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Breaking of the inversion symmetry at the interface between different materials may dramatically
enhance spin-orbit interaction in the vicinity of the interface. We incorporate the effects of this
interfacial spin-orbit coupling (ISOC) into the standard drift-diffusion theory by deriving general-
ized boundary conditions for diffusion equations. Our theoretical scheme is based on symmetry
arguments, providing a natural classification and parametrization of all spin-charge and spin-spin
conversion effects that occur due to ISOC at macroscopically isotropic interfaces between nonmag-
netic materials. We illustrate our approach with specific examples of spin-charge conversion in
hybrid structures. In particular, for a lateral metal-insulator structure we predict an “ISOC-gating”
effect which can be used to detect spin currents in metallic films with weak bulk SOC.

Correlations between charge and spin degrees of free-
dom induced by spin-orbit coupling (SOC) in crystals
and nanostructures open a pathway to control spin dy-
namics by purely electric means, without using magnetic
fields. Not surprisingly, spin-charge conversion phenom-
ena mediated by SOC are attracting a growing atten-
tion in the field of spintronics1–4. Among them, the
most known are the spin Hall effect (SHE)5–7, and the
inverse spin-galvanic effect also known as the Edelstein
effect8,9 (EE). The SHE universally exists in all conduc-
tors without any symmetry restriction, provided SOC is
sufficiently strong. In particular, it is responsible for the
spin-charge conversion in the bulk of centrosymmetric
materials, like Pt or Au10–12. In contrast, the EE, that is,
the spin polarization induced by a charge current6,7,13–16,
occurs only in the absence of inversion symmetry or,
more precisely, only in gyrotropic materials/structures17.
Usually it is discussed for two-dimensional (2D) elec-
tron gases in semiconductor heterostructures or in sur-
face bands at surfaces or interfaces7,18–20 with Rashba-
type SOC21, but it is also known in bulk materials, like
Te22–25. SOC also leads to the spin-spin conversion via
the spin swapping effect (SSE)26–28.

The symmetry conditions for all spin-charge conver-
sion effects are naturally met at interfaces between dif-
ferent materials as any interface is always locally gy-
rotropic. Moreover the strong inversion symmetry break-
ing across the interface dramatically enhances manifesta-
tions of SOC, and, depending on the nature of the mate-
rials, may produce a giant interfacial SOC (ISOC)29–32.
This makes interfaces promising candidates for active re-
gions in spintronics devises, where the spin-charge and
spin-spin conversion occurs most efficiently. In the last
years these effects have been measured using different
experimental techniques for various interfaces33–38.

First experiments on the spin-charge conversion due
to ISOC were interpreted as the inverse EE (IEE) in
the 2D Rashba-splitted interface band20,33. Later it has
been recognized that the spin-dependent scattering of the

bulk continuum states at the interface also contributes
strongly to the interfacial spin-charge conversion and the
spin swapping39–43. A closely related mechanism stud-
ied in the context of semiconductor heterostructures can
be attributed to a spin-dependent tunneling through the
interfacial barrier44–50. Currently, theoretical studies of
spin transport in the presence of ISOC are limited to spe-
cific effects in specific microscopic models with simplest
geometries. Apparently this is not sufficient for the de-
scription of realistic device structures, and it is highly
desirable to classify all effects of ISOC and consistently
incorporate them into a general theoretical scheme of de-
vice modeling.

The spin and charge transport in a typical spintron-
ics device is usually well described by the drift-diffusion
theory. Within this approach the evolution of the spin
and charge densities is governed by diffusion equations51,
supplemented with proper boundary conditions (BC) at
all interfaces and boundaries. In the absence of SOC the
BC reduce to the conservation of normal to the inter-
face components of all currents, and relations between
the currents and possible discontinuities of the densities
across the interface. The latter are usually formulated
in terms of spin-dependent interface conductances52–54.
The modifications of BC by the bulk SOC in noncen-
trosymmetric materials have been intensively debated in
the literature55–59. However the role of ISOC and the
ways of incorporating its effects into the BC for the
drift-diffusion theory remain largely unexplored. Re-
cently a generalization of the magnetoelectronic circuit
theory, which partly accounts for the ISOC via coupling
to the in-plane electric field at the interfaces has been
proposed60,61. This indeed captures the interfacial gener-
ation of spin current by the in-plane charge current38,62,
but apparently it does not cover all physically expected
effects of ISOC and the general form of the corresponding
BC still remains unknown.

The present paper is aimed at filling this gap by de-
riving the full set of BC describing all possible spin-
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charge and spin-spin conversion effects that may occur
at the macroscopically isotropic interface separating non-
magnetic materials. We do not use any specific micro-
scopic model, but rely solely on symmetry arguments,
which is similar to the symmetry based derivation of spin
diffusion equations in the presence of bulk SOC51,63.

Let us consider two nonmagnetic materials labeled by
the index α = 1, 2 and separated by a flat interface
characterized by unit normal vector n̂. The interface
located at the surface n̂ · r = 0 is assumed macroscopi-
cally isotropic with a symmetry group C∞v. In the bulk
of the materials the charge and spin degrees of freedom
are described, respectively, by the distribution of electro-
chemical potentials µα(r) and the spin density Sα(r). To
focus on the effects of ISOC, we assume that both mate-
rials posses the inversion symmetry and the spin-charge
coupling in the bulk is negligible. In this case the charge
jα and spin Jaαi currents are given by the standard dif-
fusive formulas, jα = −σDα∇µα, and Jaαi = −Dα∂iS

a
α,

where σDα and Dα are the Drude conductivity and the
diffusion coefficient, respectively. In the steady state the
charge and spin diffusion equations on either side of the
interface reduce to Laplace equations for µα(r), and the
stationary spin diffusion equations,

∇2µα(r) = 0 ; Dα∇2Sα(r) =
Sα(r)

τα
, (1)

where τα is the spin relaxation time. In the absence of
ISOC the BC at the interface are well known and read

σDα (n̂ · ∇)µα = Gc0∆µ, (2)

Dα(n̂ · ∇)Sα = Gs0∆S, (3)

where ∆µ = µ1 − µ2 and ∆S = S1 − S2, and G
c/s
0 is the

charge/spin conductance64. Physically Eqs. (2) and (3)
relate the currents passing through the interface to the
interfacial density/potential drops. The appearance of
the differences of the densities in the BC, and the inde-
pendence of conductances on the material index α reflect
the conservation of all currents in the absence of SOC.

Formally Eqs. (2)-(3) are linear relations between the
densities and their first derivatives. Such relations are

forbidden by the symmetry in the isotropic bulk, but
they are allowed at the interface as it provides us with
an additional polar vector n̂. By constructing a scalar
differential operator n̂ ·∇ we can compile linear relations
involving the densities and their derivatives, and trans-
forming as a scalar, Eq. (2), and a pseudovector, Eq. (3).
These are the general BC for the scalar µ(r) and the
pseudovector S(r) densities, allowed by the interface C∞v
symmetry under the requirements of the charge and spin
conservation in the absence of the charge-spin mixing.

In the presence of ISOC the spin-charge coupling is
possible, the spin is not conserved, and therefore only the
charge conservation (the gauge invariance) requirement
remains. This allows for additional terms in the BC.
Let us consider first the modification of the scalar BC in
Eq. (3). The only additional scalar invariant that is linear
in the densities and their first derivatives is (n̂×∇) · S.
Therefore the most general scalar BC takes the form,

σDα (n̂ · ∇)µα = G∆µ+
∑
β

θscαβDβ(n̂×∇) · Sβ . (4)

Because of the gauge invariance the electrochemical po-
tentials enter only as ∆µ, and there is only one charge
conductance G. The second term in Eq. (4) describes
the spin-charge conversion via the interfacial ISHE – the
generation of a normal charge current from in-plane spin
currents at either side of the interface. This channel of
the spin-charge conversion at hybrid interfaces has been
discussed in Ref. 65 within a simple ballistic scattering
model. Our symmetry arguments show that in general it
is parametrized by four spin-charge Hall angles θscαβ . The
cross-interface angles θsc12 and θsc21 should vanish for non-
transparent interfaces. For example, for metal-insulator
interfaces there is only one spin-charge Hall angle.

Similarly we generalize the pseudovector BC of Eq. (3)
by adding all symmetry allowed pseudovectors con-
structed from the densities and their derivatives66. It
is convenient to write the resulting general BC by sepa-
rating the normal and the parallel to the interface spin
components S = S⊥ + S‖, where S⊥ = n̂(n̂ · S) and
S‖ = (n̂× S)× n̂,

Dα(n̂ · ∇)Sα⊥ = Gnα∆S⊥ + LnαS̄⊥ +
∑
β

κnαβDβ(n̂×∇)× Sβ‖ (5)

Dα(n̂ · ∇)Sα‖ = Gpα∆S‖ + LpαS̄‖ +
∑
β

κpαβDβ(n̂×∇)× Sβ⊥ +
∑
β

θcsαβσ
D
β (n̂×∇)µβ , (6)

where S̄ = S1 + S2. In the presence of ISOC the spin
is not conserved. Therefore the right and left values of
the boundary spin can independently enter BC. The cor-
responding contributions are parametrized by the spin

conductances G
n/p
α and the spin loss coefficients L

n/p
α ,

which in general depend on the material index α, and
are different for the normal (n) and the parallel (p) spin
components. The third term in the right hand sides in
Eqs. (5) and (6) describes the spin-spin conversion due to
the interfacial SSE. Namely, the in-plane current of the
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parallel (normal) spin component generates the normal
current of the normal (parallel) spin component. This
effect of ISOC is characterized by a set of swapping coef-

ficients κ
n/p
αβ . Finally, the last term in the right hand side

in Eq. (6) is responsible for the charge-spin coupling. It
can be interpreted as an interfacial SHE – generation of
the spin current across the interface by an in-plane charge
current. This effect has been studied recently in Refs. 38
and 62 for different hybrid structures via first principle
transport calculations. The corresponding transport co-
efficients in Eq. (6) are the charge-spin Hall angles θscαβ .

Equations (4)-(6) generalize the standard BC of
Eqs. (4) and (3). However this is not sufficient to fully
describe the physics of interfaces with ISOC. The reason
is that the diffusion equations and the derived BC involve
only smooth “diffusive” parts of the densities that vary
slowly on the scale of the mean free path `. In addition,
strongly localized (on the scale less than `) interfacial
charge and spin currents as well as the interfacial spin
polarization in general appear near nontrivial spin-orbit
active interfaces. Most obviously the localized observ-
ables can be related to the interface bands, as it is com-
monly assumed to interpret experiments on the interfa-
cial spin-charge conversion19,20,33,36. Apart from that, in
the presence of ISOC the spin-dependent interference be-
tween the incident and reflected waves for bulk states also
leads to the appearance of interfacial spin polarization41

and interfacial currents42, localized on the scale of the

Fermi wavelength λF .
The localized contributions can be included into the

drift-diffusion theory by representing the total physical
observables in the following form,

Otot(r) = Θ(−z)O1(r) + Θ(z)O2(r) + δ(z)OI(r‖), (7)

where z = n̂ · r is the normal to the interface coordinate,
Oα(r) are the slow “diffusive” parts that satisfy the bulk
diffusion equations, and OI(r‖) is the localized part of the
observable. Within the standard linear transport theory
the localized spin SI , the charge current jI , and the spin
current JaiI should be related linearly to the interfacial
values of the diffusive observables µα and Sα. Formally
the latter act as the sources (effective driving fields) for
the former. The general form of such relations for SI ,
jI , and JaiI can be determined from the symmetry argu-
ments by combining, respectively, all linearly indepen-
dent pseudovector, vector, and pseudotensor invariants
constructed out of µα, Sα and their first derivatives67. A
straightforward analysis66 leads to the following expres-
sions for the localized parts of the spin polarization and
the charge current,

SI =
∑
α

σcsα (n̂×∇)µα +
∑
α

σssα (n̂×∇)× Sα (8)

jI =
∑
α

σscα (n̂× Sα) +
∑
α

θscIα(n̂×∇)(n̂ · Sα), (9)

while the localized spin current takes the form,

JaiI = gcsεiakn̂k∆µ+
∑
α

[
gpαn̂aS

i
α + gnαδai n · Sα + θcsIαn̂a(n̂×∇)iµα + κIα(n̂× (n̂×∇))aS

i
α + κ′Iαδai∇ · Sα‖

]
(10)

In the last equation the spatial index i takes only in-
plane values as the interface spin current JaiI flows in the
interface plane68. For brevity we do not show the “triv-
ial” terms proportional to Sα, ∇µα, and ∂iS

a
α, allowed

in Eqs. (8), (9), and (10), respectively. These terms may
describe, if necessary, the usual 2D diffisive transport in
the interface bands. The contributions shown explicitly
are those responsible for the spin-charge and the spin-
spin conversion. The first term in Eq. (8) describes the
interfacial EE – the local spin polarization induced by
the in-plane charge current41. The second term is the in-
terfacial spin generated by the spin current flowing along
the interface, and polarized in the direction orthogonal
to that of the current. The first and the second terms
in Eq. (9) correspond, respectively, to the interfacial IEE
and the ISHE, i. e., the charge current at the interface
induced by the non-equilibrium spin polarization and the
in-plane spin current. Finally, in Eq. (10) the first term
can be interpreted as a cross-interface SHE (the spin cur-
rent at the interface plane generated by the voltage drop
across the interface), the fourth term is the 2D interfa-

cial SHE, the last two terms describe the 2D SSE, while
the second and third terms are responsible for the spin
current produced directly by the non-equilibrium spin
polarization.

The localized observables of Eqs. (8)-(10) were intro-
duced on physical grounds. Now we show that the ap-
pearance of in-plane localized currents is also required
by the internal consistency of the theory. Let us look
on Eq. (4). The second term in the right hand side is
allowed by the symmetry and meaningful physically, but
it manifestly violates conservation of the charge current.
Indeed Eq. (4) states that a part of the charge current
passing through the interface is lost in the presence of
in-plane spin gradients. The interfacial charge current
jI fixes this problem by providing a missing sink. In the
presence of jI the continuity equation for the total charge
current, after the integration across the interface, reads,

σD1 (n̂ · ∇)µ1 − σD2 (n̂ · ∇)µ2 = −∇ · jI . (11)

By substituting Eqs. (4) and (9) into the left and right
hand sides we find that the charge continuity equation is
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FIG. 1. Streamlines of the charge current generated by the
spin current Jxz flowing perpendicular to the interface (at z =
0) between two conducting materials. The density plot shows
the distribution of the induced electrostatic potential.

fulfilled identically if the spin-charge Hall angles θscαβ are
related to the “Edelstein conductivity” σscα as follows,

σscα = Dα(θsc1α − θsc2α). (12)

Therefore there is a deep connection between the inverse
SHE described by Eq. (4) and the generation of the local
charge current via the inverse EE in Eq. (9). Inclusion of
one effect necessarily implies the presence of the other.

The BC Eqs. (4)-(6) together with Eqs. (8)-(10) com-
plement the standard bulk drift-diffusion equations to
model spintronics devices of any experimentally relevant
geometry. It is worth noting that technically the local-
ized currents become important in non-1D geometries
with interfaces of a finite size. At the edges of the inter-
face the total currents should be conserved, and therefore
the edges act as local sources and sinks, which generates
nontrival patterns of the charge and spin flows. The ex-
amples below illustrate this point and demonstrate our
general phenomenological construction at work.

The first example models the spin-charge conversion
at the interface33. We consider a conducting bilayer of a
finite width W in the y-direction and separated by the
interface with ISOC at z = 0 plane, as shown in Fig. 1. A
spin current Jxz (z) = −D∂zSx(z), polarized along x-axis,
and injected from the left, flows in z-direction, crosses the
interface, and determines via Eq. (6) the spin polarization
Sx(0) at the interface. The latter, in turn, generates a
localized charge current in the y-direction via the IEE in
Eq. (9), jyI = σscSx(0). To determine the distribution of
the potential µ(r) and the charge current j = −σD∇µ in
the bulk we have to solve the Laplace equation, ∇2µ = 0,
with the condition of vanishing normal component of the
total current at the sample boundaries at y = ±W/2

−σD∂yµ(y, z)|y=±W/2 + jyIδ(z) = 0. (13)

By solving this problem analytically66 we find the spatial
distribution of the charge current, and the total voltage
drop across the sample

∆V =

∫ [
µ(W/2, z)− µ(−W/2, z)

]
dz = jyI

W

σD
, (14)

FIG. 2. Charge flow generated by the spin current Jyx (x) in
the metallic film with a insulator (shown in gray) deposited on
its top surface. The density plot shows the current strength.

The stream lines of the induced charge flow together with
the density plot for the potential are shown in Fig. 1. The
current in the bulk forms a counterflow that compensates
the localized currents generated at the interface. Both
the induced potential and the current are concentrated
near the edges of the interface at a macroscopic scale of
the order of the sample size W .

As a second example we consider a spin-charge con-
version in a lateral hybrid structure made from a metal-
lic film of thickness W , with a part of its upper surface
covered by an insulator with large SOC, like Bi2O3, see
Fig. 2. In this way we create an interface with ISOC
on the top boundary at z = W for x > 0, while the rest
(x < 0) of the top boundary as well as the bottom bound-
ary at z = 0 remain “trivial”. We assume a diffusive
spin current polarized along y, flowing in the x-direction,
that is, Jyx (x) = −D∂xSy(x) with Sy(x) ∼ e−x/ls , where
ls =

√
Dτs is the spin diffusion length69.

The induced potential µ(x, z), is obtained by solving
the Laplace equation with two BC. On the bottom sur-
face the standard BC of σD∂zµ|z=0 = 0 is imposed. To
get the BC on the top surface we combine Eqs. (4) and
(9) in form of Eq. (11) that for the metal-insulator inter-
face and the chosen spin density reads,

σD∂zµ|z=W = −D∂x
[
θsc(x)Sy(x)

]
, (15)

were θcs(x) = θscΘ(x) reflects the stepwise distribu-
tion of ISOC at the top surface70. This problem is also
solvable analytically66. The corresponding charge flow,
shown in Fig. 2, demonstrates a typical dipolar pattern
with a local sink at the edge of the interface a distributed
∼ Θ(x)e−x/ls source. As the film has a finite width this
dipole filed generates a lateral voltage drop:

∆V = µ(∞, z)− µ(−∞, z) = χSy(0)θscls/W, (16)

where χ = D/σD is the inverse compressibility of the
metal. If the top “ISOC gate” has a finite length L the
voltage drop acquires an additional factor 1−e−L/ls . No-
tice that by measuring the induced lateral voltage, and
using Eq. (16) we get a direct experimental access to the
interfacial spin-charge Hall angle θsc.
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In conclusion, we derived a full set of additional con-
ditions that complement the standard drift-diffusion the-
ory to model spin and charge dynamics in the presence
of interfaces with strong ISOC. These conditions con-
sist of the generalized BC describing the interfacial spin-
charge and spin-spin conversion, and the expressions for
the spin, the charge current, and the spin current, local-
ized at the interface within a microscopic scale (smaller
than `). Our construction provides a natural classifica-
tion and parametrization of all spin-charge and spin-spin
conversion effects mediated by ISOC at macroscopically
isotropic interfaces between nonmagnetic materials. The
phenomenological coefficients entering the derived BC
should be determined from comparison with experiments
or first principle calculations for specially chosen geome-
tries. To demonstrate the working power of our theory
we considered two specific examples. In particular, we

predict a generation of a lateral voltage drop in a metal-
lic film by a spin current if an insulator with a strong
SOC is deposited on the top surface of the film. This
“ISOC gate” effect can be used to detect spin currents in
materials with weak bulk SOC.
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