orbital effects, (b) with orbital effects and (c)
with orbital effects and disordered Al, averaged over seven dis-
order realizations which are shown faintly in the background,
with identical parameters as in Fig. 6. The value of g∗B is
obtained from fitting the magnetic field dependent bulk DOS
closing. The error bars are obtained by assuming an uncer-
tainty of 10µeV in energy and 0.05 T in magnetic field during
the fit.

gate. For positive, or small negative, backgate voltages
the slope g∗B is significantly larger than the bulk g-factor
of InAs, corresponding to an orbital enhancement of g-
factor as discussed in Ref.38. At this gate voltages states
are localized in the accumulation layer, along the surface
of InAs. These states are strongly influenced by the or-
bital effect since they are easily penetrated by magnetic
flux. For large negative gate voltages, however, the wave
functions are confined close to the superconductor, and
the orbital effect is suppressed.

In Fig. 9 (c) we investigate the effect of disorder, for
the same system as in Fig. 6. We find that while g∗B is
more dependent on the disorder realization than the in-
duced gap, the typical variation is often still less than the
error bar of our fit. The main effect of disorder is that it
further enhances the coupling of semiconductor with su-
perconductor, resulting in effective g-factors smaller than
in the case without disorder. Also the step-like behavior
of g∗B with backgate voltage becomes more pronounced,
being very close to the one measured in experiments22.
Still, even after taking disorder into account we find that
our values of g∗B are often overestimated compared to the
experiment. This might be a limitation of our Hamilto-
nian Eq. (6), which does not include confinement effects
on the InAs g-factor and the effective mass85–87. Im-
plementing a more sophisticated Hamiltonian, like the
8-band Kane Hamiltonian88, might be required for more
accurate results, although it would be very difficult due
to the prohibitive computational cost resulting from the
very dense discretization.
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B. Magnetic interference effects

Because of the accumulation layer and the electrostatic
screening the system obtains a ring-like charge density
for positive backgate voltage, see Fig. 10 (a) which is a
special case of Fig. 2. In this configuration the system
is very susceptible to orbital effects, resulting as we have
seen in strongly enhanced g∗B . Furthermore, we find that,
in this regime, the DOS shows an oscillatory behavior
with magnetic field B following the first bulk gap closing,
see Fig. 10 (b). The minima correspond roughly to a
magnetic field in which half-integer magnetic flux quanta
penetrate the cross section of the wire. The maxima
correspond roughly to integer flux quanta.

The basic mechanism of the oscillating induced gap
can be understood in a crude toy model depicted in
Fig. 10 (c). For simplicity, it is assumed that the super-
conducting segment (shown in brown) is longer than the
coherence length. Then one can view the semiconducting
segment as a Josephson junction, in which the Andreev
bound states depend on the phase controlled by the mag-
netic flux penetrating the ring89. The resulting spectrum
is plotted in Fig. 10 (d). The minima correspond to val-
ues of flux in which this phase is a half-integer multiple
of 2π, the maxima to integer multiple of 2π. In this toy
model, the wave functions are all sensitive to the same
magnetic flux, leading to very regular oscillations of the
energy gap. On the other hand, in the realistic simula-
tions different wave function can have a different effective
area, and thus the oscillations are much less regular. In
particular, after the first bulk gap closing in Fig. 10b, the
bulk energy gap never quite recovers to the initial value.
For details about the toy model calculation see App. B.

C. Phase diagram

Now we study the topological phase diagram in the
presence of electrostatic, orbital and renormalization ef-
fects. Early attempts of calculating the topological phase
diagram of Majorana nanowires typically did not include
electrostatics effects, but show the phase boundaries as
a function of the chemical potential µ rather than the
gate voltage8,9,23,31,90. Only recently phase diagrams
as a function of a gate voltage have been obtained26,34.
The orbital effect on the phase diagram has been stud-
ied in Ref.31, although without including electrostatic ef-
fects. In this section, we consider clean semiconductor-
superconductor heterostructure, i.e. no disorder.

In Fig. 11 (a) we show the phase diagram of the
three-facet device without orbital effects. The phase di-
agram looks similar to earlier findings of multi-subband
wires23,26,90, although we find a strong dependence of the
semiconductor-superconductor coupling on the subband,
resulting in a large variation of minimal critical magnetic
fields corresponding to the phase transition. As has also
been pointed out in Ref.26, the lever arm of chemical po-
tential vs gate voltage is significantly larger at positive
or small negative gate voltages than at large negative
ones. Consequently, the density of topological phases is
higher in VG for small negative gate voltages in Fig. 11.
The reason for this is twofold: first, the electron states
localized near the gate are more easily tuned by the back-
gate than the states close to the superconductor. Second,
the screening effect of the holes decreases the lever arm
further for large negative gate voltage. In general, not
taking orbital effect into account leads often to magnetic
fields, at which the topological phase transitions, being
large compared to experiments.

Turning the orbital effect on in Fig. 11 (b) changes the
shapes of the phase boundaries dramatically. For small
negative gate voltages the phase diagram is dominated by
the orbital effect of magnetic field. This becomes appar-
ent due to the small magnetic fields at which the topolog-
ical transition occur and the very non-parabolic shape of
the phase boundaries. In this regime one often finds two
topological regions emerging close in gate voltage at sim-
ilar magnetic fields, that separate from each other, one
drifting to larger gate voltages and the other to smaller
gate voltages. These result from two subbands that are
near angular momentum eigenstates, with approximately
opposite angular momentum38. One of the reasons why
the orbital effect is so strong is the high electron den-
sity, which is a result of the large band-offset of InAs/Al
and the accumulation layer resulting in about ten occu-
pied subbands in InAs. High subbands have high orbital
quantum numbers coupling strongly to magnetic field38.
At large negative gate voltage the orbital effect is sup-
pressed and the phase boundaries look closer to the ones
without orbital effect, although the influence of the or-
bital effect is still strongly present.

From Fig. 11 (b) it becomes apparent that only topo-
logical phases with appreciable negative backgate voltage
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calculated in the gray regions).

have a sizable topological gap. We find that the maxi-
mum topological gap is only slightly larger than 20µeV.
While this seems like a small value we emphasize that
it is proportional to the strength of the Rashba spin-
orbit coupling. In our calculation, the value of spin-
orbit coupling is conservatively since we take only elec-
trostatic origin of spin-orbit coupling int account. The
value of α we obtain from Eq. (10) is typically about
10 meV·nm, whereas experiments report values in the
range of 10 to 30 meV·nm91,92 which would result in a
significantly larger topological gap.

D. Effect of broken mirror symmetry in the
two-facet device

In terms of symmetries, the most significant difference
between the three- and two-facet devices is the vertical
mirror symmetry in the (y, z)-plane Myz. Additionally
considering the particle-hole symmetry PH(k)P−1 =
−H∗(−k), P2 = +1, which protects the MZMs, and the
time-reversal symmetry T H(k)T −1 = H∗(−k), T 2 = −1
it can be shown that the combination of the three sym-
metries create a chiral symmetry

CH(k)C−1 = −H(k), C2 = +1, (11)

that survives at finite magnetic field parallel to the (y, z)
mirror plane. For the specific case of our Hamiltonian
Eq. (6) the chiral symmetry is given by C = τyσzδ(x+x′)
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FIG. 12. (a) [(b)] Band structures in the topological
phase for the three-facet [two-facet] device with the param-
eters VG = −4.15 V and B = 0.375 T (VG = −1.22 V and
B = 0.575 T).

(with δ(x + x′) being the real-space reflection operator
taking x to −x). Note that the Rashba term αx breaks
this chiral symmetry.

One particular consequence of the chiral and particle-
hole symmetry is that the band structure is line-reflection
symmetric around the k = 0 and E = 0 axes, see
Fig. 12 (a). In the two-facet device the chiral sym-
metry is broken because of the missing mirror symme-
try Myz. Therefore, the band structure is only point-
inversion symmetric around the (E = 0, k = 0) point,
as dictated by the particle-hole symmetry. At finite B
this generically leads to a tilting of the band structure
that is detrimental to the topological gap, as is shown
in Fig. 12 (b). At B = 0 the time-reversal symmetry
prevents any tilting of the band structure, see Fig. 7.
It has been pointed out in Ref.31 that a possible mir-
ror perpendicular to the wire axis Mxy would also pre-
vent any tilting of the band structure. The wurtzite
Dresselhaus term αz breaks this mirror symmetry in our
case. Note that in [111] zincblende wires the Dressel-
haus term is expected to be much smaller, due to the
fact that it is cubic in k as opposed to linear in k in the
wurtzite case68,93. Therefore, it is expected that the tilt-
ing effect of the band structure is significantly smaller
in non-mirror-symmetric [111] zincblende wires than in
non-mirror-symmetric [0001] wurtzite wires, although it
would still be present.

V. SUMMARY AND CONCLUSIONS

In this work, we presented a unified numerical
approach for realistic simulation of semiconductor-
superconductor heterostructures which adequately treats
all the important effects in these systems: proximity-
induced superconductivity, orbital and Zeeman effect
of an applied magnetic field, disorder, spin-orbit cou-
pling as well as electrostatic environment and realis-
tic geometry (hexagonal cross-section). We considered
InAs/Al hybrid nanowires as a model system and com-
pared our numerical results with the existing exper-
imental data. We calculated topological phase dia-
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grams for InAs/Al hybrid nanowires and quasiparti-
cle gaps in corresponding topological phases which is
important data for the topological qubit design pro-
posals and can be used to optimize the designs for
Majorana-based qubits. Furthermore, the approach de-
veloped here can be readily extended to other topo-
logical semiconductor-superconductor platforms such as
2DEG platforms20,48,94, quasi-one-dimensional networks
obtained by selective area growth95,96 or nanowires with
a full superconducting shell97,98.

We first investigated the dependence of the subgap
density of states on the gate voltage at zero magnetic
field. We identified states that live near the gate (i.e.
opposite to the interface with Al) and within the accu-
mulation layer of the pristine InAs surface to be respon-
sible for a subgap density of states for positive gate volt-
ages. We find that at moderate negative gate voltages
the dominant contribution to the subgap density of states
comes from the states localized close to the InAs/Al in-
terface which are very strongly proximitized, resulting
in a large proximity-induced gap and hard gap in the
semiconductor. We also considered the effect of disorder
in the superconducting shell and found that it increases
the semiconductor-superconductor coupling, leading to
an enhanced induced gap.

Next, we investigated the dependence of the energy
spectrum on external magnetic field and studied the evo-
lution of the spectrum as a function of electric and mag-
netic fields. In particular, we calculated the effective
g∗B-factor for subgap states and showed that it has a
non-monotonic dependence on gate voltage, consistent
with the experimental data22. This non-monotonic de-
pendence appears due to the interplay of two competing
effects: renormalization of the effective model parameters
in the strong tunneling regime and orbital contribution to
g∗B . Therefore, even in the strongly proximitized regime,
the InAs/Al hybrid device is able to support MZMs at
moderate magnetic fields.

We characterized topological superconductivity in hy-
brid InAs/Al nanowires by calculating topological phase
diagram as well as the corresponding topological excita-
tion gaps. Given that magnetic fields of topological phase
transitions in hybrid InAs/Al nanowires are significantly
smaller than expected from a simulation including only
the Zeeman term, we show that inclusion of the orbital
effect is crucial for a quantitative and qualitative under-
standing of the topological superconductivity in proxim-
itized nanowires.

We also investigated the microscopic origin of the spin-
orbit coupling in proximitized nanowires. We found that
the interplay of Dresselhaus term (resulting from the
wurtzite structure) and broken mirror symmetry lead
to a tilt of the band structure in the two-facet device,
which is absent in mirror-symmetric three-facet devices.
Therefore, we recommend using wires with symmetrical
Al shells and gate congurations for Majorana applica-
tions, particularly in the case of wurtzite wires.

Finally, we emphasize that the level of detail of our

modeling sets a new standard for simulations of hybrid
semiconductor-superconductor nanowires, that should be
also applied to different Majorana platforms employing
semiconductor-superconductor heterostructures. One of
the remaining challenges is a fully three dimensional sim-
ulation of a hybrid device including scattering and dis-
order in the superconductor. Indeed, although our two
dimensional disorder model is sufficient to capture cor-
rectly some properties of the hybrid system like the mag-
nitude of the induced gap at zero magnetic field, it is not
adequate for understanding the impact of longitudinal
disorder on the topological phase in the limit of strong
coupling between the semiconductor and the supercon-
ductor.
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Appendix A: Supercurrent distribution

If both superconductivity and orbital effect of magnetic
field are considered in the same system, it is crucial that
the combination of vector potential and superconducting
phase results in correct physical observables. Due to the
much higher density of electrons in the superconductor
compared to the semiconductor we consider the super-
conductor film for these considerations to be independent
of the semiconductor. In this case, and at zero tempera-
ture, the superconductor will minimize its kinetic energy
which is proportional to ES ∝

∫
dr J2

S(r)70. The correct
vector potential A and phase can be obtained by mini-
mizing this expression60. Since the London penetration
depth of Al is much larger than the thickness of the Al
film we neglect screening effects of the supercurrent. For
the simple geometry at hand we are able to write down
an analytical solution for the vector potential and super-
conducting phase which approximates the full solution.

We take the vector potential in the cylindrical gauge

A =
B

2
rêϕ. (A1)

Furthermore, we choose the phase θ such that the su-
percurrent Eq. (9) is canceled exactly in the middle of
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the superconducting film. This is achieved by satisfy-
ing 1

RM

∂θ
∂ϕ = − 2e

~ Aϕ(RM ) = − 2e
~
B
2 RM , with RM cor-

responding to the radius to the middle of the supercon-
ducting film, see Fig. 13. Due to the hexagonal shape of
the film RM is a function of ϕ: RM (ϕ) = rm/ cos(ϕ) for
|ϕ| < π/6 (see Fig. 13 for the definition of rm). There-
fore, the phase is given by

θ(ϕ) = −2e

~
B

2

∫ ϕ

0

dϕ′
r2m

cos2(ϕ′)
= −2e

~
B

2
r2m tan(ϕ),

(A2)
for |ϕ| < π/6.

In Fig. 13 we show the resulting supercurrent distri-
bution and phase (we continue to plot the face outside
of the superconductor, even though it is strictly speak-
ing not defined there). Since the supercurrent takes only
small values the kinetic energy of the superconductor is
close to the minimum value and also the boundary con-
ditions are fulfilled with this choice in a good approxi-
mation. Furthermore, we find that our results are not
strongly dependent on the exact choice of vector poten-
tial and phase dependence as long as the kinetic energy is
close to the minimal value. If the magnetic flux through
the hexagon of size rm is not an integer multiple of the
magnetic flux quantum the superconducting phase needs
to have a discontinuity somewhere. Since in none of our
geometries all facets are covered by the superconductor
this jump can be conveniently located along a line that
does not go through a superconducting region.

Appendix B: Toy model

For the toy model calculation we assume a simple BdG
Hamiltonian without spin-orbit coupling or Zeeman

Htoy =

(
~2

2mk
2 − µ ∆eiθ

∆e−iθ − ~2

2mk
2 + µ

)
, (B1)
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FIG. 14. Induced gap as a function of backgate voltage
for the different devices and superconductor film thicknesses.
(a) ((b)) Comparison of three-facet (two-facet) devices with
ρacc = 5 × 1018 e/cm3 for superconductor film thicknesses of
7 and 10 nm.

where we use m = 0.05me, µ = 0.5 eV and ∆ = 0.05 eV.
The vector potential is added via the substitution Eq. (7).
For the gauge and superconducting phase we proceed as
described in App. A. For the inner radius of the ring we
take 30 nm and for the outer radius 40 nm.

Appendix C: Dependence of the induced gap on
Al-layer thickness

In Fig. 14 we show the induced gaps of the two-
facet and three-facet device for two different thicknesses
of the Al-layer: 7 nm and 10 nm. For the thicker Al-
layer the induced gap is always larger, indicating that
the semiconductor-superconductor coupling is stronger in
this case. Therefore, the thickness of the superconductor-
layer might be used as an additional knob, in addi-
tion to the gate26,54, to control the strength of the
semiconductor-superconductor coupling.

Appendix D: Additional phase diagrams

Here we show additional phase diagrams calculated
for other geometries and different accumulation layer
strengths as in the main text.

In Fig. 15 we show the phase diagram for the two-facet
wire. Since calculation of the topological gap is very
expensive, we show the DOS at three cuts of different
topological phases at fixed gate voltage. We find that the
topological phase space is greatly reduced in comparison
to the three-facet device shown in Fig. 11 (b). Partly
this is also caused by the thicker Al layer which is 10 nm
compared to 7 nm. The effect of Al-layer thickness is
further investigated in Fig. 16, where we show three-facet
phase diagram for 10 nm Al thickness and a two-facet
phase diagram for 7 nm Al thickness. We find that the
topological phase space for the two-facet device with 7 nm
Al thickness is significantly larger than with 10 nm Al
thickness.

In Fig. 17 and 18 we show phase diagrams for the
weaker accumulation layer corresponding to ρacc = 5 ×
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