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We have developed a novel multiscale computational scheme to describe coupled nonlinear dy-
namics of light electromagnetic field, electrons, and lattice motions in crystalline solids, where
first-principles molecular dynamics based on time-dependent density functional theory is used to
describe the microscopic dynamics. The method is applicable to wide phenomena in nonlinear and
ultrafast optics. To show usefulness of the method, we apply it to a pump-probe measurement of
coherent phonon in diamond where a stimulated Raman wave is generated and amplified during the
propagation of the probe pulse.
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I. INTRODUCTION

Nonlinear optics in solids is the study of the interaction
of intense laser light with bulk materials1–3. It is intrin-
sically a complex phenomena arising from a coupled non-
linear dynamics of light electromagnetic fields, electrons,
and lattice motions. They are characterized by two dif-
ferent spatial scales, micro-meter for the wavelength of
the light and less than nano-meter for the dynamics of
electrons and ions.

In early development, nonlinear optics has devel-
oped mainly in perturbative regime and in frequency
domain4,5. However, it has changed rapidly and dras-
tically. Nowadays, measurements are carried out quite
often in time domain using pump-probe technique as a
typical method and the time resolution reaches a few
tens of attosecond6,7. Extremely nonlinear phenomena
have attracted interests such as high harmonic gener-
ation in solids8,9, ultrafast control of electron motion
in dielectrics that aims for future signal processing us-
ing pulsed light10–12, ultrafast coherent optical phonon
control13–22, and photoinduced structural phase transi-
tion of materials23–26.

We report in this paper a progress to develop first-
principles computational method to describe nonlinear
optical processes in solids that arise from coupled dy-
namics of light electromagnetic fields, electrons, and lat-
tice motions in crystalline solids. In condensed matter
physics and materials sciences, first-principles computa-
tional approaches represented by density functional the-
ory have been widely used to describe electronic struc-
tures and recognized as an indispensable tool27. Devel-
opment of first-principles approaches in optical sciences
is, however, still in premature stage due to the complex-
ity of the phenomena and the requirement of describing
time-dependent dynamics.

Our method utilizes time-dependent density func-
tional theory (TDDFT) for microscopic dynamics of
electrons28,29. The TDDFT is an extension of the den-
sity functional theory so as to be applicable to electron
dynamics in real time30. In the microscopic scale, ul-

trafast dynamics of electrons have been successfully ex-
plored solving the time-dependent Kohn-Sham (TDKS)
equation, the basic equation of TDDFT, in real time un-
der light electric fields31–33.

We have further developed a multiscale scheme to de-
scribe a propagation of strong light electromagnetic fields
in bulk media34. Here the Maxwell equations are solved
to describe the macroscopic light propagation while the
TDKS equation is solved to describe the microscopic elec-
tron dynamics in unit cells of solids. The method can
faithfully mimic experimental setups simulating pump-
probe measurements. It has been applied to investigate
extremely nonlinear optical processes in dielectrics using
few-cycle femto- and attosecond pulses11,12.

In the present study, we extend the multiscale
approach to incorporate lattice dynamics, combin-
ing first-principles Ehrenfest molecular dynamics (MD)
approach35. The extended approach, namely Maxwell +
TDDFT + MD multi-scale simulation, will be capable
of describing vast nonlinear optical phenomena involving
lattice dynamics such as stimulated Raman scattering1–3.
We will later show a simulation of the impulsively stimu-
lated Raman scattering (ISRS) spectroscopy as the first
application of the method, where the pump pulse gen-
erates coherent optical phonon over the medium and
the succeeding probe pulse interacts with the coherent
phonon to produce the transmission wave signals that
include the generation and the amplification of the stim-
ulated Raman scattering wave.

The organization of this paper is as follows. In Sec.
II, we present our formalism of the extended multiscale
method. In Sec. III, a system to demonstrate our method
and numerical details are explained. Results of the sim-
ulation of the pump-probe measurement for coherent
phonon are shown in Sec. IV. In Sec. V, a summary
will be presented.
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FIG. 1. Schematic illustration of the multiscale scheme
for a one-dimensional light propagation through a thin-film
medium. The macroscopic spacial coordinate is expressed by
X.

II. FORMALISM

In the present study, we develop a formalism to de-
scribe a propagation of light electromagnetic fields in
a medium starting with the first-principles, microscopic
calculations of electronic and ionic motions extending our
previous multiscale formalism34. In addition to electron
dynamics calculations in unit cells of a crystalline solid,
we introduce the classical lattice dynamics calculations
using the Ehrenfest approximation. We here describe
the formalism emphasizing extensions from the previous
one. An overview of our formalism is presented in Fig.
1.

A. Macroscopic description

As in ordinary electromagnetism in macroscopic me-
dia, we separate two spatial scales. In optical phenom-
ena, a wavelength of a pulsed light that is the order of µm
sets the macroscopic spatial scale. Motions of electrons
and ions induced by the light are typically the order of
10−1nm for which we call the microscopic spatial scale.
We start with considering microscopic scalar and vec-

tor potentials of the electromagnetic fields. As in our
previous development34, we use the so called Weyl gauge
in which the scalar potential φ is set to zero. The Maxwell
equations for the vector potential are given as follows.

1

c2
∂2

∂t2
~A(~r, t)−∇2 ~A(~r, t) + ~∇(~∇ · ~A(~r, t)) =

−
4πe

c

(

~je(~r, t)−~jion(~r, t)
)

. (1)

We denote number current densities of electrons and ions
as ~je and ~jion, respectively. We will describe electronic
motion by the TDDFT and ionic motion by Newtonian
mechanics.
We separate the vector potential into macroscopic

and microscopic components utilizing the usual course-
graining procedure. In the following, we introduce a

macroscopic coordinate R to express spatial dependence
of macroscopic quantities. For example, the macroscopic

vector potential is expressed as ~AR(t). The equation for
~AR(t) is given as

1

c2
∂2

∂t2
~AR(t)−∇2

R
~AR(t) + ~∇R(~∇R · ~AR(t))

= −
4πe

c

(

~Je,R(t)− ~Jion,R(t)
)

, (2)

where ~Je,R and ~Jion,R express macroscopic counterparts

of ~je and ~jion, respectively. The relations between ~Je,R
and ~je, and ~Jion,R and ~jion will be shown later.

B. Microscopic description

To solve the macroscopic equation (2), we need to es-

tablish a relation between the vector potential ~AR(t) and

the current densities, ~Jion,R(t) and ~Je,R(t). For this pur-
pose, we introduce several approximations and assump-
tions in the microscopic dynamics.
We first introduce a locally uniform approximation as

described below that should be justified by the different
spatial scales between the macroscopic and the micro-
scopic dynamics. At each point R, we consider a uniform
and infinitely periodic system and calculate microscopic
dynamics of electrons and ions under a spatially-uniform

electric field, ~E(t) = −(1/c)d ~AR(t)/dt, where R is re-
garded as a parameter in the microscopic dynamics. Sec-
ond, we assume that the transverse component of the
vector potential can be ignored in the microscopic dy-
namics. We then express the microscopic electric field
around R using a scalar potential φR(~r, t) instead of the
vector potential, which has the same periodicity as the
lattice in the microscopic scale. Third, we assume that
the medium can be treated as charge-neutral in the mi-
croscopic calculations.
Recently, we have examined the validity of the assump-

tions mentioned above by comparing calculations with
and without the assumptions for thin films of silicon36.
There we compared calculations solving the Maxwell and
the TDKS equations simultaneously using spatial grids
of different (multiple) scales and common (single) scale.
The results indicate that both calculations coincide with
each other in high accuracy for films of thickness equal
to or larger than 5nm.
Under the above assumptions and approximations, the

microscopic dynamics of electrons and ions in a unit cell
of the medium is described as follows. The electron dy-
namics is described by the TDKS equation,

i~
∂

∂t
ψi,R(~r, t) =

[

1

2m

{

−i~~∇~r +
e

c
~AR(t)

}2

−eφR(~r, t) +
δEXC [ne,R]

δne,R

]

ψi,R(~r, t). (3)
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As noted above, the vector potential ~AR(t) is treated as
a spatially-uniform field in the unit cell. Namely, R is
treated as a parameter, independent of the microscopic
coordinate ~r. The scalar potential φR(~r, t) follows the
Poisson equation,

~∇2
~rφR(~r, t) =

−4πe [−ne,R(~r, t) + nion,R(~r, t)] , (4)

where ne,R(~r, t) and nion,R(~r, t) represent number densi-
ties of electrons and ions, respectively. Their expressions
will be given later. The scalar potential may be decom-
posed into Hartree and ionic potentials,

−eφR(~r, t) = VH,R(~r, t) + Vion,R(~r, t). (5)

For the ionic dynamics, we adopt the Ehrenfest dy-
namics. Namely, we consider Newtonian dynamics for
ions using the average force produced by the electron
density distribution of ne,R(~r, t). Thus the ionic motion
is treated classically in the present framework, and no
quantum nature of phonons is taken into account. De-
noting the coordinate of the αth ion by ~sα, the Newtonian
equation is given by

Mα

d2~sα,R
dt2

= −
eZα

c

d ~AR

dt
−

∂

∂~sα,R

∫

Ω

d~r [enion,RφR] .

(6)
The second term in the right-hand-side can be written in
the following form,

−
∂

∂~sα,R

∫

Ω

d~r [enion,RφR]

= −
∂

∂~sα,R





∑

β

ZαZβe
2

|~sα,R − ~sβ,R|
−

∫

Ω

d~r
Zαne,R(~r, t)e

2

|~sα,R − ~r|



 ,(7)

where β sum runs over all ions. Zα is the charge number
of the αth ion. This expression shows that the force
acting on αth ion is given by the sum of the Coulomb
force from electrons and other ions, and the force by the
macroscopic electric field. In practical calculations, we
observe that the second term in Eq. (6) dominates in the
stimulated Raman scattering process that will be shown
later.
The density and the current density in the microscopic

scale are given as follows. For ions, they are given by

nion,R(~r, t) =
∑

α

Zαδ (~r − ~sα,R(t)) , (8)

~jion,R(~r, t) =
∑

α

Zαδ (~r − ~sα,R(t))
d~sα,R
dt

. (9)

For electrons, they are given by

ne,R(~r, t) =
∑

i

|ψi,R(~r, t)|2, (10)

~je,R(~r, t) =

1

2m

∑

i

{

ψ∗

i,R(~r, t)
[

−i~~∇~r +
e

c
~AR(t)

]

ψi,R(~r, t) + c.c
}

.(11)

The macroscopic density and current density are ob-
tained by taking an average over the unit cell volume,
Ω. The current density is explicitly given by

~Jion,R(t) =
1

Ω

∫

Ω

d~r~jion,R(~r, t) =
1

Ω

∑

α∈Ω

Zα

d~sα
dt

, (12)

~Je,R(t) =
1

Ω

∫

Ω

d~rje,R(~r, t). (13)

To carry out time evolution calculations for light elec-
tromagnetic fields, electrons, and ions, we solve the
coupled equations (2), (3), and (6), simultaneously.
For the Kohn-Sham orbital ψi,R(~r, t), we introduce the
time-dependent Bloch orbital u

n~k,R
(~r, t) by ψi,R(~r, t) =

ei
~k·~ru

n~k,R
(~r, t) and solve the equation for u

n~k,R
(~r, t) in

practice.

In the present scheme, nonlinear effects originated from
various physical mechanisms are incorporated. If the
electromagnetic fields are strong, the electric field may
induce nonlinear electron dynamics in the microscopic
scale. Since we solve the TDKS equation without any
perturbative approximations, this scheme can treat even
extremely nonlinear regime close to the damage thresh-
old. If the amplitude of the lattice motion is large, non-
linearity arising from anharmonicity of interatomic po-
tential may become significant. The effect is included
since we solve the Newtonian equation without harmonic
approximation for the ionic motion. If the electromag-
netic fields are not very strong and the amplitude of the
lattice motion is not substantial, the present scheme is
capable of describing ordinary nonlinear optical phenom-
ena involving lattice dynamics such as the stimulated
Raman scattering that will be discussed later. Finally,
if we freeze the ionic positions and the electromagnetic
fields are sufficiently weak, the present scheme results in
ordinary electromagnetism with a linear constitutive re-
lation in which the dielectric function is provided from
the TDDFT.
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C. Lagrangian and conserved energy

It is possible to write a Lagrangian that provides the
equations of motion presented in previous subsection.

L =

∫

dR

[

∫

Ω

d~r
∑

i

{

ψ∗

i,Ri~
∂

∂t
ψi,R

−
1

2m

∣

∣

∣

(

−i~~∇~r +
e

c
~AR

)

ψi,R

∣

∣

∣

2
}

−

∫

Ω

d~r

{

e(nion,R − ne,R)φR+EXC [ne,R]

}

+
1

8π

∫

Ω

d~r
(

~∇~rφR

)2

+
Ω

8πc2

(

∂ ~AR

dt

)2

−
Ω

8π

(

~∇R × ~AR

)2

+
∑

α

Mα

2

(

d~sα,R
dt

)2

+
∑

α

Zαe

c

d~sα,R
dt

· ~AR,

]

(14)

where α sum runs for ions in the unit cell. The variation
with respect to the Kohn-Sham orbital ψi,R gives the
TDKS equation (3), the variation with respect to the
scalar potential φR gives the Poisson equation (4), the

variation with respect to the vector potential ~AR gives
the wave equation (2), and the variation with respect to
the ionic coordinate ~sα,R gives the Newtonian equation
(6).
One of advantages of the Lagrangian formalism is that

it is possible to construct an expression of the conserved
energy.

E =

∫

dR

[

∫

Ω

d~r
∑

i

{

1

2m

∣

∣

∣

(

−i~~∇~r +
e

c
~AR

)

ψi,R

∣

∣

∣

2
}

+

∫

Ω

d~r

{

e(nion,R − ne,R)φR+EXC [ne,R]

}

+
Ω

8πc2

(

∂ ~AR

dt

)2

+
Ω

8π

(

~∇R × ~AR

)2

+
∑

α

Mα

2

(

d~sα,R
dt

)2

+
∑

α

Zαe

c

d~sα,R
dt

· ~AR

]

(15)

In practical calculations, the conservation of this energy
provides a useful check of the accuracy of the calculation.

D. One-dimensional propagation

Later in the present paper, we will show a calcula-
tion in which a pulsed light irradiates normally on a
thin film. In this setting, the light propagation can be
treated as one-dimensional problem. We denote the one-
dimensional macroscopic coordinate as X . We write be-
low the equations for this case.

The Maxwell equation for the macroscopic vector po-

tential ~AX(t) is expressed as

[

1

c2
∂2

∂t2
−

∂2

∂X2

]

~AX(t) = −
4πe

c

[

~Je,X(t)− ~Jion,X(t)
]

.

(16)
The current density coming from electron motion is ex-
pressed using Kohn-Sham orbitals,

~Je,X(t) =
1

mΩ

∫

Ω

d~r
{

ψ∗

i,X

[

−i~~∇~r +
e

c
~AX(t)

]

ψi,X

}

.

(17)
The current density coming from ionic motion is given
by

~Jion,X(t) =
1

Ω

∑

α∈Ω

Zα

d~sα,X
dt

. (18)

The TDKS equation for ψi,X is given as

i~
∂

∂t
ψi,X(~r, t) =

[

1

2m

{

−i~~∇~r +
e

c
~AX(t)

}2

−eφX(~r, t) +
δEXC [ne,X ]

δne,X

]

ψi,X(~r, t), (19)

The Poission equation is given by

∇2φX = 4πe [ne,X − nion,X ] . (20)

Finally, the Newtonian equation for ~sα,X is

Mα

d2~sα,X
dt2

= −
eZα

c

d ~AX

dt

−
∂

∂~sα,X

∫

Vuc

d~r [enion,XφX ] . (21)

III. SETUP OF SIMULATION SYSTEM AND

NUMERICAL DETAILS

A. Coherent phonon and impulsively stimulated

Raman scattering spectroscopy

To demonstrate how the method works in typical non-
linear optical phenomena in crystalline solids, we apply
the method to describe a pump-probe measurement of
coherent optical phonons19. Coherent phonons are gen-
erated by an irradiation of a strong and ultrashort laser
pulse on condensed media. They are characterized by co-
herent lattice motion in macroscopic spatial area with a
common phase. We consider the case in which the pulse
frequency is below the bandgap energy. In that case, the
driving force of the phonon is an impulsive force that is
generated by a virtual and temporal change of the elec-
tronic state and that only exerts during the irradiation of
the pulse. To excite the lattice dynamics by the impul-
sive force, the pulse duration must be much shorter than
the period of the optical phonon. This nonlinear process
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of the coherent phonon generation is known as the Impul-
sively Stimulated Raman Scattering (ISRS) mechanism.

As a material, we consider a diamond thin film. Two
ultrashort pulses with the same frequency ω = 1.55 eV/~,
which is much below the bandgap of the diamond, are
successively irradiated normally on the surface along the
[100] axis. The pulse has a cosine-square envelope with
the full time duration of 18 fs, which corresponds to 6.5 fs
in FWHM. This is shorter than the period of the optical
phonon of diamond, which is about 25 fs.

First a strong pump pulse that is linearly polarized
along the [011] direction is irradiated. It generates the
coherent optical phonon with atomic displacements in
[100] direction. Next a weak probe pulse that is polar-
ized along [010] direction is used to detect the coherent
phonon. Accompanying the probe pulse, an impulsively
stimulated Raman scattered wave that is polarized along
[001] direction is generated and amplified by the nonlin-
ear interaction between the lattice motion and the probe
pulse. Usually this process is described using the Raman
tensor of the diamond37. Our simulation automatically
includes the effect solving the dynamical equations. The
Raman wave as well as the propagated probe pulse ap-
pear as transmission signals after they get out the thin
film.

The light propagation in the present setting can be
described by the one-dimensional equations presented in
Sec. II.D. In the calculation, we set the crystalline abc
axes of the cubic diamond to coincide with the xyz axes
of the Cartesian coordinates, respectively.

Although it is in principle possible to carry out calcula-
tions of the pump and the probe pulse propagations in a
single calculation, we separate them into two to avoid the
complexity coming from the reflection of the pump pulse
at the back surface of the thin film. First we carry out
the calculation of the pump pulse, aiming to describe the
generation of the coherent optical phonon. At this stage,
we carry out the calculation for a sufficiently thick film
so that there do not appear any reflections at the back-
surface. In practice, we make a calculation for a diamond
thin film of 10 µm thickness and for a time duration of 80
fs. At the end of this calculation, the pump pulse locates
in the spatial region 6µm < X < 10µm. We extract the
lattice dynamics of the spatial region 0 < X < 6µm from
this calculation and use it in the next calculation of the
probe stage.

For the probe-stage calculation, we consider a thin film
of 6 µm thickness. The probe simulation starts with the
following initial condition: First we set the positions of
ions at each macroscopic grid point to the final positions
of the pump-stage calculation. We also set the initial
velocity of ions. Then, electronic ground state calcula-
tion is carried out for the shifted ionic positions at each
macroscopic points. The probe pulse is then irradiated
at the surface.

For the vector potential of the incident pulses, we use
the following time profile. For the pump pulse, it is given

by

~Apump(t) = ~e[011]A
pump
0 cos2

(

πt

T

)

cosωt,

(0 < t < T ) , (22)

where ~e[011] is the unit vector of the polarization di-
rection, Apump

0 specifies the amplitude, T specifies the
full duration, and ω specifies the average frequency.
The probe pulse is given by a similar expression. As
mentioned previously, we choose the common frequency
ω = 1.55 eV/~ and the pulse duration T = 18 fs for the
pump and the probe pulses. Some other pump frequen-

cies are also used later. The amplitude Apump
0 and Aprobe

0

are chosen so that the maximum intensity of the incident
pump pulse is 2 × 1012 W/cm2. and that of the probe
pulse is 1× 1010 W/cm2. The probe pulse is sufficiently
weak so that there occurs no significant nonlinear effects
related to the intensity of the probe pulse and that it
brings any changes in the lattice dynamics.
The vector potential is initially set to

~AX(t) = ~Apump

(

t−
X

c

)

, (23)

for the pump-stage calculation, and set to

~AX(t) = ~Aprobe

(

t−
X

c
− τ

)

, (24)

for the probe-stage calculation, where τ specifies the time
difference between the pump and the probe pulses.
For the exchange-correlation potential, we adopt the

adiabatic local density approximation (ALDA). It is well
known that ALDA has deficiencies in describing optical
responses of dielectrics, such as the underestimation of
the bandgap energies. However, since the present work
aims to demonstrate the feasibility of the calculation in-
cluding lattice motion, we adopt the ALDA as the sim-
plest choice. We also note that there exist exchange-
correlation effects that can only be treated using a vector
potential, as formulated in the time-dependent current
density functional theory38,39. We ignore the contribu-
tion for simplicity in the present work.
To describe microscopic electron motion in a

unit cell, norm-conserving pseudpotential40 is used
for the electron-ion interaction with a separable
approximation41. It should be noted that the nonlo-
cal component of the pseudopotential induces additional
contribution in the electron current density in Eq. (11)42.
To show the quality of the microscopic calculation, we

show the dielectric function of the diamond calculated
by linear response TDDFT. In the calculation, the same
real-time numerical scheme as that is used for the mi-
croscopic electron dynamics calculation is used to obtain
the dielectric function. The result is shown in Fig.2. Al-
though the bandgap is substantially underestimated in
the ALDA, an overall shape of the dielectric function
is in reasonable agreement with the experimental data.
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FIG. 2. (Color online) Calculated (a) real and (b) imaginary
parts of the dielectric function of diamond (the red lines).
The experimental measurements43 (the black lines) are also
plotted as a reference.

At frequency region below 1 eV, a tiny structure is seen
in the imaginary part. This is not physical since the
bandgap of the diamond is 4.8 eV in the LDA and comes
from a numerical artifact of the calculation of a finite
time period.

B. Numerical details

We implement our method to the open source soft-
ware SALMON44 that is developed mainly in our re-
search group. SALMON can be downloadable from our
website45.
In the one-dimensional macroscopic space, the X co-

ordinate is discretized using the spacing of 15 nm. For a
film of 6 µm thickness, 400 macroscopic grid points are
employed. At each macroscopic grid point, we prepare
a microscopic grid system. The cubic unit cell of the
diamond used in the present study includes eight car-
bon atoms. The side length of the cubic unit cell that is
equal to 3.567 Å is discretized into 16 spatial grid points.
The Brillouin zone is discretized into uniform grids of 123

k-points. The three equations of motion are integrated
with the common time step of 2 as. We note that the mi-
croscopic Kohn-Sham Hamiltonian needs to be updated.
While the Hartree potential is updated every time step,
the ionic potential is updated every five time steps. This
is because the ionic displacement is very small as we see
below and the update of the nonlocal pseudopotential
requires large computational resources.
Our approach is computationally expensive since cal-

culations of the microscopic electronic and ionic dynam-
ics are required on a number of macroscopic grid points.
Therefore, efficient parallelization is essential to carry out
the calculation. We employ hybrid parallelization scheme
using both MPI and OpenMP parallelizations. We use a
supercomputer Oakforest-PACS operated jointly by Uni-

versity of Tokyo and University of Tsukuba. It is com-
posed of next-generation intel Xeon-Phi many-core pro-
cessors (68 cores/node). In our typical calculation us-
ing 400 macroscopic grid points, we utilize 400 nodes of
the Oakforest-PACS. By MPI parallelization, each node
carries out calculations of microscopic dynamics of one
macroscopic grid point. Inside the node, MPI paral-
lelization is again adopted for k-points. OpenMP is then
adopted for the calculations of electron orbitals. A typ-
ical time evolution calculation of 80 fs costs about 10
hours using 400 nodes.

IV. PUMP-PROBE SIMULATIONS

A. Pump process: Coherent phonon generation

We first show the calculation for the generation of co-
herent phonons in diamond by the pump pulse. Figure
3(a) shows the propagation of the pump light by red lines
and the displacement of the ions at different macroscopic
points of X by green-filled circles. When the field en-
ters the medium, first the ions at the left edge point of
the medium start to move by the light-matter interac-
tion. After that, as the pump pulse propagates through
the medium, the harmonic motion of ions is generated
in turn at each macroscopic grid point. In Fig. 3(a), a
wave-like behavior of the ionic displacement is seen along
the X axis. The amplitude of the ionic displacement is
rather small, typically 10−4 Å. This reflects the fact that
there is no resonant energy transfer from the pump pulse
to electrons since the pulse frequency is much below the
bandgap energy.
It is noted that the wave-like bahavior is not an or-

dinary propagation of the lattice wave. The period of
the oscillation at each X point is equal to the period
of the optical phonon, 25 fs for diamond. However, since
the wave is generated by the pump pulse that propagates
with the speed of light in the medium, c/n, with the index
of refraction n, the front edge of the wave moves with the
same speed. This is orders of magnitude larger than the
phase velocity of the lattice wave which is determined by
the phonon dispersion curve. The amplitude of the oscil-
lation does not attenuate in the medium since the pump
pulse is not absorbed during the propagation. Although
there is a small energy transfer from the pulsed light to
the lattice motion, the energy transfer is very small as
will be shown later.
In Fig.3(b), the generation processes of the optical

phonon at X= 0 and 2 µm are shown as a function of
time. We first look at the case of X = 0 µm. Immedi-
ately after the light electric field arrives at the position,
the force that is proportional to the square of the electric
field appears. It then generates the ionic displacement
corresponding to the coherent phonon. As the ions start
to move, the restoring force begins to work. The ionic
displacements show a sine shape at times after the center
of the pump-pulse envelope (i.e. t > 9 fs). These behav-
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FIG. 3. (a) Snapshots of the electric field of the pump pulse
(red lines) and the ionic displacement (green filled circles) are
shown along the macroscopic grid points of X coordinate. (b)
Electric field of the pump pulse (red line), the force acting on
the ion (black line), and the ionic displacement (green line)
are shown as a function of time at X = 0 and 2 µm. (c) The
ground state elenctron density in the (011) plane of the unit
cell. (d) The changes in the electron density from the ground
state are shown at t=4.0, 8.0, and 8.6 fs at X= 0 µm.

FIG. 4. (Color online) Energies per unit area integrated over
the propagation direction are shown as a function of time dur-
ing the propagation of the pump pulse. The total energy (the
black line) is decomposed into the energy of the electromag-
netic field (the green line), the energy of electronic excitations
(the red line), and the kinetic energy of the ions (the blue
line).

iors of the force and the generation process of the co-
herent phonon is consistent with the picture of the ISRS
mechanism19. After the pump field passes away, a simple
harmonic motion of ions continues without decay. The
same generation process is seen at X = 2 µm in Fig.3(b)
after the pump field arrives at the position.
The driving force for ions is generated through the

change in the electron density, not from the direct field-
ion interaction. In Fig.3(c) and (d), electron density in
the (011) plane of diamond is shown for the ground state
in (c) and changes in the density at times t = 4.0 fs,
8.0 fs, and 8.6 fs in (d). In the ground state, the covalent
bonds appear between ions as seen in (c). The pump field
induces a shift of bonding electrons along the bond direc-
tion toward the direction of the electric field. The larger
changes in the density are observed under the stronger
field. Although the direction of the shift of electrons
change when the direction of the field becomes opposite,
the direction of the force on ions does not change because
all bonds in the (011) plane are weakened irrespective of
the direction of the electric field. This gives rise to the
driving force of ions along the [100] axis during the pump
pulse.
In Fig.4, the energy per unit area is shown as a function

of time during the pump-pulse propagation. The energy
components of the electromagnetic fields, electronic ex-
citations, and lattice motions as well as the total energy
that is the sum of the three energies are shown. When the
light pulse gets into the medium, the energy components
start to change in time. After the light pulse fully gets
into the medium region, the energy components change
very little. The lattice energy is always small because the
amplitude of the lattice motion is small, as was seen in
Fig. 3. Magnifying the plot of the energy of the lattice
motion, a step-wise increase of energy is observed. This
reflects the fact that the lattice motion takes place in
more wide spatial region as the pump pulse propagates
through the medium. During the process, the conser-
vation of the total energy is satisfied in high accuracy,
supporting the numerical accuracy of the calculation.
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FIG. 5. Coherent phonon generation by pump pulses of three
different frequencies, ~ω= (a)1.55, (b)3.5 and (c)6.0 eV. Ionic
displacements as a function of time are shown at selected
macroscopic points of X (the left panels) and those along
the coordinate X at specific times (the right panels). Note
that the vertical and horizontal scale of (c) is different from
those of (a) and (b).

B. Different pump-pulse frequencies

We next show in Fig.5 the generation of coherent
phonons by pump pulses of three different frequencies. In
the calculations, smaller macroscopic grid spacing is used
for shorter wavelength of the pump pulse in the medium,
15, 10 and 5 nm in (a), (b) and (c), respectively. Panel
(a) shows the generation with ω=1.55 eV/~, the same
as that shown in Fig.3(a). Panel (b) shows the gener-
ation with ω=3.5 eV/~. Although the pump frequency
is still below the optical gap energy, the phonon ampli-
tude decays with X whereas the amplitude of the lattice
oscillation at each X point does not decay with time.
This is caused by the attenuation of the pump pulse as it
propagates through the medium. Since the pump pulse
is rather strong with the intensity, 2×1012 W/cm2, the
pump pulse excites electrons by two-photon absorption
process and looses the energy as it propagates through
the medium. Although the same intensity is used for the
case of ω = 1.55 eV/~, no absorption is seen because at
least four photons are required to exceed the bandgap
energy.

At ω=6 eV/~ that is above the optical gap energy,
the amplitude of the lattice motion at the surface is one
order of magnitude larger than the non-resonant cases,
as seen in Fig.5(c), The displacement of ions shows a
harmonic motion of cosine shape, namely the oscillation
takes place around the shifted equilibrium position. This
is due to the change of the generation mechanism of
coherent phonons, from ISRS to the displacive excita-
tions of coherent phonon (DECP)19. Thus, the coherent
phonons by both ISRS and DECP mechanisms can be
described in the present formalism. These results are
consistent with Ref.33 where generation mechanisms of
coherent phonons are discussed using TDDFT without
coupling to the light propagation. The amplitude of the
lattice motion decays with X since the field attenuates

FIG. 6. Simulation results of the probe process with τ= 83
fs. (a)Snapshots of the electric field of the probe pulse in
[010] (red-line) and in [001] (blue-line) directions, and the
ionic displacement (green filled circles) are shown along the
macroscopic coordinate X. (b) Plots of the same quantities
as a function of time at X = 0, 2 and 4.8 µm. The time t is
set to 0 when the front edge of the probe pulse reaches the
surface of the medium.

by the absorption of the pulse.

C. Probe process: generation and amplification of

stimulated Raman wave

We next proceed to the simulations for the propaga-
tion of probe pulses. As mentioned previously, we make
separate calculations from those of the pump pulse that
generates the coherent phonon.
The polarization of the probe pulse is set to [010] di-

rection. The time delay between the pump and the probe
pulses are specified by τ in Eq. (24). Two simulations
are performed with τ=83.0 and 89.5 fs. We note that the
calculation of the pump stage ends at t =80 fs. In the
calculation of τ = 83.0 fs, the ionic displacement at the
surface is maximum when the probe pulse reaches the
surface of the medium. In the calculation of τ = 89.5 fs,
the ionic displacement at the surface is almost zero when
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FIG. 7. (Color online) Simulation results of the probe process
with τ=89.5 fs. Same plots as those in Fig.6.

the probe pulse reaches the surface of the medium.
In Fig.6(a), the propagation of the probe pulse as well

as the generation of the impulsive stimulated Raman
wave are shown for the case of the pump-probe time delay
of τ = 83.0 fs. As seen from the figure, the probe pulse
shown by the red line propagates with the same speed as
the wave of the ionic displacement, at the position of the
maximum ionic displacement. This is because the lattice
motion proceeds with the speed of the pump pulse, c/n,
as noted previously, and the probe pulse also propagates
with the same speed since we chose the same frequency
for the pump and the probe pulses.
During the propagation of the probe pulse, the stimu-

lated Raman wave that is shown by the blue line appears
in [001] direction, perpendicular to both directions of
the ionic displacements and the probe polarization. The
stimulated Raman wave has the phase shift of π/2 with
respect to the probe pulse, and its amplitude increases
linearly with the traveled distance. These features are
consistent with the standard theoretical description for
the stimulated Raman scattering using the property of
the Raman tensor19,46.
The probe pulse and the stimulated Raman wave as

a function of time are shown at X= 0, 2 and 4.8 µm

FIG. 8. Transmitted probe (Ey(t)) and stimulated Raman
waves (Ez(t)) in the right vacuum region for τ= 83.0 fs are
shown in (a), and their power spectra are shown in (b). Those
with τ= 89.5 fs are shown in (c) and (d).

in Fig.6(b). It is seen that two waves exist in the tim-
ing of the maximum displacement of the ions and have
almost the same envelope shape with common center po-
sitions. At X=4.8µm, the probe and the stimulated Ra-
man waves reflected at the backsurface of the medium
are seen around t = 75 fs.

In Fig.7(a), the propagation of the probe pulse with
the time delay of τ=89.5 fs is shown. Here, the probe
pulse moves with the nodal point of the lattice motion
during the propagation in the medium. As is seen from
the figure, there appears a clear difference in the pulse
shape of the stimulated Raman scattering wave from that
of the case of τ = 83.0 fs.

In Fig.8, we show the pulse shape of the transmitted
waves in time domain for the two cases of different time
delays. Panels (a) and (c) are the cases of τ = 83.0 and
89.5 fs, respectively. In the case of τ = 83.0 fs, the pulse
shape of the stimulated Raman wave (Ez(t)) is similar
to the shape of the probe pulse (Ey(t)) except for the
phase difference of π/2. On the other hand, in the case
of τ = 89.5 fs, the pulse shape of the stimulated Ra-
man wave is very different from the shape of the probe
pulse. This difference can be understood as being origi-
nated from the difference of the electric current density
that produced the stimulated Raman wave. The electric
current density that produces the Raman wave is given
by JRaman(t) ∝ Q(t)Eprobe(t)

19,46, where Eprobe(t) is the
electric field of the probe pulse and Q(t) is the phonon
amplitude that is expressed by the linear combination of
the ionic displacements. When the probe pulse enters the
medium at the maximum of the phonon amplitude, Q(t)
may be regarded as roughly a constant and JRaman(t) has
a similar time profile to that of Eprobe(t) since the half pe-
riod of the lattice motion is assumed to be longer than the
duration of the probe pulse. However, when the probe
pulse moves with the nodal position of the lattice motion,
the phonon amplitude may be approximated by a linear
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function of time. Then, we have JRaman(t) ∝ tEprobe(t),
and the lattice motion produces one extra node to the
electric current density. This explains the shape change
of the stimulated Raman wave shown in Fig.8(c).
We show the power spectra of the stimulated Raman

waves in panels (b) and (d) of Fig.8. Reflecting the differ-
ent profiles in time domain, they show distinct structures:
the double-peak structure appears in the power spectrum
of the stimulated Raman wave when it propagates at the
nodal point of the lattice motion. We note that such
double-peak structure is indeed related to recent pump-
probe measurement of the coherent phonon in diamond
and other insulators14,17. We will report our analysis for
this problem in a separate publication.

V. SUMMARY

We have developed a computational approach for non-
linear light-matter interaction in solids involving lattice
motion based on first-principles time-dependent density
functional theory. A multiscale scheme is developed si-
multaneously solving the Maxwell equations for light

propagation, the time-dependent Kohn-Sham equation
for electrons, and the Newtonian equation for ions. As
a test example, a pump-probe measurement of coherent
phonon generation in diamond is simulated where an am-
plification of the stimulated Raman wave is observed for
the probe stage. It is shown that substantially different
shapes of the stimulated Raman waves are obtained de-
pending on the pump-probe time delays. We expect the
method will be useful for a wide phenomena of nonlinear
and ultrafast optics in solids.

VI. ACKNOWLEDGEMENT

We acknowledge the supports by JST-CREST un-
der grant number JP-MJCR16N5, and by MEXT as
a priority issue theme 7 to be tackled by using Post-
K Computer, and by JSPS KAKENHI Grant Number
15H03674. Calculations are carried out at Oakforest-
PACS at JCAHPC through the Multidisciplinary Co-
operative Research Program in CCS, University of
Tsukuba, and through the HPCI System Research
Project (Project ID: hp180088).

∗ ayamada@ccs.tsukuba.ac.jp
1 R. W. Boyd. Nonlinear Optics, Third Edition. Academic
Press, Inc., Orlando, FL, USA, 3rd edition (2008).

2 Y. R. Shen. The Principles of Nonlinear Optics. Wiley-
Interscience, 1st edition (1984).

3 N. Bloembergen. Nonlinear Optics. World Scientific, 4th
edition (1996).

4 J. W. Goodman. Introduction to Fourier optics. Roberts
& Company Publishers, Englewood, Colorado, USA, 3rd
edition, 2005).

5 E. Hecht. OPTICS. Pearson Education, Inc., San Fran-
cisco, CA, USA, 4ed edition (2002).

6 F. Krausz and M. Ivanov. Attosecond physics. Rev. Mod.
Phys., 81, 163–234 (2009).

7 F. Calegari, G. Sansone, S. Stagira, C. Vozzi, and M.
Nisoli. Advances in attosecond science. J. Phys. B: At.
Mol. Opt. Phys., 49, 062001 (2016).

8 S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L.
F. DiMauro, and D. A. Reis. Observation of high-order
harmonic generation in a bulk crystal. Nature Physics, 7,
138 EP –, 12 (2010).

9 T. T. Luu, M. Garg, S. Yu. Kruchinin, A. Moulet, M. Th.
Hassan, and E. Goulielmakis. Extreme ultraviolet high-
harmonic spectroscopy of solids. Nature, 521, 498 EP –,
05 (2015).

10 M. Schultze, K. Ramasesha, C. D. Pemmaraju, S. A. Sato,
D. Whitmore, A. Gandman, James S. Prell, L. J. Borja,
D. Prendergast, K. Yabana, D. M. Neumark, and S. R.
Leone. Attosecond band-gap dynamics in silicon. SCI-
ENCE, 346(6215), 1348–1352 (2014).

11 A. Sommer, E. M. Bothschafter, S. A. Sato, C. Jakubeit,
T. Latka, O. Razskazovskaya, H. Fattahi, M. Jobst,
W. Schweinberger, V. Shirvanyan, V. S. Yakovlev, R. Kien-
berger, K. Yabana, N. Karpowicz, M. Schultze, and

F. Krausz. Attosecond nonlinear polarization and light-
matter energy transfer in solids. NATURE, 534(7605),
86–90 (2016).

12 M. Lucchini, S. A. Sato, A. Ludwig, J. Herrmann,
M. Volkov, L. Kasmi, Y. Shinohara, K. Yabana, L. Gall-
mann, and U. Keller. Attosecond dynamical Franz-
Keldysh effect in polycrystalline diamond. SCIENCE,
353(6302), 916–919 (2016).

13 M. Hase, M. Kitajima, A. M. Constantinescu, and H. Pe-
tek. The birth of a quasiparticle in silicon observed in
time-frequency space. Nature, 426, 51–54 (2003).

14 K. Mizoguchi, R. Morishita, and G. Oohata. Generation of
coherent phonons in a cdte single crystal using an ultrafast
two-phonon laser-excitation process. Phys. Rev. Lett., 110,
077402 (2013).

15 I. Katayama, K. Sato, S. Koga, J. Takeda, S. Hishita,
H. Fukidome, M. Suemitsu, and M. Kitajima. Coherent
nanoscale optical-phonon wave packet in graphene layers.
Phys. Rev. B, 88, 245406 (2013).

16 K. Sato, K. Tahara, Y. Minami, I. Katayama, M. Kita-
jima, H. Kawai, K. Yanagi, and J. Takeda. Resonance
enhancement of first- and second-order coherent phonons
in metallic single-walled carbon nanotubes. Phys. Rev. B,
90, 235435 (2014).

17 K. G. Nakamura, K. Ohya, H. Takahashi, T. Tsuruta,
H. Sasaki, S. Uozumi, K. Norimatsu, M. Kitajima, Y.
Shikano, and Y. Kayanuma. Spectrally resolved detection
in transient-reflectivity measurements of coherent optical
phonons in diamond. Phys. Rev. B, 94, 024303 (2016).

18 H. Sasaki, R. Tanaka, Y. Okano, F. Minami, Y. Kayanuma,
Y. Shikano, and K. G. Nakamura1. Coherent control the-
ory and experiment of optical phonons in diamond. Scien-
tific Reports, 8, 9609 (2018).



11

19 R. Merlin. Generating coherent thz phonons with light
pulses. Solid State Communications, 102(2), 207 – 220
(1997). Highlights in Condensed Matter Physics and Ma-
terials Science.

20 T. E. Stevens, J. Kuhl, and R. Merlin. Coherent phonon
generation and the two stimulated raman tensors. Phys.
Rev. B, 65, 144304 (2002).

21 C. Thomsen, J. Strait, Z. Vardeny, H. J. Maris, J. Tauc,
and J. J. Hauser. Coherent phonon generation and detec-
tion by picosecond light pulses. Phys. Rev. Lett., 53, 989
(1984).
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