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We propose a setup based on (solid-state) qubits coupled to a common multi-mode transmission
line, which allows for coherent spin-spin interactions over macroscopic on-chip distances, without
any ground-state cooling requirements for the data bus. Our approach allows for the realization of
fast deterministic nonlocal quantum gates, the simulation of quantum spin models with engineered
(long-range) interactions, and provides a flexible architecture for the implementation of quantum
approximate optimization algorithms.

Introduction.—One of the leading approaches for scal-
ing up quantum information systems involves a modular
architecture that makes use of a combination of short and
long-distant interactions between the qubits [1, 2]. In
particular, long-distant interactions can be implemented
via a quantum bus which can effectively distribute quan-
tum information between remote qubits, as shown in the
context of of trapped ions [3–7], solid state systems [8, 9],
electromechanical resonators [10], as well as circuit QED
architectures [11–16]. In this Rapid Communication, we
provide a unified theoretical framework for robust dis-
tribution of quantum information via a quantum bus
that operates at finite temperature [17], fully accounts
for the multi-mode structure of the data bus, and does
not require the qubits to be identical. Our approach
[c.f Fig. 1(a)] results in an architecture where fully pro-
grammable interactions between qubits can be realized
in a fast and deterministic way, without any ground-
state cooling requirements for the data bus, thereby set-
ting the stage for various applications in the context of
quantum information processing [18] in a hot quantum
network, different from quantum state transfer discussed
previously [19–21]. As illustrated in Fig. 1(b), and dis-
cussed in detail below, one can use our scheme to deter-
ministically implement (hot) quantum gates between two
qubits. Moreover, we present a recipe to generate a tar-
geted and scalable evolution for a large set of N qubits
coupled via a single transmission line, thereby providing
a natural architecture for the implementation of quantum
algorithms, such as quantum annealing [22] or the quan-
tum approximate optimization algorithm (QAOA) [23–
25], designed to find approximate solutions to hard, com-
binatorial search problems.

The model.—We consider a set of qubits i = 1, 2, . . . , N
with corresponding transition frequencies ωi (typically
in the microwave regime) that are coupled to a (multi-
mode) transmission line of length L; compare Fig. 1 for
a schematic illustration. The transmission line is de-
scribed in terms of photonic modes an with wave-vectors
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Figure 1: Hot Quantum Network. (a) Schematic illustration
of N qubits coupled to a transmission line of length L. (b)
Dynamic evolution of two qubits, as exemplified for the von
Neumann (VN) entropy (left axis) and the concurrence (right
axis) of the two-qubit density matrix, with a = 0.03L. At
the round trip time t = τ , the qubits fully decouple from the
waveguide and form a maximally entangled state, even though
the transmission line is far away from the ground state (here,
kBT = ω1). (c) Quantum approximate optimization algo-
rithm (QAOA) with depth M solving Max-Cut with N = 6
qubits and a 4-regular graph (inset), and with decoherence
(ideal case: blue, dephasing with rate γφ/Jmax = 0.003: or-
ange, rethermalization with rate κ/|∆| = 0.004: green), and
at finite temperature kBT=ω1.

kn = nπ/L, with a linear spectrum ωn = knc = nω1,
where ω1 = πc/L is the frequency of the fundamen-
tal mode n = 1 and c is the (effective) speed of light.
As opposed to transversal (Jaynes-Cummings-like) spin-
resonator coupling [26, 27], here we focus on longitudinal
coupling as could be realized (for example) with super-
conducting qubits [8, 28–31] or quantum dot based qubits
[8, 9, 32–36]. The Hamiltonian reads (~ = 1)

Hlab =

N∑

i=1

ωi
2
σzi +

∞∑

n=1

ωna
†
nan +

∑

i,n

gi,nσ
z
i

(
an + a†n

)
,

(1)
with the qubit Pauli matrices ~σi and gi,n the coupling
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strength between qubit i and mode n. We show below
that for specific times t, which are integer multiples of
the round-trip time t ∝ τ ≡ 2L/c, the dynamics of the
qubits and all photons fully decouple, while giving rise
to an effective interaction between the qubits.
Analytical solution of time evolution.—With the help

of the spin-dependent, multi-mode displacement trans-
formation U†pol=exp[

∑
n,i

gi,n
ωn

σzi
(
a†n − an

)
], in our model

the spin dynamics can be decoupled from the res-
onator dynamics (in the polaron frame), and we find
Hlab=UpolHpolU

†
pol, where

Hpol =
∑

i

ωi
2
σzi +

∑

n

ωna
†
nan +

∑

i<j

Jijσ
z
i σ

z
j , (2)

with the effective spin-spin interaction

Jij = −2
∑

n

gi,ngj,n
ωn

. (3)

Therefore, the evolution in the lab frame reads e−iHlabt =
Upole

−iHpoltU†pol, as follows directly from a Taylor ex-
pansion and U†polUpol=1. Consider now the evolu-
tion at stroboscopic times tp = pτ (p positive in-
teger), corresponding to multiples of the round trip
time τ . In this case, all the modes synchronize,
exp

[
−itp

∑
n ωna

†
nan

]
=exp

[
−2πi

∑
n npa

†
nan

]
=1, since

the number operators a†nan feature an integer spectrum
and ωntp = 2πpn; thus, the full evolution reduces exactly
to Ulab(tp) = exp[−iHlabtp],

Ulab(tp) = e−itp
∑

i(ωi/2)σz
i e−itp

∑
i<j Jijσ

z
i σ

z
j . (4)

Accordingly, for certain times the qubits fully disentangle
from the (thermally populated) resonator modes, thereby
providing a qubit gate that is insensitive to the state of
the resonator, while imposing no conditions on the qubit
frequencies ωi [37]. For specific times, the time evolu-
tion in the polaron and the laboratory frame coincide
and fully decouple from the photon modes, allowing for
the realization of a thermally robust gate, without any
need of cooling the transmission line to the vacuum [9].
Moreover, our approach can be straightforwardly com-
bined with standard spin-echo techniques in order to can-
cel out efficiently low-frequency noise: By synchronizing
fast global π rotations with the stroboscopic times tp, one
can enhance the qubit’s coherence times from the time-
ensemble-averaged dephasing time T ?2 to the prolonged
timescale T2.
Frequency cutoff.—In principle, the spin-spin coupling

strength Jij as defined in Eq. (3) involves all modes
n = 1, 2, . . . , naively leading to unphysical divergen-
cies, as discussed in the context of transversal qubit-
resonator coupling in Refs. [38, 39]. In any physical
implementation, however, there is a microscopic length-
scale a that naturally introduces a frequency cutoff.
Specifically, we take the coupling parameters gi,n as
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Figure 2: Hot phase gate between two distant qubits. (a)-(b)
Fidelity as a function of time τ (a) for a = 0.03L and differ-
ent transmission line temperatures 0 ≤ kBT ≤ 2ω1. (b) Mode
and (c) real space occupation as a function of the transmission
line for a = 0.03L and kBT = ω1, with ∼ 30 modes. (d) Error
1− F around the gate time tp for T = 0 and different values
of the cutoff (legend) and number of cycles p = 1, 4, 8, 16 (cir-
cles, crosses, stars, squares). For small timing errors, all data
points collapse to a single curve 4(c/a)2J12/ω1∆t2, shown as
black line.

gi,n=gi
√
n
∫ L

0
cos(knx)f(x−xi)dx, to account for the fact

that the qubits couple to the local voltage, where f(x−xi)
accounts for the microscopic spatial extension of the
qubit-transmission line coupling (cf. [40] for details); the
factor∼ √n derives from the scaling of the rms zero-point
voltage fluctuations with the mode index n, which also
implies gi ∝ L−1. In the examples below, we will consider
for simplicity a box function f(x)=δx>0δx<a/a, leading
to gi,n=gi

√
n (sin [kn(xi + a)]− sin [knxi]) /(kna). Note

that if the microscopic lengthscale a is set to zero, the
summation over n in Eq. (3) does not converge. Instead
for a finite a, and for |xi − xj | > a the effective inter-
action Eq. (3) simplifies to Jij = gigj/ω1 (c.f. [40]).
Accordingly, within this exemplary model, the coupling
Jij does not depend on a, nor the position of the qubits
xi, and scales as L−1, showing that the time to entangle
qubits is only limited by the propagation time τ (∝ L)
of light through the waveguide.
Applications.—We now discuss three applications of

our scheme, with a gradual increase in complexity,
namely (i) a hot two-qubit phase gate, (ii) the engineer-
ing of spin models, and (iii) the implementation of QAOA
in the presence of decoherence and finite temperature.
To this end, we consider the possibility to potentially
boost and fine-tune the effective spin-spin interactions
Jij by parametrically modulating the longitudinal spin-
resonator coupling, as could be realized with both super-
conducting qubits [8] or quantum dot based qubits [33];
cf. [40] for further details.
Hot phase gate.—As a first illustration, we consider the
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realization of a phase-gate between two remote qubits
N = 2, placed at each edge of the transmission line
(x1 = 0, x2 = L−a). Our initial state ρ0=|Ψ0〉 〈Ψ0|⊗nρn
consists of a pure initial qubit state with |Ψ0〉=⊗j(|0〉+
i |1〉)j/

√
2 and a thermal state of the waveguide with

ρn=exp(−a
†
nanωn

kBT
)
[
1− exp(− ωn

kBT
)
]
, and we use Matrix-

Product-States (MPS) techniques [42] to show numeri-
cally how the hot quantum network generates the de-
sired evolution Eq. (4). We fix gi=ω1/

√
8 which (un-

der ideal circumstances) leads to a maximally entangled
pure state |Ψ(t1)〉 = exp(−iπ4σz1σz2) |Ψ0〉 at the gate time
tg = π/(4J12) after just one round trip t1 = τ (gener-
alizations thereof are provided in [40]). In Fig. 1(b), we
show the von-Neumann entropy E and the concurrence
C of the two-qubit density matrix ρ1,2, showing the real-
ization of the gate at t = t1, in the presence of thermal
occupation of the waveguide. The corresponding fidelity
F defined as overlap of ρ1,2 with respect to the ideal state
|Ψ(t1)〉 〈Ψ(t1)| is shown in Fig. 2(a). In panels (b) and
(c) both the mode occupation 〈a†nan〉 and the real space
occupation 〈a†xax〉 are displayed, with ax, 0 < x < L, re-
ferring to the discrete sine transform of an. In particular,
the mode space picture [panel (b)] allows one to visual-
ize the excitation of the linear spectrum of the waveg-
uide, that synchronizes at time t = τ . Conversely, the
dynamics in real space [panel (c)] illustrates how qubit-
qubit interactions are mediated by photon wave-packets
propagating ballistically. At the round trip time t = τ ,
the waveguide returns to its initial thermal state, as ex-
pected. In panel (d), we study the scaling of timing er-
rors by showing the evolution of the error 1− F around
t ≈ tp. In the limit of small errors |∆t| � (a/c)

√
ω1/J12,

assuming a � L, the numerical results are well approx-
imated by 1 − F ≈ 4(c/a)2J12/ω1∆t2 (black line), with
∆t = t − tp. Accordingly, the timing error is sensitive
to the cutoff a (as it controls the frequency scale of the
couplings), and scales linearly with the effective spin-spin
interaction J12, as slower dynamics are less vulnerable to
timing inaccuracies ∼ ∆t; for further details, in partic-
ular related to the influence of temperature on timing
errors, and effects due to nonlinear dispersion relations
ωn, cf. [40].
Engineering of spin models.—We now extend our dis-

cussion to the multi-qubit case N > 2 and provide a
recipe how to generate a targeted and scalable unitary
W = exp(−i∑i<j wijσ

z
i σ

z
j ) with desired spin-spin in-

teraction parameters wij . To this end, we consider a
sequence q = 1, . . . , η of successive cycles where for each
stroboscopic cycle (labeled by q) we may apply different
coupling amplitudes, i.e., gi → g

(q)
i . For example, this

could be done by parametrically modulating the spin-
resonator coupling via microwave control [8, 33]. The
evolution at the end of the sequence is then given by Uη =

exp(−itp
∑
i<j J

(η)
i,j σ

z
i σ

z
j ), with J (η)

i,j =
∑η
q=1 g

(q)
i g

(q)
j /ω1,

and trun = ηtp being the total run time. A straightfor-
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Figure 3: Engineering of spin models. (a) Long range inter-
actions wij = 1/|i− j| and periodic boundary conditions, for
η = 11, 25. (b) 2D nearest neighbor interactions with open
boundary conditions, with η = 25. Here, the indices i corre-
spond to 2D indices i = (ix, iy) of a square of 5×5 sites using
the convention i = ix + 5iy.

ward way to generate the desired unitary, i.e., to obtain
wij = J

(η)
i,j tp, consists in diagonalizing the target matrix

as wij =
∑N
q=1 wqui,quj,q in terms of real eigenvalues

wq and real eigenstates ui,q. This leads immediately to
the condition g

(q)
i =

√
wqω1/tpui,q to generate exactly

W within η = N number of cycles, with tp ≥ wq/Jmax,
where Jmax denotes the largest available spin-spin cou-
pling [43]. In other words, we can engineer efficiently
arbitrary spin-spin interactions after a time trun = Ntp
which only scales linearly with the number of qubits;
trun = 2Ntp in the presence of spin echo. These aspects
are illustrated in Fig. 3, where we provide examples for
N = 25 and both (a) a 1D long-range spin model with
power law decay wij = 1/|i − j|α (α = 1) and (b) a 2D
model with nearest neighbor interactions (NN). The lat-
ter demonstrates that our recipe allows for the realization
of general spin models in any spatial dimension and ge-
ometry (using a simple one-dimensional physical setup).
For both models, we observe the progressive emergence
of the target spin interaction with increasing values for
η, reaching the exact matrix at η = N . The case of a
spin glass with random interactions, and the convergence
analysis with respect to η/N are presented in [40].
QAOA.—Finally, we show how to generalize the tech-

niques outlined above in order to implement quan-
tum algorithms that provide approximate solutions
for hard combinatorial optimization problems such as
Max-Cut [c.f. Fig. 4 and [40]]. As shown in
Refs.[23, 24], good approximate solutions to these
kind of problems can be found by preparing the
state |γ,β〉=Ux(βM )Uzz(γM ) · · ·Ux(β1)Uzz(γ1) |s〉, with
Ux(βm)=exp[−iβm

∑
i σ

x
i ], and Uzz(γm)=exp[−iγmHC ],

where HC is the cost Hamiltonian encoding the opti-
mization problem, starting initially from a product of
σx eigenstates, i.e., |s〉 = |−,−, . . . 〉, with |−〉 = (|0〉 −
|1〉)/

√
2. In our scheme, this family of states can be pre-

pared by alternating single-qubit operations Ux(βm) with
targeted spin-spin interactions generated as described
above, with W → Uzz(γm). Accordingly, for QAOA we
repeat our spin-engineering recipe M -times with single-
qubit rotations interspersed in between. This prepara-
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Figure 4: Simulation of QAOA for Max-Cut, in the presence
of decoherence. (a) d-regular graphs with N = 3, 4, 5 used
for our numerical analysis of decoherence. Our graph with
(N, d) = (6, 4) is shown in Fig. 1(c). (b) Optimization pa-
rameters γm, βm for N = 6, M = 5. (c-d) Scaling of errors
with respect to the optimized QAOA wave-function |γ,β〉 for
(c) dephasing and (d) rethermalization. The dashed lines cor-
respond to the scaling expressions given in the text. For each
panel, we consider the different graphs, depth M = 1, 3, 5,
Jmax/|∆| = 0.02, 0.08. For (d), we consider kBT = 0, ω0. In
(c-d), the dashed lines represents the curve y = x/2.

tion step is then followed by a measurement in the com-
putational basis, giving a classical string z, with which
one can evaluate the objective function 〈HC〉 of the un-
derlying combinatorial problem at hand. Repeating this
procedure will provide an optimized string z, with the
quality of the result improving as the depth of the quan-
tum circuitM is increased [23, 24]. To illustrate and ver-
ify this approach, we have numerically simulated QAOA
with up to N = 6 qubits solving Max-Cut for several
d-regular graphs with weights wi,j = w

(d)
i,j + dδi,i, as de-

picted in Fig. 4(a) and Fig. 1(c), based on our model
Hamiltonian given in Eq.(1), while accounting for both
finite temperature and decoherence in the form of qubit
dephasing and rethermalization of the resonator mode.
While our general multi-mode setup should (in principle)
be well suited for the implementation of QAOA, here (in
order to allow for an exact numerical treatment) we con-
sider a simplified single-mode problem (with resonator
frequency ω0), as could be realized using the resonance
condition introduced by a monochromatically modulated
coupling [8, 33]. Specifically, we simulate the Hamilto-
nian H =

∑
i(ωi/2)σzi + ∆a†a+

∑
i giσ

z
i ⊗ (a+ a†) with

controllable couplings gi [8, 33], detuning ∆ = ω0−Ω and
Jij = −2gigj/∆ ≤ Jmax, supplemented by standard dis-
sipators to account for (i) qubit dephasing on a timescale
∼ T2 = 1/γφ and (ii) rethermalization of the resonator
mode with an effective decay rate ∼ κn̄th(ω0) [44]; cf.
[40] for further details. As demonstrated in Fig. 1(c),
for small-scale quantum systems (that are accessible to
our exact numerical treatment) our protocol efficiently
solves Max-Cut with a circuit depth of M . 5, finding
the ground-state energy with very high accuracy (blue

curve), corresponding to 4 cuts (shown in red in the in-
set), even in the presence of moderate noise [compare the
cross and plus symbols in Fig. 1(c)].
Decoherence and implementation.—Based on our nu-

merical findings and further analytical arguments, we
now turn to the eventual limitations imposed by deco-
herence. Here, we focus on the QAOA protocol, since
both our (i) hot gate (cf. [40] for a full decoherence-
induced error analysis thereof) and (ii) the spin engi-
neering protocol can be viewed as less demanding limits
of QAOA, where either M or N (or both) are small,
thereby yielding comparatively smaller errors because
of a shorter run-time; for example, for the two-qubit
phase gate M = 1, N = 2. The total QAOA run-
time trun can be upper-bounded as trun ≈ γMNd/Jmax,
with γ = 1/M

∑
m γm and the factor Nd/Jmax corre-

sponding to the (maximum) time required to implement
all eigenvalues wq . d of the Max-Cut problem. To
keep decoherence effects minimal, this timescale should
be shorter than all relevant noise processes. The ac-
cumulated dephasing-induced error can be estimated as
ξφ ∼ γφN × γMNd/Jmax, where ∼ γφN is the effec-
tive many-body dephasing rate (c.f. [40]); as shown in
Fig. 4(c), we have numerically confirmed this scaling
for all graphs shown in panels Fig. 4(a) and Fig. 1(c).
Similarly, as demonstrated in Fig. 4(d), the indirect
rethermalization-induced dephasing error, mediated by
incoherent evolution of the resonator mode, can be quan-
tified as ξκ ∼ κeff × γMNd/|∆|, with total linewidth
κeff=κ(2n̄th (ω0) + 1). The total decoherence-induced er-
ror ξ = ξφ + ξκ can then be optimized with respect to
∆, yielding the compact expression ξ ≈ γdMN3/2/

√
C,

with the cooperativity C = g2/(γφκeff). With this ex-
pression, we can bound the maximum number of qubits
N and circuit depth M for a given physical setup with
cooperativity C.

Specifically, our scheme could be implemented based
on superconducting qubits or quantum-dot based qubits
coupled by a common high-quality transmission line,
with details given in [40]. For concreteness, let us con-
sider quantum-dot based qubits [9, 33–36] where longi-
tudinal coupling could be modulated via both the de-
tuning [33] or inter-dot tunneling parameter [34], respec-
tively. With projected two-qubit gate times of ∼ 10ns
[33, 34], a coherence time of T2 ≈ 10ms [46, 47], and
ω0/2π ≈ 1GHz with quality factor Q ∼ 106 [48–50], we
estimate decoherence errors to be small (. 3%) for up to
N ≈ 50 qubits and a QAOA circuit depth of M ≈ 10 for
a graph with d ≈ 4, respectively, even in the presence of
non-zero thermal occupation with n̄th (ω0) ≈ 3. Further,
the performance will be affected by timing errors, as it
is the case for any gate implementation. However, com-
mercial equipment allows experiments with timing jitter
of only a few ps [40, 51]. A similar analysis can be made
for superconducting qubits [40]. Note that these esti-
mates might be very conservative, as the essential figure
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of merit in QAOA is not the quantum state fidelity F but
the probability to find the optimal (classical) bit-string z
in a sample of projective measurements {z1, z2, . . . } (ob-
tained after many repetitions of the experiments).
Conclusion.—To conclude, we have presented a proto-

col to generate fast, coherent, long-distance coupling be-
tween solid-state qubits, without any ground-state cool-
ing requirements. While this approach has direct appli-
cations in terms of the engineering of spin models — e.g.
to implement QAOA — it would be interesting to further
develop our theoretical treatment in order to increase the
level of robustness of our scheme, e.g. to apply protocols
based on error correcting photonic codes [54], which can
protect against photon losses or rethermalization. Yet
another interesting research direction would be to adapt
our scheme to other physical setups, say solid-state defect
centers coupled by phonons [10].
Acknowledgments.—We thank Shannon Harvey,

Hannes Pichler, Pasquale Scarlino, Denis Vasilyev,
Shengtao Wang and Leo Zhou for fruitful discussions.
Numerical simulations were performed using the ITensor
library (http://itensor.org) and QuTiP [55]. MJAS
would like to thank the Humboldt foundation for
financial support. LMKV acknowledges support by
an ERC Synergy grant (QC-Lab). JIC acknowledges
the ERC Advanced Grant QENOCOBA under the
EU Horizon 2020 program (grant agreement 742102).
Work in Innsbruck is supported by the ERC Synergy
Grant UQUAM, the SFB FoQuS (FWF Project No.
F4016-N23), and the Army Research Laboratory Center
for Distributed Quantum Information via the project
SciNet. Work at Harvard University was supported by
NSF, Center for Ultracold Atoms, CIQM, Vannevar
Bush Fellowship, AFOSR MURI and Max Planck
Harvard Research Center for Quantum Optics.

M.J.A.S. and B.V. contributed equally to this work.

[1] C. Monroe, R. J. Schoelkopf, and M. D. Lukin, Scientific
American, p. 50 (2016).

[2] L. M. K. Vandersypen, H. Bluhm, J. S. Clarke, A. S. Dzu-
rak, R. Ishihara, A. Morello, D. J. Reilly, L. R. Schreiber,
and M. Veldhorst , npj Quantum Inf. 3, 34 (2017).

[3] J. F. Poyatos, J. I. Cirac, and P. Zoller, Phys. Rev. Lett.
81, 1322 (1998).

[4] K. Mølmer and A. Sørensen, Phys. Rev. Lett. 82, 1835
(1999).

[5] G. J. Milburn, arXiv:quant-ph/9908037 (unpublished).
[6] J. J. García-Ripoll, P. Zoller, and J. I. Cirac, Phys. Rev.

A 71, 062309 (2005).
[7] A. Lemmer, A. Bermudez, and M. B. Plenio, New J.

Phys. 15, 083001 (2013).
[8] B. Royer, A. L. Grimsmo, N. Didier, and A. Blais, Quan-

tum 1, 11 (2017).
[9] M. J. A. Schuetz, G. Giedke, L. M. K. Vandersypen, and

J. I. Cirac, Phys. Rev. A 95, 052335 (2017).

[10] P. Rabl, S. J. Kolkowitz, F. H. L. Koppens, J. G. E.
Harris, P. Zoller, and M. D. Lukin, Nat. Phys. 6, 602
(2010).

[11] P. Scarlino, D. J. van Woerkom, U. C. Mendes, J. V.
Koski, A. J. Landig, C. K. Andersen, S. Gasparinetti, C.
Reichl, W. Wegscheider, K. Ensslin, T. Ihn, A. Blais, A.
Wallraff, arXiv:1806.10039 (unpublished).

[12] D. J. van Woerkom, P. Scarlino, J.H Ungerer, C. Müller,
C. J.V. Koski, A.J. Landig, C. Reichl, W. Wegscheider,
T. Ihn, K. Ensslin, A. Wallraff, Phys. Rev. X 8, 041018
(2018).

[13] J. M. Gambetta, J. M. Chow, and M. Steffen, Npj Quan-
tum Inf. 3, 2 (2017).

[14] J. Wendin, Rep. Prog. Phys. 80, 106001 (2017).
[15] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha,

and L. M. K. Vandersypen, Rev. Mod. Phys. 79, 1217
(2007).

[16] F. A. Zwanenburg, A. S. Dzurak, A. Morello, M. Y. Sim-
mons, L. C. L. Hollenberg, G. Klimeck, S. Rogge, S. N.
Coppersmith, and M. A. Eriksson, Rev. Mod. Phys. 85,
961 (2013).

[17] From a technological point of view, this statement is im-
portant as thermal occupation of the resonator modes
will be inevitable for reasonable temperatures when go-
ing to relatively long transmission lines (with correspond-
ingly small fundamental mode frequencies). For exam-
ple, for a (fundamental) mode frequency of ∼ 100MHz
the thermal occupation amounts to ∼ 20 thermal pho-
tons, even at very cold dilution fridge temperatures of
∼ 100mK.

[18] T. E. Northup and R. Blatt, Nat Phot. 8, 356 (2014).
[19] J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi,

Phys. Rev. Lett. 78, 3221 (1997).
[20] B. Vermersch, P.-O Guimond, H. Pichler, and P. Zoller,

Phys. Rev. Lett. 118, 133601 (2017).
[21] Z.-L Xiang, M. Zhang, L. Jiang, and P. Rabl, Phys. Rev.

X 7, 011035 (2017).
[22] A. Das and B. K. Chakrabarti, Rev. Mod. Phys. 80, 1061

(2008).
[23] E. Farhi, J. Goldstone, and S. Gutmann, arXiv:1411.4028

(unpublished).
[24] E. Farhi, and Aram W. Harrow, arXiv:1602.07674 (un-

published).
[25] J. S. Otterbach, R. Manenti, N. Alidoust, A. Bestwick,

M. Block, B. Bloom, S. Caldwell, N. Didier, E. Schuyler
Fried, S. Hong, P. Karalekas, C. B. Osborn, A. Papa-
george, E. C. Peterson, G. Prawiroatmodjo, N. Rubin,
Colm A. Ryan, D. Scarabelli, M. Scheer, E. A. Sete, P.
Sivarajah, Robert S. Smith, A. Staley, N. Tezak, W. J.
Zeng, A. Hudson, Blake R. Johnson, M. Reagor, M. P.
da Silva, C. Rigetti, arXiv:1712.05771 (unpublished).

[26] A. Kurcz, A. Bermudez, and J. J. GarcÃa-Ripoll, Phys.
Rev. Lett. 112, 180405 (2014).

[27] M. Pino and J. J. GarcÃa-Ripoll, arXiv:1808.00002 (un-
published).

[28] A. J. Kerman, New J. Phys. 15, 123011 (2013).
[29] P.-M. Billangeon, J. S. Tsai, and Y. Nakamura, Phys.

Rev. B 91, 094517 (2015).
[30] N. Didier, J. Bourassa, and A. Blais, Phys. Rev. Lett.

115, 203601 (2015).
[31] S. Richer and D. DiVincenzo, Phys. Rev. B 93, 134501

(2016).
[32] L. Childress, A. S. Soerensen, and M. D. Lukin, Phys.

Rev. A 69, 042302 (2004).



6

[33] S. P. Harvey, C. G. L. Boettcher, L. A. Orona, S. D.
Bartlett, A. C. Doherty, and A. Yacoby, Phys. Rev. B
97, 235409 (2018).

[34] P.-Q. Jin, M. Marthaler, A. Shnirman, and G. Schon,
Phys. Rev. Lett. 108, 190506 (2012).

[35] F. Beaudoin, D. Lachance-Quirion, W. A. Coish, M.
Pioro-Ladriere, Nanotechnology 27, 464003 (2016).

[36] M. Russ, and G. Burkard, J. Phys.: Condens. Matter 29,
393001 (2017).

[37] Since our scheme (as opposed to schemes relying on
transversal spin-resonator coupling) does not impose any
(resonance) conditions on the qubit frequencies, the tran-
sition frequencies ωi can be chosen sufficiently large (for
example, for quantum dots the transition frequencies
are largely tunable) such that thermal population of the
qubits gets strongly suppressed.

[38] A. A. Houck, A. Schreier, B. R. Johnson, J. M. Chow,
Jens Koch, J. M. Gambetta, D. I. Schuster, L. Frunzio,
M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Phys.
Rev. Lett. 101, 080502 (2008).

[39] S. Filipp, M. Göppl, J. M. Fink, M. Baur, R. Bianchetti,
L. Steffen, and A. Wallraff, Phys. Rev. A 83, 063827
(2011).

[40] See Supplemental Material (SM) for further details.
[41] N. M. Sundaresan, Y. Liu, D. Sadri, L. J. Szoecs, D. L.

Underwood, M. Malekakhlagh, H. E. Türeci, and A. A.
Houck, Phys. Rev. X 5, 021035 (2015).

[42] B. Peropadre, D. Zueco, D. Porras, and J. J. García-
Ripoll, Phys. Rev. Lett. 111, 243602 (2013).

[43] For example, for the two-qubit phase gate there is just
a single eigenvalue wq = π/4, such that tp = tcoh =
π/4Jmax.

[44] We ignore single spin relaxation processes, since the asso-
ciated timescale T1 is typically much longer than T2. For
example, for single-electron spins in silicon T1 of up to
∼ 3s has been demonstrated [45], while T2 . 10ms [47].
Still, if necessary, T1 processes could be included along
the lines of dephasing-induced errors [9].

[45] C. B. Simmons, J. R. Prance, B. J. Van Bael, Teck Seng
Koh, Zhan Shi, D. E. Savage, M. G. Lagally, R. Joynt,

Mark Friesen, S. N. Coppersmith, and M. A. Eriksson,
Phys. Rev. Lett. 106, 156804 (2011).

[46] M. Veldhorst, J.C.C. Hwang, C.H. Yang, A.W. Leenstra,
B. de Ronde, J.P. Dehollain, J.T. Muhonen, F.E. Hud-
son, K.M. Itoh, A. Morello, A.S. Dzurak, Nature Nano.
9, 981 (2014).

[47] M. Veldhorst, C.H. Yang, J.C.C. Hwang, W. Huang, J.P.
Dehollain, J.T. Muhonen, S. Simmons, A. Laucht, F.E.
Hudson, K.M. Itoh, A. Morello, A.S. Dzurak, Nature
526, 410 (2015).

[48] R. Barends, J. J. A. Baselmans, S. J. C. Yates, J. R.
Gao, J. N. Hovenier, and T. M. Klapwijk, Phys. Rev.
Lett. 100, 257002 (2008).

[49] A. Megrant, C. Neill, R. Barends, B. Chiaro, Yu Chen,
L. Feigl, J. Kelly, Erik Lucero, Matteo Mariantoni, P.
J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T.
C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, John M.
Martinis, A. N. Cleland, Applied Physics Letters 100,
113510 (2012).

[50] A. Bruno, G. de Lange, S. Asaad, K. L. van der Enden,
N. K. Langford, and L. DiCarlo, Applied Physics Letters
106, 182601 (2015).

[51] Consider (for example) fundamental frequencies of ∼
100MHz, as realized experimentally in Ref.[41], which
translates to round trip times of ∼ 10ns. This timescale
is much longer than state-of-the-art timing accuracies ∆t
of a few picoseconds as demonstrated experimentally in
Refs.[52, 53], leaving us with very small relative time jit-
ter (ω1/2π)∆t ∼ 10−4.

[52] O. E. Dial, M. D. Shulman, S. P. Harvey, H. Bluhm, V.
Umansky, and A. Yacoby, PRL 110, 146804 (2013).

[53] E. Bocquillon, V. Freulon, J.M. Berroir, P. Degiovanni,
B. Plaçais, A. Cavanna, Y. Jin, G. Fève, Science 339,
1054 (2013).

[54] M. H. Michael, M. Silveri, R. T. Brierley, V. V Albert,
J. Salmilehto, L. Jiang, and S. M. Girvin, Phys. Rev. X
6, 031006 (2016).

[55] J. R. Johansson, P. D. Nation, and F. Nori, Comput.
Phys. Commun. 184, 1234 (2013).


