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In the presence of crystalline symmetries, certain topological insulators present a filling anomaly: a
mismatch between the number of electrons in an energy band and the number of electrons required
for charge neutrality. In this paper, we show that a filling anomaly can arise when corners are
introduced in Cy,-symmetric crystalline insulators with vanishing polarization, having as consequence
the existence of corner-localized charges quantized in multiples of £. We characterize the existence
of this charge systematically and build topological indices that relate the symmetry representations
of the occupied energy bands of a crystal to the quanta of fractional charge robustly localized at
its corners. When an additional chiral symmetry is present, 5 corner charges are accompanied by
zero-energy corner-localized states. We show the application of our indices in a number of atomic
and fragile topological insulators and discuss the role of fractional charges bound to disclinations as

bulk probes for these crystalline phases.

Topological crystalline insulators (TCIs) [1-7] are
known to exhibit a variety of quantized electromagnetic
phenomena. They host bulk dipole moments that lead
to surface charge densities quantized in fractions of the
electronic charge e [8-13]. Recently, it was found that
TCIs can also host higher bulk multipole moments that
manifest lower-order moments bound to their boundaries
[14, 15]. For example, a quadrupole insulator in two di-
mensions has edge-bound dipole moments and corner-
bound charges, while an octupole insulator in three di-
mensions has surface-bound quadrupole moments, hinge-
bound dipole moments, and corner-bound charges. Just
as in the case of insulators with symmetry-protected
dipole moments, crystalline symmetries quantize the
boundary signatures in quadrupole or octupole TCIs. In-
deed, TCIs with quantized multipole moments are sym-
metry protected topological phases of matter; their quan-
tization is robust and can change only in discrete jumps
at phase transitions [14, 15], unless the protecting sym-
metries are broken.

A salient property of TCIs with quantized higher mul-
tipole moments is that some of their protected observ-
ables at the boundary are at least two dimensions less
than the protecting bulk. This property has now been
extended to a broader family of TClIs, broadly referred to
as higher-order topological insulators [15-41]. In this pa-
per, we focus on two-dimensional (2D) higher-order TCIs
having zero-dimensional topological signatures. A num-
ber of studies have recently shown examples of such TCIs
which exhibit in-gap corner-localized states [15, 21-27],
some of which have been related to fractionally quantized
corner charges [15, 22, 23, 27]. Interestingly, many such
TCIs have these corner signatures in spite of vanishing
quadrupole moments, and their mechanisms of protec-
tion and associated topological invariants are still not
completely elucidated.

In this article we systematically study 2D second-order
TCIs in class Al (spinless and time-reversal symmetric in-

sulators) protected by C,, symmetry and find the topolog-
ical indices that connect the bulk topology of these TCIs
with corner or defect-bound fractional charges. We show
that the fractional quantization of corner charge arises
from a filling anomaly: a topological property of the oc-
cupied energy bands of a TCI that keeps track of the
mismatch between the number of electrons required to
simultaneously satisfy charge neutrality and the crystal
symmetry. This mismatch exists even in first-order TCIs
with quantized dipole moments —giving rise to quantized
fractional charge at edges [10, 12, 42-44]— and we dis-
cuss this type of filling anomaly to introduce the con-
cept. Our focus, however, is on a refined form of a filling
anomaly that originates only when corners are created
in a lattice. Such corner-induced filling anomalies are
particular of higher-order topological phases. We build
topological indices that allow us to identify the cases in
which the filling anomaly arising from edges is avoided,
but the filling anomaly due to corners is not. Given the
set of rotation topological invariants for a particular C,,
symmetry (extracted from the representations of the lit-
tle groups of the occupied bands at the high symmetry
points of the Brillouin zone), the topological indices we
derive relate the set of rotation topological invariants to
the quanta of the corner-bound charge. We show that in
obstructed atomic insulators, i.e., insulators that admit
a Wannier representation [45], the filling anomaly is in-
timately related to the locations of the Wannier centers
of the electrons in the bulk of the crystal. However, the
index theorems apply even for crystalline insulators that
are not Wannier-representable, as we will show by pro-
viding examples for the quantization of charge fraction-
alization at the corners of fragile topological crystalline
phases [46-49].

The paper is organized as follows. In Section I, we first
classify C),-symmetric TCIs in terms of rotation topolog-
ical invariants which we define (see Refs. 23, 50-53 for
other related invariants and classifications). In Section II,
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FIG. 1. Quantized fractional corner charge in C,-symmetric
TCIs. The plots show the total (electronic and ionic) charge

density of two-dimensional TCIs. (a) a Cy-symmetric TCI
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with corner charge =, (b) a Cs-symmetric TCI with corner
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and (d) a Cs-symmetric TCI with corner charge ‘%‘ In all
cases, the bulk and edges are neutral. These charge patterns
are obtained by stacking the primitive generator models as

described in Section V.
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we present model Hamiltonians that constitute primi-
tive generators of these classifications. All of our gen-
erators are Wannier-representable [45, 54-57] and have
the property that they can be combined to span the en-
tire set of phases in these classifications. The Wannier-
representablility of our generators is advantageous be-
cause it transparently connects the Wannier centers of
the electrons in the bulk and boundaries of a lattice to
the filling anomaly, and consequently to the edge and cor-
ner charge. Additionally, because of their simple struc-
ture and our choice of the Al symmetry class, all of our
generator models can be straightforwardly constructed in
metamaterial contexts through the evanescent coupling
of wave-guide or resonator modes. This will allow for the
immediate realization of our predictions in experiments.

After introducing the generators, in Sections III and IV
we describe the mechanism that gives rise to the edge and
corner filling anomalies, respectively, and how they relate
to edge and corner fractional charges. In Section V we ap-
ply our insights from the previous sections to identify the
boundary charges in the primitive generators, which we
then use to build index theorems for the filling anomaly
and corner fractional charge of any C),-symmetric higher-
order TCI in class AI. We find that TClIs in a lattice with
a global C),-symmetry host corner-localized charges that,
when added within a spatial sector subtended by an an-
gle of 27“ from the center of the lattice, are quantized in
multiples of £. In particular, if each 27 sector has only
one corner, the charge is fractionally quantized at each
corner of the lattice, as shown in Fig. 1.

After the construction of the topological indices, in
Section VI we provide examples of the fractional quan-

tization of charge in TCIs without a Wannier represen-
tation, and in Section VII we apply our theory to show
that higher-order T'CIs bind fractional charge at the core
of certain topological defects. Finally, we present a dis-
cussion and our conclusions in Section VIII.

I. Classification

Two-dimensional TCIs in class AI [58-60] preserve
time-reversal symmetry (TRS), having Bloch Hamilto-
nians satisfying h(k) = h*(—k). These systems have a
vanishing Hall conductance, indicated by a zero Chern
number. The presence of additional C,, symmetry, how-
ever, allows for a finer classification of topological phases
in these insulators [2, 23, 50-53] (see Appendix A in [61]
for the detailed construction of the classification). These
classes can be most directly distinguished by the value of
their polarization [8-11, 62-64]

P™ = pia; + poag, (1)

where the superindex n labels the C,-symmetry of the
classification, a; and as are primitive unit lattice vec-
tors, and the components p; and py are topological in-
dices that correspond to quantized Berry phases along
the non-contractible loops of the Brillouin zone (BZ)
[8, 12, 13, 50]. We take a; and az to be a; =%, a3 =§
in C4y and Ch-symmetric lattices, and a; =X, ag =
%)‘(—i— ?S/ in Cg and Cs-symmetric lattices (note that we
have set all lattice constants to unity). As reviewed in
Appendix B in [61], the values of the polarization P form
a Zs index in Cy-symmetric TCIs as it can only take the
values p1 = p2 € {0, §}; a Zy X Zy index in Ca-symmetric
TCIs with values p1,p2 € {0,5}; and a Zs3 index in Cs-
symmetric TCIs with values p; = p2 € {0, 5, %}, while
in Cg-symmetric TCIs the polarization always vanishes.

More generically, we can distinguish nontrivial topo-
logical classes arising from the C,, symmetry through
the symmetry representations that the occupied energy
bands take at the high symmetry points of the BZ
(HSPs)[2, 45, 50, 52, 53, 65, 66]. Consider C,-symmetric
Bloch Hamiltonians, which obey #,h(k)?! = h(R,k),
where 7, is the n-fold rotation operator obeying 7' =1,
and R, is the n-fold rotation matrix acting on the crys-
tal momentum k. We denote the HSPs as II(™). These
are defined as the special points in the BZ which obey
R,II( = I1(™) modulo a reciprocal lattice vector. Rota-
tion symmetry then implies that [#,,, h(TI™)] = 0. Thus,
the energy eigenstates of the Bloch Hamiltonian at HSPs
are also eigenstates of the rotation operator. Let us de-
note the eigenvalues of #,, at HSP II(™ as

n) _ 2mi(p—1)/n _
Hé)fe P=D/n " for p=1,2,...n, (2)
(see a complete list of HSPs in Appendix A in [61]).
Given a subspace of energy bands, we can compare these
rotation eigenvalues at the various HSPs. If the eigenval-



ues change at different HSPs, the energy bands have non-
trivial topology. Accordingly, we use the rotation eigen-
values at II(™) compared to a reference point I' = (0,0)
to define the integer topological invariants

V] = #1lm — ¢, (3)

where #H,(,”) is the number of energy bands below the

(in-gap) Fermi level with eigenvalue H,(,"). Not all these
invariants are independent, however. First, rotation sym-
metry can force representations at certain HSPs to be
the same. Cj symmetry forces the representations at X
and X’ in the BZ to be equal, while Cs symmetry forces
equal representations at M, M’, and M”, as well as at
K and K’. Furthermore, there are redundancies in the
invariants due to: (i) the fact that the number of bands
in consideration is constant across the BZ, from which
it follows that 3 I = > #1 or ZP[H,(,H)] =0,
and (ii) the existence of TRS, which implies that rotation
eigenvalues at II(™) and —II(") are related by complex
conjugation, from which it follows that [M2(4)] = [M, 24)],
(K] = [K,%), and [KP] = [K,)]. Dropping the re-
dundant invariants due to these constraints, the resulting
topological classes of TCIs with TRS and C,, symmetry
are given by the indices (™, as follows,

X® = (X1, {7, [50))

X = (X1, P, )

X® = (], [KP)

X® = (&), [K5). (4)

The C5 invariants of a Cj-symmetric insulator obey
X7 = [v?] and [M?] = —2[M"], and the Cs invari-
ants of a Cg-symmetric insulator obey [Kl(g)] = ;3)].
C,-symmetric TCIs with different x(") belong to dif-
ferent topological classes, as they cannot be deformed
into one another without closing the bulk energy gap
or breaking the symmetry [52, 53, 67, 68]. Not all
possible values of x(") correspond to insulating phases;
some points in these classification spaces are forced to
be gapless by symmetry (e.g., when in x? we have
[Xf)] + [Yl(Q)] + [Ml(Q)] = 1 mod 2 the crystal is gap-
less) [66]. Nevertheless, all C), symmetric TCIs do have
a corresponding point in its x(™ classification space.

Having identified the rotation invariants that distin-
guish the C, protected topological phases, we can ap-
ply the algebraic method developed in Refs. 52 and 53
to connect these invariants to physical properties. The
topological classification x(™ forms a free Abelian addi-
tive structure. Two C),-symmetric TCIs with Hamilto-
nians hgn) and hén), in classes Xgn) and Xén), and hav-
ing rotation operators 7, and 7., respectively, can be
stacked leading to a third C),-symmetric insulator with

Hamiltonian hgn) = hg") @ hgn), and with rotation op-

erator 7/, = #, @ 7. The resulting insulator is in class
X:(,,n) = X§") + Xgn). Thus, given a C),, symmetry which
classifies TCIs using N topological invariants, all topo-
logical classes - and their topological observables - can
be accessed by a set of N primitive generators: a set of
C,,-symmetric TCIs having invariants represented by vec-
tors x(™ which are linearly independent to one another.
From the classifications in Eq. 4, it follows that all of our
topological classes can be accessed by combinations of
3 primitive generators for each of Cy and Cs-symmetric
TClIs, and by 2 primitive generators for each of Cs and
Cs-symmetric TClIs.

II. Primitive generators

The primitive generators we consider are illustrated in
Figs. 2(c-f) and 3(c-f). The shaded squares and hexagons
delimit the unit cells. Within each unit cell, the black
dots represent its degrees of freedom; for example, they
could represent different ions — each hosting an elec-
tronic orbital — or different orbitals generated by a single
ion [45]. Although the ionic charges do not enter the tight
binding Hamiltonians represented in this lattice, our for-
mulation requires that each unit cell contains an integer
ionic charge. In all our models, we assume the center
of all the positive ionic charge is localized at the maxi-
mal Wyckoff position a of the unit cell (see Appendix C
in [61] for a description of ionic positions and choices of
unit cells) [black dots in Figs. 2(a,b) and Figs. 3(a,b)].
All the generators are TCIs that admit a Wannier repre-
sentation [69, 70] of their occupied bands.

The x(™ invariants of these generators are indicated in
Table I. In the bulk, they are Wannier-representable [69,
70], with Wannier centers pinned, by symmetry, to max-
imal Wyckoff positions other than at the center of the
unit cell. In contrast, trivial bands, in class x(™ = 0,
will necessarily have Wannier centers at the center of the
unit cell; coinciding with the position of the ionic cen-
ters. Our primitive generators are in obstructed atomic
limits [45, 57], because a connection to the trivial atomic
limit x) = 0 is not allowed unless a gap-closing phase
transition occurs or the symmetry is broken.

We present the generators in Figs. 2 and 3 in a simple
limit without hopping terms within unit cells to allow
a pictorial identification of the Wannier centers. Their
topological classes are stable to the addition of intra-cell
hopping terms or any other symmetry-preserving terms
that do not close the bulk gap. In Appendix D in [61], we
detail how adding intra-cell hopping terms can transition
our models into a variety of classes in their (") classifica-
tions. Since our generators are spinless and only require
real-valued hoppings (i.e., without any phase factors),
they are easy to fabricate in a variety of metamaterials.
Indeed, the lattices presented in Refs. 21, 24 and 26 co-
incide with the generators shown in Fig. 2(c), Fig. 3(d)
and Fig. 3(f), respectively. A first instance of a possible
solid state material realization of one of these primitive
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FIG. 2. (a,b) Maximal Wyckoff positions for (a) Cs- and (b)
Cy-symmetric unit cells. (c-e) Lattices for the three primitive
generators that span the classification of Cy-symmetric TCIs.
The lattices for the primitive generators for the classification
of Cy-symmetric TCIs are those in (c), (e), and (f).

generators is detailed in Ref. 22 for the generator shown
in Fig. 3(f).

We use the notation that a generator hgg‘),[, is Cp-
symmetric, has m filled bands, and has Wannier cen-
ters at the maximal Wyckoff positions W shown in
Figs. 2 (a,b) and 3 (a,b). The classification of Cy-
symmetric TCIs has three generators: hﬁ), hg;), and hgi)
[Fig. 2(c,d,e)]. All of them have four energy bands. The
lattice model in Fig. 2(c) has a gap that separates the first
and the second bands, and another gap that separates the
third and fourth bands. We take the first generator hﬁ)
to occupy only the lowest band, i.e., i—ﬁlling. The gen-

erators hgé) and hgi) are gapped at half filling; hence, we
take both of these generators to occupy the lowest two
bands. As indicated by their labels, the first two gen-
erators have one and two Wannier centers at position b,
respectively [red dot in Fig. 2(a)], while the third genera-
tor has Wannier centers at the two inequivalent positions
c and ¢’ [blue dots in Fig. 2(a)].

The classification of Co-symmetric TCIs also requires
three generators. We choose the first two of them to be
hgi) and héi) [Fig. 2(c,e)]. The generator hgé) is not inde-
pendent because its Cy invariants are given by the vector
x? = (2,2,0), which is linearly proportional to the in-
variant vector of h(fli), x® = (=1,-1,0). The third gen-
erator is a two-dimensional version of the Su-Schrieffer-
Heeger (SSH) model [71], labeled as h%) and shown in
Fig. 2(f) in its extremely dimerized limit. As the la-
bel indicates, it is an obstructed atomic limit with one
Wannier center at position d.

The classification of Cg-symmetric TCIs requires two

generators. We take them to be hi? and héi) [Fig. 3(c,d)].
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FIG. 3. (a,b) Maximal Wyckoff positions for (a) Cs- and
(b) Cs-symmetric unit cells. (c,d) Primitive generators that
span the classification of Cs-symmetric TCIs. (e,f) Primitive
generators for the classification of Cs-symmetric TCls.

Both of them have six energy bands. hffz) is taken to oc-
cupy the lowest four bands, and has a pair of Wannier
centers at each of the Wyckoff positions b and o' [orange

dots in Fig. 3(a)], while hgﬁc) is taken to occupy the lowest
three bands, and has its three Wannier centers at posi-
tions ¢, ¢/, and ¢’ [blue dots in Fig. 3(a)].

The classification of C3-symmetric TCIs requires two
generators. We take them to be hgz) and hé?;) [Fig. 3(e.f)],
which are related to each other by a m-rotation. Each of
these generators has three energy bands with a degener-
acy in the lowest two bands protected by C3 symmetry
and TRS at the I" point. We therefore take these two
models to occupy the lowest two energy bands. h;‘? has
its two Wannier centers at the Wyckoff position b [orange
dot in Fig. 3(b)], while hgi) has them at position ¢ [cyan
dot in Fig. 3(b)].

In Appendix E in [61] we induce the representations
for Wannier orbitals at all maximal Wyckoff positions for
all the C),-symmetric configurations, and by comparing
these representations with those of our primitive genera-
tors, show that they have the Wannier centers described
in this Section.

ITI. Filling Anomaly and Charge Fractionalization:
Polarization

Due to the crystalline symmetry of a TCI, it may be
impossible to maintain the number of electrons required
for charge neutrality. To illustrate the simplest case in
which this happens, consider the SSH model [71], which
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Schrieffer-Hegger model with the Bloch Hamiltonian of Eq. 5
and open boundaries. (a) Trivial atomic limit. Charges are
balanced. (b) Obstructed atomic limit. Positive and negative
charges are unbalanced. For N positive ions, there are N — 1
electrons (left) or N + 1 electrons (right). Solid (dimmer)
circles represent bulk (boundary) Wannier centers.

has the Bloch Hamiltonian
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This model has a reflection symmetry,

- (01
=(1s)

that protects two gapped phases separated by a gapless
point at tg = t;. We consider this insulator with elec-
trons occupying only the lowest energy band. At this
filling, and with periodic boundary conditions, each unit
cell has only one electron. To have a neutral insulator,
each unit cell in the crystal has one positive ion with
charge |e|. When we open the boundaries (with edge ter-
minations that do not cut inside unit cells), on the other
hand, the number of electrons is different at each phase.
When tq > t1, h¥9H (k) is in the trivial atomic limit and
its Wannier centers are as shown in Fig. 4(a). In the
other phase, to < t1, K337 (k) is in an obstructed atomic
limit with Wannier centers as shown in Fig. 4(b). Notice
that in the trivial phase there is charge neutrality: for IV
ions in the crystal (one per unit cell), there are N elec-
trons and the configuration is reflection symmetric. On
the other hand, in the obstructed atomic limit, charge
neutrality is lost: for IV ions, there are either N — 1 or
N+1 electrons. Reflection symmetry in A% (k) guaran-
tees pairwise degeneracies in the energies of the electronic
states at the boundaries. Thus, raising the Fermi level
can transition from N — 1 to N + 1 electrons, but not
from N — 1 to N which would be needed for neutrality.

More generically, for a preserved crystalline symmetry
that divides a lattice into n symmetry-related sectors, we
can define a filling anomaly to be

MhSSH(k)M71 _ h,SSH(fk),

1 = #ions — #electrons mod n. (6)

Thus, in the case of reflection symmetry, which divides
the lattice into left and right halves, the filling anomaly

(defined modulo 2) captures the parity of charge imbal-
ance. Reflection symmetry guarantees that any extra
charge due to charge imbalance in the obstructed atomic
limit is distributed equally among the two halves of the
lattice. Thus, when the charge imbalance is odd we will
have fractional charge § modulo |e| in each sector. This
happens for the obstructed atomic limit, which has a
dipole moment of p = 5; hence, the filling anomaly due
to edges is a manifestation of the bulk-boundary corre-
spondence for polarization.

We now extend the formulation of the filling anomaly
to TCIs with dipole moments in two dimensions. Let us
consider vertically aligned SSH chains having N, unit
cells along y. We stack N, such chains along the z-
direction as in hﬁ) [Fig. 2(f)] to form a two-dimensional
lattice with open boundaries along y. To avoid intro-
ducing corners, we impose periodic boundary conditions
along x. The charge imbalance in the obstructed atomic
limit will be N,. Following the analysis for the one-
dimensional case, we can define the charge density at
each of the (upper or lower) halves of the lattice per unit

cell along x by

#ions — #electrons‘ |
= e
r 2N,

mod le|, (7)

where the denominator has a factor of 2 due to the two
symmetry-related halves, and a factor of N, to determine
the charge per unit length. The charge density in Eq. 7
captures the usual fractionalization of edge charge den-
sity due to a bulk polarization that is quantized under
symmetries [8, 10, 12, 13]. It is useful to note that the
filling mismatch associated with polarization scales with
the system size along x, N,. The definition of charge den-
sity in Eq. 7 also provides us with a microscopic picture
of charge fractionalization; in the extremely dimerized
limits we are considering, the fractional boundary charge
can be pictorially determined by counting the fraction of
bulk Wannier orbitals that fall into the boundary unit
cells modulo |e| (e.g., only half of a bulk Wannier orbital
falls into the boundary unit cell in Fig. 4(b), right).

In previous work, the polarization components p;—1 2
(Eq. 1) of reflection or inversion symmetric TCIs were
related to the inversion or reflection symmetry eigenval-
ues that the occupied states take at the HSPs [12, 13].
Extending this approach to C,, symmetries [50], the val-
ues of polarization in terms of the invariants of Eq. 4
(detailed in Appendix B in [61]) are

€
P = §[X1(2)](al + az)

€ €
PO = S+ (M s + S (1G7) + (M7
PO =0

PO = 2 ([ () + 21K (] (an + ), ®

all of which are defined modulo e. These indices can
be directly applied to our primitive generators to deter-



mine their polarizations. Furthermore, the surface charge
theorem immediately relates the bulk polarization to a
surface charge density and, for our C, protected TClIs,
yields a quantized fractional charge per edge unit cell.
The values of polarization for our primitive generators
are indicated in Table I.

IV. Filling Anomaly and Charge Fractionalization:
Corner Charge

When a TCI has two open edges that intersect to
form a corner, a filling anomaly arising from the cor-
ner itself may occur. This filling anomaly lies at the
heart of higher-order topological insulators in two dimen-
sions. In the initial study of topological quadrupole in-
sulators, for example, there was a recognition that an
overall charge imbalance exits in the subspace of occu-
pied bands [14, 15], which has latter been found in other
higher-order topological phases [27, 40, 41]. The work
by Song et al. [17] additionally identified that, in higher-
order TCIs that allow a Wannier representation, a mis-
match exists between the Wannier centers of the occu-
pied bands and the atomic positions in the crystal. Here,
we connect the notion of Wannier center mismatch with
the overall deficit of charge in energy bands by consid-
ering the bulk and edge electrons in real space repre-
sentations of higher-order topological bands. This will
allow us to put forward a formal definition of the filling
anomaly in two dimensions, and to relate all the possible
filling anomalies to topological indices (Eq. 11) written
in terms of the topological invariants defined in Eq. 4.

For this purpose, we will use of our primitive genera-
tors defined in Section II. The connection between real
space and crystal momentum space via our Wannier-
representable primitive generators will make evident the
connection between this higher-order filling anomaly and
the quantization of fractional corner charge. Our topo-
logical indices, however, are more general than the prim-
itive generators they are derived from, and are valid also
for TCIs that are not Wannier representable, as we will
show for fragile phases in Section VI.

Let us first illustrate the existence of a corner-induced
filling anomaly with an example. Consider Fig. 5, which
shows the Wannier centers of the Cj-symmetric crys-
talline insulator with the Bloch Hamiltonian

(4)
4) _ h Ye
B — < 1%7 no | 9)

This is an 8 band TCI formed by stacking the primitive
generators hgi) and hgi). v represents any Cy symmetry-
preserving couplings between the generators that do not
close the energy band gap. We will enforce a global Cy
symmetry in the lattice of Fig. 5, and consider the 4
quadrants —each having one corner — as our 4 symmetry-
related sectors. At %—ﬁlling, each unit cell has a positive
ionic charge of 3|e|, and its electrons have Wannier cen-

ters at the three maximal Wyckoff positions b, ¢, and
c’. For the choice of Wannier centers at each unit cell
shown in Fig. 5(a), a lattice of 4 x 4 unit cells is shown
in Fig. 5(b). Now we show that this TCI must have a
charge imbalance caused by the presence of corners if it is
to preserve Cy symmetry: the configuration in Fig. 5(b)
preserves Cy symmetry in the bulk, but not at the edges.
This configuration, of course, is incompatible. Hence,
we deform the edge electrons to procure the preservation
of the overall Cy-symmetry, as in Fig. 5(c). We find,
however, that Cy-symmetry at the edges can be achieved
only at the expense of breaking Cy symmetry at the cor-
ners. To restore the overall Cy symmetry, we need to
cause a charge imbalance by either removing 3 electrons
[Fig. 5(d)] or adding one [open green circle in Fig. 5(e)].
This argument holds for any other choice of deformation
of the edges. We conclude that it is not possible to have
any choice of Wannier center assignment that preserves
charge neutrality and C4 symmetry simultaneously. The
filling anomaly in this case is 7 = 3 or n = —1, and
only n mod 4 = 3 is well-defined (c.f. Eq. 6). Since
by symmetry the charge has to be equally distributed
over each of the 4 sectors, there has to be a total charge

per sector modulo |e| of Qeorner = 3|4—e‘. A plot of the
charge density for this insulator (with added intra-cell
hopping terms as detailed in Appendix F in [61]) is shown
in Fig. 1(a). There, we verify that each quadrant has a
charge of %, and that the charges in each quadrant ex-
ponentially localize at the corners of the lattice. A more
rigorous demonstration of the exponential localization of
the corner charge can be found in Appendix H in [61].
TCIs with P # (0,0) will have more edge states than
the number of edge electrons needed for charge neutral-
ity, with the number of extra edge states scaling with
N. As a consequence, a neutral TCI with P # (0,0) has
electrons that delocalize along the boundary in a metal-
lic state and, being gapless, the notion of a corner filling
anomaly is lost. Only if P = (0, 0), will both the bulk and
the edges be generically insulating (Appendix F in [61]
shows this characteristic in the simulation of the Hamil-
tonian in Eq. 9) allowing for a well-defined corner filling
anomaly, and consequently well-defined corner charges.
Neutrality is then achieved only up to the corner filling
anomaly (that does not scale with N). Although each of

the generators hgi) and hgi) has P = (§, §), the combined
TCI in Eq. 9 has P = (0,0), and therefore its edges are
also insulating, leading to the well-defined corner charge
of Fig 1(a).

To generalize the properties illustrated in this exam-
ple, consider a C,-symmetric TCI with vanishing polar-
ization forming a lattice in the shape of a regular polygon
having m corners, where m is a multiple of n. The van-
ishing polarization will ensure that all the bulk and edge
energy bands below the Fermi level are completely filled.
When the filling anomaly is zero, the TCI is neutral, but
if it is not, there will be a charge imbalance that local-
izes at corners. In this second case, the C, symmetry
of the lattice enforces the existence of at least one set
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FIG. 5. Filling anomaly in the C4-symmetric insulator of
Eq. 9. (a) A unit cell with charge 3|e| at position la and
three electrons with Wannier centers at positions b (red circle)
and ¢,c (blue circles). (b) A 4 x 4 lattice formed by tiling
the unit cell shown in (a) along x and y. The configuration
is neutral but breaks Cj-symmetry. (c) A deformation of
(b) as an attempt to restore C4 symmetry along the edges;
symmetry is still broken at corners. (d,e) Two choices that
restore full Cs symmetry in the lattice by either removing 3
corner electrons (d) or adding one (e); in either case, charge
neutrality is lost.

of n-fold degenerate states localized at corners. Since
the degenerate corner states can be above or below the
Fermi level, the total charge imbalance is not unique. We
can say at most that the amount number of charge ro-
bustly protected by the bulk phase is  modulo n (Eq. 6).
This charge is distributed in equal parts in each of the
symmetry-related sectors. Sectors subtended by an angle
of 27” rad in our lattices will then have a total (electronic
and ionic) charge of

Qsector = ﬁ|e‘ (10)
n

which is well-defined only modulo |e|. We more generi-
cally refer to sectors instead of corners because, depend-
ing on the chosen global geometry of the lattice, the
charge on a single corner may not be quantized. For
example, if a Co- (C3-) symmetric bulk Hamiltonian is
put on a rectangular (hexagonal) lattice, only the sum of
the charges in two adjacent corners will be fractionally
quantized. Also, see Ref. 72 for a concrete example of an
insulator that has zero filling anomaly and consequently
zero total charge at each symmetry-related sector but
nevertheless has small residual charges at each corner of
opposite sign.

Just as in the case of polarization, the corner filling
anomaly comes from the bulk of the crystal. This al-
lows us to also develop a microscopic picture that relates

us

the corner fractional charge in a 27 sector to the local

distribution of Wannier centers around corner unit cells.
In the extremely dimerized limits (as in the case of our
generators, Figs. 2 and 3), the Wannier orbitals are cut
in equal parts by the unit cell’s boundaries. The frac-
tional number of electrons in a 27” sector (modulo 1) can
then be obtained by counting the portion of bulk Wan-
nier orbitals falling into the corner unit cells at that sec-
tor. Adding symmetry-preserving hopping terms to the
Hamiltonian that take it away from the extremely dimer-
ized limit can modify the distribution of Wannier centers
in the lattice, with the most dramatic change happening
at the corners, and the least change happening near the
center of the lattice. This results in the spreading of the
corner charge into the bulk with exponentially decreas-
ing amplitude away from the corners (see Appendix H in
[61]). The integrated charge over the 2Z sector, however,
remains quantized.

This microscopic picture explains the lack of quantiza-
tion at individual corners, — but the strict quantization
over symmetry-related sectors — by taking into account
the shape of the Wannier orbital. This is discussed in
detail in Appendix G in [61]. Remarkably, this micro-
scopic picture also stipulates the existence of particular
cases of Cy-symmetric TCIs that, when put in lattices
with 4 corners, exhibit strict quantization of fractional
charge at each individual corner. This is the case of gen-

erator héi) when put in a parallelogram lattice, as shown
in Appendix G in [61]. Finally, the microscopic method
allows us to assign fractional corner charge even in TCIs
with non-vanishing polarization. These corner charges
are not physically meaningful on their own, but their
value is useful because they can result in well-defined
corner charge in combination with other TCIs that make
the total polarization vanish. We denote these ill-defined
corner charges as nominal corner charge; i.e., they are
corner charges in systems that also have a bulk polariza-
tion. These corner charge values will be useful for the
construction of the index theorems for corner charge in
Section V, but cannot be observed unless the polarization
is ultimately removed.

V. Construction of the Topological Indices
for Electronic Corner Charge

In Sections III and IV we saw that the fractionaliza-
tion of edge and corner charges proceeds from a filling
anomaly that is intimately related to the positions of
the Wannier centers in C,-symmetric TCIs. Further-
more, we also saw that the fractional boundary electronic
charges can be captured by inspection if we consider elec-
tronic configurations in the zero-correlation length limit
because then the bulk Wannier centers are located at
maximal Wyckoff positions of the lattice even with open
boundary conditions.

In order to construct topological indices for the elec-
tronic corner charge (akin to those in Eq. 8 for edge
charge), we first consider all possible Wannier configu-
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FIG. 6. Edge and corner fractional charges for TCIs with
Wannier centers at maximal Wyckoff positions for (a,b) Cy-
symmetric, (c,d) Ce-symmetric, and (e,f) Cs-symmetric lat-
tices. (a) Onme electron at position b. (b) Two electrons at
positions ¢ and ¢’. (c) Two electrons at positions b and b'.
(d) Three electrons at positions ¢, ¢/, and ¢”. (e) One elec-
tron at position b. (f) One electron at position c. Solid col-
ored circles represent bulk electrons; dimmed colored circles
represent boundary electrons for a particular choice of C)-
symmetry breaking; white circles represent atomic ions. Bulk
unit cells are always neutral. Electronic charges at edge and
corner unit cells after the removal of the symmetry breaking
electrons are indicated mod 1 (in units of the electron charge

e).

rations that respect C),-symmetry in the zero-correlation
length limit. This is shown in Fig. 6. The electronic
edge and corner charge can then be derived from Fig. 6
pictorially by counting the fraction of Wannier orbitals
falling in each unit cell. This information, along with
the Wannier center description of the primitive genera-
tors defined in Section II, allows us to then extract both
the electronic edge and corner charges of each generator,
which we will need to construct the topological indices
for the quanta of charge at corners.

In what follows, we consider all minimal and inequiva-
lent Wannier configurations given a C,, crystalline sym-
metry (by minimal we mean that we will put only
one Wannier orbital at each Wyckoff position). In Cy-
symmetric TCIs, there are two possible Wannier configu-
rations, one with one Wannier orbital at Wyckoff position
b [Fig. 6(a)] and a second one with two Wannier orbitals,
one at ¢ and another one at ¢’ [Fig. 6(b)]. Both configu-
rations have polarization P = (5, §), leading to the frac-
tional charge on the edges. However, when we consider
corners, a crucial distinction emerges; Wannier orbitals
at Wyckoff positions b have fractional corner charge of ¢,
while those at positions ¢, ¢’ have no expected fractional
corner charge. For Cs-symmetric TCls, in addition to
the two configurations allowed for Cy-symmetric TCls,
there is a third configuration having one Wannier orbital

e

at Wyckoff positions d (not pictured), which render &

symm. | generator Invariants P Qcorner
X07) (M) (0437
o | By a1 0 (58 ¢
hly) 2 0 0 0,0) ¢
hy 11 1 (55 0
X1 ) 7]
C; | hG 1 1 0 (589 ¢
5 U (8 0
h{?) 0 1 1 0, 0
(M7 (K]
Cs h% 0 2 0,00 £
h3c 2 0 ( ) ) %
K] (K57
Cs | By 1 -1 (5.9 %
S 1 0 (2,2) 0

TABLE I. Topological invariants, polarization P, and nom-
inal electronic corner charge of the primitive generators that
span the classifications of Cy-symmetric TCIs. The values of
P = pi1a; + peaz are given in pairs (p1,p2). The unit lattice
vectors are a; = X, az = ¥ for C4 and Ca-symmetric lattices,

and a; = X, az = $X+ @y for C3 and Cg-symmetric lattices.

edge charge along one pair of edges due to P = (0, 5),
but no corner charge. For Cg-symmetric TCIs, there are
two configurations, both having P = (0,0), and conse-
quently leading to a vanishing edge charge. At corners,
however, the charge is fractionalized. The first configura-
tion has two Wannier orbitals, one at Wyckoff positions
b and another one at b' [Fig. 6(c)]. This configuration
leads to corner charge in multiples of % The second
configuration has three Wannier orbitals, each of them
at Wyckoff positions ¢, ¢’ and ¢, respectively [Fig. 6(d)].
This second configuration leads to corner charge in mul-
tiples of £. The combination of these two systems can
consequently give rise to corner charge in multiples of
&+ In Cz-symmetric TClIs, there are also two configura-
tions: one with one Wannier orbital at Wyckoff positions
b [Fig. 6(e)] and a second one with Wannier orbital at ¢
[Fig. 6(f)]. They have polarizations of P = (22, 2¢) and
P = (5, %), respectively. Both configurations then give
rise to the edge charge. At corners, however, the con-
figuration with one Wannier orbital at Wyckoff position
b does not have fractional charges, while the one having
the Wannier orbital at ¢ does. By these considerations,
the nominal electronic corner charge for the primitive

generators are found to be those in Table I.

This information characterizes the corner properties of
TCIs in class Al having additional C,, symmetry, and
hence allows us to build index theorems that determine
the fractional electronic corner charge. This relies on the
fact that for a Hamiltonian hgn) = hg") @ hgn), (i) its
boundary electronic charge is Q3 = Q1 + Q2 (mod e),



and (ii) its invariants are Xén) = X(ln) + Xén). The in-
dex for the electronic corner charge of a C,-symmetric
insulator is then given by a linear combination of the
invariants that form the vector x(™. For example, Cy-
symmetric TCIs have three invariants. The electronic
corner charge is given by QE‘?MW = [Xf)] +a2[M1(4)] +
ag[M(4)]. To find the coeflicients a;—1 23, we solve for

Q; = ng)aj, where Q); is ith element in the vector of
corner charges formed by the last column in Table I, and

ng) is the (4,7)th element in the matrix formed by the

three columns labeled [Xl(Q)}7 [M1(4)], and [M2(4)] in Ta-
ble I. This approach gives

Brner = (X 4+ 20M{Y] + M) mod e
Qs = X1 = P+ M) mod e
€ € R
QU hner = 7M7) + G IK(Y] mod
€

QU ner = 31K5”] mod e (11)

where the superindex n in QEZ)W labels the C,, sym-

metry. In the C,-symmetric classification, ng,).ne,« is a
Z,, topological index. We could refer to the indices in
Eq. 11 as secondary topological indices because they re-
quire the primary topological index — the polarization P
— to vanish in order to give a protected, corner-localized
quantized feature.

As an example of the application of the indices in
Eq. 11, let us return to the eight-band model consid-
ered above in Eq. 9, which has electronic corner charge
of , and a total (electronic and ionic) charge density

shown in Fig. 1(a). By itself, the model hgi) at % fill-
ing that forms one block of the eight band system has
edge states owing to its P = (§, §) polarization. Not
all the edge states can be occupied at this filling while
preserving the symmetry, however, and the edge is gener-
ically metallic (see Appendix F in [61] for details). We

can remove the polarization by the addition of hgi), the
second block of the eight band model, which at % 5 filling
also has P = (§, §). Under any Cy symmetry- preservmg
coupling terms 7, that keep the energy gap open, the pri-
mary index of the combined insulator (Eq. 9) at % filling

is P = (0,0), but its secondary index is Q((;é)m@r = 7 (first
equation in Eq. 11). To confirm that this charge is generi-
cally stable, we add general random hopping terms to the
Hamiltonian up to nearest-neighbor unit cells that pre-
serve only TRS and Cy symmetry and numerically verify
that the ¢ electronic charge remains strictly quantized
(see Appendix F in [61]). In contrast, if we add pertur-
bations that break C; symmetry down to C5 symmetry
(C symmetry keeps bulk polarization quantized to zero),
the quantization of charge at each corner in the lattice
is lost. However, the sum of electronic corner charge of
two adjacent corners (i.e., in a region covering half the

lattice) is §, in agreement with the value predicted by

insulator |charge imbalance n Qsector
BREYIS AN —1 3 3l
h(4) @ h(4) AN-2 2 U
hg; 6N -4 2 U
hiY) 6N-3 3 L
() g b e
hy, ® hy 6N-2 1

TABLE II. Charge imbalance (upon removal of all boundary
Wannier centers), filling anomaly 7 (Eq. 6) , and total sec-
tor charge Q (Eq. 10) for some models having vanishing bulk
polarization. Calculations are assuming that C),-symmetric
Bloch Hamiltonians are put in C),-symmetric lattices, respec-
tively.

the secondary index in the second equation of Eq. 11.
The indices in Eq. 11 can be used to generate other cor-
ner charges. The total (ionic and electronic) fractional
charge of |23| in Fig. 1(b) was obtained with a Hamil-
tonian deformable to hgi) @ hﬁ) 1 filling, while the
corner charges of % and \%I in Fig. 1(c,d) were obtained
by Hamiltonians deformable to hﬁ) @héi) at
to hgz) @hgi) at % filling, respectively. In all cases, the po-
larization of the Hamiltonians is P = (0,0), and the elec-
tronic corner charge indices in Eq. 11 give Qcorner = 5,
%, and %, respectively. The total charge density, which
takes into account the ionic contributions, results in the
fractional charges shown in Fig 1. Since the electronic
charge fractionalization is a property of the bulk, a fast
way to determine the filling anomaly is to remove all
boundary Wannier centers in the lattice (e.g., removing
all dimmed circles in Fig. 5). The resulting charge im-
balance mod n then gives the filling anomaly. Table IT
shows the charge imbalance by removal of all boundary
Wannier centers, filling anomalies, and total (electronic
and ionic) corner charge values over 2 spatial sectors for
C-symmetric TCIs used in the simulations in Fig. 1.

12 filling and

VI. Fractional corner charge in TCIs without a
Wannier representation

The secondary index theorems in Eq. 11 were de-
rived using a basis of primitive generators that ad-
mit Wannier representations. We chose that basis to
make transparent the derivation of the indices. How-
ever, the indices themselves transcend the basis and in-
dicate the fractionalization of electronic corner charge
even in TCIs that are not Wannier-representable, for ex-
ample, in fragile TCIs [46-49]. Recently, corner states
and corner fractional charges have been found in frag-
ile TCIs [27, 33, 40, 41], and the existence of this frac-
tionalization has been associated with quantized nested
Berry phases [27, 33, 40, 41] originally proposed in Ref. 14
for the characterization of corner charges in quantized
quadrupole insulators. Unlike atomic insulators, frag-



ile TCIs do not admit the construction of Wannier cen-
ters. However, they have the property that upon the
addition of atomic TCIs, the combined system becomes
Wannier-representable. We can write this relation as
Har, ~ Hpr @ Hyy,, where Al—; o are atomic TCIs
and F'T is the fragile TCI. The electronic corner charges
of these TCIs must then obey Qar, = Qrr + Qar,,
which implies that, since both Qar, and Q) 41, are quan-
tized, Qrr will also be quantized. Moreover, due to the
algebraic structure of our classification [52, 53], it fol-
lows that the classes of these TCIs in their C,, classi-
fication obey xf&% = Xgl% + X( ") The same algebraic
structure stipulates that the secondary indices must obey

t(:’robr)’ne'r‘ (X(,:])z ) ((:Zazner (Xg:f])ﬂ) +Ql(227)”n67‘ (XE;LI) ) Since for
the atomic TCIs we know that Qcorner (XXLI) ) = Qar,, for

1 = 1,2, it follows that Qcomer(ng) Qrr. Thus, our
1nd1ces in Eq. 11 correctly determine the quantization of
electronic fractional charge in fragile phases. A concrete
example of the corner charge in a fragile phase is shown
in Appendix I in [61] for one of the phases described in
the recent preprint of Ref. 73. There, we (i) calculate the
indices from a decomposition into atomic TClIs, (ii) di-
rectly evaluate the secondary index from the topological
invariants of the fragile phase, and (iii) compare these
results with numerical simulations.

VII. Fractional charge at topological defects

First-order TCIs manifest fractional charges at dislo-
cations, following the topological index Qgisiocation =
P - B, where P is the polarization, Eq. 1, and B is the
Burgers vector that characterizes the dislocation [67].
Higher-order TCIs have P = 0, and thus do not manifest
fractional charges at dislocations. In this section we will
see that instead they manifest fractional charges at the
core of disclinations. Indeed, it is known that topological
disclination defects that induce a curvature singularity in
the lattice of C\-symmetric topological superconductors
can trap Majorana bound states [52, 53]. Here, we find
that these defects also trap fractional charges in higher-

order TCIs. In Fig. 7 we show a disclination with a Frank

angle of —2% rad in the primitive model héi)

G . Inducing
such a disclination converts the hexagon of Fig. 3(d) into
the pentagon of Fig. 7(a). The five corners in the pen-
tagon give rise to an overall corner charge of % Thus,
the core of the disclination must trap a fractional charge
of 5. Indeed, the Wannier center configuration shown
in Fig. 7(b) for the lattice in Fig. 7(a) reveals that, for
any area comprised of unit cells containing the core of
the disclination, a total fractional number of electrons
are enclosed. Fig. 7(c) shows a plot of the charge den-
sity for the lattice in Fig. 7(a) but to which additional
hopping terms inside the unit cell were added of weak
enough amplitude so as to not cause a phase transition.
This plot indeed presents the expected charge distribu-

tion. If the intra-unit cell couplings are larger than the
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FIG. 7. Quantized fractionalization of charge at the core of
disclinations. (a) Disclination in the lattice of primitive gen-
erator h{”. (b) Wannier centers for the lattice in (a). There
is an overall fractional electronic charge (each hollow circle

contributes £ charge) within the region of darker unit cells

which enclosze the core of the disclination. (c) Charge den-
sity for the disclination in (a). All corners and the core of
the disclination have charges of %‘ The simulation is done
over 276 unit cells with added intra-unit cell hoppings be-
tween nearest neighbors of i the amplitude of the inter-unit
cell hoppings.

inter-unit cell couplings, a bulk phase transition occurs,
leading to vanishing corner charges and integer charge at
the core of the disclination.

Generalizing this principle of charge conservation (mod
le]), our corner charge indices can be immediately used
to generate indices for the fractional charge at the core
of disclinations in a C),-symmetric insulator:

Q

a5/ wcorner d . 12
3 Qeorner mod el (12)

Qdisclination = -

We also note that inducing this disclination disrupts the

chiral symmetry in the primitive model hgi). Thus, al-
though the pristine insulator has zero energy states local-
ized at corners [21], there are no such states at the core
of the disclination. Despite this, the fractional charge
trapped at the core of the defect is robustly quantized to
5, suggesting that disclinations are bulk probes of TCIs

with Qéﬁlner # 0 [52, 53, 74-76], just as dislocations are
bulk probes of TCIs with P # 0 [67, 76-82].

VIII. Discussion and Conclusion

In this paper, we have shown that electronic charge
fractionalizes in multiples of £ at the corners of C,, sym-
metric TCIs with vanishing polarization. We built topo-
logical indices for the quanta of corner charge in terms
of the band representations at high symmetry points of
the Brillouin zone. These constitute secondary topologi-
cal indices, Eq. 11, that signal the presence of higher or-
der topology in TCIs with vanishing polarization. When
TCIs admit a Wannier representation, we find an clear
relation between the existence of fractional corner charge
and the positions of the Wannier centers in the bulk of
the crystal. More generally, however, a Wannier repre-
sentation is not guaranteed, but a filling anomaly can still
persist, which in turn robustly protects the fractionaliza-



tion of corner charge. Since the fractionalization of corner
charge is ultimately related to the Wannier centers of the
electrons within the crystal, we anticipate that the same
principles derived in this study will lead to the charac-
terization of corner charge in other classes of the ten-fold
classification. For example, adding spin will double the
corner charge quantization due to Kramers’ degeneracy.
However, deriving index theorems in these classes will not
be as straightforward because symmetry representations
at high symmetry points do not suffice to determine the
Wannier centers in spinful systems.

In practice, we expect solid state TCIs with non-zero

ngq)ﬂmr indices to prefer to be neutral. Despite the over-
all neutrality, we still expect the corner charges to be ob-
servable. The excess or deficit charge could be compen-
sated for in several ways. In any realistic crystal, there
will be impurities and, since the filling anomaly due to
corners only indicates O(1) uncompensated charges, im-
purities could absorb the charges needed to realize neu-
trality. This will affect the corner charge at most by an
integer when the impurity is localized very near the cor-
ner and thus the fractional part of the charge will be pre-
served. Another scenario for localized charges is in TCIs
with mid-gap topological modes associated with the frac-
tional charge. In these systems, the symmetry could be
mildly broken explicitly or spontaneously, allowing for a
ground state filling of the mid-gap modes that is globally
neutral. Then, the corner charges will also be shifted
by an integer and the fractional portion of the charge is
undisturbed. If instead there are no mid-gap topologi-
cal or impurity states, we could imagine that the over-
all excess charge at the corners can be compensated by
an occupation/de-occupation of eigenstates in the con-
duction or valence bulk bands. The resulting effect is a
near-to-quantized corner charge, with a bulk interior con-
taining the opposite charge, as shown in Appendix J in
[61]. The corrections to both the corner charge and the
background bulk charge scale as O(1/N?) for a lattice
with N unit cells per side and thus closely approximate
exact quantization in the thermodynamic limit.
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While we expect there to be electronic material realiza-
tions of systems with fractional corner charges, we believe
that the most straightforward realization of our models
is in metamaterial systems. Since our classifications are
for spinless systems that preserve time-reversal symme-
try, the hopping terms in the Hamiltonian do not require
any additional phase factors and can be engineered using
only evanescently coupled modes. Thus, our generators
can be easily implemented in a wide range of metamate-
rial platforms, as in the works in Refs. 21, 25, 26, 83-85.
In the experiments in Refs. 21, 83-85, the expected cor-
ner properties were observed spectroscopically through
the appearance of corner states protected to be at mid-
gap by chiral symmetry, IIh(k) = —h(k)II, for some
chiral operator II. We illustrated here, however, that
the true signature of fractionalization of corner charge
is a bulk topological property of the subspace of occu-
pied bands, and does not need to manifest in connection
with corner-localized mid-gap states. In the absence of
mid-gap states, more sophisticated experiments, for ex-
ample, exploring the spatial distribution of all the states
in an energy band, can reveal the fractional signatures at
corners even in metamaterials. Such experiments could
easily explore the properties of disclinations as well by
introducing such defects in resonator arrays or photonic
crystals.
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