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We theoretically revealed that a weak photoexcitation achieves the electric polarization-inversion
with approximately 18% of all the charges, which was interpreted as a superimposition of multi-
exciton states, from the charge-ordered ferroelectric ground state of (TMTTF)2PF6 at absolute
zero temperature. Regarding a relative change of electric polarization (∆P/P ), the photoexcitation
corresponds to 36%, which is much larger than ∆P/P of other typical organic materials. The
photoexcitation of ∆P/P ∼ 36% corresponds to the single peak of the optical conductivity in the
low-energy region, which was also observed at 10 K. Therefore, the value of ∆P/P ∼ 36% can be
achieved in the early stage of the ultrafast photoinduced dynamics of the material. This fact is
useful not only for applications of this material and other analogous materials in optical devices
but also for researches toward controlling electric polarizations by light, which is one of the recent
attracting issues on photoinduced phase transition phenomena. Theoretical calculations are based
on a quarter-filled one-dimensional effective model with appropriate parameters and 50 unit cells.

PACS numbers: 71.30.+h, 71.35.Lk, 78.20.Bh

I. INTRODUCTION

Studies on controlling the purely electronic phase tran-
sitions occurring immediately after a photoexcitation
from the ground state of matter have been attracting
attention because such photoinduced phase transitions
(PIPTs) regulate the macroscopic properties of matter on
the ultrafast time scale [1, 2]. Once such electronic PIPTs
are applied to organic ferroelectric materials, the electric
polarization can be tuned in the regime of femtoseconds.
Because of notable properties such as mechanical flexibil-
ity, disposability, and inexpensiveness, organic materials
are increasingly being applied to electronic and optical
devices. In this regard, flexible tuning of a light-induced
electric polarization in the order of femtoseconds is one
of the most attracting challenge in the field of PIPTs,
recently.

So far, as one of the light sources to easily cre-
ate and control such devices, visible-light (light) is ac-
tually most convenient. In this regard, PIPTs in-
duced by light has actively been studied. For in-
stance, a light-induced ultrafast insulator–metal tran-
sition has been observed in a quasi-two-dimensional
molecular solid, α-(BEDT-TTF)2I3 (BEDT-TTF =
bis(ethylenedithiolo)tetrathiafulvalene) [3]. Because the
material undergoes ferroelectric polarization in the
charge-ordered (CO) ground state [4, 5], this transition
is regarded as a photoinduced disappearance of the po-
larization. A photoexcitation of a non-polarized state
from a ferroelectric polarized ground state has been re-

ported for a quasi-one-dimensional molecular solid, TTF-
CA (tetrathiafulvalene-chloranil) [6]. Very recently, a
photoinduced polarization suppression was observed in
croconic acid and it was regarded as a light-induced po-
larization inversion of protons [7]. However, at present,
we are not aware of any experimental achievement re-
garding a light-induced electronic ferroelectric inversion.

Theoretical works on PIPTs of organic materials with
charge-orders also have been actively studied as sum-
marized in Ref. [8], for instance. Those works inves-
tigated and explained the experiments, some of which
are previously introduced. Namely, polarization modu-
lations with or without phase transitions from the CO
phases by light have been theoretically reported. How-
ever, the possibility of photoinduced polarization modu-
lations of (TMTTF)2X (TMTTF = tetramethyltetrathi-
afulvalene) has not been theoretically discussed yet even
though the materials with particular anion X have the
ferroelectric CO phases as their ground states.

(TMTTF)2XF6 (X=P, As, Sb, Ta) is known as one of
the quasi-one-dimensional quarter-filled organic conduc-
tors and it has rich physical phases [9–17]. In particu-
lar, the bulk electronic ferroelectricity of (TMTTF)2PF6

caused by finite charge disproportion δco has been ex-
perimentally depicted [18–22] in both a CO phase and
spin-Peierls (SP) phase. According to Ref. [10], the CO
and SP phase of (TMTTF)2PF6 have been achieved be-
low 67 K and 19 K, respectively. In our study, represent-
ing ρrich (ρpoor) as the rich (poor) value of the charge
of the two closest TMTTF molecules forming a dimer,
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δco ≡ ρrich − ρpoor ≥ 0 is treated. The observed finite
δco values in (TMTTF)2PF6 below 67 K [23–25] indicate
that the SP phase also has the characteristics of the CO
phase of (TMTTF)2PF6.

In the theoretical works on other materials in terms
of the PIPTs [26–29], the photoexcitations associated
with the collective excitations of charges, namely, multi-
excitons, have been discussed. When these concepts are
applied to (TMTTF)2PF6, photoexcitations of the one-
dimensional (1D) polarization (P)-inverted domain from
its ferroelectric ground state is strongly expected by fol-
lowing processes as schematically shown in Figs. 1(a)–
(c) with defining the total number of dimers as D = 4
(8 sites). Here, note that a dimer corresponds to a unit
cell. Firstly, one dimer is photoexcited by a single photon
(weak photoexcitation) from the ferroelectric CO ground
state and, then, a 1D P-inverted domain is generated.
This roughly corresponds to an inversion of a single elec-
tric dipole moment (see the upper panel of Fig. 1(b)).
Next, the 1D domain broadens due to collective excita-
tions (multi-excitons) as displayed in the lower panel of
Fig. 1(b). Thus, sufficiently strong collective excitations
will possibly lead to a huge growth of the 1D domain,
namely, a production of a 1D macroscopic P-inverted do-
main. Consequently, when charges with Dδco move from
the CO ground state in the entire system, the bulk fer-
roelectric inversion can be achieved (see Fig. 1(c)). Note
that all the above processes are induced by electrons and
the time scale of forming such 1D P-inverted domain is
much faster than the typical relaxation time originating
from phonons.

To realize such macroscopic polarization inversion in
(TMTTF)2PF6, the most important issue is to know ac-
curately the nature of the low-energy optical excitations
of electrons. In particular, optical conductivities include
the information of the early stage of the weakly photoin-
duced dynamics just after the injection of a single photon
into the system. So far, several optical conductivities of
(TMTTF)2PF6 and other analogous materials have al-
ready been observed [30–32]. However, little is known
about the pure electronic excitations related to the peaks
of the optical spectra. In this regard, we first observed
the optical conductivity of (TMTTF)2PF6 at 10 K (in
the SP phase) and estimated ωCT ∼ 0.128 eV as the
pure electronic excitation energy, as shown in Fig. 1(d).
Details of this measurement are explained in Appendix
A. A single crystal of (TMTTF)2PF6 was prepared by a
previous method [33, 34]. The complete structure of our
spectrum, as shown as a solid line in Fig. 1(d), is very
similar to the previous spectra of (TMTTF)2PF6 at 20
K (in the CO phase) [30, 31]. This suggests that the pure
electronic photoexcited state from the CO ground state
can be physically considered as almost the same as that
from the SP ground state.

In the following sections of this article, we introduce
our theoretical analyses, particularly of the optical con-
ductivity spectrum in (TMTTF)2PF6, and discuss the
nature of the observed peak structure exhibited as a
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FIG. 1. (a)–(c) Schematics of the CO or SP ground state
and photoexcited states of (TMTTF)2PF6. The circle and up
(down) arrows on the circles represent a molecular orbital of a
TMTTF molecule and up (down) spins, respectively. (d) Op-
tical conductivity spectrum of (TMTTF)2PF6 with the elec-
tric field polarized parallel to the a-axis at 10 K (solid line)
and the fitting curve (dashed line). The chained line shows
the calculated spectrum with resonant energy 0.128 eV.

chained line in Fig. 1(d). In addition to this, we theo-
retically investigate whether our idea of a 1D P-inverted
domain as roughly sketched in Figs. 1(a)–(c) actually
can be realized or not. Here, we note again that, as dis-
cussed above, those theoretical analyses reveal the elec-
tronic photoexcitations in the early stage of the ultra-
fast dynamics immediately after a single photon injec-
tion. Throughout this paper, we consider ~ = e = 1 and
lattice constant = 1 for simplicity.

II. FORMULATION

Now, we consider a dimerized 1D chain model with
even Ns sites, which is a quarter-filled hole system. An
equal population of spins (N↑ = N↓ = Ns/4) is assumed
at absolute zero temperature. Using model-specified pa-
rameters Veff and Vedge, our Hamiltonian H is written as
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follows:

H ≡ Ht +HCoulomb + Veff
∑

j:even

nj + VedgenNs
,

(1)

Ht = −
∑

j,σ

tj

[

c†j+1,σcj,σ + c†j,σcj+1,σ

]

, (2)

HCoulomb = U
∑

j

nj,↑nj,↓ + V
∑

j

nj+1nj , (3)

where c
(†)
j,σ denotes the annihilation (creation) opera-

tor of a hole with spin σ =↑, ↓ at the j-th site and
nj ≡ nj,↑ + nj,↓ represents the j-th site density op-

erator (nj,σ ≡ c†j,σcj,σ). j denotes a highest occupied

molecular orbital (HOMO) of a TMTTF molecule. Be-
cause each dimer has three electrons in HOMOs and the
band consists of HOMOs, the system is regarded as a
(third) quarter-filling in terms of holes (electrons). The
dimerization of the system is treated in term tj where
tj ≡ t1 (t2) for even (odd) j represents an inter (intra)-
dimer transfer integral. From a density functional theory
(DFT) calculation of (TMTTF)2PF6 at 4 K [35], we se-
lect t1 = 0.1686 eV and t2 = 0.1912 eV. Referring to
the reported Coulomb repulsive interaction strengths for
(TMTTF)2X-type compounds [16, 36], we basically use
U = 1 eV and V = 0.2–0.6 eV.
Within the framework of the linear response theory,

optical conductivity with respect to photon energy ω > 0
and infinitesimally small positive number η is written as

σ1(ω) = −
1

Nsω
Im

[

〈ψ0|J
1

ω + iη + E0 −H
J |ψ0〉

]

, (4)

where

J ≡ i
∑

j,σ

tj [c
†
j+1,σcj,σ − c†j,σcj+1,σ ] (5)

denotes a charge–current operator, E0 represents the
ground-state energy, and |ψ0〉 is the ground-state wave-
function. For computational problems, η/t2 = 0.05
(∼ 0.01 eV) is used.
σ1(ω) is computed by the dynamical density-matrix

renormalization group (dynamical DMRG or DDMRG)
scheme [37] under the open boundary condition (OBC).
In general, although the numerical accuracy of a DMRG
[38] calculation under the OBC is better than that un-
der the periodic boundary condition (PBC), the charges
around the edges under the OBC are rich because of
breaking of the translational symmetry of the system.
Although several approaches have been proposed to avoid
this unphysical problem to some extent [39–41], in this
study, we apply potential Vedge at the edge site [42] as
one of its solutions and fix Vedge = 50t2. The value of
Vedge = 50t2 is chosen as small as possible to satisfy the
condition that E0 of all the calculations hardly depend
on Vedge due to unpermitted Vedge → +∞. Because the
charge at the Ns-th site is poor at the Vedge, the CO

ground state considered here has a charge-rich (poor) site
at the first (Ns-th) site.
Our calculations are done with Ns = 100 (50 dimers).

This value is enough large to satisfy with Ns + 1 ∼ Ns

(the system size under the OBC) and to quantitatively
estimate the bulk properties although finite size effects
still remain in the order of 1/Ns. The truncation num-
ber of density matrices is 400 in our all the DMRG and
DDMRG calculations. All the sweep processes stopped
when the numerical relative error of adjacent sweeps was
less than 10−6 for E0 and 10−3 for σ1(ω).
We introduce number of photoexcited charges Nex [26]

to discuss the relationship between a photoexcited state
and the collective excitations of the charges. Using

|ψ(ω)〉 ≡
1

N

η

(ω + E0 −H)2 + η2
J |ψ0〉, (6)

where N denotes a normalization factor of |ψ(ω)〉,

Nex ≡
∑

j:even

[〈ψ(ω)|nj |ψ(ω)〉 − 〈ψ0|nj |ψ0〉] (7)

can be defined. Here, 〈φ|nj |φ〉 (φ = ψ0, ψ(ω)) corre-
sponds to the site density at the j-th site. Because we
consider weak photoexcitations and a single photon in-
jected into the system, Nex > 1 denotes the occurrence of
collective excitation. We also theoretically estimate the
charge disproportion by

δco ≡
1

2

∑

j=49,51

|〈φ|nj − nj+1|φ〉| (0 ≤ δco ≤ 1). (8)

Because the center of the system gives most accurate
expectation values of localized operators by DMRG cal-
culations under the OBC, we choose the system centered
two dimers for calculating δco.

III. RESULTS AND DISCUSSIONS FOR Veff = 0

We first show the theoretical results for σ1(ω) using
several realistic values for V in the case of Veff = 0 (the
conventional model) as shown in Fig. 2(a). As it can be
seen, a single peak of σ1(ω) appears around the so-called
dimerization gap of ωd ≡ 2|t1 − t2| ∼ 0.045 eV, which
corresponds to the minimum gap of free dispersions. Al-
though this is supported by another DDMRG calculation
[43] with a different parameter set [44, 45], ωd deviates
from ωCT. In addition, in the ground state, δco ∼ 0.03
is the maximum value in our calculation and does not
reproduce δco = 0.40, which was recently observed in an
X-ray diffraction experiment at 30 K [25]. To reproduce
δco = 0.40, we recalculate δco as a function of V by utiliz-
ing a different parameter set estimated by another DFT
calculation [46], namely, U = 2.2 eV, t1 = 0.20 eV, and
t2 = 0.22 eV. The results are shown in Fig. 2(b), and
we determine the best parameter of V = 0.75 eV. How-
ever, the complete structure of σ1(ω) at V = 0.75 eV
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FIG. 2. DMRG and DDMRG calculations for Veff = 0 at
Ns = 100. (a) Results for σ1(ω/t2). (b) δco of ground states.
The parameter set of t1 = 0.20 eV, t2 = 0.22 eV, and U = 2.2
eV [46] is used only for calculations presented in this figure.
δco values at the ground states for the parameter sets in (a) are
plotted as filled squares for comparison. The inset is σ1(ω/t2)
with t1 = 0.20 eV, t2 = 0.22 eV, U = 2.2 eV [46], and V =
0.75 eV for giving δco = 0.40 in the ground state.

shown in the inset of Fig. 2(b) deviates from our obser-
vation at 10 K, as shown as the chained line in Fig. 1(d).
In particular, the broad spectral shape significantly dif-
fers from the observed single peak, and we interpret the
former feature as the exaggerated collectiveness of the
excitations, which will be discussed subsequently. Thus,
the conventional model (Veff = 0) should be modified to
some extent.

IV. RESULTS AND DISCUSSIONS FOR Veff 6= 0

As an alternative approach for reproducing δco = 0.40
[25], we introduce the Veff term, which increases δco.
Next, we employ V/t2 = 3.138 (V = 0.6 eV) because it
gives the maximum value, δco ∼ 0.03, in the ground state
with Veff = 0. We find Veff/t2 = 0.086 as the best value.
As one of the origins of Veff , we consider an electron-
intramolecular vibration (EIMV) coupling [47–49] and
try to reproduce the value of Veff/t2 = 0.086 in Appendix
B 1. Veff under the EIMV coupling is physically related to
an effective potential representing the deformed molecu-
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FIG. 3. Calculations of Veff 6= 0 at Ns = 100. (a), (b)
DDMRG results of σ1(ω),Nex (solid lines) and σD

1 (ω),ND
ex by

using our effective model (dotted lines). The inset of (a) is a
schematic of |GS〉 in our effective model (δco = 1). The circles
and horizontal bars represent single charges and empty sites,
respectively. (c) Schematic energy diagram of basis |lD, n〉
with n = 1 and odd lD. Only |lD : odd, n〉 states are gener-
ated from intra-dimer hopping.

lar orbitals with δco 6= 0. Here, we comment on two more
possible origins of Veff , associated with a two-dimensional
(2D) or three-dimensional (3D) effect. An origin of a
2D effect is a Coulomb interaction between interchains.
This is because Ref. [25] reported the 2D CO pattern of
(TMTTF)2PF6 forming a 2D Wigner crystal at 30 K (in
the CO phase). A 3D dipolar interaction is another origin
and it generates a depolarization field, which depends on
a 3D crystallographic shape. However, that field possi-
bly stabilizes the polarization inversions to some extent.
These complicated origins beyond a 1D system, however,
will be discussed using more coarse-grained 2D or 3D
models in our future paper.

The results of σ1(ω) and Nex with V/t2 = 3.138,
Veff/t2 = 0.086 are shown in Figs. 3(a) and (b), re-
spectively. A sharp peak structure of σ1(ω) can be seen
to arise around 0.10 eV, and this is clearly closer to ωCT

than ωd. Furthermore, in Fig. 3(b), Nex ≥ 2 denotes that
all the photoexcited states are the collective excitations of
the charges and that maximum value Nex ∼ 3.5 appears
at the sharp peak of σ1(ω). As mentioned above, because
Nex = δcoNs/2 = 20 corresponds to the bulk ferroelectric
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of both σ1(ω) and σD

1 (ω) with Veff 6= 0 at Ns = 100. (a)
Site densities of the ground state (dotted line) and peak state
(solid line) by the DDMRG method. (b) Site density of the
peak state by our effective model. (c) Probability weights of
the peak state by our effective model with respect to basis
|lD, n〉 for odd lD. Probability weights for even lD are absent.

inversion, a polarization inversion over 3.5/δco ∼ 9 unit
cells (3.5/20 ∼ 18% of all the charges) can be achieved
at the peak. To understand this collective excitation at
the peak, we compare the site density of this peak state
with that of the ground state in Fig. 4(a), and we find
that δco decreases to approximately 0.13. This reduc-
tion in δco at the peak can be explained by two scenarios
as follows. The photoexcited state at the peak partially
includes a 1D P-inverted domain (δco → −δco 6= 0) or
dimer–Mott (DM)-insulating state (δco = 0). In this ar-
ticle, we discuss only the former scenario by extending
the effective model proposed in Refs. [26, 27]. However,
the above case of a DM-insulating state is insignificant,
as discussed in Appendix B 2. This indicates that the
peak state is still in the CO phase.

V. EFFECTIVE MODEL ANALYSIS FOR Veff 6= 0

Our effective model under the OBC, assumes the CO
ground state obtained by the DMRGmethod (δco = 0.40)
as the charge localized limit, δco = 1. The normalized

ground-state wavefunction of this model, |GS〉, only con-
tains the charges at the odd sites. Using the site density
operator at the j-th site, nD

j , 〈GS|nD
j |GS〉 = 1 (0) for

odd (even) j is satisfied as approximately sketched in the
inset of Fig. 3(a). All the physical parameters also differ
from those of H , and in particular, U vanishes in this
model. When we define basis |lD, n〉 as the photoexcited
state with a single 1D P-inverted domain continuously
arranged in 2n sites with starting site lD, the Hamilto-
nian of our effective model is described as

Hdmn ≡ −
∑

lD,n

t(lD)[|lD − 2, n+ 1〉〈lD, n|+ h.c.]

−
∑

lD,n

t(lD)[|lD, n+ 1〉〈lD, n|+ h.c.]

+
∑

lD,n

E(n)|lD, n〉〈lD, n|,

(9)

where t(lD) ≡ tD1 (tD2 ) for even (odd) lD and

E(n) =

{

nV D
eff + V D

edge (lD = Ns − 2n+ 1)

V D + nV D
eff (otherwise).

(10)

Here, tD1 (tD2 ) denotes an inter (intra)-dimer transfer in-
tegral. A schematic is shown in Fig. 3(c). Eigenener-
gies ελ and eigenstates |λ〉 (1 ≤ λ ≤ (Ns/2)

2) satisfy
Hdmn|λ〉 = ελ|λ〉 ≡

∑

lD,n uλ(lD, n)|lD, n〉. Introduc-

ing the charge–current operator of this model JD and
|ψ1〉 ≡ JD|GS〉 = i

∑

lD
(−1)lD−1t(lD)|lD, 1〉, the optical

conductivity of this model is defined as

σD
1 (ω) =

η

Nsω

∑

λ

|〈λ|ψ1〉|2

(ω − ελ)2 + η2
≡

〈ψ1|ω〉

CNsω
, (11)

where C is determined by 1 = 〈ω|ω〉 and number of pho-
toexcited charges

ND
ex ≡

∑

j:even

[〈ω|nD
j |ω〉 − 〈GS|nD

j |GS〉]

=
∑

j:even

〈ω|nD
j |ω〉 (12)

can be also defined.
To relate the nature of the photoexcited state at the

peak of σ1(ω) to that of σD
1 (ω), σ

D
1 (ω) and ND

ex should
resemble σ1(ω) and Nex, respectively, most accurately.
Employing Ns = 100, tD2 = t2 = 0.1912 eV, V D

edge/t
D
2 =

50, and η/tD2 = 0.05, we succeeded in reproducing σ1(ω)
of Veff 6= 0 with tD1 /t

D
2 = 0.600, V D/tD2 = 2.615, and

V D
eff/t

D
2 = 0.528 as shown in Fig. 3(a). Although ND

ex

underestimates Nex with Veff 6= 0 as illustrated in Fig.
3(b), the overall behavior of ND

ex is qualitatively consis-
tent with that of Nex in terms of the collective excita-
tion of the charges (ND

ex > 2) in the entire ω region.
ND

ex ∼ 2.3 is the maximum value and appears at the
peak of σD

1 (ω). In addition, although the site density
at the peak as displayed in Fig. 4(b) differs from that
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obtained by the DDMRG scheme in Fig. 4(a) owing
to our assumption of δco = 1 at the ground state, the
dip structure located around the center of the system is
consistent with the DDMRG result. According to the
above results, the peak state of σ1(ω) can be regarded
as that of σD

1 (ω), which corresponds to λ = 1 eigen-
state with

∑

lD=odd

∑

1≤n≤6 |u1(lD = odd, n)|2 ∼ 99.9%

and u1(lD = even, n) = 0, as shown in Fig. 4(c). This
implies that the photoexcited state is generated by an
intra-dimer hopping and consists of the superposition of
the 1D P-inverted domains over 1–6 unit cells.
Regarding the case of U = 2.2 eV mentioned already,

we find much larger Nex values at the peaks of the cor-
responding spectrum (inset of Fig. 2(b)), which are in
the range 6–9. Because these large Nex values indicate
a strong collectiveness of the charge excitations [26], we
determined that the present system lies in the category
of modest collectiveness.
Here, we briefly discuss the lifetime of a 1D P-inverted

domain by utilizing an effective model as introduced in
this section. The effective model can be extended to
include 1D multi-P-inverted domains. If plural 1D P-
inverted domains unite into a single 1D P-inverted do-
main, this process can stabilize a 1D macroscopic P-
inverted domain with huge size. Then, a long-lived 1D
electronic ferroelectric inversion domain is expected by a
weak photoexcitation. Theoretical investigations of this
interesting situation, however, are positioned as one of
our future works.

VI. CONCLUSIONS

To conclude, we have investigated a photoexcited state
from the CO ground state of (TMTTF)2PF6. We found
that the calculated spectrum based on a quarter-filled
1D effective model (Veff 6= 0) reproduce the experimen-
tal spectrum of the CO ground state. We clarified that
the electronic component of the optical conductivity had
a single significant peak around 0.10 eV and that the
photoexcited state at the peak could be regarded as a
superimposed state of the 1D P-inverted domains with a
modest collectiveness.
For the photoexcited state at the peak, approximately

18% of the charges in the system contribute to the 1D
P-inverted domains generated by a single photon (weak
photoexcitation). Regarding a relative change of electric
polarization (∆P/P ), this corresponds to ∆P/P ∼ 36%,
which is clearly much larger than ∆P/P ∼ 2–10% of
other ferroelectric organic materials for a weak photoex-
citation [7, 50]. Here, P denotes the initial polariza-
tion. As usual, observing the second-harmonic genera-
tion (SHG) signals with irradiating THz pulse, ∆P/P ∼
∆ISHG/(2ISHG) can be estimated, where ISHG ∝ P 2 is
satisfied. However, we cannot succeed in that observation
in the CO ground state of (TMTTF)2PF6 at present, so
the experimental check of ∆P/P ∼ 36% still remains as
one of our future problems.

Here, we consider that the difficulty of observing
∆P/P ∼ 36% may be a smallness of P . This causes low
signal-to-noise (S/N) ratio and hardness of observing the
SHG signals. In general, a typical electronic ferroelec-
tric P value of organic materials is smaller than that
value of inorganic materials such as the maximum value
of P ∼ 30 µC/cm2 of LuFe2O4 [51]. For instance, P ∼
6.3 µC/cm2 of TTF-CA, which is one of the quasi-1D
molecular materials, has been experimentally reported
in its ionic (electronic ferroelectric polarized) phase [52].
∆P/P ∼ 0.75% is also reported in that phase by observ-
ing the SHG signals [53]. For a 2D ferroelectric molec-
ular solid, α-(BEDT-TTF)2I3, ∆P/P ∼ 1.31% has been
observed in the CO phase [5]. According to Ref. [5], a
DFT calculation of estimating P ∼ 1 µC/cm2 in that CO
phase was performed although the value was experimen-
tally undetermined. Judging from the above situations
of organic solids, we believe that the SHG signals corre-
sponding to ∆P/P ∼ 36% will be also observed.

Injecting multi-photons into the system (strong pho-
toexcitation) can enhance ∆P/P and possibly generate a
1Dmacroscopic P-inverted domain spreading over the en-
tire system, which is simply the achievement of bulk fer-
roelectric inversion. Therefore, examining strongly pho-
toexcited effects is one of the crucial and challenging fu-
ture tasks. However, our results adequately showed that
(TMTTF)2PF6 could be one of promising materials for
applications in optical switching devices and memories
in the context of such macroscopic manipulation of fer-
roelectricity.
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Appendix A: Details of our experiment

To evaluate the pure electronic excitation energy, we
perform a fitting analysis of the optical conductivity spec-
trum, σ(ω), as shown in Fig. 1(d). It is well known that
the reflectivity spectrum of a TMTTF (tetramethylte-
trathiafulvalene) salt has a complex structure in the lower
energy region, which is attributed to the Fano interfer-
ence originating from the electron-intramolecular vibra-
tion (EIMV) coupling between the charge transfer (CT)
transition and Raman active intramolecular vibration
modes below 0.2 eV [32]. Fitting analyses based on the
dimer model considering this effect have been performed
[32, 54, 55]. In this section, we expand this method to
analyze the optical spectrum.
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FIG. A1. (a) Polarized reflectivity and (b) optical conductiv-
ity spectrum for E ‖ a at 10 K (the solid lines). The dashed
lines show the fitting curves. (c) Calculated spectra of the
CT transition (the solid line) and phonons (the dashed lines).
The magnitude of the latter is normalized at 1000 Ω−1cm−1.
The coupling between each phonon and the CT transition is
shown as a bar.
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FIG. A2. Schematic of the Fano interference originating from
the EIMV coupling.

R in Fig. A1(a) shows the reflectivity spectrum of
(TMTTF)2PF6 for the electric field polarized parallel
to the a-axis (E ‖ a), which is measured by a Fourier
transform infrared spectrometer. σ(ω) is obtained by the
Kramers–Kronig transformation of the reflectivity spec-
trum as shown in Fig. A1(b). Considering the EIMV
coupling effect in the framework of the Fano interfer-

ence, we perform a fitting analysis of these spectra. The
Fano interference is known to be analogous to the toy
model considering classical harmonic oscillators interact-
ing each other [56]. In this model, the vibration modes of
(TMTTF)2PF6 can be described as Fig. A2. The purely
electronic CT transition without the EIMV coupling is
regarded as an oscillator with charge qCT and eigenfre-
quency ωCT. In addition to this CT oscillator, infrared
inactive intramolecular vibrations are introduced as oscil-
lators j with eigenfrequencies ωj (j = 1, 2, 3, 4, 5) without
charges. Oscillator j is coupled with the CT oscillator via
coupling constant νj . When a light having the electric
field E(t) is irradiated, only the CT oscillator is directly
driven. Subsequently, the coupled vibration of oscillator
j is generated by the vibration of the CT oscillator via the
EIMV coupling. This can be attributed to the infrared
activation of the original infrared inactive intramolecu-
lar vibration modes due to the interaction with the CT
transition.
The equation of motion for this system with external

electric field E(ω) can be expressed as follows:

















L−1
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
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










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0
0















E(ω),

L−1
CT = ω2

CT − ω2 − iωγCT, L
−1
j = ω2

j − ω2 − iωγj ,

(A1)

where xCT, xj denote the displacements of the CT oscil-
lator and oscillators j, respectively. From Eq. (A1),

xCT =
qCTLCT

1− LCTD
E(ω)



D =
5

∑

j=1

ν2jLj



 (A2)

is derived. Consequently, the dielectric function includ-
ing fitting parameters can be expressed as

ε(ω) = ε∞ +
µ2
CTLCT

1− LCTD
. (A3)

Here, µCT is a parameter proportional to qCT, corre-
sponding to the transition intensity. ε∞ denotes the di-
electric function of the background.
The reflectivity and optical conductivity spectra are

calculated by ε(ω) in Eq. (A3). Measured reflectivity
R and σ(ω) in Fig. A1 are well-reproduced by the fit-
ting curves (the dashed lines). The fitting parameters
are listed in Table A1. The calculated spectra of the
CT transition and phonons are displayed in Fig. A1(c).
From the fitting analysis, the excitation energy of the
pure electronic CT excitation, ωCT, is evaluated to be
0.128 eV. The discrepancy between the experimental and
calculated spectra in the higher energy region of σ(ω) is
probably caused by the higher complexity of the spectral
shape of the pure electronic CT transition than that of
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TABLE A1. Fitting parameters in Eq. (A3)

ε∞ ωCT [eV] γCT [eV] µCT [eV]
1.7 0.128 7.73×10−2 0.905

j ωj [eV] γj [eV] νj [eV2]

1 0.178 2.88×10−2 1.04×10−2

2 0.135 9.05×10−4 1.23×10−3

3 0.115 9.07×10−4 1.94×10−3

4 0.0525 4.30×10−3 3.39×10−3

5 0.0389 3.79×10−3 8.67×10−4

the single Lorentz oscillator assumed in this model. This
is consistent with the result of our work indicating that
photoexcited states are collective modes of charges.

Appendix B: Supplemental materials on theories

Before discussing the main subject of this section, we
newly introduce parts of the model Hamiltonian and
physical quantities. Here we consider Ns sites of a one-
dimensional (1D) chain model with a quarter-filled hole
system and an equal population of spins (N↑ = N↓ =
Ns/4) at absolute zero temperature again. In addition to
Eqs. (1)–(3), we newly define parts of the model Hamil-
tonian as follows:

Heven
eff = Veff

∑

j:even

nj , H
odd
eff = Veff

∑

j:odd

nj . (B1)

In this section, Hamiltonian Ht+HCoulomb+H
even
eff is the

same as H in Eq. (1) with Vedge = 0. Using given Hamil-
tonian H and the charge–current operator J in Eq. (5),
the reduced optical conductivity of given photon energy
ω > 0 is written as

σ1R(ω) = −
1

Ns

Im

[

〈ψ0|J
1

ω + iη + E0 −H
J |ψ0〉

]

(B2)

within the framework of the linear response theory for
η → 0+. Parameters with Veff 6= 0 in previous sections
(namely, t1/t2 = 0.882, U/t2 = 5.230, V/t2 = 3.138, and
η/t2 = 0.05 for t2 = 0.1912 eV [16, 35, 36]) are utilized
for all the computations in this section.
In this section, all the calculations are performed by

the exact diagonalization (ED) method under the peri-
odic boundary condition (PBC) to avoid the edge effects
that typically occur under the open boundary condition
(OBC). Because the ED calculations are limited to a
small system size of the order of Ns ∼ 20 for the compu-
tational problem, the edge effects significantly affect the
calculations and so, should be eliminated. In contrast to
the density-matrix renormalization group (DMRG) [38]
and dynamical DMRG (DDMRG) [37] methods in pre-
vious sections, the ED method for a fixed system size
can easily yield the wavefunctions of arbitrary quantum

states and allow their comparison owing to the unused
renormalized Hamiltonians even if the calculations in-
volve different physical parameters. This is the reason
why we select the ED method in this section.

1. Estimation of Veff

The aim of this subsection is to discuss one of the ori-
gins of Veff = 0.086t2 in previous sections. As mentioned
already, an unconventional term, Veff , is introduced for
reproducing the experimental data and indeed several
origins of Veff such as the quasi-two-dimensional effects
from the Coulomb interactions between 1D chains are
possibly considered. However, here, we consider that one
of the candidates for the origin of Veff is the electron-
intramolecular vibration (EIMV) coupling, which is one
of the effective electron–phonon coupling models [47–49].
Using Eqs. (2) and (3), our starting Hamiltonian, Heph,
is written as

Heph ≡ Ht +HCoulomb +HEIMV, (B3)

HEIMV = −
∑

α,j

Sαx
α
j nj +

∑

α,j

Sα

2

(

xαj
)2
, (B4)

where xαj denotes the dimensionless reference frame of
molecular vibration mode α at the j-th site. For a certain
vibration mode, α, we represent gα as an EIMV coupling
constant and Ωα as a frequency of a molecular vibration,
respectively. Then Sα = 2g2α/Ωα. Here, we introduce the
mean fields of charge disproportion δco and amplitude of
the molecular vibration xα0 as follows.

〈ψ0|nj |ψ0〉 =
1

2
+ (−1)j−1 δco

2
, (B5)

xαj = (−1)j−1xα0 . (B6)

After considering the appropriate constant energy shift
and comparing Heph in Eq. (B3) with Ht +HCoulomb +
Heven

eff (see Eqs. (2), (3), and (B1)), which is the same as
H in Eq. (1) with Vedge = 0,

Veff =
∑

α

Sαδco (B7)

is derived by the Hellmann–Feynman theorem. In the
charge-ordered (CO) ground state, because a finite δco
deforms the molecular orbitals associated with nj for
each site, Veff in Eq. (B7) can be interpreted as an effec-
tive potential representing such deformation.
To simplify the problem, we select a single molecular

vibration mode, β (Sα = 0, xαj = 0 for α 6= β), and

define Sβ ≡ S, xβj ≡ x0. Then, we can derive x0 = δco/2

similarly to as discussed above. δco for a fixed S/t2 is
determined by minimizing ground-state energy EEIMV

0

written as

EEIMV
0 = 〈ψ0|Heph|ψ0〉 (x0 = δco/2). (B8)
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0 in Eq. (B8) for Ns = 12, 16, 20 with the ED
method under the PBC. The horizontal dotted-line and point
A correspond to δco = 0.40 [25].

Within the framework of the ED calculation under the
PBC, the results of δco for Ns = 12, 16, 20 are shown
in Fig. B1. To avoid the finite size effect, we use the
result for Ns = 20, which is the largest system size in our
calculations, and estimate Veff .
In a recent experiment [25], because δco = 0.40 was

observed in the CO ground state at 30 K, Veff = Sδco ∼
0.116t2 ≡ V ED

eff could be estimated at δco = 0.40 by using
value S/t2 = 0.291 for Ns = 20 at point A, as shown in
Fig. B1. The estimated value of V ED

eff is close to Veff =
0.086t2.
Apart from the structural similarity to the first-order

phase transition seen in Fig. B1, value S/t2 vanishes with
δco of Ns = 16 and Ns = 20 is quantitatively regarded as
practically unchanged. Therefore, our ED calculations
presented in the next subsection focus on Ns = 16.
Here, we briefly comment on the origin of the first-

order phase transition noted in Fig. B1. According to
the observed T -P phase diagram of (TMTTF)2PF6 [10],
the spin-Peierls (SP) phase should be the ground state
at T = 0 and, in general, it should have both 4kF-charge
density wave (CDW) and 2kF-spin density wave (SDW)
instabilities [57], where kF denotes a Fermi wave num-
ber. In this subsection, we only set CO mean field δco
that has a 4kF instability and do not treat the 2kF insta-
bility of an antiferromagnetic order appearing in the SP
state. Consequently, a tetrameric model should be con-
sidered for ensuring the second-order phase transition of
δco, which is our future work.

2. Dimer–Mott state in the excited state

In this subsection, we investigate the relationship be-
tween the dimer–Mott (DM) state and the photoexcited
state by means of the ED method under the PBC. All
the calculations are conducted at Ns = 16 as discussed
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FIG. B2. Calculations by the ED method under the PBC
for Ns = 16, η/t2 = 0.05. (a) Computed σ1R(ω/t2) of H1

in Eq. (B9). (b) Projections of a state, |Φ1(ω)〉, onto the
ground states at different physical phases |Ψ1〉 ((1010)-CO),
|Ψ2〉 ((0101)-CO), and |Ψ3〉 (dimer–Mott). (c) Site densities.
The solid line connected with solid circles describes the site
density of the photoexcited state at the first peak of σ1R(ω/t2)
shown in (a). For comparison, the site density of the ground
state is displayed as a dotted line with filled circles.

in the previous subsection. In addition, we also inquire
regarding the existence of the polarization (P)-inverted
CO state in the photoexcited state for comparison. For
this purpose, using Eqs. (2), (3), and (B1), we introduce
three Hamiltonians defined as

H1 ≡ Ht +HCoulomb +Heven
eff , (B9)

H2 ≡ Ht +HCoulomb +Hodd
eff , (B10)

H3 ≡ Ht +HCoulomb(V = 0). (B11)

From the discussions in previous sections, because H1 in
Eq. (B9) corresponds to original Hamiltonian H with
Vedge = 0 in Eq. (1), the ground state of H1 in Eq. (B9)
defined as |Ψ1〉 is rich in charges on every odd site and we
symbolically represent this as “(1010)-CO.” In contrast,
defining |Ψ2〉 as the ground state of H2 in Eq. (B10) and
|Ψ2〉 as having rich charges on each even site, which we
symbolically represent as “(0101)-CO.” This state can
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be ascribed as a P-inverted CO state with respect to
|Ψ1〉. The DM ground state, |Ψ3〉, considers the ground
state of H3 in Eq. (B11), and we simply refer |Ψ3〉 as
a “dimer–Mott.” Although some theoretical works have
revealed the phase diagram of the ground state in 1D
quarter-filled Hamiltonian Ht + HCoulomb (see Eqs. (2)
and (3)) and the parameter region of the DM phase with
non-vanishing U and V [16, 36], we particularly choose
V = 0 in H3 (Eq. (B11)) for completely neglecting the
charge-ordering effects originating from V 6= 0.
We calculate a photoexcited state with given photon

energy ω and J in Eq. (5) as

|Φ1(ω)〉 ≡
1

N1

η

(ω − E1 +H1)2 + η2
J |Ψ1〉, (B12)

where E1 represents the ground-state energy ofH1 in Eq.
(B9). N1 is determined by satisfying 1 = 〈Φ1(ω)|Φ1(ω)〉.
In addition to this, we also calculate

Pq(ω) ≡ 〈Ψq|Φ1(ω)〉 (q = 1, 2, 3) (B13)

which denotes the characteristic quantities for quali-
tatively estimating the mixing degrees of the different
ground states |Ψq=1,2,3〉 with respect to |Φ1(ω)〉.
σ1R(ω/t2) with H = H1, E0 = E1, and |ψ0〉 = |Ψ1〉 in

Eq. (B2) is shown in Fig. B2(a). Our calculations of
Pq=1,2,3(ω) are displayed in Fig. B2(b). Veff/t2 = 0.086
is chosen for the calculations presented here. This values
also allow discussing the same photoexcitation calculated
under the OBC in the previous sections except for finite
size effects. As it can be seen, in addition to the ob-
vious result of P1(ω) = 0, it is clear that P2(ω) 6= 0
and P3(ω) = 0. In particular, P2(ω) ∼ 1 can be seen
around the first peak of σ1R(ω/t2). Therefore, the pho-
toexcited state at the first peak is highly inclusive of the
P-inverted state, |Ψ2〉 ((0101)-CO), regarding the |Ψ1〉
((1010)-CO) ground state, but it is exclusive of the DM
state, |Ψ3〉. Compared to the site density of the ground
state 〈Ψ1|nj |Ψ1〉, the enhancement of the “(0101)-CO”
photoexcited state at the first peak is consistent with
site density at the peak 〈Φ1(ω)|nj |Φ1(ω)〉 shown in Fig.
B2(c).
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[15] L. Degiorgi and D. Jérome, J. Phys. Soc. Jpn. 75, 051004
(2006).

[16] H. Seo, J. Merino, H. Yoshioka, and M. Ogata, J. Phys.
Soc. Jpn. 75, 051009 (2006).

[17] F. Iwase, K. Sugiura, K. Furukawa, and T. Nakamura, J.
Phys. Soc. Jpn. 78, 104717 (2009).

[18] H. Seo and H. Fukuyama, J. Phys. Soc. Jpn. 66, 1249
(1997).

[19] D. S. Chow, F. Zamborszky, B. Alavi, D. J. Tantillo, A.
Baur, C. A. Merlic, and S. E. Brown, Phys. Rev. Lett.
85, 1698 (2000).

[20] P. Monceau, F. Y. Nad, and S. Brazovskii, Phys. Rev.
Lett. 86, 4080 (2001).

[21] M. Dressel, M. Dumm, T. Knoblauch, and M. Masino,
Crystals 2, 528 (2012).

[22] M. de Souza, L. Squillante, C. Sônego, P. Menegasso,
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[24] R. Świetlik, B. Barszcz, A. Pustogow, and M. Dressel,
Phys. Rev. B 95, 085205 (2017).

[25] S. Kitou, T. Fujii, T. Kawamoto, N. Katayama, S. Maki,
E. Nishibori, K. Sugimoto, M. Takata, T. Nakamura, and
H. Sawa, Phys. Rev. Lett. 119, 065701 (2017).

[26] K. Iwano, Phys. Rev. Lett. 97, 226404 (2006); Phys.
Rev. Lett. 102, 106405 (2009); Phys. Rev. B 91, 115108
(2015).

[27] M. Mayr and P. Horsch, Phys. Rev. B 73, 195103 (2006).
[28] K. Onda, S. Ogihara, K. Yonemitsu, N. Maeshima, T.

Ishikawa, Y. Okimoto, X. Shao, Y. Nakano, H. Yamochi,
G. Saito, and S.Y. Koshihara, Phys. Rev. Lett. 101,



11

067403 (2008).
[29] H. Hashimoto, H. Matsueda, H. Seo, and S. Ishihara, J.

Phys. Soc. of Jpn. 83, 123703 (2014).
[30] V. Vescoli, L. Degiorgi, W. Henderson, G. Grüner, K.
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