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We propose and analyze a mechanism for rectification of spin transport through a small junction
between two spin baths or leads. For interacting baths we show that transport is conditioned
on the spacial asymmetry of the quantum junction mediating the transport, and attribute this
behavior to a gapped spectral structure of the lead-system-lead configuration. For non-interacting
leads a minimal quantum model that allows for spin rectification requires an interface of only two
interacting two-level systems. In our work we have performed a thorough study of the current
including its time dependence and steady state value. We obtain approximate results with a weak-
coupling Born-master-equation in excellent agreement with matrix-product-state calculations that
are extrapolated in time by mimicking absorbing boundary conditions. These results should be
observable in controlled spin systems realized with cold atoms, trapped ions, or in electrons in

quantum dot arrays.

I. INTRODUCTION

Recent experimental developments in solid state and
atomic physics have opened opportunities to explore
properties of quantum transport in and out of equilib-
rium 7. One important element of quantum transport
is the possibility to generate rectification of currents, or
non-reciprocal transport, that is, currents whose mag-
nitude depend on the bias direction. Such phenomena
may arise from asymmetry and nonlinearity in the un-
derlying dynamics — on a quantum mechanical level, ef-
fective nonlinearity is associated with interactions be-
tween particles®. In recent years, the study and design
of systems that rectify transport has continuously ex-
panded into the quantum regime, for example in optical
systems”® ?® and spin models?®40. Most of the recent
literature has focused on phenomenological Markovian
baths that drive the system of interest and spin rectifica-
tion was demonstrated for XXZ systems with asymmetric
coupling along the Z axis32:33:37, The ZZ couplings cor-
respond to density-density interactions as system can be
mapped to spin-less interacting fermions. The presence
of such interactions is believed to be paramount for the
presence of rectification of the spin current.

In this work we address the problem of controlling
transport between two many-body systems. In this set-
ting non-markovian effects*' ™8 are naturally expected.
We adopt an open system approach beyond the Markov
approximation to analyze a nonequilibrium many-body
problem. Two interacting leads modeled as XXZ spin
chains are coupled by a small interface, the open system,
as depicted in Fig. 1-a). For a non-interacting interface,
we present a mechanism for rectification of spin currents,
which arises from the spectral structure of the leads (see
Fig. 1-d)). We also show that for structureless leads a
non-interacting system is fully reciprocal in agreement

with the previous literature. Conversely, for structureless
baths a minimal model allowing for efficient rectification
requires a junction of two interacting spins.

Before addressing rectification of the spin current, we
establish the accuracy and efficiency of the open sys-
tem approach and show that the (non-Markovian) Born
weak-coupling master equation governing the dynamics
of the small junction is in excellent agreement with ma-
trix product state (MPS) simulations of the global dy-
namics. The sudden connection between system and
leads generates two light-cones, a weak and fast moving
cone and a strong and slow moving cone. As a byprod-
uct we extend MPS simulations by mimicking absorb-
ing boundaries that dissipate the weak light-cone. The
Born equation is determined by the first order correla-
tions of the leads, which decay as power-laws in XXZ
spin chains?®%°. Since such slow decay is a generic fea-
ture of many-body systems®!, the effects reported here
could be observed in a variety of difference systems, in-
cluding trapped atoms'3, ions*®, and superconducting
leads coupled to quantum dots® 752

II. MODEL AND TRANSPORT

We first discuss the general transport properties. As
depicted in Fig. 1-a), we consider left and right leads
coupled to an interface with a coupling Hamiltonian given
by

V=VL+Vg, Vi=2y BiSiT +B§Si] ) (1)

where Bp () are left (right) bath operators at the junc-
tion coupled with the corresponding system operators
Sr(r)- The system-bath coupling strength ~ is assumed
to be small compared to the system’s and baths’ fre-
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FIG. 1. a) Representation of bath-system-bath coupling and
effective evolution of the central interface that depends on its
past history and time correlations of the bath. b) The system-
lead state |¥) depicted as a matrix-product-state reflecting
the corresponding Hamiltonian structure of bulk-coupling. c)
The small asymmetric interface between the leads is repre-
sented as a two qubit structure. d) The system-bath asymp-
totic nonequilibrium spectral function Ar(w) under the Born
approximation for different J. couplings showing the spectral
structure of the bath with a gap around w = 0 for certain
regimes in the limit Hs < Hp (Js,y = 0.01J).

quency scales. The global dynamics are then governed
by psp = —i[Hs + Hp + V, psp], with Hg the system
Hamiltonian and Hg = Hj + Hg the sum of left and
right lead Hamiltonians. B

In an interaction picture we define V(¢) =
etfotye—iHot with Hy = Hg + Hp dictating the dynam-
ics of the combined system-bath density matrix psg. A
system operator O (that commutes with Hg for simplic-
ity) follows a continuity Heisenberg-equation from which
we define the current operator at the left (L) system-bath
junction %‘L = j(LO) = i[Vy,O]. Tts average value may
be written in a second order iterated form

10 = e {psp(ii” } = =i | L ([0 7w)]) .

2)
in which we have eliminated the first order term for con-
venience (this is exact for the cases we address here).
A similar expression follows for the current at the right
junction. Note that (2) is exact and requires solving
the system-bath many-body dynamics since (---), =
tr{--- psp(t’)}. We will focus on 1/2-spin transport such
that O = Z = STS — SS1, leading to the spin current
operator

32 =i =ilVi, Z1) = —idy | BLS) - SLBY| . (3)

2

Eq. (2) can be re-written as I, (t) = —i8y? fot dt'TIL (¢, 1),
in terms of the nonequilibrium two-particle retarded-
Green’s function®?

M (¢, ') = —i0(t — ¢){ Br() B (1)SL (1S, (t)

— BL(O)BL(t)SL(t)SL(t) + BL(t) B (t)SL(H)Sk(t')

~ BL(OBr(!)SLOSh(E) +he.) . (4)

The total average current flowing through the system is
defined as I(t) = [I(t) — Ir(t)]/2 = —i8y* [ d'IL(t, 1),

with the total Green’s function II = [II, — IIg]/2. The
asymptotic current can be expressed as

Ll /Oo dt’/OO dwe™? TI(w)
V2T J 0o —00
= 87 An(0), ()

I(c0) = —i

where we have defined the joint nonequilibrium spectral
function as Apn(w) = —Im {II(w)} with II(w) being the
Fourier transform of IT(co, ¢') (in practice the asymptotic
behavior is captured by II(#' + 00, 00)). Therefore, Ar(0)
plays a similar role to a generalized zero frequency con-
ductivity.

III. WEAK-COUPLING APPROXIMATIONS

So far, the expressions derived for the current are ex-
act. However, in order to proceed further it is conve-
nient to consider approximations to the global system-
bath state. One possibility is to use the Kubo approxi-
mation®¥ %6 which assumes that the weak-perturbation
only causes a small change in the global system-bath
state psp(t) =~ psp(0) + vf(t). Although this is a
good approach for the state of the baths, it can be
a poor approximation for the state of the small inter-
face. The Born ansatz takes this into account and
allows the system to evolve by considering that the
global state is psp(t) =~ ps(t) ® [pp(0) +~vf(t)]. With
Kubo’s linear response theory®*°® the quantum aver-
age in (4) is substituted by (---),, = tr{---psp(0)}.
Similarly, with the Born ansatz the average becomes
(- )po =tr{--- p(t")®pp(0)}. These approximations as-
sume that terms of order higher then 42 can be neglected.
Also note that the Kubo approximation to the Green
function (4) factors the first term (for example) into

(BL(t)B} (t'))0(S} (t)S1(t'))o, while the Born approxi-
mation leads to (By(t)Bl(t'))o(S} (£)SL(#'))y. Both ap-
proximations neglect correlations between system and
bath, but also the correlations that emerge between dif-
ferent baths mediated by the system. Thus, the last two
terms of (4) are dropped®”.

With the Born ansatz, tracing over the bath degrees
of freedom we may compute the evolution for the system
state®®®?. Dropping the subindex for the system state
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FIG. 2. Currents at each bond in one of the leads with-

out (top-left) and with (top-right) absorbing boundaries for
J. = J, J¥em — g and Js = A = v = 0.01J. Reflec-
tion from the boundaries are suppressed in the right panel.
(Bottom-Left) The MPS, Kubo and Born spin currents as
a function of time at the Heisenberg point J = JP2", The
dark-dashed line corresponds to (15) and the light-dashed line
to (17). (Bottom-Right) The corresponding asymptotic cur-
rents. Parameters are JS5%™ =0 and Jg = A = ~ = 0.01J.

we have the Born-Master-Equation

(Bl (£)B(t')) S:(1)S] (¢")p(t')

3

— (BI(t)Bi(t") S (t)A(t)S;(t) + h.c.|, (6)

with the bath correlations dictating the dynamics of the
system with memory effects as illustrated in Fig. 1-a).
Computing the long time evolution of the system state
via (6) can still be time consuming due to the integral-
differential nature of the equation of motion and the show
power-law decay of bath correlations. An exact Red-
field master equation can be derived directly targeting
the Born steady state (see appendix). A phenomenolog-
ical approach that leads to a Lindblad form% %3 can be
used far away from the spectral gap.

IV. EXAMPLE OF AN XXZ BATH

We consider the leads (left and right) to be both de-
scribed by XXZ spin-1/2 chains, with a Hamiltonian of
the form

e’}
L(R L(R L(R
HX(X% = Z 2J |:U£(R)To'r-i(-l) + O-r—i(-l)TU'rl’/(R):|

+ Jébath)Zf,(R)ZTL_i(_?), (7)

with Z, = olo, — 0,0, with o, = |0),.(1],, and J and J,
the coupling strengths.

The interface system is composed by two coupled
asymmetric spins as represented in Fig. 1-¢), with the
Hamiltonian

Hg = 2J5(0LO'}_E+J£O'R)+A(ZL7ZR)+JZ(SyStem)ZLZR,

(8)
where A is the relative detuning between the spins. As
shown in Fig. 1-b), the left (right) system spin couples
to a single spin of the left (right) lead. This is described

with a Hamiltonian of the form (1) with Sp(g) = or(r)

and BL(R) = O'OL(R).

We analyze a nonequilibrium protocol in which the left
(=) and right (4) leads are prepared at zero tempera-
ture with a large bias + ) 7, added to their respective
Hamiltonians while the system is initially prepared in an
arbitrary state. Thus a global product state between the
system and the leads is prepared with the leads oppo-
sitely maximally polarized. Then the bias is turned off
and the global system is allowed to evolve generating spin
currents. The infinite bias limit also allows us to obtain
analytical results. The infinite bias also probes the sys-
tem in a highly nonlinear regime prone to present rectifi-
cation. Both the currents and rectification would vanish
as the bias goes to zero. The system behaves effectively
linearly at low bias as it maps to a Luttinger liquid. In
this case the basic ingredient for rectification is absent.
Here, we focus on the maximally biased case and we did
not include any analysis for low bias that deviates from
the central case study.

In the infinite bias limit, analytic results can be drawn
under the first-order Holstein-Primakoff transformation

for the bathst* Z-(® = 2[1 — af(R)Taf(R)] and o

—\/iaTL (BT Under this approximation, the Hamiltonian
of the baths take the quadratic form

H)L(()?; ~ =2 Z J[af(R)Taf}rIf) +h.c.] 4 27, LT

9

The  corresponding  correlation  function obéyi

(Bl ()BL(0)) = e/t Jy(4Jt), with Jy being the

zeroth-order Bessel function. This result was confirmed
by exact MPS simulations (see appendix).

Consequently, the decay rate that governs the relax-
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FIG. 3. Analytical Kubo results for the short time response.
(Left) The joint spectral function. (Upper-right) The rectifi-
cation factor and (lower-right) the diode factor. Parameters
are J, = J.

ation dynamics of the interface can be written as

I(w) = 7 / " dre ™ (B) () B2 (0))
=i [(4, +w +i0T)2 — (40)3 Y2, (10)

for each system transition of energy w. The decay rate
may diverge, for example at w = 0 and J, = J which
could invalidate the perturbative approximation. The
divergence can be avoided by slightly detuning the sys-
tem away from the singularity. For the particular case
addressed here, all transitions with w = E/ — E = 0
(Hs|E) = E|E)) are forbidden due to the symmetry
(E'|S;|E) = 0, thus ensuring the validity of the pertur-
bative approach even at singular points.

V. ABSORBING BOUNDARIES

Using matrix-product-state simulations represented in
Fig. 1-b), similar t0% "¢, we find that the resulting dy-
namics are in great agreement with master equation for
weak coupling. However, such regime produces very
slow system relaxation that demands very large leads to
prevent boundary reflections, rendering the simulations
quickly unfeasible. To prevent this, we incorporate dis-
sipation mechanisms in the baths mimicking absorbing
boundary conditions (see appendix). This allows for a
considerable extension of the time scales reachable by
MPS simulations. The current-light-cones in the leads
with and without the absorbing boundaries are compared
in Fig. 2.

VI. CURRENTS, SPECTRAL FUNCTIONS AND
RECTIFICATION

When the system Hamiltonian is a small perturbation
(the limit Hg — 0) the transport is largely governed
by the physics of the bath. Generically, we expect bal-
listic transport for J, < J with non zero asymptotic

currents, while diffusive or insulating behaviour is ex-
pected for J, > J with vanishing asymptotic currents. If
Hg = 0, the zero frequency spectral function follows the
bath spectral function and we have Ay =~ Axxz with

Axxz(w=0) = Re{[2n(J* — J2)] 72} /2, (11)

for p > J which is shown in Fig. 2. Thus I(co) increases

with Jz(bath) up to the Heisenberg point and then sud-
denly vanishes for J"*™ > J with the gap opening of
Axxz(w) around w = 0. In Fig. 1-d) we show the full
system-bath asymptotic nonequilibrium spectral function
Aq(w) under the Born approximation with the gap open-
ing for g S 7 agreement with the above analysis
for the bath spectral function.

In Fig. 2 we compare the different approximations to
the current. The MPS simulation shows an initial cur-
rent burst that is also captured by the Kubo and Born
approaches. The relaxation of the system state after this
burst is captured by the Born approach while ignored by
Kubo. Although reliable, the Born evolution is time con-
suming. The steady state properties are then captured
by the long time limit of the Born equation (dark dashed
line)which amounts to a single algebraic equation to be
solved (appendix). The long time currents are shown
in Fig. 2 in agreement with the qualitative analysis of
Axxz. The discrepancy between Kubo and the Born
steady state results is significant whenever the currents
are finite and is more drastic at the Heisenberg point, in
which the spectral function is far from constant.

The asymmetry parameter A of the system interface
can induce non-reciprocal currents. To analyze this, we
define the rectification associated to the total spin trans-
ported

Ra(T) = 120 ; (12)

such that Tn = + fOT IA(t)dt' corresponds to the aver-
age current at a given asymmetry A. There is usually
a trade-off between the rectification factor and the cur-
rent, in the sense that increasing the asymmetry might
lead to higher R, however it usually also decreases the
current since the sites become more and more out of
tune? ''. Thus as a last definition we have the diode
factor DA = Iggn(ra)aRa that captures this trade off
and provides an overall fraction of the current that is
rectified.

As seen in Fig. 2 the simple Kubo approach provides
an effective upper bound for the current, allowing for
a qualitative description of the rectification mechanism.
Analyzing the Kubo version of Ay at zero frequency and
at the Heisenberg point we have a simple expression for
the rectification factor

RR™°(t ~1/7) = A[J§ + A% 712, (13)

for Jg,A < J = J, < p. In Fig. 3 we show that Ar(0)
is asymmetric with respect to A. In the perturbative
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FIG. 4. Asymptotic Born results for the diode factor for (left)
a non-interacting system with interacting leads and (right) an
interacting-system with non-interacting leads. We set A =
Js.

limit Jg — 0, a positive A leads to a gapless spectral
function, while a negative A leads to the open gap yield-
ing perfect rectification R = 1. A finite Jg leads to a
smooth crossover in Ar; while still presenting finite rec-
tification. In Fig 3 we also show the high rectification
factor and the diode factor accounting for the trade off
between asymmetry and total output current.

The Kubo results are very accurate for short times,
however, for long times we have to resort to the Born
approach in Fig. 4. For weak system Hamiltonian a rec-
tification peak manifests just before the Heisenberg point
(before the gap opening) as expected by the Kubo anal-
ysis (left panel of Fig. 4). Increasing the magnitude of
the system Hamiltonian shifts this peak towards lower
bath-interactions indicating that the global spectral gap
is shifted by the system Hamiltonian. Higher currents
flow from the spin with positive frequency to the spin of
negative frequency. In the opposite case of interacting in-
terface and non-interacting leads the results are markedly
different (right panel in Fig. 4). The optimal transport
direction is inverted and higher currents flow from the
negative-frequency spin to the positive one. We empha-
size that the above results are only captured by the Born
approach, which accounts for the dependency of the sys-
tem dynamics on the spectral properties. In contrast,
the local Lindblad equation only considers a single decay
rate (i.e. decay channel) for the system and therefore
fails for structured baths, particularly when the system
frequencies are spread, i.e. when Jg & J (see appendix).

VII. CONCLUSION

In summary, we have analyzed in detail weak-coupling
approximations for transport scenarios which are far from
equilibrium showing how the Born approach goes well be-
yond linear-response and is in good agreement with exact
MPS results. Considering a setting with a small sys-
tem between two XXZ leads we have shown the presence
of nonreciprocal transport. We have presented a mech-

anism for optimal rectification associated to the asym-
metric spectral structure of system+bath induced by the
system spacial imbalance. Our results indicate that phe-
nomenological Lindblad approaches may fail since they
do not take into account the spectral structure. Lastly,
the mapping of the bath to a non-interacting model sug-
gest that rectification may emerge for structured baths
even in complete absence of interactions.
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VIII. APPENDIX: ABSORBING-BOUNDARIES

MPS SIMULATIONS

Simulating absorbing boundary conditions in classical
physics is a relatively simple task typically accomplished
by setting derivatives to zero at the boundary. In quan-
tum mechanics this is still an open problem, in general,
with some remarkable strategies for infinite-boundary-
MPS simulations”™. This strategy uses an infinite-MPS
algorithm to compute the ground state, such as that pre-
sented in Ref.”. The authors of Ref.”® then create a lo-
calized perturbation in the centre of the i-MPS and evolve
the state using a finite-MPS time evolution algorithm.
The only difference in the time evolution is how the sites
at the boundary are treated. These need to be evolved
by an effective Hamiltonian that takes into account the
half infinite boundaries. In"® the scheme is applied to the
spin-1 Heisenberg model in the anti-ferromagnetic phase
and they show that the perturbation is absorbed by the
boundary, allowing them to evolve a smaller system for
longer without worrying about boundary effects. How-
ever, this strategy fails for the setting considered here.
In Fig. 5 (left) we apply this algorithm to the same sys-
tem as the authors of Ref.”®, i.e. the spin-1 Heisenberg
model. The only difference is that we evolve the system
with TDVP instead of TEBD. We show that while the
perturbation is initially absorbed by the boundary, after
evolving to longer times we do still see a reflected compo-
nent. This delay in the reflection is not enough to allow us
to evolve an open-system model for a significantly longer
time.

The situation gets worse when we apply this scheme to
our open-system model, i.e two-sites coupled to two large
leads where the leads are initially in a product state and



-0.2 0 0.2 0.4 [} 0.005 0.01 0015 0.02 0.025

Spin Current in Lead

20 40 60 80 100 20 40 60 80 100
space space

FIG. 5. Infinite boundary MPS (IBMPS) results. Spin projec-
tion along z-axis for the antiferromagnetic spin-1 Heisenberg
model of 100 spins (left) after applying a spin creation oper-
ator at site 51, (agl). Spin current at each bond in one of the
leads for our open-system model (right). Reflection from the
boundaries are delayed but not suppressed.

the Hamiltonian is the spin-1/2 XXZ model. In Fig. 5
(right) we see that at the boundary of one of the leads,
there is almost no delay in the reflection of the current,
meaning that there is no advantage over simply using a
finite-MPS algorithm. The analysis indicates that the
success of the strategy of Ref.”® is highly dependent on
the system and specific application. And while it indeed
has great potential in some circumstances, as shown by
their calculation of the lowest excitation branch of the
spin-1 Heisenberg model”, it is not applicable in the
context presented here. This analysis justifies the need
to develop a different approach to absorbing boundary
conditions.

We include dissipative processes into the original dy-
namics

1
V) = | —iHdt - (2J1 Jydt — J,d@)

T

W), (14)

with H = Hg+Hp+V and dQ, = (Ji+.J,.)dt+dW, with
dW, being Wiener process’’. These dissipative processes
are an auxiliary tool to absorb excitation in the bath
and prevent their reflection at the boundary. The J,.
operators have to be chosen for the specific problem and
there is no general recipe for constructing them. On the
left lead, which is prepared in an all up state, we set J,. =
V/C¢(r)ol and in the opposite side we set J, = \/((r)o,
with ((r) = e~ 78" with r being the distance from the
boundary and g the effective range of these dissipative
processes.

As can be seen in the right panel of Fig. (5) the sud-
den contact between the system and the lead generates
two light-cones. One which is weaker and travels as fast
as the bath quasi-particles and one which is stronger but

much slower. The strategy we have presented here ab-
sorbs the first light-cone. The second light-cone cannot
be absorbed faithfully. Therefore, the absorbing bound-
aries do extend the time span of the MPS simulations
(here we observe a factor of at least 4) but do not offer
a rout to capture the steady state.

IX. APPENDIX: STEADY STATE MASTER
EQUATIONS

Assuming that the bath correlations do decay, no mat-
ter how slow, and that consequently the system reaches
a steady state, we have the long time limit of the Born-
master-equation

p(t = 00) =0=—i[Hs,p] = Y. [FS,L,(w’)

’ ’
s,w,w’ a0

)

x (KT )KD ()0 — KO(@)pKL (@) + e

(15)

with T, (w) = 72 [y° dretT <)~(§f) (T)Xg€>(0)>, whose
real part is an effective relaxation rate and imaginary
part a system frequency w®?. We have assumed the eigen

decomposition Hg =) 5 EP(E), P(E) = |E)(E| with

KPw) = > PEKIPE),  (16)
E'—E=w
KO = efsie (18] and X =

(=) [Bs + (-1)*B{] with @ = 0,1. The master
equation (15) is commonly referred to as the global
approach since it contains the K operators which can be
delocalized in space, however it is not of Lindblad form
since we have not discarded terms that couple different
frequencies w # w’. Alternatively, phenomenological

assumptions of the form (B (t)B;(t')) ~ ng)d(t —t') and
(Bi(t)BI (")) ~ Fg)é(t — t') lead to the zero frequency
local approach

Pt—soo = —i[Hg, p] —Z lF;S) (SlSsp — SspS;‘) +h.c.

S

-3 [rgﬁ (SsSTp — SipS,) +he.|, (17)

with T* 492 [ dr(Bi(1)B,(0)) and T =
4y? [ dr(B,(1)B1(0)). Note that I and T can

be expressed in terms of the zero frequency F((Di)a, (w =
0). Hence, the phenomenological Lindblad approach de-
scribed in (17) is only accurate when the system fre-
quencies are not spread in comparison to the bath spec-

tral function, in such a way that the decay rates cor-

responding to each system decay channel I’S)

Ne% (OJ) in



Eq. (15) can be well approximated by a single one
I’(S) N(w) ~ F(S) ,(w = 0). Taking into account the mul-
tlple decay channelb of the system appears to be crucial
not only to describe transport properties, as described
here, but also to describe thermalization®0-63.

X. APPENDIX: TIME CORRELATIONS

Let us start by determining the bath correlations be-
ginning with cases that can be quickly solved analytically,
that is, the non-interacting XX model with J, = 0°'. To
describe the bulk physics we may assume periodic bound-
ary conditions and perform the Jordan-Wigner trans-
formation o, = €™ 2= ol ¢ +, shift the momentum
of the fermions by 7 as ¢, —> ( 1) cx and perform a
Fourier transformation c, = Zk o Qk ei2mek/N Jead-
ing to the decoupled representatlon of the Hamiltonian
Hxx =3, wkq,tqk with wy, = —4J cos(2wk/N) the usual
tight-biding or free particles on a 1D lattice dispersion re-
lation. The correlations are then given by

Gbulk( t, B, 1) = <0'T(t)0(0)> = lim %Zn(wk)eiwkt
k

N—o0
47
dk ot
— wid 18
= [ Erbemetde08)
) 91 —1/2
with % = 8Jﬂ {1_(U)} and n(f,wg,u) =

tr {quka} = [1+flr—m]™
equilibrium state pg oc e #H=#2: Z2/2) - At zero tem-
perature the mode occupation tends to the Heaviside step
function n(f — oo,w, u) = O [—(w — p)], thus we omit
[ in the following. In this limit, we can easily determine
the correlations and their asymptotic (¢ > 1) forms col-
lecting only the leading (slowest) power law.

assuming an initial

For large 1 we have

cos[m/4 — 4.Jt]

Gbulk s 1
(b p )= 2nJt

Jo(4Jt) ~ (19)

such that 7, is the n-th order Bessel function.
Reincorporating interactions into the model we opt to
treat the large p and arbitrary J, regime via a first or-
der Holstein-Primakoff transformation® Z, = 2[1—ala,]
and o, = —v/2al. Under this approximation, the Hamil-

tonian takes the form

Hxxz~—-2J Z[alamﬂ + hC]

—4J.> alas, (20)

with a clear interpretation of J, as a local potential or
detuning with the edge sites receiving only half of the
detuning of the bulk sites since they have only one neigh-
bour. Applying the free particle techniques outlined pre-
viously we find

1k i4.J .t ~bulk
GRUE, (t, 11> 1) = =1 GRNE(t, > 1). (21)
10 = 0.4993
‘ 049928
\ 5 049926
|1
=10 || 0.49924
[l 049922
@ 1 0
~ I
s 6
242} [
I 4
“‘\ By
| 2
3 ‘ 0
10 ’

FIG. 6. MPS results for correlations with a chain of 200
spins in agreement with the analytical results. Darker colors
correspond to lower J, while brighter colors correspond to
higher J,. The modulus of the correlation in log-log scale for
(Upper left) u > 1. The red dashed line is the asymptotic
expression in (19), respectively. The Bessel functio result is
indistinguishable from the MPS results. (Upper right) The
fitted power law exponent and (lower right) the corresponding
phase frequency assuming Gxxz ~ e'®*t~®. Thus we have
confirmation that o = 1/2 and ¢ = 4.J.

The system equilibrium correlations can also be ob-
tained by similar techniques. We have systematically
checked that our conclusions are not dependent on the
initial state of the system. Therefore, for simplicity we
choose to work with an initially down polarized | |{).
The system correlation of interest is then

(SL(t)S} (0)) = cos <2t A2 4 J§>
iAsin (26y/A7 1 T)

(22)
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