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We propose that bulk free carriers in topologically trivial multi-valley insulators with non-
vanishing Berry curvature can give rise to low-dissipation edge currents, which are squeezed within
a distance of the order of the valley diffusion length from the edge. This happens even in the
absence of edge states [topological (gapless) or otherwise], and when the bulk equilibrium carrier
concentration is thermally activated across the gap. Physically, the squeezed edge current arises
from the spatially inhomogeneous valley orbital magnetization that develops from valley-density
accumulation near the edge. While this current possesses neither topology nor symmetry protection
and, as a result, is not immune to dissipation, in clean enough devices it can mimic low-loss ballistic
transport.

I. INTRODUCTION

In bulk band insulators, carrier transport is expo-
nentially activated, leading to a severely muted current
response when an electric field is applied1. However,
this adage fails spectacularly in topological matter where
gapped bulk bands, characterized by a non-trivial topol-
ogy2,3, support gapless edge states3–6, which can carry
dissipationlesss charge currents along the edges of the
sample. As a result, such edge currents have become
synonymous with topologically non-trivial bulk bands
as expected from the principle of bulk-edge correspon-
dence3,6–8.

Here we argue that in the presence of Bloch band Berry
curvature, bulk free carriers in a multi-valley gapped in-
sulator can conspire to produce a charge current that is
squeezed close to sample boundaries in the absence of
edge states (Fig. 1). The squeezed edge current (SEC)
(Fig. 1b) has low (but finite) dissipation and occurs even
when the equilibrium chemical potential is in the gap
with a thermally activated bulk. As a result, SEC can
act as a current conduit shunting the nominally insu-
lating bulk to produce unusual non-activated resistivity
characteristics at low temperature.

We expect SEC to naturally manifest in topologically
trivial insulators possessing well-separated Bloch-band
Berry curvature distributions9 in the Brillouin zone (for
e.g., in Fig. 1), such that the total integrated curvature is
zero. As such, these systems do not possess gapless topo-
logically protected edge states. Instead, the Berry cur-
vature in each of the valleys enables valley Hall currents
to be induced by an applied electric field and produce
a valley density accumulation (of bulk carriers) near the
edge of the sample, while the net charge density remains
zero. The valley density gradient perpendicular to the
edge produces a charge current flowing along the edge.
This induced charge current (transverse to the valley den-
sity gradient) can be viewed as an anomalous transverse
diffusion of carriers, with off-diagonal diffusion constants

FIG. 1: Squeezed edge currents in a topologically triv-
ial insulator. a. Berry curvature hot spots in topologically
trivial insulator bands with zero net Berry flux over the entire
Brillouin zone, e.g., (shown) Berry curvature, Ωlα hot spots
for gapped graphene with broken inversion symmetry; l = ±
are conduction and valence bands. b. A charged squeezed
edge current (SEC), jc(r), can flow along the sample edges
[Eq. (9)] even in a gapped finite sized device (inset) with-
out edge states. c. Carriers in highlighted bands at α, α′

experience opposite signs of Berry curvature and contrasting
transport characteristics (see text). d. Density imbalance
between flavors/valleys can accumulate at sample edges over
a width determined by the flavor/valley diffusion length, ξ,
Eq. (7). We have used Ωlα for a gapped Dirac material (see
text) so that σvH > 0 and Dv

H < 0 [Eq. (4) and (5)].

of different signs in different valleys — a characteristic of
carriers possessing finite Berry curvature.

SEC appears only in finite-sized samples (e.g., Hall-
bar type geometries) and vanishes in the infinite bulk or
when measurements exclude edge currents (e.g., Corbino
geometries), see Fig. 2. While located close to sam-
ple boundaries, we emphasize that SEC arises from
bulk carriers; it occurs in the absence of localized edge
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modes of either topological (gapless) edge state origin
or from other sources (e.g., band bending10,11, gapped
edge modes on rough boundaries12). Instead, SEC is
intimately tied to a current-induced bulk and out-of-
local-equilibrium magnetization build-up (pointing out-
of-plane) at sample edges that has been recently mea-
sured in gapped Dirac systems13,14. The resulting out-
of-local-equilibrium (magneto-electric) currents are the
origin of the non-activated transport characteristics we
unveil below.

While gapped graphene-type systems are not the only
examples of this type of behavior, nevertheless, they
present natural experimental targets due to their high
quality, ease of manipulation, lack of topological gapless
edge states, and clear observations of bulk valley Hall
currents15–17. Indeed, a recent experiment that infers
edge-type currents in topologically trivial systems18 pro-
vide strong indications for SEC in gapped Dirac systems,
see discussion below.

II. INHOMOGENEOUS VALLEY HALL
CURRENTS

We begin by recalling that the position and velocity
operators within a Bloch band (l) and valley (α) are

r̂lα = i
∂

∂k
+ Alα(k), v̂lα =

1

ih̄
[r̂lα, Ĥ] , (1)

where Alα(k) = i〈ulα(k)|∇kulα(k)〉 is the Berry con-
nection of the band and valley under consideration.
We note that the band velocity reproduces the familiar

〈ulα(k)|v̂lα|ulα(k)〉 = dεlα(k)
h̄∂k − h̄−1eΩlα(k) × E, where

Ωlα(k) = ∇k ×Alα(k) is the Berry curvature, εlα is the
band energy, and −e < 0 is the electron charge. The
Berry curvature is of order λ2, where λ plays the role
of an effective “Compton wavelength”, inversely propor-
tional to the gap at the band extrema (an explicit ex-
pression for “gapped graphene” will be given later). The
above expressions are invariant under a gauge transfor-
mation that multiplies the Bloch wave function by a k-
dependent phase.

We now construct the current density fluctuation op-
erator at wavevector q (for a single particle) as follows:

ĵlα(q) = − e2
(
v̂lαe

−iq·r̂lα + e−iq·r̂lα v̂lα
)
. We will be in-

terested in current distributions that are slowly varying

on the scale of λ. In this regime, we can expand ĵlα(q)
to first order in q:

ĵlα(q) = −ev̂lα +
i

2
e [(q · r̂lα)v̂lα + v̂lα(q · r̂lα)] . (2)

While the first term in Eq. (2) is the homogeneous cur-
rent (q = 0) see Eq. (1), the second term only be-
comes relevant in an inhomogeneous system. Taking
the latter’s expectation value for state |ulα(k)〉 yields a
purely transverse current iq ×mlα(k), where mlα(k) =
− e4 (r̂× v̂ − v̂ × r̂) is the magnetic moment19, see Ap-
pendix.

The full physical current density in real space jlα(r)
proceeds directly from Eq. (2). Performing an in-
verse Fourier transformation, and averaging over a non-
equilibrium state described by the inhomogeneous elec-
tron distribution function flα(k, r) yields

jlα(r) =
∑
k

[
−e∂εlα(k)

h̄∂k
+
eΩlα(k)

h̄
× eE

]
flα(k, r)

+
∑
k

∂flα(k, r)

∂r
×mlα(k) . (3)

The first term of Eq. (3) is the familiar homogeneous
current (including a homogeneous Hall current driven by
an electric field)20. The second term is the current driven
by an electron density gradient, and exists even in the
absence of direct mechanical forces, such as an applied
electric field21,22. As shown explicitly in Appendix, the
latter is Hall diffusion current which must necessarily
accompany electric field-driven Hall currents whenever
the density is non-uniform.

We emphasize Eq. (3) is the full physical current that
can be measured using local probes (e.g., via a scanning
NV-center microscopy23). Even so, we note that in trans-
port experiments, the charge current collected by leads
attached to device boundaries are sensitive to the net
charge current moving through the cross-section of the
device. For example, charge transport is insensitive to
circulating currents that may occur deep in the bulk,
as illustrated in Ref.24 by integrating through a device
cross-section.

As a result, to ensure we capture the transport of
charge we explicitly take a cross-section over the entire
sample and integrate the net current flowing through it,
see below. As we will see, these lead to SEC freely flow-
ing in the same direction along the edges (Fig. 1), being
fed by external contacts.

III. SQUEEZED EDGE CURRENTS

In order to illustrate SEC, we focus on a prototypical
non-topological insulator: a gapped Dirac material where
inversion symmetry is broken (e.g. gapped graphene on
hexagonal Boron Nitride) with Hamiltonian around each
of the valleys as: Hα = vh̄(kxτx + αkyτy) + ∆τz (where
τx,y,z are Pauli matrices) and α = ±1 for K,K ′ valleys
respectively - see Fig. 1. The Berry curvature is con-
centrated in hot spots close to the two inequivalent val-

leys α = {K,K ′} and is given by Ωlα(k) = −αλ
2

2
∆3

ε3l (k)
ẑ,

where λ = h̄v
∆ . The magnetic moment is given by

m`α(k) = e
h̄εk,`Ω`α(k) (see Appendix). For brevity, we

will drop the vector notation for Berry curvature since
Ω(k) = Ω(k)ẑ in two-dimensional systems. Total charge
current (c) is determined by jc ≡

∑
l,α jl,α and the total

valley current (v) is jv ≡
∑
lα αjl,α where α = 1 for K

and α = −1 for K ′. Similarly, we write charge and val-
ley densities as nc ≡

∑
l,α nlα and nv ≡

∑
l,α αnlα; here
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nlα(r) =
∑

k(−e)flα(k, r) is the charge density in l, α.
Since Ωlα(k) changes sign in going from α = K to α =

K ′, the flow of charge currents is particularly sensitive to
the imbalance of distribution function between valleys.
To see this, using Eq. (3), we construct the total charge
and valley currents in each band l explicitly as

jc = −D∇nc + σE−Dv
H [(∇nv)× ẑ],

jv = −D∇nv + [σvH ]ẑ×E−Dv
H [(∇nc)× ẑ], (4)

where D is the ordinary longitudinal diffusion constant of
carriers within the bands, σ is the longitudinal conduc-

tivity, and [σvH ] = (e2/h̄)
∑

k,l,α αΩlαf
(0)
lα (k) is the valley

Hall conductivity, with f
(0)
lα (k) is the Fermi-Dirac func-

tion f
(0)
lα (k) = {1+exp

[
(εl(k)−µlα)/(kBT )

]
}−1 with µlα

the (quasi-) chemical potential. Crucially, Dv
H is the val-

ley Hall diffusion constant, which captures the transverse
current flow arising from an inhomogeneous distribution
function in each of the valleys: jlα = −Dlα

H∇nlα × ẑ,
where for gapped graphene we have

Dlα
H =

∑
k εl(k)Ωlα(k)

∂f
(0)
lα (k)

∂µlα

h̄
∑

k
∂f

(0)
lα (k)

∂µlα

. (5)

Since Ωlα(k) changes sign when either the band index

or the valley index is switched, D+,α = D−,αH = αDv
H ,

where Dv
H ≡ D

l=+,α=+1
H . Summing jlα over l and α gives

the inhomogeneous charge current as written in Eq. (4).
When an electric field is applied along the sample,

the bulk valley Hall effect produces a valley Hall current
which must be cancelled by a valley density gradient per-
pendicular to the sample boundaries. This dramatically
impacts charge transport characteristics. The profiles of
density imbalance between valleys in each band nv(r)
obey the diffusion equation

∂tnv(r)−D∇2nv(r) +
nv(r)

τv
= −∇ · ([σvH ]ẑ×E), (6)

where τv is the intervalley scattering time between val-
leys which captures the rate at which disparate parts (at
K and K ′) of the Fermi surface equilibrate with each
other. In the non-degenerate limit, the longitudinal dif-
fusion can be estimated as D = kBTη/e where η is the
mobility; here we have used the same diffusion constant
in both conduction and valence bands for simplicity. Dif-
ferent diffusion constants can be implemented with no
qualitative change to the results below.

Considering a long Hall bar, L � W , we treat nv(r)
and E(r) as independent of y along the bar; this reduces
Eq. (6), in the steady state, to a one-dimensional dif-
ferential equation, with the density jumping from a fi-
nite value to zero at x = ±W/2. Further, by focusing
on regions far away from contacts, we treat the elec-
tric field as uniform. As a result, nv(r) is driven only
by delta-function sources at the boundaries x = ±W/2:
−∇ · ([σvH ]ẑ×E) = −[σvH ]E [δ(x−W/2)− δ(x+W/2)],

where E = Eŷ. We note that σvH is maximal when the
chemical potential is in the gap25.

The solution of the differential equation is found by
elementary means to be

nv(x) = − [σvH ]Eτv
ξ cosh (W/2ξ)

sinh

(
x

ξ

)
, (7)

for |x| ≤W/2 and 0 otherwise. Here ξ =
√
Dτv is the val-

ley diffusion length. As shown in Fig. 1d, valley density
accumulates at the edges.

We emphasize that our diffusive treatment is valid only
when the spatial profile of nv, jc is slowly varying on the
scale of the Compton wavelength λ = h̄v/∆, the typical
length scale of the wavepackets close to the band edge in
a gapped Dirac model. λ ' 6×10−8 m for v = 106 m s−1

and half-gap size ∆ = 10 meV. The typical scale of nv(r)
variation is captured by the diffusion length ξ. As a re-
sult, we expect that our semi-classical diffusive picture
holds as long as ξ � λ. Using the non-degenerate form
of longitudinal diffusion constant D = kBTη/e we find
this occurs for large enough temperatures

T � T0, kBT0 =
eλ2

ητv
. (8)

Using a mobility η = 1 m2/(Vs), τv = 10 ps we estimate
kBT0 ≈ 0.4 meV (T0 ≈ 5 K). Below this temperature
scale (set by T0), a fully quantum mechanical treatment
is needed which is beyond the scope of the present work.
In spite of this, the temperature regime ∆ > T > T0 (in
which our treatment is valid) defines a large and techno-
logically important temperature regime.

Applying the inhomogeneous valley density profile in
Eq. (7) to Eq. (4) yields a charge current density flowing
along the edge (see Fig. 1) as

jSEC
c (r) = jSEC

c (r)ŷ, jSEC
c (r) = Dv

H∂xnv(r). (9)

In the limit ξ � W , jSEC
c (r) form squeezed quasi-one-

dimensional channels flowing along the edges of the Hall
bar. Crucially, Eq. (9) yields two squeezed current chan-
nels flowing in the same direction as shown in Fig. 1;
jSEC
c (r) flows along E. This demonstrates that the diffu-

sion current arising from the inhomogeneous electron dis-
tribution [see Eq. (3)] is not circulating, but contributes
to total charge transport in the device.

Integrating the current density over one of these SEC
channels and writing E = V/L where V is the voltage

drop over length L yields ISEC =
∫W/2

0
jSEC
c (x)dx =

−Dv
Hσ

v
HτvV/(ξL). ISEC constitutes a distinctly new par-

allel channel for current to flow in the Hall bar. We note
that −Dv

Hσ
v
H is positive, see Fig. 1. Adding the current

flowing in the bulk, as well as accounting for contact re-
sistance, we find the device resistance

R−1 = R−1
bulk +R−1

SEC, RSEC = (ρ1dL)+Rcontact, (10)

where ρ1d = ξ/(|Dv
Hσ

v
H |τv), and Rbulk is the resistance

of the bulk. Crucially, Dv
H , σ

v
H arise from the Berry cur-

vature of the bands and exhibit a non-activated behavior
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FIG. 2: Low dissipation squeezed edge channels. a.
One-dimensional resistivity of a single squeezed edge current
(SEC) channel along the edge of gapped graphene device
[Eq. (12)] shown for τv = 10 ps (red dashed) and τv = 1 ps
(blue dashed). τv in-between these two values occupy the
shaded orange region. Red and blue dots indicate temper-
ature T0 above which the semi-classical treatment is valid
for the respective τv [see Eq. (8)]. b. Device resistance
for a Hall-bar device (red, L = 1µm and τv = 10 ps) and
a Corbino device (black). For illustration we used parame-
ters: ∆ = 15 meV, η = 2 m2/Vs, and σvH = 2e2/h. Here we
have taken a value of Rcontact = h/e2 for illustration; other
Rcontact values can be used with no qualitative changes.

in temperature, even when the chemical potential is in
the gap. As we will see, this yields ρ1d that does not
exponentially rise at low temperatures in stark contrast
with Rbulk that exponentially rises at low temperatures.

IV. LOW DISSIPATION SEC CHANNELS

In the non-degenerate limit µlα, kBT � ∆, we esti-
mate σvH ≈ 2e2/h for an almost fully filled band (account-
ing for spin degeneracy). Similarly, Dv

H can be estimated
from Eq. (5) in the same limit as

Dlα
H ≈ α

h̄v2

2∆
F(β̃), F(β̃) =

[ −β̃2Ei(−β̃)

(1 + β̃)exp(−β̃)

]
, (11)

where β̃ = ∆/kBT , Ei(x) = −
∫∞
−x dte

−t/t is the

exponential integral, and we have approximated (1 +

exp[β̃])−1 ≈ exp[−β̃] for β̃ � 1. Interestingly for small
T , F → 1, reflecting the (band) geometrical origin of
anomalous transverse diffusion. We note that σvH , D

v
H

do not vary significantly for E-induced shifts in µlα < ∆;
sizeable valley imbalances along the edge can accumulate
in the linear response regime.

Writing Dv
H = D

l,(α=+1)
H [see Eq. (5)] yields the resis-

tivity of the quasi-1D channels along the sample edges

ρ1d(T ) =
ρ0

β̃1/2F(β̃)
, ρ0 =

2∆3/2(η/e)1/2

h̄v2τ
1/2
v |σvH |

(12)

where ρ0 is the characteristic 1D resistivity, see also Ap-
pendix.

ρ0 is non-universal and depends on the rate of relax-
ation of different parts of the Fermi surface at K and
K ′ encoded in the intervalley scattering time τv. In a
bulk homogeneous sample with few short-range impu-
rities, intervalley scattering can be long (on the order
of ten to several tens of picoseconds15–17). Further, it
has been noticed in Ref. [26] that the notion of valleys
is preserved for generic edge terminations in graphene
since generic terminations are described by zig-zag-type
boundary conditions. Even so, the specific edge ter-
mination configuration may enable enhanced interval-
ley scattering (as compared with the bulk), for example
through edge roughness or via indirect scattering pro-
cesses through flat/weakly-dispersive edge states27, and
the value of τv can be accordingly reduced close to edges.
For these reasons, in Fig. 2 we have chosen to illustrate
SEC by presenting the values of ρ1d(T ) associated with
a range of values of τv ∼ 1 − 10 ps. Strikingly, even for
relatively fast inter-valley scattering τv ∼ 1 ps, ρ1d can
still take on small values ρ1d ∼ h/e2µm−1, see Fig. 2a
(red curve). In contrast, the bulk resistance exponen-
tially rises at low temperatures, Rbulk ∝ exp(∆/kBT ),
where ∆ is the half-gap size. As a result, for small gap
sizes of tens of meV, sufficiently short lengths, and low
temperatures, SEC possess a very small resistivity [dom-
inating R−1 in Eq. (10)], and can mimic low-dissipation
quasi-one-dimensional channel that shunts the bulk, see
Fig. 2b.

We note that in the low-temperature regime where
(ρ1dL)� Rcontact, Eq. (10) is dominated by the contact
resistance, see Fig. 2b. As a result of the low-dissipation
in the SEC channel, current-voltage characteristics in a
two-terminal geometry may display only very weakly L-
dependent characteristics.

V. DISCUSSION

It is useful to point out some of the conceptual differ-
ences between conventional bulk transport in electronic
systems and SEC. Bulk carrier transport in electronic
systems is typically characterized by a homogeneous flow
of current density through the sample that is sustained
by an electric field that accelerates the charge carriers.
This electric field displaces the Fermi surface in momen-
tum space so that larger current density corresponds to
a larger relative displacement of the Fermi surface in mo-
mentum space. In contrast, SEC arises from an inhomo-
geneous flow of current density running along the edges
of the device. For SEC, the charge carriers are not accel-
erated along the flow direction (y), instead SEC is sus-
tained by an inhomogeneous valley density profile nv(x)
in real space (along x) induced by an electric field (along
y).

Crucially, larger SEC current corresponds to a larger
local steady-state valley density (close to the edges in
real space), see Eq. (9). Interestingly, as detailed be-
low, even in the linear response regime, this steady-state
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out-of-equilibrium valley density can be far larger than
equilibrium density of thermally activated carriers when
the chemical potential is in the gap and at low temper-
atures. This is in stark contrast to what is expected
in conventional bulk transport, where electronic density
is kept uniform and close to its equilibrium value even
when current is flowing through. Where does this large
density of carriers come from? As we now argue, the
increased local steady-state valley density can be fed by
the source/drain contacts which inject carriers that are
shunted along the SEC channels. This can be understood
as follows. Charge transport occurs when carriers are in-
jected from a source contact, and removed at a drain
contact. After short time transients, the device reaches
a steady-state with the amount of current injected (at
source contact) equal to the amount of current removed
(at drain contact) resulting in a steady state distribu-
tion of carriers. For our system, this steady-state out-
of-equilibrium distribution of carriers is determined by
Eq. (6) allowing sizeable steady-state local valley densi-
ties to be accumulated along the edges.

We now estimate the maximal valley density, n∗v, that
can be accumulated along the edges [as determined by
Eq. (6)] concentrating on the regime of µ in the gap
and kBT < ∆. To proceed, we note that the validity
of linear response theory requires that the values of D,
σvxy (as well as Dv

H when considering the SEC current,
see below) used do not change much as valley density
is accumulated at the edge of the sample. For gapped
graphene with equilibrium chemical potential initially in
the gap, this requires the electric-field induced change
in the quasi-Fermi levels (close to the edges) to sat-

isfy δµK,K
′

e,h � ∆. This is because the relevant trans-

port coefficients for SEC (D, σvxy and Dv
H) do not vary

appreciably as chemical potential is changed inside the
gap28; in fact, σvxy and Dv

H both reach their maximal
values inside the gap. The condition on quasi-Fermi lev-
els can be immediately translated into one for density
so that linear response is satisfied for nv � n∗v where

n∗v = N
∫∞

∆
dεν(ε)

[
1 + exp[(ε−∆)/kBT ]

]−1
, where ν(ε)

is the density of states, and N is the valley/flavor and
spin degeneracy. Using the density of states of a gapped
Dirac cone, we obtain

n∗v = N
[
12ln(2)kBT∆ + π2(kBT )2

]
/(24πv2h̄2). (13)

Unusually, n∗v ∝ T can be much larger than the ther-
mally activated carrier density at equilibrium [neq

T ∝
exp(−∆/kBT )]. As discussed above, this steady-state nv
builds up and is fed by the source/drain contacts that
inject/remove a steady flow of carriers.

A related quantity is the critical SEC, I∗, that can be
be carried by the system through the SEC channels along
the edges (ISEC � I∗) in order to remain in the linear
response regime. Since jSEC

c is directly proportional to
the amplitude of nv(x), see Eq. (9), and integrating over
the SEC channel width we obtain the critical SEC current

as

I∗ = eDv
Hn
∗
v ≈

eN
2h

kBT ln2 +O(T 2/∆), (14)

where in the last line we have used the value of Dv
H in

Eq. (11) for small T , substituted Eq. (13), and kept
the leading terms in T . Taking N = 4 and taking
kBT = 1 meV we obtain sizeable I∗ ∼ 0.053µA, allow-
ing significant SEC to be run through the device with
low dissipation. Interestingly, we note that I∗ vanishes
as T → 0 indicating that while SEC resistivity slowly
decreases as T decreases, the amount of current these
channels can sustain (in the linear response regime) also
vanishes.

The non-activated conductance as well as non-
activated valley density sustained at the edges of the
sample of SEC is distinct from that of conventional trans-
port. Indeed, the fact that valley densities n∗v that can
be sustained are far larger than the thermally activated
density at equilibrium neq

T suggests that SEC is an out-
of-local-equilibrium effect; nevertheless it can still possess
linear response characteristics, as detailed above.

SEC here replicates the unusual transport character-
istics found in recent gapped graphene-type structures
(G/hBN and gapped Bilayer graphene devices)18. For
example, Fig. 1 mirrors the sharp spatial edge current
distribution in gapped graphene-type structures found
in Ref.18 using Josephson current spectroscopy. Further,
a saturation of device resistance (up to a few resistance
quanta) was measured in Hall bars even at low tempera-
tures (∼ 10 K) while Corbino geometry measurements
of the same samples showed fully activated behavior;
this directly reproduces SEC characteristics in Fig. 2b.
Further, we note recent Kerr-rotation microscopy in bi-
ased monolayer MoS2 show magnetization accumulated
along edges13,14, another signature of valley imbalance
accumulation and SEC along the edge. We emphasize
that while neither gapped graphene (G/hBN or gapped
bilayer graphene) nor MoS2 possess topological gapless
edge states, they possess strong Berry curvature close
to their band edges, enabling the unusual quantum ge-
ometry mediated transport (such as SEC) in these sys-
tems13,14,18.

Bloch band quantum geometry can play a crucial role
in charge transport of time-reversal invariant materials
as epitomized by SEC that mimic ballistic edge chan-
nels without (spectral) edge states. SEC exhibits striking
non-activated behavior even in nominally bulk insulat-
ing and topologically trivial devices. Additionally, SEC
also mediates spin-free magneto-electric coupling, an un-
usual characteristic of these “trivial” insulators with non-
vanishing Berry curvature; band geometry naturally in-
terlaces charge and magnetization degrees of freedom
even in a spin-orbit free system.
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“Marginality of bulk-edge correspondence for single-valley
Hamiltonians.” Physical Review B 82 245404 (2010).

28 This behavior is in juxtaposition to that expected of the
bulk longitudinal conductivity, which is exponentially sen-
sitive to small changes in (quasi-) chemical potential in the
gap.

Appendix A: Covariant derivative and anomalous
velocity

As a warm-up, we briefly review the covariant deriva-
tive. Our starting point is the gauge invariant (physical)
position operator in the Bloch representation

r̂lα = i
∂

∂k
+ Alα(k) (A1)

where Alα(k) = i〈ulα(k)|∂kulα(k)〉 is the Berry connec-
tion of the band and valley under consideration. We note
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that i ∂∂k is the canonical (non-gauge-invariant) position
operator in the momentum representation. Crucially, dif-
ferent components of r̂ do not commute with each other.
In particular,

[r̂i, r̂j ] = i
(
∂ki [Alα]j − ∂kj [Alα]i

)
≡ iεijkΩk (A2)

where the Berry curvature is

Ωi ≡ εijk∂kj [Alα]k . (A3)

In the presence of an applied electric field, the Hamil-
tonian reads as Ĥ = εn(k) − (−e)E · r̂. Here −e < 0 is
the electron charge, and E is the electric field. Writing
the velocity as v̂ = 1

ih̄ [r̂, Ĥ], we obtain

〈v̂i〉 =
1

ih̄
〈[ri, Ĥ]〉 =

1

h̄

∂εn(k)

∂ki
− ie

h̄
〈[r̂i, r̂j ]〉Ej

(A4)

=
1

h̄

∂εn(k)

∂ki
+
e

h̄
εijkEjΩk, (A5)

where the second term is the anomalous velocity.

Appendix B: Magnetic moment and inhomogeneous
current density

In this section, we discuss the relationship between the
magnetic moment and the inhomogeneous current den-
sity in Eq. (2) of the main text.

We begin by noting that the magnetic moment,

m̂ = −e
4

(r̂× v̂ − v̂ × r̂)

=
ie

4h̄

(
r̂× [r̂, Ĥ]− [r̂, Ĥ]× r̂

)
, (B1)

where Ĥ is the hamiltonian and v̂ = −ih̄−1[r̂, Ĥ]. It is
important to notice that at this stage the operator r̂ is not
yet projected on a given band. Thus, interband matrix
elements of r̂ are still included. However the hamiltonian
is diagonal in the band representation. The magnetic
moment can be re-expressed in component form as

mi =
ie

4h̄
εijk

(
r̂j r̂kĤ − r̂jĤr̂k − r̂jĤr̂k + Ĥr̂j r̂k

)
,

(B2)
where a sum over repeated indices is implied. This can
be recast as

iεijkqjmk

=
e

2h̄
qj

[
r̂iĤ r̂j − r̂jĤr̂i

]
− e

2h̄
qj

[
Ĥ(r̂ir̂j − r̂j r̂i)

2
+

(r̂ir̂j − r̂j r̂i)Ĥ
2

]
. (B3)

Now we make use of the commutation relation

r̂× r̂ = iΩ̂ , (B4)

where Ω̂ is the Berry curvature operator defined as the
covariant derivative of the Berry connection in the full
Hilbert space, to rewrite mi as

mi = − ie
2h̄
εijkr̂jĤr̂k −

e

4h̄

[
Ω̂iĤ + ĤΩ̂i

]
. (B5)

We can now take the diagonal matrix element of this
operator in the band of interest, say lα, and noting that
r̂ = i∇k, where ∇k = ∂k−iA(k) is the covariant deriva-
tive (still an operator in the full Hilbert space), and that

the diagonal matrix element of Ω̂ is

Ωlα(k) = i〈∇kulα(k)| × |∇kulα(k)〉 , (B6)

we recover the well-known formula19,20

mlα(k) =
ie

2h̄
〈∇kulα(k)|(εlα(k)− Ĥ)× |∇kulα(k)〉 .

(B7)
Similarly, we write the q-linear part of the current den-

sity operator in Eq. (2) of the main text (denoted by ĵ
(1)
q,i)

in component form as

ĵ
(1)
q,i = i

e

2
qi (v̂j r̂i + r̂iv̂j)

=
e

2h̄
qi

(
r̂jĤr̂i − Ĥr̂j r̂i + r̂ir̂jĤ − r̂iĤr̂j

)
(B8)

After some algebra, this can be recast in the following
form:

ĵ
(1)
q,i =

e

2h̄
qj

[
r̂iĤr̂j − r̂jĤr̂i

]
− e

2h̄
qj

[
Ĥ (r̂ir̂j − r̂j r̂i)

2
+

(r̂ir̂j − r̂j r̂i) Ĥ
2

]

+
e

2h̄
qi

[
Ĥ
r̂ir̂j + r̂j r̂i

2
− r̂ir̂j + r̂j r̂i

2
Ĥ

]
(B9)

The first two lines of this equation reproduce Eq. (B3)
exactly. The last line is, in general, nonzero, but vanishes
when averaged in a single band because the Ĥ operators
become numbers Ĥ → εlα(k) and what remains is the
difference of two identical terms. We conclude that

[ĵ
(1)
q,i ]lα = iεijkqjmlα,k (B10)

or, in real space,

[̂j(1)(r)]lα = ∇r ×mlα(r) . (B11)

Taking mlα(r) =
∑

k flα(k, r)mlα(k) we recover Eq. (3)
of the main text.

Appendix C: Magnetic moment for gapped graphene

Here we briefly derive (for the convenience of the
reader) the well-known relation between Berry curvature
and the magnetic moment for gapped graphene, namely:

m`α(k) =
e

h̄
εk,`Ω`α(k). (C1)
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Eq. (C1) can be shown in a straightforward fashion by
recalling that magnetic moment is

〈M̂〉`,α =
ie

2h̄
〈∇ku`α(k)

∣∣∣(ε`(k)− Ĥ)×
∣∣∣∇ku`α(k)〉.

(C2)
Noting that for the two-band, particle-hole symmetric
system ε`=+(k) = −ε`=−(k) we have

ε`(k)− Ĥα = 2ε`(k)|un 6=`,α(k)〉〈un 6=`,α(k)| (C3)

Inserting into the Eq. (C2) we obtain

〈M̂〉`,α =
ieε`
h̄

[〈∂u`,α
∂kx

∣∣∣∂u`,α
∂ky

〉
−
〈
∂u`,α
∂ky

∣∣∣∂u`,α
∂kx

〉]
(C4)

where we have applied the resolution of the identity.
Recalling that the Berry curvature is simply Ω`α(k) =
i〈∇ku`α(k) |×|∇ku`α(k)〉, we obtain Eq. (C1).

Appendix D: Alternative derivation of
inhomogeneous current density: velocity matrix

element

In this section, we discuss an alternative algebraic
derivation of the inhomogeneous current density by ex-
panding the velocity matrix element at finite q. For
brevity, we will suppress the flavor index α leaving only
the band index l without loss of any generality. While
less compact than the above discussion (using the mag-
netic moment operator), this alternative approach explic-
itly shows how the accumulation of geometric phases at
finite q leads to the anomalous transverse diffusion.

We proceed by considering the current dynamics in
Bloch bands with a spatially varying out-of-equilibrium
carrier density in the absence of an applied magnetic

field. The current density jl(r) = e
∑

q v
(l)
q eiq·r, can be

expressed in terms of its Fourier harmonics as

v(l)
q =

∑
k

c†k−,l〈l,k−|v̂|l,k+〉ck+,l, h̄v̂ =
∂Ĥ

∂k
, (D1)

where v̂ is the velocity operator, Ĥ is the hamiltonian,

k± = k + q/2, c†k,l is a creation operator for quasipar-

ticles in band l with corresponding (Bloch) wavefunc-

tion 〈r|c†k,l|0〉 = 〈r|l,k〉eik·r. The crystal wavefunctions

〈r|n,k〉 = ul,k(r) are periodic over the unit cell.

As we now demonstrate, the phases accumulated by
quasiparticles in the bands can play a crucial role in their
transport, producing anomalous current flow when the
carrier density is inhomogeneous. To illustrate this, we
first note that the wavefunction 〈r|l,k + q〉 can be ex-
panded, to leading order in q, as

〈r|l,k〉+
(
〈r|∂ul,k

∂ki
〉 − iAl,i(k)〈r|ul,k〉

)
qi + · · · , (D2)

where we have expressed the expansion in component
form, and Al,i(k) = Al(k) · x̂i is the ith component of
the Berry connection Al(k) = i〈ul,k|∂k|ul,k〉 (i.e. Al in
the x̂i direction). Notice that the Taylor expansion in k is
done using the covariant derivative, ∇k = ∂k − iAl(k):
this is needed to ensure that the calculated current is
physical, i.e., invariant under a “gauge transformation”
of the crystal wave function, ul,k(r)→ e−iχ(k)ul,k(r).

Applying the expansion of the wavefunction at small
q described in Eq. (D2) to the velocity matrix element,
we obtain

〈l,k−|v̂i|l,k+〉 = 〈l,k|v̂i|l,k〉+ [C(l)
ij (k)](iqj) +O(q2),

(D3)

where h̄〈l,k|v̂i|l,k〉 = ∂εl(k)
∂ki

is the group velocity, and

[C(l)
ij (k)](iqj) =

[〈∂ul,k
∂kj

∣∣v̂i∣∣ul,k〉− 〈ul,k∣∣v̂i∣∣∂ul,k
∂kj

〉]qj
2
− 2i〈ul,k|v̂i|ul,k〉Aj

qj
2

=
∑
m

[〈∂ul,k
∂kj

∣∣um,k〉〈um,k|v̂i∣∣ul,k〉− 〈ul,k∣∣v̂i∣∣um,k〉〈um,k|∂ul,k
∂kj

〉]qj
2
− 2i〈ul,k|v̂i|ul,k〉Aj

qj
2
. (D4)

In the last line we have inserted the resolution of the iden-
tity

∑
m |um,k〉〈um,k| = 1 into the terms of the square

parentheses.

In order to proceed, we note that when m = l,
the square parentheses cancel with the last term since

〈ul,k|∂ul,k∂kj
〉 = −iAj . As a result, only terms with m 6= l

remain in Eq. (D4). Using the identity for the interband

matrix element

h̄〈ul,k|v̂i|um,k〉 = 〈ul,k|
∂um,k
∂ki

〉[εl(k)− εm(k)], l 6= m,

(D5)
where εl(k) is the quasiparticle energy in band l, yields

C(l)
ij = − i

2h̄

∑
m 6=l

〈∂ul,k
∂ki
|um,k〉[εl(k)−εm(k)]〈um,k|

∂ul,k
∂kj
〉−c.c.

(D6)
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Comparing this with the well known expression for the
magnetic moment19,20

〈M̂〉 =
ie

2h̄
〈∇kulα(k)

∣∣∣(εlα(k)− Ĥ)×
∣∣∣∇kulα(k)〉 (D7)

yields Eq. (3) of the main text.

Appendix E: Estimate of characteristic SEC
resistivity

In the following we give a simple estimate of the char-
acteristic SEC resistivity. Recalling Eq. (12) of the main
text, we have the resistivity of the SEC channel

ρ1d(T ) =
ρ0

β̃1/2F(β̃)
, ρ0 =

2∆3/2(η/e)1/2

h̄v2τ
1/2
v |σvH |

, (E1)

where ρ0 is the characteristic 1D resistivity and can be
estimated as

ρ0 = 0.48
(∆[meV]/10)3/2(η[m2/Vs])1/2

(τv[ps]/10)1/2

[
h

e2
µm−1

]
,

(E2)
where we have used v = 106 m/s, and taken |σvH | =
2e2/h.

We note that for narrow-gapped Dirac materials ∆ ∼
10 meV, ρ0 can be as small as fractions of the quantum of
resistance h/e2. As a result, at low temperatures, ρ1d(T )

in Eq. E1 yielding low-dissipation squeezed edge chan-
nels. When the values for ρ0 in Eq. E1 for such narrow-
gapped Dirac materials is substituted into Eq. 10, we
find the low-dissipation ρ1dL can become far smaller than
Rcontact. As a result, RSEC (red line in Fig. 2b) becomes
dominated by Rcontact and tends to Rcontact (dashed line
in Fig. 2b) value at low-temperature.

As discussed in the main text, this behavior was re-
cently seen in gapped graphene-type structures Ref.18

where a saturation of device resistance (up to a few re-
sistance quanta) was measured in Hall bars even at low
temperatures (∼ 10 K) (where SEC is operative); while
Corbino geometry measurements (where edge contribu-
tions are eliminated) of the same samples showed fully
activated behavior.

In contrast, for large gapped Dirac materials ∆ ∼ 1 eV,
ρ0 can be many times larger; for e.g., taking ∆ = 1eV
and η = 1m2/Vs and τv = 1ps we obtain a very resistive
channel ρ0 ≈ 40 MΩµm−1. These values are so large as
to be comparable with the bulk resistance making SEC
ineffective current shunts to bulk charge current conduc-
tion.

As a result, we conclude that narrow-gapped Dirac
materials (e.g., G/hBN or gapped bilayer graphene) at
low temperature are ideal platforms to observe low-
dissipation squeezed edge currents (as seen in Fig. 2 of
the main text; compare also with Hall bar device resis-
tances observed in Ref.18).


