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We introduce a method to efficiently study the dynamical properties of many-body localized
systems in the regime of strong disorder and weak interactions. Our method reproduces qualitatively
and quantitatively the time evolution with a polynomial effort in system size and independent of
the desired time scales. We use our method to study quantum information propagation, correlation
functions, and temporal fluctuations in one- and two-dimensional MBL systems. Moreover, we
outline strategies for a further systematic improvement of the accuracy and we point out relations
of our method to recent attempts to simulate the time dynamics of quantum many-body systems
in classical or artificial neural networks.

Introduction— Experiments in quantum simulators,
such as ultra-cold atoms in optical lattices and trapped
ions, have nowadays achieved access to the dynamical
properties of closed quantum many-body systems far
from equilibrium [1–4]. Therefore, it has become possi-
ble to experimentally study intrinsically dynamical phe-
nomena that are challenging to realize and probe on
other platforms. One prominent example constitutes the
many-body localized phase in systems with strong disor-
der, whose signatures have been observed in a series of
recent experiments [5–9]. Many-body localization (MBL)
describes a nonergodic phase of matter, in which parti-
cles are localized due to the presence of a strong disor-
der potential [10–13], extending the phenomenon of An-
derson localization [14] to the interacting case. Impor-
tantly, the presence of interactions makes the dynamical
properties much richer [15–21]. In particular, interac-
tions give rise to an additional dephasing mechanism,
allowing entanglement and quantum information propa-
gation even though particle and energy transport is ab-
sent [15–18, 22]. Describing, however, quantitatively this
interaction-induced propagation for large systems beyond
exact numerical methods has remained as one of the main
challenges.

In this work, we introduce an efficient numerical
method to compute the dynamics of weakly-interacting
fermions in a fully localized MBL phase. The method is
controlled by the interaction strength and we find that
the error remains bounded in time over many tempo-
ral decades up to the asymptotic long-time dynamics of
quantum information transport in MBL systems, which
occurs on time scales exponentially in system size. The
computational resources for computing local observables
and correlation functions in our approach scale only poly-
nomially in system size and are even independent of the
targeted time in the dynamics. We utilize the method
to study the dynamics of interacting fermions not only
in one dimension (1D) but also in two dimensions (2D)
for up to 200 lattice sites. After benchmarking our ap-
proach by comparing the characteristic entanglement en-
tropy growth with exact diagonalization, we study the
quantum information transport on the basis of the quan-

tum Fisher information [7, 23–28], the logarithmic light-
cone in correlation functions [22, 29–36], and temporal
fluctuations of observables, both for 1D and 2D. Finally,
we point out a connection between our approach and re-
cent ideas to encode quantum states into classical and
artificial neural networks.
Models & Methods— At sufficiently strong disorder the

MBL eigenstates are expected to be adiabatically con-
nected to the non-interacting ones [37, 38]. In such a
case the system is fully described by an extensive num-
ber of quasi-local integral of motions {Îl} [29, 39–46],
which emphasize an emerging weak form of integrabil-
ity [37, 41]. In this case the Hamiltonian of the system
exhibits a representation of the following form:

Ĥ =
∑
l

J
(1)
l Îl +

∑
l,m

J
(2)
l,mÎlÎm + . . . , (1)

where l enumerates the sites of the underlying lattice. For
the considered weakly interacting case, higher-order cou-
plings between the integrals of motion Îl become expo-
nentially suppressed in the interaction strength, so that
we can terminate the expansion as done in Eq. (1). More-

over, it is expected that J
(2)
l,m ∼ e−d(l,m)/ξ with d(l,m) the

spatial distance of the two involved lattice sites l and m
and ξ denoting the localization length. While it is ex-
pected that this so-called l-bit representation exists, it
has remained as a central challenge (i) to construct ex-
plicitly the integrals of motion {Îl} and (ii) to make use
of the l-bit Hamiltonian to compute its dynamics.

In this work, we show that in the limit of weakly in-
teracting fermions at strong disorder both of these chal-
lenges can be efficiently solved. In this limit we can de-
compose the Hamiltonian Ĥ = Ĥ0 + V̂ with Ĥ0 a non-
interacting Anderson-localized system and V̂ the inter-
action part, whose strength we denote by V . We take
as the Îl’s the integrals of motion of Ĥ0 =

∑
l εlÎl with

Îl = η̂†l η̂l and η̂†l (η̂l) denoting the creation (annihila-
tion) operator for a single-particle Anderson eigenstate
φl with eigenvalue εl. As a second step, we express
V̂ =

∑
lmnk Blmnkη̂

†
l η̂mη̂

†
nη̂k in terms of the {η̂l}. Then

we neglect all contributions that do not commute with
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FIG. 1. (a): Bipartite half-chain entanglement entropy S(t)
after a global quantum quench for several systems sizes (L)
in 1D. S(t) has been calculated using the exact Hamiltonian

Ĥ (exact) and the effective model Ĥeff (approx.). The insect

shows the relative error δS(t) = |S(t)− Sapprox(t)|/S(t), be-

tween the entanglement entropy calculated with Ĥ the one
calculated with Ĥeff. (b): QFI for the 1D MBL system for
several system sizes compared with exact results.

the {Îl} so that we arrive at the following desired l-bit
Hamiltonian:

Ĥeff =
∑
l

εlη̂
†
l η̂l +

∑
l,m

Bl,mη̂†l η̂lη̂
†
mη̂m , (2)

with Bl,m = Bllmm − Blmlm. This construction re-
lies on the perturbative nature of an MBL phase, in
which the integrals of motion of the system {Îl} can
be obtained perturbatively from the non-interacting ones
{η̂†l η̂l} [10, 29, 40, 44, 46]. Thus, as a first approximation
in the limit of weak-interactions, the integrals of motion
can be taken as the ones of the non-interacting case. In
the concluding discussion we will outline how one can
improve systematically the accuracy of the l-bits by ac-
counting for higher orders V [47]. For the following, we
will use the representation above and show that it is al-
ready sufficient to capture quantitatively the dynamics
for small V .

Having discussed the construction of the l-bit Hamil-
tonian, we now outline how this can be used to study
dynamics, which is based on two main properties. First,
the time evolution of η̂l and η̂†l can be determined

analytically via η̂†l (t) = exp[itεl + it
∑
m B̃l,mη̂†mη̂m]η̂†l

where B̃l,m = Bm,l + Bl,m. Second, for an ini-
tial state |ψ〉, which is a product states in terms
of the bare fermions, i.e. Gaussian, the expecta-
tion values of time-evolved local observables and cor-
relation functions can be reduced to the evaluation
of Slater determinants, which can be done very effi-
ciently. For example, for a generic local observable Â =∑
l,m al,mη̂

†
l η̂m, we need only to calculate 〈η̂†l η̂m(t)〉 =

eit(εl−εm)〈η̂†l e
it

∑
p(B̃l,p−B̃p,m)η̂†pη̂p η̂m〉, where 〈. . . 〉 =

〈ψ| . . . |ψ〉. The term 〈η̂†l e
it

∑
p(B̃l,p−B̃p,m)η̂†pη̂p η̂m〉 can be

efficiently computed using Wick’s theorem [48], interpret-
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FIG. 2. (a): Disorder averaged QFI-density (fQ(t) =
FQ(t)/2N) for the 1D MBL model for several system sizes (L)
and a fixed disorder and interaction strength. The inset shows
fQ(t) in a suitable scale to underline that fQ(t) ∼ log log t.
(b): Disorder averaged QFI-density (fQ(t)) for the 2D model
for several system sizes (S) and a fixed disorder and in-
teraction strength. The inset shows that also in this case
fQ(t) ∼ log log t. For both panels the evolution has been ob-

tained using Ĥeff. Dashed-lines are for the non-interacting
case (V = 0) for the largest system size in each panels.

ing eit
∑
p(B̃l,p−B̃m,p)η̂†pη̂p as an effective time-evolution op-

erator of the quadratic Hamiltonian Ĥ(l,m) =
∑
p(B̃l,p −

B̃m,p)η̂†pη̂p. Importantly, such initial conditions are typ-
ical choices in theory [15, 20, 21, 49–53] and have been
realized in the MBL context experimentally [5, 6, 8, 9].

For concreteness, we demonstrate our method for the
Hamiltonian [16, 54–57]

Ĥ := −1

2

∑
〈i,j〉

(ĉ†i ĉj + h.c.) +
∑
j

hjn̂j + V
∑
〈i,j〉

n̂in̂j (3)

where ĉ†j (ĉj) is the fermionic creation (annihilation) op-

erator at site j and n̂j = ĉ†j ĉj. {hj} are random fields
uniformly distributed between [−W,W ], and V is the in-
teraction strength. We study the system both in a 1D
lattice of size L with periodic boundary conditions and
defined in a rectangular lattice (2D) of size S = L × L

2
with periodic and open boundary conditions respectively
in the x and in the y direction. We focus on half-
filling N/L = 1/2 (N/|S| = 1/2) with N the number
of fermions. The 1D system is believed to have an MBL-
phase at strong-disorder [55–60]. The 2D case on the
other hand has largely remained elusive due to the lack
of efficient methods to simulate sufficiently large system
sizes. A recent experiment has given evidence of an MBL
phase in a bosonic 2D system [6]. Nevertheless, it is cur-
rently under debate whether MBL can be stable at all in
2D [6, 8, 63–65, 79, 80]. The proposed mechanism for
the breakdown of MBL relies on rare resonances which,
however, only manifest on very long time scales, below
which our l-bit description Eq. 2 could still be accurate
at intermediate time scales.

Following our prescription outlined before, we first
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FIG. 3. (a): Logarithmic light-cone calculated using the Cx(t) for the effective model in 1D. (b): Cx(t) as a function of time, the
time has been properly rescaled to get the collapse of the curves. It also shows the non-interacting case (V = 0) (dashed-line).
For both panels (a) and (b) L = 48. (c): Logarithmic light-cone for the 2D case with S = 10× 5 in the x-direction calculated
using Cx,0(t) evolved with the effective model with W = 25 and V = 0.1.

diagonalize the noninteracting model by introducing
η̂†l =

∑
i φl(i) ĉ

†
i . This then leads to Bl,m =

V
∑
〈i,j〉[|φl(i)|2|φm(j)|2 − φl(i)φm(i)φl(j)φm(j)]. In the

remainder, we choose staggered initial states of charge-

density type both for 1D |ψ〉 =
∏L/4−2
s=−L/4 c

†
2s|0〉 and for

2D |ψ〉 =
∏L/2−1
y=−L/2

∏L/4−2
x=−L/4 c

†
(2x,y)|0〉, motivated by re-

cent experiments [6]. Disorder averaged quantities will
be indicated with an overline, e.g. 〈n̂i〉.
Benchmark for quantum-information propagation—

We now compare the exact dynamics of Ĥ with the one
generated by Ĥeff. For the benchmark we choose to study
quantum information (entanglement) propagation which
inherits one of the central and nontrivial features of MBL
phases. In Fig. 1 we show data for two measures both
obtained using exact diagonalization and via our effec-
tive Hamiltonian [61]. First, this includes the half-chain
entanglement entropy

S(t) = −Trρ̂L/2(t) log ρ̂L/2(t), (4)

where ρ̂L/2(t) denotes the reduced density matrix of half
of the system. Second, we study the quantum Fisher
information (QFI) related to the initial charge-density
pattern defined by

FQ(t) = 4
[
〈Ô(t)2〉 − 〈Ô(t)〉2

]
, Ô =

∑
x

(−1)xn̂x. (5)

The QFI probes the propagation of quantum correlations
and is an entanglement witness [7, 23–28], that has been
also measured experimentally in the MBL context [7].

As we can see from Fig. 1(a) the effective model repro-
duces not only qualitatively the unbounded logarithmic
growth of the entanglement entropy [15, 42], but even
more importantly also quantitatively correctly in the
long-time limit. In particular, the inset in Fig. 1(a) shows

that the relative error δS(t) = |S(t)− Sapprox(t)|/S(t) is
a bounded function of time and remains smaller than 3%
for all times. Let us note that the results for δS(t) gives
evidence that our method not only reproduces the loga-
rithmic growth after disorder averaging but even for indi-
vidual random configurations. Similarly, also for the QFI
the dynamics generated by the effective Hamiltonian fol-
lows closely the exact one, see Fig. 1(b) where we define
the QFI-density fQ = FQ/2N [7]. While the entangle-
ment entropy serves as a prime example for MBL proper-
ties, its computation within our method is not scalable to
large system sizes. This, however, is different for the QFI
which can still be computed efficiently even for large sys-
tems, which allows us to also access it in 2D, see below.
It is important to note, that our method reproduces the
exact dynamics also for times longer than the naively ex-
pected range of validity of perturbation theory (∼ 1/V ),
what can be understood from a statistical analysis of the
discarded elements Bl,m,n,k [62].

Results— Having shown that our method reproduces
quantitatively the exact dynamics at a controlled error,
we now aim to further demonstrate the capabilities of
our method. We target this goal by addressing several
aspects of MBL systems which up to now have not been
accessible or could not be settled due to system size lim-
itations. This includes aspects of quantum information
propagation, logarithmic spread of correlations, and tem-
poral fluctuations of local observables both in 1D and 2D.
In the following, we choose a larger interaction strength
V = 0.1 instead of V = 0.01 as used for Fig. 1, which in-
creases slightly the relative error in the computed quan-
tities, but on the same time allows us to amplify the
influence of interaction effects.

Figure 2 shows fQ(t) for the 1D (a) and the 2D case
(b), respectively, now computed for much larger sys-
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several system sizes L for the 1D case, ∆n2(t) ∼ t−α. (b):
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The non-interacting case (V = 0) is also shown (dashed-lines)
for the largest system size. For both cases the evolution has
been performed using Ĥeff.

tems than done for the benchmark in Fig. 1. For the
2D model we choose the QFI along the x-direction, i.e.,
Ô =

∑
x(−1)xn̂x with n̂x := n̂(x,0). For comparison

we also include the results for the noninteracting mod-
els, which show quick saturation to a system-size inde-
pendent value. For nonvanishing interactions, the be-
havior of FQ(t) changes completely and we observe a
slow growth, which is consistent with FQ(t) ∼ log log t
(insets) over many decades in time and almost indepen-
dent of system size. As a consequence, we are capable to
demonstrate slow quantum information propagation in
2D MBL systems, which up to now has not been possi-
ble by other methods [29, 63–65]. In a recent experiment
in trapped ions implementing a long-range disordered
Ising model evidence for an intermediate FQ(t) ∼ log t
growth has been found [7], which, however, might be due
to the fact that the system could be in an algebraic MBL
phase [66, 67], leading to B0,l ∼ 1/lβ with power-law
instead of exponential dependence [66–69].

As a next step we aim at studying quantum correla-
tion spreading via the two-point connected correlation
function, defined by

Cx(t) = |〈n̂x(t)n̂0(t)〉 − 〈n̂x(t)〉〈n̂0(t)〉| . (6)

Cx(t) has been used in several quantum systems [31–36]
to quantify the time t required to correlate two sites
at some distance x, giving rise to the so called light-
cone of propagation of correlations. Moreover, Cx(t) has
been measured in a recent experiment in a disordered
Bose-Hubbard chain to probe the existence of an MBL-
phase [30]. The 1D case we address in Fig. 3(a), where we
show a color plot of Cx(t) displaying the logarithmic light-
cone [30–36, 70, 71] over many decades with quantum cor-
relations spreading in space only logarithmically slowly in
time. Interestingly, however, we find that there exists a

time scale t?x beyond which Cx(t) starts to decrease again,
see Fig. 3 (b), an effect which has not yet been recognized
before. Remarkably, this indicates that quantum correla-
tions are eventually scrambled in the long-time limit also
in an MBL system, which might be consistent and even
necessary with the expectation to reach in the long-time
limit a state with volume-law entanglement entropy [72].
From the rescaling of the time axis used in Fig. 3(b) we
find evidence that this correlation time t?x scales expo-
nentially with the distance x (log t?x ∼ x). In the case of
an Anderson insulator (V = 0) quantum correlations are
frozen in the long-time limit [15, 42], implying the satu-
ration to non-zero value of Cx(t) (Fig. (b) 3 dashed-line).
Finally, in Fig. (c) 3 we study correlation spreading in
2D, where we found again, like in 1D, the same logarith-
mically slow propagation.

As opposed to an Anderson insulator it has been ar-
gued that an MBL system can show relaxation [60, 73],
meaning that expectation values of local observables
reach at long time a stationary value in the thermody-
namic limit with decaying temporal fluctuations. Here,
we use our method to reexamine the temporal fluctu-
ations in 1D and to study them also for 2D systems.
These are defined for n̂x via

∆n2(t) =
1

L

∑
x

∆n2
x(t), ∆n2

x(t) = (〈n̂x〉(t)− 〈n̂x〉tav)
2
,

(7)
where 〈n̂x〉tav denotes the long-time average of 〈n̂x〉(t).
As shown in Fig. 4, both in 1D and 2D the tempo-
ral fluctuations exhibit an algebraic decay with time,
∆n2(t) ∼ t−α. As a reference we have included also
the data for the noninteracting cases (V = 0, dashed-
lines), where temporal fluctuations remain non vanishing
for all times. We find that the exponent α is propor-
tional to the single-particle localization length ξloc [74],
for which we now aim to give an analytical argument.
This shows that our method not only can be used for
numerically computing quantities but also for analyti-
cal predictions. For that purpose we consider a spe-

cial initial state |ψ〉 =
∏L
l
η̂l+η̂

†
l√

2
|0〉 for which the cal-

culations are simplified but which gives qualitatively the
same decay of the temporal fluctuations [75]. For this
state we find ∆n2

x(t) = [
∑
l 6=m φl(x)φm(x)ei(εl−εm)tQlm]2

with Qlm = 2−2
∏m
k=l+1 sin(Al,mk t)

∏
s6=k cos(Al,ms t) and

Al,mk = (V/2)(B̃m,k−B̃l,k) ∼ V e−
min(|m−k|,|l−k|)

ξloc . The sum
over (l,m) can be restricted only to eigenstates, whose
centers are located within a distance ξloc away from x.
Each term of the cos’s and sin’s with argument Al,mk de-
cays exponentially in k, which leads to a power-law in
time [51] with an exponent proportional to ξloc, implying
∆n2

x(t) ∼ t−cξloc [20].
Conclusions— In this work, we have formulated a

method which allows to efficiently study the dynamics of
weakly-interacting localized fermions. The accuracy of
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the approach can be further increased systematically by
taking into account those contributions to the interaction
term, which are not commuting with the bare integrals of
motion Îl and which have been completely neglected in
the present study. For example, to lowest order they can
be accounted for by a Schrieffer-Wolff transformation.
Our method can be applied to any weakly interacting
MBL system, which exhibits an l-bit representation, not
only limited to the quantum quench dynamics studied
here. Thus, it can be used also to study, for example, also
driven Floquet MBL systems [76] such as they appear in
discrete time crystals [77, 78], MBL bosonic systems and
algebraic MBL [66–68]. However, let us note that even in
cases where an MBL phase might not be stable asymp-
totically for infinite system sizes and infinite times, our
method might still provide a description on intermediate
time scales (e.g. MBL in 2D [6, 8, 63–65, 79, 80]).

Overall, our method maps the dynamical quantum
many-body problem onto a system of classical degrees
of freedom of mutually commuting operators, similar in
spirit to recent works where dynamical problems have
been solved using classical [81] or artificial neural net-
works [82]. Instead of solving the problem in the basis
of the bare particles, our work shows that a simple ba-
sis transformation onto more convenient degrees of free-
dom can improve the accuracy and efficiency dramati-
cally, which might also be of relevance for the aforemen-
tioned approaches.

Note—Very recently the dynamics of one-point func-
tions has been computed using a self-consistent Hartree-
Fock method, which scales polynomially in system-size
and time [83].
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[8] P. Bordia, H. P. Lüschen, S. S. Hodgman, M. Schreiber,
I. Bloch, and U. Schneider, Phys. Rev. Lett., 116, 140401
(2016).
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[17] M. Serbyn, Z. Papić, and D. A. Abanin, Phys. Rev. Lett.,

110, 260601 (2013).
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