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Manipulating the phase of electromagnetic radiation is of importance for applications ranging from 

communication to imaging. Here, a real-time reconfigurable phase response and group delay of a 

tunable terahertz metamaterial consisting of dual-layer broadside coupled split ring resonators is 

demonstrated. Utilizing electrostatic comb-drive actuators, the metamaterial resonant frequency is 

tuned by changing the lateral distance between the two layers which modifies the transmission 

amplitude and phase spectrum. The phase modulation is approximately 180˚ in the vicinity of the 

resonance frequency. In addition, remarkable modulation in the group delay of transmitted pulses 

(from -7 ps to 3 ps) is evaluated based on the measured frequency response using the convolution 

method when the lateral distance is changed from 0 to 24 µm. A two-port resonator model, derived 

from coupled mode theory and supported by finite element full-wave simulations, reveals the 

underlying physics of the modulation. Specifically, the coupling factor between the two layers 

plays a critical role, the tuning of which provides a route for structure design and optimization. 

The capability of tuning the phase response and group delay enables applications, such as phase 

compensation and group delay equalization at terahertz frequencies. 

 

  



I. INTRODUCTION 

Electromagnetic (EM) metamaterials, comprising sub-wavelength unit-cells, can effectively 

control the amplitude and phase of EM waves and enable extraordinary effects including negative 

refraction index, invisibility cloaking and perfect absorption [1-4]. Especially, the ability to 

engineer the phase response has led to numerous optical applications including wave-front control 

[5], polarization manipulation [6], and holographic imaging [7], among others. To create 

functional devices with metamaterials, active tuning schemes via optical [8], thermal [9,10], 

electrical [11-13], and mechanical [14,15] excitations have been implemented to modulate the EM 

response. The approaches typically employ a single layer. However, dual-layer metamaterial 

structures have been proposed to achieve larger tuning and more efficient manipulation of the EM 

properties due to near field coupling between two layers [16-23]. This includes, as examples, 

tuning of the effective permittivity and permeability, and chirality. In these dual layer MMs, such 

as broadside coupled split ring resonators (BC-SRRs), the effects of coupling on mode splitting 

have been investigated using Lagrangian approaches to predict the resonant frequencies [16-19] 

and numerical approaches have been used to study the scattering parameters under varied coupling 

conditions [22-23]. To understand the role of coupling and ease the design of optimized coupled 

resonators, it is desirable to have a concise and accurate lumped-parameter model that fully 

predicts the modulation of the amplitude and phase of the incoming electromagnetic wave. 

Recently, we demonstrated a dual-layer terahertz metamaterial in which the resonant response 

was controlled in real time by micromachined comb-drive actuators [24]. Although the mechanism 

of the frequency tuning and amplitude modulation was discussed using a qualitative description 

and quantitative numerical simulations, the phase modulation was not explicitly explored and an 

accurate lumped-parameter model was not implemented. 

In this paper, we present tunable phase modulation, initiated by driving the micromachined 

actuators that control the lateral distance between the BC-SRRs. The phase shift and group delay 

near the resonant frequencies are explored. We show that a sudden jump in the phase shift and 

group delay occurs at a critical distance, associated with a critical coupling strength. In order to 

investigate the crucial role of coupling in determining the property of BC-SRRs, we propose a 

lump-parameter model within the framework of the coupled mode theory (CMT). The CMT model 

predicts the transmission response of the BC-SRRs with different relative lateral distances and 

captures the essence of phase and group delay modulation. We can optimize the tunable phase and 



group delay of the BC-SRRs with the guidance of the CMT model to construct functional THz 

devices, such as phase modulators. The proposed CMT model can serve as a general tool for 

understanding other coupled metamaterial structures. 

II. EXPERIMENTS OF THE TUNABLE PHASE RESPONSE AND GROUP DELAY 

The real-time tunable metamaterial is composed of dual-layer split ring resonators in the 

broadside coupled configuration, as shown in Fig. 1 (a). One layer is fixed on a silicon nitride 

(SiNx) thin film, with the second layer mounted on a 10-µm-thick silicon (Si) plate connected to 

comb-drive actuators. The two layers are bonded together with an out-of-plane distance of ~20 µm 

to promote strong electric and magnetic coupling between the layers. The periodicity of SRR in 

each array is 58 µm and the dimension of the individual SRRs is 40 µm by 40 µm with a line width 

of 11 µm. The gap-size of the SRRs for each layer is slightly different to compensate the resonant 

frequencies between the two layers due to the different substrate materials. The gap-sizes are 2 µm 

and 16 µm for the SRRs on the stationary SiNx thin film and movable SRRs on Si plate, 

respectively. The coupling strength between the two layers is dependent on the lateral relative 

position [18,22]. A DC-voltage driven comb-drive actuator translates the movable layer to adjust 

the relative lateral position of the two SRRs layers, and hence the coupling strength of the 

neighboring layers. 

The tunable metamaterial structure is fabricated using bulk micromachining [24], and the 

microscope images of the BC-SRRs under varied voltages are shown in Fig. 1 (b). We can adjust 

their relative lateral distance (Δ) from 0 µm through 24 µm continuously using an applied voltage 

to shift the movable SRRs (Fig. 1(b)). The transmission spectra of the BC-SRRs for various Δ are 

characterized using THz time domain spectroscopy (TDS) with 2 V increments of the applied 

voltage (spanning 110 V). Figs. 1(c) and (d) are the amplitude and phase of the transmission 

spectrum at different lateral positions. In order to accurately analyze the phase response and 

calculate the group delay, we unwrap the measured phase to avoid artificial singularities that would 

otherwise arise in the group delay response. When the two SRR arrays are aligned, i.e. Δ = 0 µm, 

there are two well-separated resonance modes at 1.03 THz and 1.23 THz. In the phase spectrum, 

the phase of transmission exhibits ~90⁰ variation for both 1.03 THz mode (-81⁰ to -10⁰) and 1.23 

THz mode (-38⁰ to 58⁰). With the increasing lateral distance, the first resonance mode blue-shifts 

and the second mode red-shifts, simultaneously. The transmission amplitude of the first mode 

decreases along with the resonance blue-shift, which is indicative of a stronger resonance. As a 



result, the phase variation around the first resonant frequency further increases. It is approximately 

140⁰ for Δ = 12 µm. For a lateral distance of 15 µm, the resonant frequencies merge towards each 

other. Interestingly, the phase variation around the first resonant frequency is ~ -180⁰ (from -154⁰ 

to -320⁰), instead of a positive value for the smaller Δ values. The negative phase variation starts 

to prevail for lateral distances over 15 µm. The phase modulation is approximately 180⁰ at 1.06 

THz. 

 
FIG. 1. (a) Illustration of real-time tunable metamaterial based on broadside coupled split ring 

resonator (BC-SRRs). It is comprised of a fixed array of split ring resonators (top layer) and a 

movable array driven by comb-drive actuators. (b) The microscope image of the bi-layer SRRs 

for various relative lateral distances (Δ). The dark SRR is fixed, the bright one is movable. (c) 

and (d) show the amplitude and phase spectra of the BC-SRRs for different Δ, measured using 

THz time domain spectroscopy. 

The experimental phase shift (PS) diagram of the BC-SRRs as a function of lateral distance and 

frequency (Fig. 2(a)) indicates the existence of a critical lateral distance of 15 µm, where a sudden 

jump of the phase variation occurs. The group delay, τG = -dφ/dω, can be calculated from the PS 

diagram. Figs. 2(b) and 2(c) show the tunability of the group delay by varying lateral Δ. At zero 



lateral distance, the negative group delay (NGD) resides in the vicinity of the resonant frequencies, 

e.g. τG = -10.22 ps at 1.03 THz and τG = -11.86 ps at 1.23 THz. The NGD originates from the strong 

anomalous dispersion of the Lorentzian–like medium [25,26], which is the BC-SRR metamaterial in 

our case. The bandwidths for the negative group delay are 50 GHz and 64 GHz for the lower and 

higher resonant frequencies, respectively. An example of the NGD in the time-domain is illustrated 

by calculating the time domain response for a narrow band incident pulse, with a center frequency of 

1.03 THz and 40 GHz bandwidth, as shown in Fig. 1(d). Its interaction with the BC-SRRs is 

calculated using convolution, as detailed in the Appendix A. The envelope peak arrives 

approximately 7 ps earlier than the incident wave, indicating a negative group delay, when the SRRs 

are aligned (Δ = 0 µm). When the lateral distance approaches 22 µm, the group delay turns to be a 

positive value (~ 3 ps). The group delay describes the time delay of the amplitude envelope of the 

incident wave. The effect of the metamaterial on delaying the envelope of the incident wave depends 

on the central frequency of the incident wave and the pulse bandwidth. We define the fractional delay 

(FD = τG/τP, where τP is the pulse duration) to describe efficiency of the metamaterial in shifting of 

the waveforms. The FD is approximate -0.04 and 0.02 for Δ = 0 µm and 22 µm, respectively. A more 

detailed discussion can be found in Appendix A and Table A1. Visualization 1 in the Supplemental 

Material [27] demonstrates real-time tuning group delay by actuating the MEMS actuators. The 

phenomenon of negative and tunable group delay demonstrated here may be potentially exploited in 

designing an adaptive THz group delay equalizer, which can compensate the positive group delay in 

waveguides or other THz components with similar operating mechanisms to that at microwave 

frequencies [28,29]. The group delay at one specific frequency is tuned in a continuous fashion, which 

could, in principle, be observed with fine enough actuation of the comb-drive. The group delay at the 

resonant frequency varies rapidly near the critical lateral distance. Further, the transmission 

amplitude is nearly zero at this condition. The combination of the transmission amplitude and group 

delay response enables the continuous modulation of the metamaterial response. A similar transition 

of the group delay from negative to positive values (driven by micro-cantilevers) has been reported 

for the in-plane coupled resonator [30]. 



 
FIG. 2. (a)The measured PS diagram of the BC-SRRs by sweeping Δ. A sudden jump in the 

phase is observed when Δ ~ 15 µm. (b) The calculated group delay for different Δ. (c) Group 

delay for some specific lateral distances. Negative group delay is achieved in vicinity of the 

resonant frequency for a small Δ. For Δ exceeding 15 µm, the group delay is positive for the 

first mode. (d) The calculated time domain response of the reconfigurable BC-SRRs to incident 

waves with center frequency of 1.03 THz and 10 GHz bandwidth. The group delay is 

approximately -7 ps for Δ = 0 µm and ~ 3 ps for Δ = 22 µm. G. D.: Group delay. N.G.D.: 

Negative group delay. P.G.D.: Positive group delay. 

III. COUPLED MODE THEORY MODEL OF THE BC-SRRS 

The modulation of the resonant frequencies, the phase response, and the group delay originates 

from changing the coupling strength between the SRRs of the two layers with Δ. Different approaches, 

including the equivalent circuit model [31] and Lagrangian method [16,18], have been employed to 

describe the resonant response of metamaterials. We utilize coupled mode theory (CMT) to 

understand the experimental results. To simplify mathematical derivation, we consider BC-SRRs 

comprising identical SRRs for the top and bottom layers comprising the BC-SRR metamaterial, 

noting that this deviates from experiment. Finite element simulations using CST Microwave Studio 



are employed to validate the CMT model. To start with, consider a single layer SRR whose 

transmission response can be modeled as [12,32,33] 

      (1) 

where ω0 is the resonant angular frequency, and 1/τ0 and 1/τe denote the decay rate due to the 

intrinsic loss (absorption) and radiation loss, respectively. We define two dimensionless 

parameters Q0 = ω0τ0/2 and Qe = ω0τe/2, representing the intrinsic and radiative quality factors [34]. 

For the aforementioned single-layer SRRs on the SiNx thin film, we estimate the quality factors 

by treating the SRR as an electrically small loop antenna. The radiative quality factor can be 

evaluated as Qe = [6 ln(2P⁄w)]/[π(β0P)2], in which P is the periodicity of the SRR, w is the width 

of the wire, and β0 is the wavenumber at the resonant frequency in free-space [35]. The intrinsic 

quality factor can be calculated by Q0 = (ω0L)/R, where L is the inductance of the square loop and 

R is the resistance. The dimensions of our structure yield quality factors Qe ≈ 6.5 and Q0 ≈ 61. 

The calculated transmission response based on CMT agrees well with the simulation results using 

finite element method (FEM) shown in Fig. 3(a), validating the CMT model for single layer SRRs. 

In vicinity of the resonant frequency, the transmission amplitude approaches the minimum value 

and the phase varies from -55⁰ to 55⁰, meaning that the group delays are negative in this band 

(shaded region in Fig. 3(a)). The transmission response can be represented in Smith curves, which 

are trace of transmission coefficient on a complex plane as frequency increases from 0 to ∞ [12], 

as shown in Fig. 3(b). In the Smith chart, the x and y axes correspond to the real and imaginary 

parts of the transmission coefficient, enabling consideration of both the amplitude and phase of 

the SRRs directly from the Smith curve. For a single SRR, the transmission response is bounded 

within the right part of the Smith chart for different combinations of the quality factors (Q0 and 

Qe). The resonance corresponds to the minimum distance to the origin. For the single SRRs, the 

resonance frequencies are the crossing points on the x-axis (as shown by the dots in the Smith 

curve). As such, the phase response is bounded between -90⁰ and 90⁰. The Smith curve approaches 

the origin as Q0 approaches to infinity. However, it is impossible to reach the origin and the left 

part of the Smith chart. 
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FIG. 3. (a) The theoretical transmission response (solid line) of the single SRR based on 

coupled mode theory (CMT) and its corresponding simulation result (dash line) using finite 

element analysis (FEA). Inset shows the schematic of a single SRR, in which i, r and t stand 

for incidence, reflection and transmission, respectively. (b) The calculated Smith curves based 

on CMT for different combinations of quality factors. Colored circle points corresponding to 

the real-axis crossing points (Pr). 

According to CMT, the coupling between two resonators can lead to mode splitting, i.e. 

creating two resonant modes - a symmetric mode and an anti-symmetric mode [36]. Within the 

framework of CMT, the transmission response of BC-SRRs including two identical SRRs can be 

described by 

   (2) 

where ws and wa are the resonant angular frequencies of the symmetric mode and anti-symmetric 

mode, respectively, and ϕ = π+βl is the phase difference between the two resonators, in which β is 

the wave number in free space and l is the vertical distance between the SRRs. A detailed 

derivation of the model can be found in the Supplemental Material [27]. Based on the coupling 

between the two SRRs, the resonant frequencies can be estimated by 

  (3) 
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in which µ is the direct coupling factor between the resonators, and 1/τe sin(ϕ) means the indirectly 

coupling through wave propagation [36]. The coupling factor (µ) represents the total coupling 

strength, determined by inductive and capacitive coupling factors that can be calculated using a 

Lagrangian approach [18,19,37]. In the finite element model, we build two identical SRRs on SiNx 

thin films separated by a 20-µm-thick air spacer (i.e. l = 20 µm) and apply periodic boundary 

conditions. The frequency spectra at different relative lateral distances (Δ) between SRRs are given 

by the frequency solver in CST Microwave Studio. As shown in Fig. 4 (a), we can match the finite 

element analysis (FEA) results for Δ in the range from 0 to 23 µm by sweeping µ from 0.13 to 0.06 

using the CMT model, verifying that Eq. (2) can accurately capture the EM response of the BC-

SRRs. The increased relative lateral distance decreases the coupling strength, merging the two 

resonant modes according to Eq. (3). The modulated transmission amplitude given by CMT with 

the decreased coupling factor qualitatively coincides with the measured spectra (Fig. 1(c)). The 

two resonant modes combine to one mode at a critical coupling factor (µc ~0.07 for our case). The 

experimental results slightly deviate from the CMT model since the two SRR arrays in the 

experimental device are not identical. 

It is important to note that the coupling factor dependence of the phase response (Fig. 4(b)) is 

similar to the experimental results in Fig. 1 (d). When the coupling is strong (µ = 0.13), ~ 90⁰ phase 

variation shows up at both the symmetric and anti-symmetric modes. When the coupling weakens, 

the phase variation at the symmetric mode becomes more pronounced due to the increase of the 

resonance magnitude. At critical coupling, the phase variation at the resonant frequency transits 

from a positive to negative and stays negative for further decrease of the coupling. Tuning the 

coupling factor can consequently modulate the group delay as shown in Fig. 4 (c), in agreement 

with the experiment (Fig. 2(c)). For strong coupling, a negative group delay is achieved at the 

resonant frequencies. When the coupling factor is below the critical value, the resonance group 

delay is positive and decreases along with the decreasing coupling factor. A large group delay is 

achieved when the coupling factor is in the vicinity of the critical coupling. 



 
FIG. 4. The amplitude (a) and phase (b) of the complex transmission coefficients of the BC-

SRRs based on the CMT model (Solid lines) and FEA simulation (dash lines). The theoretical 

group delay (c) and Smith curves (d) for different coupling factors calculated using the CMT 

model. 

The transmission Smith curves of the BS-SRRs with different coupling factors are shown in 

Fig. 4(d), which facilitates determining the critical coupling strength. In the Smith curve, as the 

frequency increases, the transmission coefficient varies from the hollow square to solid one 

following the traces as shown in Fig. 4(d). The Smith curve for strong coupling, as shown by the 

blue curve, lies in the right-hand part of the chart with two points (as indicated by blue stars) that 

are with minimum distances to the origin, corresponding to the two resonant modes. The phase 

tends to span from -90⁰ to 90⁰ since it crosses the x-axis in the left-hand half of the complex plane. 

With a decreasing coupling strength, the bottom part (associated with the symmetric mode) is 

moving to the fourth quadrant gradually to extend the phase coverage. When the coupling factor 

decreases to the critical value, the Smith curve crosses the origin (as shown by the green curve), 

meaning that the BC-SRRs has a single resonant frequency and zero-transmission. We can 

evaluate the critical coupling using 

 



  (4) 

which yields µc ≈ 0.07 in Fig. 4(d). The critical coupling factor is associated with the quality factors 

(Qe and Q0) of the single resonator and their phase difference (ϕ). Eq. 4 provides some guidance 

for BC-SRRs device design and optimization. For example, we can increase the critical coupling 

factor by decreasing Qe and increasing Q0 via modifying the structure of the resonators. Therefore, 

the required tuning range of the coupling factor to change the sign of group delay from negative 

to positive is decreased. Notably, when the coupling factor is smaller than µc, taking the red curve 

in Fig. 4(d) as one example, the Smith curve extends to four quadrants to cover the 0-360⁰ phase 

range in the spectrum. At the same time, the Smith curve crosses the x-axis in the right half-plane 

(as indicated by the red circle), meaning a negative phase shift and positive group delay near the 

resonance frequency. When µ = 1⁄(2Qe)·sin(ϕ) ≈ 0.035, ωs and ωa become degenerated (i.e. ωs = 

ωa = ω0), meaning that the effects of direct and indirect coupling are completely cancelled by each 

other. In this condition, the pear-like Smith curve (dashed line in Fig. 4 (d)), which is symmetric 

with respect to the real axis, is achieved. The minimum transmission is located at the intersection 

of the Smith curve and the imaginary axis. With the help of Eq. (2) and the Smith chart derived 

from it, we can predict the impact of the coupling and quality factors to guide the design of the 

BC-SRRs, as shown in Fig. S2 in the Supplemental Material [27]. Since the structural details are 

not required for CMT modelling, this approach can be applied to other metamaterial designs, as 

demonstrated in the Supplemental Material [27,38]. 

IV. CONCLUSION 

In conclusion, we have demonstrated a real-time tunable metamaterial based on BC-SRRs and 

MEMS actuators. The amplitude and phase of the transmission can be modulated through actuating 

the relative lateral distance of the two SRR layers with the resultant group delay tuned from -7 ps 

to 3 ps at 1.03 THz in experiments. A sudden jump in the phase and group delay response occurs 

at a critical lateral distance. To understand the response of the BC-SRRs, we have developed a 

lumped-parameter model based on CMT. The agreement among the analytical CMT model, the 

FEM simulation and experiment results validates the theoretical model, and unveils the effect of 

coupling factor on the response of BC-SRRs. A critical coupling, at which strength sharp phase 

and group delay variations occurred, is identified. Furthermore, the CMT model and Smith curves 
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predict the response of metamaterial composed of coupled resonators and provide us guidelines 

for the future structure design and optimization of functional metamaterial devices. 
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APPENDIX A: CALCULATION OF THE NARROW BAND RESPONSE 

The real time tunable BC-SRR metamaterial device was characterized using terahertz time domain 

spectroscopy (THz-TDS), which is a broadband method. In order to demonstrate negative and 

tunable group delay in the dual-layer metamaterials, we used the experimental transmission 

spectrum to calculate the narrow band response using convolution methods, detailed as follows. 

We used a simulated narrow band incident pulse [i(t)] with a center frequency of 1.03 THz and 

bandwidth of 40 GHz. Fourier transforming the incident pulse provides the frequency domain 

response [i(ω)], as show in Fig. A1(a). The spectrum of the transmitted wave [Fig. A1(c)] was 

calculated by multiplying i(ω) with the experimentally determined transmission spectrum of the 

device [t(ω), as shown in Fig. A1(b)]. Finally, the inverse Fourier transform was performed to 

obtain the transmission in the time domain [Fig. A1(d)]. A video demonstrating the real-time 

tunable group delay can be found in Supplemental Material [27].  

 



 
FIG. A1. Procedure to calculate the time domain response for a narrow band pulse. (a) 

Spectrum of the incident wave (inset: temporal signal of the incidence). (b) Transmission 

spectrum of the dual-layer metamaterial. (c) Product of i(w) and t(w), i.e. the amplitude 

spectrum of the transmitted wave. (d) Time domain transmission wave calculated by inverse 

Fourier transform of spectrum (c). 

We defined a fractional delay FD = τG /τP (where τG is the group delay and τP is the pulse 

duration), to describe the effect of the metamaterial on the THz waves. A larger absolute value of 

the FD means that the metamaterial has a greater impact on delaying (+)/advancing (-) the 

waveform. The group delay and FD of the BC-SRRs for the narrow band pulse are related to the 

bandwidth of the incident wave. As shown in Table S1, negative group delays are obtained for the 

bandwidth increasing from 10 to 50 GHz when the SRRs are aligned (D = 0 µm). With the 

increased bandwidth, the absolute value of the group delay decreases from 10.1 ps to 6.1 ps due to 

the finite bandwidth of the metamaterials device. However, the FD decreases from -0.02 to -0.04, 

indicating an increased group delay, because of the shortened the pulse duration (smaller τP) for 

larger bandwidth. When D = 22 µm, the increased bandwidth leads to increased FD as well. Table 



A1 reveals that the tunable group delay depends on the bandwidth of the incident pulse. The 

narrower band incidence exhibits larger group delay while broader band incidence shows larger 

FD. 

 

Table A1. The group delay and FD of the tunable metamaterial with different bandwidth at the center 
frequency of 1.03 THz.  

 
Central Frequency 

of pulse (THz) 
Pulse Bandwidth 

(GHz) 
Lateral shift 

 (D, µm) 
Group delay  

(tG, ps) 
FD 

1.03 10 0 -10.1 -0.020 
22 2.8 0.006 

1.03 20 0 -9 -0.025 
22 5 0.015 

1.03 30 0 -6.7 -0.028 
22 3.1 0.013 

1.03 40 0 -6.7 -0.038 
22 3.2 0.018 

1.03 50 0 -6.1 -0.041 
22 2.9 0.020 
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